# ST MARY'S, FELTWELL, NORFOLK TREE-RING ANALYSIS OF TIMBERS 

## SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard


# ST MARY'S CHURCH, FELTWELL, NORFOLK 

# TREE-RING ANALYSIS OF TIMBERS 

Alison Arnold and Robert Howard

NGR: TL 7I5 907
© English Heritage
ISSN I749-8775


#### Abstract

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series. Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.


Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

## SUMMARY

Analysis was undertaken on samples taken from the timbers of the nave roof, resulting in the construction of two site sequences.
Site sequence FTWASQ0 I contains I7 samples and spans the period AD I 303-| 494.
One of these samples was felled in AD 1494. Interpretation of the sapwood on the rest of the dated timbers makes it likely these were also felled at this time.
These results suggest construction of the nave roof occurred in the last years of the fifteenth century.
The second site sequence, FTWASQ02, contains only three samples and is undated.

## CONTRIBUTORS

Alison Arnold and Robert Howard

## ACKNOWLEDGEMENTS

The Laboratory would like to thank the contractors for facilitating access. Freeland Rees Roberts Architects kindly provided the drawings used to locate the samples (Figs 6-16). Thanks are also given to the Scientific Dating Section at English Heritage and Cathy Tyers of the Sheffield University Dendrochronology Laboratory for their advice and assistance throughout the production of this report.

## ARCHIVE LOCATION

Norfolk Historic Environment Record Norfolk Landscape Archaeology Union House
Gressenhall
Dereham NR20 4DR

## DATE OF INVESTIGATION

2009

## CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT

## CONTENTS

Introduction ..... I
Nave roof .....
Sampling ..... I
Analysis and Results ..... 2
Discussion ..... 2
Bibliography: ..... 4
Tables ..... 5
Figures ..... 7
Data of Measured Samples ..... 18
Appendix: Tree-Ring Dating ..... 24
The Principles of Tree-Ring Dating ..... 24
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory ..... 24
I. Inspecting the Building and Sampling the Timbers. ..... 24
2. Measuring Ring Widths ..... 29
3. Cross-Matching and Dating the Samples ..... 29
4. Estimating the Felling Date ..... 30
5. Estimating the Date of Construction ..... 31
6. Master Chronological Sequences. ..... 32
7. Ring-Width Indices ..... 32
References ..... 36

## INTRODUCTION

The parish church of St Mary's is located in Feltwell in Norfolk (TL 715 907; Figs I-3). Although there may have been a church on this site earlier, the oldest surviving parts today are thought to be the fourteenth-century chancel and south arcade. The south aisle and west tower are believed to be fifteenth-century and the north aisle dates to AD |86|-3, as does the north arcade. Also dating to the nineteenth century are the roofs of the chancel and the south aisle. In addition to the nineteenth-century restorations, the church has also undergone more ancient restoration. It is known that in AD 1494 a Papal indulgence was offered for money to repair the tower and bells following a fire (Pevsner 1962).

## Nave roof

This is of I I trusses; major and intermediary ones with roll-moulded tiebeams on arched braces and wall posts to corbels. The corbels to the north are thought to be nineteenthcentury, and those to the south, fifteenth-century angel figures. The major trusses have pierced spandrels and queen-post struts to moulded principals (Fig 4). The tiebeams of the intermedate trusses are supported on shorter arched braces with the figure of an angel on each side (Fig 5). There is one set of moulded butt purlins to each side and a ridge piece. This roof was thought to date to the fifteenth century (www.imagesofengland.org.uk).

## SAMPLING

Sampling was requested by lan Harper at English Heritage's Cambridge Office to inform grant-aided repairs to the nave roof. It was hoped that successful dating of the timber of this roof would determine the date of the structure and in turn assist in the understanding of the church as a whole.

Once on site, an initial examination of the timbers was undertaken. At this stage there appeared to be a marked difference in the growth pattern of the timbers used within the construction of the roof, with the timbers falling into two distinct groups. After discussion with the Scientific Dating Section at English Heritage, it was decided to sample each group of timbers as if they were a separate phase. It was hoped that this course of action would give a greater chance for success if there did prove to be a difference in date and/or origin.

A total of 24 timbers was sampled. Each sample was given the code FTW-A (for Feltwell) and numbered $01-24$. The location of samples was noted at the time of sampling and has been marked on Figures 6-16. Further details relating to the samples can be found in Table I. Trusses and bays followed the numbering on the architect's survey drawings from east to west.

## ANALYSIS AND RESULTS

At this stage it was seen that sample FTW-A2 I had too few rings to make secure dating a possibility and so this was rejected prior to measurement. The remaining 23 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. These samples were compared with each other by the Litton/Zainodin grouping procedure (see Appendix), resulting in 20 samples grouping to form two site sequences.

