FLORE'S HOUSE, HIGH STREET, OAKHAM, RUTLAND TREE-RING ANALYSIS OF TIMBERS
SCIENTIFIC DATING REPORT
Alison Arnold, Robert Howard, Matt Hurford and Cathy Tyers

FLORE'S HOUSE, HIGH STREET, OAKHAM, RUTLAND

TREE-RING ANALYSIS OF TIMBERS

M Hurford
A J Arnold
RE Howard
C Tyers

NGR: SK 86040873
© English Heritage
ISSN I749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Analysis by dendrochronology was undertaken on 48 out of 58 samples (ten having insufficient rings) from three ranges of Flore's House, Oakham: the hall range and the north and south cross-wings. This resulted in the production of four site chronologies, OKMASQ0I-04. These comprise 18, 9, I 0 , and 2 samples, with overall lengths of 220, 184, 90, and 81 rings respectively. The rings of the first three site chronologies can be dated as spanning the years AD ||73-|392, AD |408-|59|, and AD |570-|659, whilst the fourth site chronology is undated.
Interpretation of the sapwood and the heartwood/sapwood boundaries on the dated samples indicates the presence of four distinct phases of felling. The hall range roof and a single plate from the ground floor represent the earliest dated phase of construction, using timber all probably felled in AD 1378. The south cross-wing utilises timber with an estimated felling date in the range circa AD 1407-10. The inserted ceiling and a ground floor post in the hall range use timber felled in AD 159|. The roof of the north crosswing uses timber felled in AD 1659, despite having a roof of similar design to that of the south cross-wing. Nine measured samples are ungrouped and undated.

CONTRIBUTORS

Matt Hurford, Alison Arnold, Robert Howard, and Cathy Tyers

ACKNOWLEDGEMENTS

The laboratories would like to take this opportunity to thank the owner of the Hall and south cross-wing, Mr Ball, for his help and cooperation during sampling, and for his enthusiasm for this programme of tree-ring analysis. We would also like to thank Mr Holroyd of Bargate Holroyd Insurance for allowing access to the north cross-wing. Finally we would like to thank Nick Hill for his help and advice during sampling and also for providing drawings and background information.

ARCHIVE LOCATION

Leicestershire \& Rutland Historic Environment Record
Historic \& Natural Environment Team
Room 500, County Hall
Leicester Road
Glenfield LE3 8TE

DATE OF INVESTIGATION

2008

CONTACT DETAILS

M Hurford and C Tyers
Dendrochronology Laboratory, Archaeology Graduate School, The University of Sheffield, West Court, 2 Mappin Street, Sheffield, SI 4DT
Tel: 0 II4 276 3I46. Email: m.hurford@sheffield.ac.uk, c.m.tyers@sheffield.ac.uk
A J Arnold and R E Howard
Nottingham Tree-Ring Dating Laboratory, 20 Hillcrest Grove, Nottingham, NG5 IFT
Tel: 0|I59603833. Email: roberthoward I 0@hotmail.com, alisonjarnold@hotmail.com
Introduction I
Sampling 2
Analysis 2
Interpretation 3
Hall range 3
North cross-wing 4
South cross-wing 4
Discussion 5
Bibliography 7
Tables 9
Figures 12
Data of Measured Samples 28
Appendix: Tree-Ring Dating 42
The Principles of Tree-Ring Dating 42
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 42
I. Inspecting the Building and Sampling the Timbers. 42
2. Measuring Ring Widths. 47
3. Cross-Matching and Dating the Samples 47
4. Estimating the Felling Date. 48
5. Estimating the Date of Construction 49
6. Master Chronological Sequences. 50
7. Ring-Width Indices 50
References 54

INTRODUCTION

Flore's House, a grade II* listed building located on the south side of the High Street, Oakham (SK8604I 08732, Figs I-3), is one of the most important surviving medieval houses in Rutland (Hill 2007 unpubl). It has been associated with William Flore, who was controller of the works at Oakham Castle in AD 1373-80 (Barley 1975, 38), or with his son Roger, also a prominent man, who was Speaker of the Commons on four occasions in the early fifteenth century (Roskell 1957).

The following information is summarised from both Barley (1975) and Hill (2007 unpubl). The earliest part of the building is the hall range, oriented at right angles to the High Street (Fig 4). It is of three bays, incorporating two trusses of base cruck type and a truss at each end. The base cruck timbers are set within slots in the stone walls. The trusses have a cranked tiebeam and arch braces with spandrel struts. The upper roof is of crown post type, with bracing to the collar and crown plate (Fig 5). There are seven rafters in each bay, except the northernmost, which has three, due to it being truncated by the north cross-wing. The hall was originally a large, single-volume space, heated by a central hearth, with no chimneystack. The original timbers have heavy smoke-blackening. Over the centre of the hall, there is evidence for a former louvre to allow smoke to escape.