Firstly, 17 samples matched each other and were combined at the relevant offset positions to form FTWASQ0 I, a site sequence of 192 rings (Fig 17). This site sequence was compared against a series of relevant reference chronologies for oak, where it was found to match consistently and securely at a first-ring date of AD I 303 and a lastmeasured ring date of AD 1494.

One of these samples, FTW-A I6, has complete sapwood and the last-measured ring date of AD 1494 , the felling date of the timber represented. A further 10 samples have the heartwood/sapwood boundary present. In the case of nine of these, this ring date is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date for these nine is AD 1460, which allows an estimated felling date to be calculated for the timbers represented to within the range AD 1475-1500, consistent with these timbers also having been felled in AD 1494. The heartwood/sapwood boundary ring date of the tenth sample (FTW-AI2) is somewhat later, at AD I474, giving an estimated felling date for the timber represented of AD I489-I5I4. Given that this felling date range again encompasses AD 1494, and that statistically and structurally this timber shows no anomalies when compared to the other timbers, it is thought likely that it simply has fewer sapwood rings than the rest and belongs to the same programme of felling. The other six samples without the heartwood/sapwood boundary ring have lastmeasured ring dates which make it possible they were also felled in AD 1494.

Three further samples matched and were combined to form FTWASQ02, a site sequence of 83 rings (Fig 18). Despite attempts to match this against the reference chronologies, no conclusive results were obtained, so this site sequence remains undated.

Attempts to date the remaining three ungrouped samples by individually comparing them against the reference chronologies was unsuccessful and these also remain undated.

Felling date ranges have been calculated using the estimate that mature oak trees in this area have between 15 and 40 sapwood rings.

## DISCUSSION

Prior to tree-ring dating being undertaken, the nave roof was believed to be fifteenthcentury in date. This suggested date has now been supported by the dendrochronological results, which have shown the roof to be constructed with timber
felled in AD 1494. This raises the possibility that the Papal indulgence of AD 1494 to repair the tower and bells following a fire, mentioned above, might also have provided the funds for this roof.

The potential differences in timber date and/or source suggested by the surface examination did not materialise upon analysis. Despite the superficial differences in growth patterns exhibited by the samples (Fig 19), the analysis points towards a coherent group of timbers being utilised in the construction of the roof. The intra-site matching of samples is good, with a number of samples grouping at values in excess of $t=7$ and the possibility of at least one same tree match at $t=15.8$ between two stud posts from truss 11 (FTW-A23 and FTW-A24). It would appear that the difference in appearance is simply a characteristic of these trees.

Tree-ring dating in the Norfolk area has proved problematic in the past (eg St Catherine's Church, Ludham, Arnold and Howard 2007), with the lack of successful dating often attributed to the deficit of suitable reference material from the region. The production of a long, well-replicated site master such as FTWASQ0 I is, therefore, of great importance and should prove helpful in the subsequent dating of timbers in this part of the country.

## BIBLIOGRAPHY:

Arnold, A J and Howard, R E, 2000 unpubl Tree-ring dating of timbers from Chalgrove Manor, Oxon, unpubl NTRDL rep

Arnold, A J and Howard, R E, 2004 unpubl combined chronologies from Cobham Hall, Cobham, Kent, unpubl site chronology COBBCDHFSQOI, NTRDL

Arnold, A J and Howard, R E, 2007 The west tower roof, St Catherine's Church, Ludham, Norfolk, Tree-ring analysis of timbers, EH Res Dep Rep Ser, I0/2007

Bridge, M C, 2004 Tree-ring analysis of timbers from six buildings in Winchelsea, East Sussex, Centre for Archaeol Rep, I5/2004

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from The Barn and Cottage, Abbey Farm, Thetford, Norfolk, Anc Mon Lab Rep, 48/2000

Laxton, R R and Litton, C D, 1989 Construction of a Kent master chronological sequence for Oak, I I58-I 540, Medieval Archaeol, 33, 90-8

Pevsner, N, 1962 The Buildings of England Norfolk 2: South \& East
Tyers, I, I99I Dendrochronology report on building timbers and wooden panelling from Sutton House, Hackney, MoL EAS Dendro Rep, 02/91

Tyers, I, I 998 Tree-ring analysis of Cann Hall, Clacton, Essex, Anc Mon Lab Rep, 25/98
Tyers, I, 2004 Tree-ring analysis of oak boards and structural timbers from the Transepts, Presbytery, and Tower of Peterborough Cathedral, City of Peterborough, Centre for Archaeol Rep, 77/2004

## TABLES

Table I：Details of tree－ring samples from the nave，St Mary＇s Church，Feltwell，Norfolk

| Sample number | Sample location | Total rings＊ | Sapwood rings＊＊ | First measured ring date （AD） | Last heartwood ring date（AD） | Last measured ring date（AD） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FTW－A0I | South archbrace，truss I | 73 | －－ | 1377 | －－－－ | 1449 |
| FTW－A02 | North angel，truss 2 | 91 | 01 | 1367 | 1456 | 1457 |
| FTW－A03 | South angel，truss 2 | 112 | －－ | 1318 | －－－－ | 1429 |
| FTW－A04 | South archbrace，truss 3 | 70 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－A05 | Outer stud post，north side，truss 3 | 144 | －－ | 1303 | －－－－ | 1446 |
| FTW－A06 | Mid stud post，south side，truss 3 | 61 | －－ | 1357 | －－－－ | 1417 |
| FTW－A07 | South principal rafter，truss 4 | 90 | h／s | 1370 | 1459 | 1459 |
| FTW－A08 | North wallpost，truss 4 | 53 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－A09 | South archbrace，truss 5 | 76 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－AIO | North archbrace，truss 5 | 83 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－AII | Outer stud post，south side，truss 5 | 92 | h／s | 1363 | 1454 | 1454 |
| FTW－AI2 | North principal rafter，truss 7 | 134 | h／s | 1341 | 1474 | 1474 |
| FTW－AI3 | South principal rafter，truss 7 | 78 | h／s | 1379 | 1456 | 1456 |
| FTW－A14 | South mid stud post，truss 7 | 109 | h／s | 1357 | 1465 | 1465 |
| FTW－AI5 | Outer stud post，north side，truss 7 | 80 | 01 | 1374 | 1452 | 1453 |
| FTW－A16 | North angel，truss 8 | 139 | 26C | 1356 | 1468 | 1494 |
| FTW－AI7 | South angel，truss 8 | 121 | 01 | 1346 | 1465 | 1466 |
| FTW－AI8 | Tiebeam，truss 9 | 98 | h／s | 1369 | 1466 | 1466 |
| FTW－A19 | Mid stud post，south side，truss 9 | 94 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－A20 | North archbrace，truss 10 | 121 | －－ | －－－－ | －－－－ | －－－－ |
| FTW－A21 | South common rafter 3，bay 10 | NM | －－ | －－－－ | －－－－ | －－－－ |
| FTW－A22 | North wall post，truss II | 95 | h／s | 1370 | 1464 | 1464 |
| FTW－A23 | Outer stud post，north side，truss II | 110 | －－ | 1327 | －－－－ | 1436 |
| FTW－A24 | Mid stud post，north side，truss I I | 86 | －－ | 1355 | －－－－ | 1440 |

Table 2：Results of the cross－matching of site sequence FTWASQOI and relevant reference chronologies when the first－ring date is $A D$ 1303 and the last－ring date is AD／494

| Reference chronology | $t$－value | Span of chronology | Reference |
| :---: | :---: | :---: | :---: |
| Kent | 5.9 | AD 1158－1540 | Laxton and Litton 1989 |
| Cobham Hall，Gravesend，Kent（combined chronology） | 8.1 | AD 1318－1663 | Arnold and Howard 2004 unpubl |
| Peterborough Cathedral Presbytery roof，Cambs | 8.0 | AD 1208－1500 | Tyers 2004 |
| Sutton House，Hackney，London | 7.1 | AD 1319－1534 | Tyers 1991 |
| 2－3 Friars Road，Winchelsea，East Sussex | 6.8 | AD 1351－1475 | Bridge 2004 |
| Charlgrove Manor，Oxon | 6.6 | AD 1355－1503 | Arnold and Howard 2000 unpubl |
| Abbey Farm Barns，Thetford，Norfolk | 6.5 | AD 1332－1536 | Howard et a／ 2000 |
| Cann Hall，Clacton，Essex | 6.5 | AD 1301－151｜ | Tyers 1998 |

## FIGURES



Figure I: Map to show the general location of Feltwell (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)


Figure 2: Map to show the general location of St Mary's Church (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)


Figure 3: Map to show the location of St Mary's Church (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)


Figure 4: Nave roof; principal truss 3 in the foreground


Figure 5: Nave roof; intermediary truss 6


Figure 6: Plan of nave roof, showing the location of sample FTW-A2 I (Freeland Rees Roberts Architects)


Figure 7: East elevation of principal truss I (based on truss II), showing the location of sample FTW-AOI (Freeland Rees Roberts Architects)


Figure 8: East elevation of truss 2, showing the location of samples FTW-A02 and FTW-A03 (Freeland Rees Roberts Architects)


Figure 9: East elevation of principal truss 3 (based on truss II), showing the location of samples FTW-A04-6 (Freeland Rees Roberts Architects)


Figure 10: East elevation of truss 4 (based on truss 2), showing the location of samples FTW-A07 and FTW-A08 (Freeland Rees Roberts Architects)


Figure I/: East elevation of principal truss 5 (based on truss /I), showing the location of samples FTW-A09-I (Freeland Rees Roberts Architects)


Figure 12. East elevation of principal truss 7 (based on truss /I), showing the location of samples FTW-A/2-15 (Freeland Rees Roberts Architects)


Figure 13: East elevation of truss 8 (based on truss 2), showing the location of samples FTW-Al6 and FTW-AI7 (Freeland Rees Roberts Architects)


Figure 14: East elevation of principal truss 9 (based on truss II), showing the location of samples FTW-AI8 and FTW-A/9 (Freeland Rees Roberts Architects)


Figure 15: East elevation of truss 10 (based on truss 2), showing the location of sample FTW-A20 (Freeland Rees Roberts Architects)


Figure 16: East elevation of principal truss II, showing the location of samples FTW-A22-24 (Freeland Rees Roberts Architects)


Figure 17：Bar diagram of samples in site sequence FTWASQOI


Figure 18：Bar diagram of samples in undated site sequence FTWASQ02


Figure 19：Superficially the samples fell into two groups，the first（upper sample）where the growth rings appeared to be more regular and generally evenly spaced and the second（lower sample）where they were more varied

## DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
FTW-A0IA 73
    99 |03 85 53 60 60 92 72 95 83 73 102 56 82 57 63 78 76 94 |23
    |29||| 8| 88 |08||8 |23 |23|49||2||5 86 66 83 ||7 |02 |65 |42 |3| 84
    |03 |09 | 87 |7| | 49 227 266 |58 |95 202 |50 |67 209 |59 |79 |26 ||8 9| |20 80
    ||7||4 98 |22 89 |4| 97 62 67 99 8| 66 |39
FTW-A0IB 73
    76 ||4 75 67 65 57 88 76 77 9| 89 96 66 76 66 64 74 90 89 |42
    |3| ||| 83 9| ||| ||7 |25 |38|48||3 |23 88 72 93 |22 |09 |68 |58 |27 89
```



```
    ||4 106 88 106 86 |44 96 64 70 94 78 65 |45
FTW-A02A 91
    |6| |52 |72 |78 |60 |58 |69 |53 |39 |26 |09 |28 | 87 |54 | 87 |76 | 82 |77 230 273
    298305 2|5 207 |83 |83 | 88 |99 202 2|| 2|| 230 223 |99 |54 |59 | 5| | 80 | 47 |32
    |34 | 36 |22 || | | | |4| | 63 | 80 |63 |45 |52 |44 |45 |76 |58 |66 20| |77 |29 |30
    |57 |76 |84 |68 |49 | 37 |53 || | |9 |45 |60 |53 |25 |5 97 |04 |03 |08 82 86
    9592 89 104 103 106 104 93 86 88 103
FTW-A02B 91
    |58 |57 |69 |78 |57 | 65 |66 |60 | 39 |25 ||5 | 32 209 |49 | 83 | 87 |70 | || 230 277
    304 309227 209 |78 | 84 |90 207 |98 222 220 224 222 |97 |55 |59 |55 | 83 |42 | 32
```



```
    |54 |66 |73 |66 |49 | 30 | 38 |2| | 40 | 39 | 68 |53 |29 |3| 97 |08 |02 |04 9| 8|
    98 9| 88 I03 I07 I06 96 I00 93 90 I05
FTW-A03A 1I2
    |93 |78 242 |76 222 |8| |44 |30 9| |93 |99 207 274 |06 |2| |72 | 80 | 87 |55 |39
    |86 |7| | 65 |66 |63 204 259 254 220 |49 |49 95 64 39 60 66 65 82 48 72
    53835962 83 98 |00 104 ||9 68 |00 137 229 | 82 232 |96 ||6|47||7|4|
|54 |32 94 9| 83 |0| 56 88 96||9 |25 |0| |08 78 93 8| 80 79 |3| ||9
156 92 5| 49 45 44 63 38 48 47 58 55 47 55 50 70 72 84 78 82
    666463 8677 I27 99 69 95 97 |24 I06
FTW-A03B II2
    |89 |82 233 | 80 2|7 |7| |3| |39 92 | 84 |97 225 27| |08 |27 |64 | 67 | 86 | 63 |29
    |79 |65 |55 |67 |50 |82 257 256 20| |50 |54 |03 66 67 57 74 75 72 65 72
```



```
|57 |30 93 9| 84 |09 49 87 95 |25 |34 92 95 84 85 72 88 76 ||7 |35
|46 93 57 56 46 48 59 45 53 46 63 55 48 63 54 7| 69 77 8| 73
676066 86 74 |30 92 78 85 96 |33 ||7
FTW-A04A 70
```




```
206 |66 | 64 |77 204 |53 2| | |0 2|6 |98 | 85 22| |99 240 200 |79 | 47 | || | || | 65
|86 |40 | 62 2|7 |56 |95 237 |92 | 45 | 42
FTW-A04B 70
|89204 2|5 287 247 27| 2|2 226 208 2|0 2|| 2|| | 75 |52 |79 |88 |68 |85 |98 |52
|80 |44 | 37 |58 | 38 |67 ||9 |46 |43 | |7 |09 |26 ||| || |42 |48 |42 |82 |76 |53
206 |59 | 66 |93 | 80 | 54 |93 |69 205 |83 |77 2|8 2|| 242 204 | 86 |49 | 72 | 60 |74
```

|78|47|72 2|6|65 |99 235 |97|50|36
FTW-A05A 144
177159130132185165 | 8512385103117103928012210599939383
$\begin{array}{llllllllllllllll}76 & 68 & 60 & 58 & 57 & 54 & 57 & 81 & 67 & 54 & 63 & 55 & 75 & 65 & 59 & 57 \\ 58 & 65 & 65 & 70\end{array}$
6067709081858459818260775551827074667668
9010289929689106106761048379768278921199811980
84687986829080838072879412011210611086999187
 |62|47||9||6|44|37|66|45|34||4|26|26|30||5|22||5 88847377
75748378
FTW-A05B 144
$174|65| 3|133| 83|62| 50||683| 00| 25104938|||8|| 49| 969|8|$
7678655452535887615563586368585160706668

89938188958110610283988174777380881159111883
$777677848592778577768689|13| 1010610088988984$
$7693\|\| 10310091859611 \mid 11612498999089869393106103$ |49|44||6||3|46|3| |62|43|38||| | $28||3|| 9|24| 34|\mid 496796880$ 72718171
FTW-A06A 61
$1058280927677102989588859912|10366938910010910|$
$1|2||8| 22|2||34| 35|27| 08|3||47| 78|85| 70|49| 67|63| 52|55| 66 \mid 86$
$1972||207| 98| 50|72| 60|7||60| 59|42| 62|43| 29|50| 59|56| 50|44| 2 \mid$ 143
FTW-A06B 61
105878191768210110295908910911693799491108108106

$204213206199|56| 77|64176| 64|6||38| 62|47| 35|47| 59|65| 5||45| 24$ 138
FTW-A07A 90
|34 |09 |55 ||6||5 ||3 8889 |28 88 ||2 |24 |05 ||0 $80|09| 24|25| 78 \mid 07$
||| $9569909|1| 3|38| 50|49| 44|26||7| 20||5| 28| 07||3| 04| 07 \mid 33$
9079 ||| | 32 |2| | 50 ||| || $1097|6| 42|45| 57|56| 56|04849388| \mid 6$
|27||6|4| 109 |32||2 $99|||9898|| 387| 08908982747487|\mid 4$ 116889792 |।| 102 |24 ||5 8689
FTW-A07B 90
$132102|55121| 1|108928413092| 10|2810| 1|580104| 27|22| 7 \mid 108$ $11888827693|10| 34|55158| 46|23| 16|22||5| 23|||l 0598109| 35$ $8877|17| 3|120| 47|13106| 03||3| 45| 44|5||50| 59|02809587| 2 \mid$
 1131079299 |I2 I08 |36 988185
FTW-A08A 53
$38737342|38826| 232 \mid 76207223330266269$ | $84|5|||7| 39| 54|57| 65 \mid 43$
 | 55 | 36 | 37 | 32 | 53 | 69 | $732 \mid 5$ | $36|4||62| 99 \mid 77$
FTW-A08B 53
$37933844|374266228| 73205233325266278|79| 57||4| 42| 54|59| 60 \mid 53$
 156|36|34|28|52|58|72 $205128136|752| 2 \mid 92$
FTW-A09A 76
243 25। 244268273206193153179217208300265316265330222229229236 235258 |94 | $8722523|18826| 243|92| 9|174| 69|77| 87|86| 4||6|| 77 \mid 47$ 99 | 20 | | 9 | $|7| 25$ | 42 | $2||53| 30||8| 53||5| 25| 55|56| 34|84| 46|67| 74$
|80 |97 |54 |85 |66 |59 |4| | 70 | 57 | 86 |90 |73 |72 254 |92 2 |3
FTW-A09B 76
25। 246252267272200189157177206214298289301247327220217229237
$21925419919222223|198256242185195185152182| 83|9| 143158|72| 5 \mid$
$116|12| 20108|34| 3|124| 29|20| 19|48||8| 22|62| 67|36| 77|37| 76 \mid 86$

FTW-AIOA 83
252282273198249324292338283301266215360399429378434417435436 392386374314283345375279374323 29| 295205247260212285227230245 223183209264313369387293293240234371265218315241198301234287 283281377318337295306292318294369387295339367288322302358356 319309290
FTW-AIOB 83
224234246214235305283298311350357222357406444363453417446429
383386368292311346377288413336297296219244263218282207249233
231 193220272343360395302260233243366237228328233215292243293
278279380312343297314284310301368388297314385306311300376342
338296299
FTW-AIIA 92
$246307|40| 3917823025922|18623| 2|0| 53|5524| 22332|2| 2|19| 098 \mid$
 $176254264|63| 5|18383| 07|0| 89|48| 93|3| 8590|55| 7|222| 68225$ $29|154| 25|28| 26|16| 47|59| 6||37| 1793| 0285|09| 17|2||22| 19 \mid 70$ 147 |। 89 |। 9 | 40 | 45 |33 | 40 |09 9996 |34
FTW-AIIB 92
$21830814314418322526322|1872342| \mid 15315823722031820011910690$
 $1782552591761782009810212110716 \mid 1971328999148165214178216$


FTW-AI2A 134
2152421091349285 |39 | $7|179| 5422519922|2072091892| 8223253245$
$22220622|20| 183217188165229166|5| 19620918821621020425 \mid 188200$ $19814923917919|2| 9208284187216228178|8| 23 \mid 174209225242134$ | 24


 |4| |90|65|48 202 |57|33 9| ||3|26|09||3 9| |09
FTW-AI2B 134
2132581021419386138177180153216203225208207182221219244247 $23418921 \mid 208178214185175229165144194212195210214186249189199$ 208140236184199220216282180208224 I7| | $8625017322823324 \mid 142$ |। 126103131166217172193196195184173174195140175176178196167200 $139701721621451121321081051049812812015019 \mid 9413512310695$ $134199219|16| 1210|1| 4|18| 56|2695| 13|58| 56|28| 62|49| 7|172| 42$ 132 |92 | 67 | 5 | | 92 | 56 | $27|0| 103|32| 04 \mid 178297$

## FTW-AI3A 78

$9997105981171001001081681461151661101|3| 19100125120164146$ $130|14| 12134|34| 53|19| 4595122|6| 9698|00| 35|12||5| 098659$
 $7374771511257977668472 \mid 2994978072120105143$ FTW-AI3B 78
$103|0| 97|03| 1099104|06| 73|4||38| 64||5|| 5|22 l| 23|22| 34 \mid 48$
|34 |2| |08 | 35 |34 |5| |2| |4| |05 |24 |52 $979593|40| 09|04| 048667$ 63647966758546436863726864102666364626969 $7|7080| 34|2| 8|84647674| 28959|7869| 12|02| 6 \mid$ FTW-AI4A 109
$16290|36| 7||7| 155200| 87|54| 0986||2| 4|||488| 1094849798$ $11613911980957268759|142| 58|621079| 54588|10082| 18$ $128846|97| 34|13| 39|46| 24|1797798270| 00|0513| 1|\mid 10864$
 $1078874779011312|9974971109811010610310| 9610 \mid 89117$ 96118100948610410495100
FTW-AI4B 109
 $110|36| 2377||250748| 84| 32|55| 49|2282604873| 0677 \mid 29$ $130826092|3| 107|33| 4513011696977369988912512|1| 27 \mid$ $6596|12| 22|5| 137|7||45104| 12||5106| 19| 0288|0| 8773 \mid 1460$ $10685767584|14| 1888859210297|12|||98989910| 88109$ 94 ।24 94938110510395 । 18
FTW-AI5A 80
109 ||4 9| I03 9| |2| $93109798 \mid 606878$ |07|38 8996898572
$10282|03||||17|| 6||||0||| 9103||3| 27| 22|04968588| 00|||\mid 38$
 I3। ||9 |49 |54 |66 ||4 |06 86 |07 |03 |0| $949089878 \mid 98968893$ FTW-AI5B 80
 $968993||3| 38| 15|1492||4| 08||3|| 5|2| 108|008788| 00||\mid 136$ $1|3| 28|13| 1|120| 20|2||28| 57|49| 54|46||8| 78|64| 8320|164| 4|\mid 58$ |3| || 148 | 50 |59 ||6|04 84 |। $10|0| 98978890888297968885$ FTW-AI6A 139
|30|30 97||5 $97817|88798678737594867| 6378$ 8। 91 $9395908998|0095||264| 17|20| 37|3| 1028386|\mid 0858280$
 | 84 | 83 | 46 | 63 | 22 |9| |95 235 | 89 | $4||32| 54| 70|54| 33|39| 74|38| 38 \mid 55$
 $166|67| 1487102106|168696| 2|146| 30|36| 57|37| 29106 \mid 0689120$ $877598117133122124|1879828| 102|2||10908| 78776 \mid$ FTW-A16B 139
|l| 127 9| ।।। $1068768889294856977987775 \quad 59787699$ 899610188959011010763103120140134928086103808378 117129 | 39 | $4|938890120157102163138| 26|42| 16|40||8| 89|37| 70$

 $164|671078|||4| 05||39| 88|2||42| 34|38| 52|76| 20|23| 08||9| 25$ $8 \mid 7699$ |l2 I $301161269889889310 \mid 1071059384677858$
FTW-AI7A 121
|00 | 37 | 54 | $5|||22| 7| 36| 65|6||44| 46|95| 56|30| 57|2||462| 5|92| 33$ $89||0| 53| 92|52| 23|4|||5| 28| 40|4| 107|077878| 39|35| 35|29| 70$ $20818017813413213810212410012|122137144172182210142145177| 46$
 $93127|86| 82|30| 2|183| 49|14| 32|16| 57|25107| 23109104|28| 00 \mid 10$ ।।। 102113909699978298103115122129120100128887284 |।4 80
FTW-AI7B 121
|4| | $3|160| 391002|9| 38|62| 5||48| 48| 95|62| 3||64|| 9|45203| 8||4|$

```
    ||4 98 |49 |96 |53 ||5 |43 97 |48|49 |5| |04 || 8 83 83 |26 |27 |29 |20 |64
```



```
|88 |67 |77 |37 |22 |0| |07 |08 |0| |0| | 37 |54 |23 |2| |29 |52 |23 |54 |28 ||3
93 |27 | 80 | 89 |26 | 32 | 89 |5| ||4 |32 ||7 | 48 |28 ||| || |07 |20 |26 96 97
|22||6 82 107 98 93 |0| 86 106 97 |20 126 |25 |08||0||9 97 78 86 96
108
FTW-AI8A 98
|84 |60 | 32 |79 237 2|9 244 | 87 ||5 |34 | 34 | 35 |33 |03 95 55 |08 |59 208
204 |78 20| | 36 |34 |48 | 84 224 |42 |50 |32 223 2|| 2|3 245 |47 238|46 25| |49
```




```
|87270 |86 227 |53|49 2|7 225 286 226 | 65 |69 245 ||| | 74 |40 |26 247 220
FTW-AI8B 98
|59 | 83 |3| | 74 262 2|8 248|89 |04 |43 | 38|39|45 96 89 56 ||3 |50 |95 2|7
```





```
30| |76 227 |52 |50 220 235 278 222 |59 | 73 247 | 60 |70 | 46 |35 253 |77
FTW-AI9A 94
|7| | 82 2|4 |54 |5| |98 280 3|4 220 274 | 64 |57 |62 |65 237|87 |98 229 | 68 |27
|02 ||7 ||3 ||6 |4| |4| |58 89 |23 74 93 90 |0| ||0 |24 |26 93 |02 |39 |30
```



```
||7 104 |07 88 |28 ||0||8 |03 82 |03 ||2 |36 ||9 |04 90 |04 |02 |32 ||9 |32
|33 |47 |70 |5| |35 |08 |44 |90 |48 |37 |48 96 62 65
FTW-AI9B }9
|59 | 86 203 |64 |53 203 286 306 220 280 |58 | 60 |67 |70 225 |89 20| 234 |7| | 32
99 ||9 ||0 || | |0 |46 |64 89 ||4 77 9| 85 |0| ||9 |2| | 33 85 |04 |46 |3|
127 200 |72 | 30 | 32 ||| 9| ||| |3| |22 | 36 | 50 |79 |70 |22 |2| | 34 |3| |03 |28
||6||0 |07 87 |26 ||3||9|0| 88 95 ||5 |40 ||9 |0| 89 |04 |05 |33 || |32
|35 |46 |74 |59 |29 |07 |4| |89 |55 |46 |43 9| 68 63
FTW-A20A 12I
|55 205 239 23| | 67 2|2 227 2| | ||| 306 | 88 |25 268 |28 247 2| |99 |22 ||| 88
7| 77 65 87 66 4| 54 44 74 5| 59 4| 46 5| 45 78 87 |26 70 72
|40202 ||2 I23 60 49 9| 64 70 74 69 89 74 77 96 87 50 76 ||9 82
```



```
1047| 85 106 6| 85 | 30 202 2784|8230 330 165 137 184 200 286 339 357 42|
287290252236 |4| 223|80335 239 304 286 196 98|43|67|43 70 65 44 99
|19
FTW-A20B 121
```



```
697865 89 65 40 58 38 66 5| 65 34 37 49 48 62 95 l26 62 83
|54 |76 |24 ||8 67 57 99 7| 63 73 72 87 7| 82 9| 94 45 77 ||| 90
73 |02 9| l05 |28 |0| |20 |09 |07 || | | | |0 | 50 |58 | 34 |09 |3| |44 |05 |0|
9873 89 9068 75 |40 203 275423 2|3 254 | 89 |57 I53 |74 276 335 335422
3|8299 25| 23| | 34 233| |3 343 245 29| 284 208 97|45 |6||47 75 59 45 |02
l03
FTW-A22A 95
226 307 36| 284283 350 30| 30| 340 352 209 226 |5| |59 | 54 2|9 246 |98 |8| |44
```



```
|22 106 97 104 ||2 |07 7| 87||8 |23 |06 |49 |27 |68||0 60 64 82 89 |06
95 75 84 69 78 78 7| 88 80 76 64 64 90 82 79 75 78 87 84 98
9| |36 |52 | 34 |59 | 33 |25 ||3 | 33 |20 |06 89 |00 |04 |3|
FTW-A22B 95
```

$2272873783203 \mid 2340300294350333238220$ |54 |67|46 229249205 | 89 |22 | 48 | 3094 | 43 | 75 |6| 284 | $84|67| 27|5| 196|49| 44|69| 502|0| 30|30| \mid 8$ |।| |।| $103109103|107| 87127|20| 08|53127| 68||463667998| 0|$
 $90|3| 153|40| 54|28| 25|08| 30|16| 0||0| 10780| 36$ FTW-A23A 110 7995909072748989979690939711891107105104100116 95 |25 | | 2 |09 | 32 | $38|4||54| 0296|50| 26|32| 40|39| 29|43| 47|27| 07$ |05 ||6|3| | 26 |03 | 36 | $37|52| 50|42| 29|62| 64|37| 42|33| 2|||4| 44| 42$
 | 24 | 26 | 20 | 22 | 33 | 20 | 27 | 25 | | | $98|20| 20|37| 60|42| 25|65| 56|47| 2 \mid$ | 59 | 38 | 60 | 63 | $53 \mid 45$ | $56|37| 50 \mid 67$
FTW-A23B IIO
$76969390727|927810299849| 951128410896109102109$ $108|20| 12||4| 3||35| 44|55||2| 05|56| 3||33| 3||45| 29|40| 46|25| 06$ $106||||34| 2697| 38| 4||49| 52|39| 34|59| 65|33| 46|3||25||||48| 38$ | 46 | 59 | $30|12| 26|3|||7| 19| 29|45| 33|5||48| 40|29| 35|27| 39|3| \mid 26$
 |46 |45 |66 |72 | 59 | 43 | 52 | 39 | 49 | 63
FTW-A24A 86
 $168|38| 36|52| 65|48| 45|49| 35|34| 38|68| 73|3| 34|26| 34|4||4||4|$ $152174160189170173160168155182156143129136126122|48139138| 40$
 198174204205140140
FTW-A24B 86

 | 39 |64 | 55 | 86 | 73 | 68 | $56|70| 6||75| 56| 46|20| 42|20| 26|44| 40|36| 36$
 $186|742| 3200|30| 40$

## APPENDIX: TREE-RING DATING

## The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

## The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A I: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976


Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil


Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the $t$-value (defined in almost any introductory book on statistics). That offset with the maximum $t$-value among the $t$-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a $t$-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual $t$-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the $t$-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal $t$-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for $95 \%$ of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I 506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in $95 \%$ of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the $95 \%$ confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted $\mathrm{H} / \mathrm{S}$ ). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981 . It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988 ). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

## $t$-value/offset Matrix

|  | C45 | C08 | $\mathrm{CO5}$ | C 04 |
| :---: | :---: | :---: | :---: | :---: |
| C45 |  | +20 | +37 | +47 |
| C08 | 5.6 |  | +17 | +27 |
| C05 | 5.2 | 10.4 |  | +10 |
| C04 | 5.9 | 3.7 | 5.1 |  |

## Bar Diagram

| 0 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the $t$-values. The $t$-value/offset matrix contains the maximum $t$-values below the diagonal and the offsets above it. Thus, the maximum $t$-value between C08 and C45 occurs at the offset of +20 rings and the $t$-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)


Figure $A 7$ (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure $A 7$ (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

## References

Baillie, M G L, and Pilcher, J R, I973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I 987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Hughes, M K, Milson, S J, and Legett, P A, 198। Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38 I-90

Laxon, R R, Litton, C D, and Zainodin, H J, I 988 An objective method for forming a master ring-width sequence, $P A \subset T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99I Statistical models of dendrochronology, / Archaeo/ Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