The hall, which is of unusually large size for a town house, had a cross passage at its south end (Fig 6). The timbers in the cross passage comprise a central north-south ceiling beam, from either side of which run five east-west joists. The ceiling of the corridor running north from the cross passage comprises four north-south joists. With the exception of timbers in the cross passage and corridor, only a small section of the inserted floor of the hall range is visible, due to the insertion of modern ceilings. The front doorway has jambs with attached shafts and a moulded pointed arch. Barley (1975) and Pevsner (I974) thought that the doorhead is later-fourteenth century, but that the door jambs may be thirteenth century. Recent structural analysis by Hill (2007 unpubl) suggests that the rear doorway, which had previously been assumed to be later, has an original lintel, which seems to confirm the cross-passage plan.

The north cross-wing replaced the north end of the fourteenth-century hall range. It included a stone-built parlour on the ground floor, with a fine stone window and beamed ceiling. Above, jettied to both the east and north sides, was a single large timber-framed chamber of three bays, incorporating four trusses consisting of cranked tiebeams with heavy bracing on jowled wall posts, with tenoned purlins and raking struts, and three intermediate trusses consisting of cranked tiebeams, braces, and clasped purlins (Fig 7). The walls were probably of close-studding throughout. It seems likely that there was a stair up to the great chamber in its south-west corner, and a lateral fireplace on its north wall. The south cross-wing also had large chamber on the top floor, but beneath this were a ground and first floor of low height, thought likely to be for service and lower-status use. Although the lower parts of this wing have been much altered, the timber-framed upper storey and roof once again survive in fairly complete state consisting of three bays,
originally comprising four trusses, the fourth westernmost upper roof timbers no longer extant. The trusses consist of a cranked tiebeam on jowled wall posts with principal rafters, clasped purlins, and raking struts (Fig 8). The roofs of the north and south crosswings are of rather similar type (Figs 7 and 8) leading to the recent suggestion that they may both date to around AD I500, when major alterations appear to have been carried out (Hill 2007 unpubl). This is however in contrast to the previously postulated interpretation that suggested that the south cross-wing was a later build of seventeenthcentury date (Barley 1975).

SAMPLING

Sampling and analysis by tree-ring dating of the timbers of Flore's House were commissioned by English Heritage as part of the dendrochronological training programme of the first author. The purpose of this work was to clarify the date of the hall range and to provide dates for the two cross-wings. It was hoped that this would establish the extent of survival of original timber and elucidate the building's historic development, hence informing its future management and conservation.

Thus, from the timbers available a total of 58 samples were obtained by coring. Each sample was given the code OKM-A (for Oakham, site ' A ') and numbered $0 \mathrm{I}-58$. The approximate positions of these samples are marked on drawings provided by Nick Hill, these being reproduced here as Figures 9-21. Details of the samples are given in Table I, in which the timbers have been located and numbered following the scheme on the drawings provided.

No samples were removed from truss 4 in the south cross-wing as, with the exception of the wall posts, the timbers were no longer extant. Sampling in the north cross-wing focused on trusses 6-8 and adjacent bays, as the timbers in truss 5 were believed to have been derived from very fast grown trees, and thus were considered unlikely to provide samples with sufficient rings for reliable analysis. Access to the inserted floor in the hall range was limited, due to modern ceilings covering the earlier timbers, so sampling was restricted to the cross passage and corridor.

Abstract

ANALYSIS

Each of the 58 samples obtained was prepared by sanding and polishing. It was seen at this point that ten samples had an insufficient number of rings required for reliable dating, and so were rejected from this programme of analysis (Table I). The annual growth rings of the remaining 48 samples were, however, measured, the data of these measurements being given at the end of this report. The data of these 48 samples were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), allowing, at a minimum value of $t=4.4$, four groups to be formed, the samples of each group crossmatching with each other as shown in the bar diagrams, Figures 22 and 23.

Each site chronology was compared to a full range of reference chronologies for oak, this indicating repeated cross-matches and dates for three of them. The evidence for this dating is given in Tables 2-4. Each site chronology was also compared with the remaining nine ungrouped samples but there was no further satisfactory cross-matching. Each of the remaining nine ungrouped samples was then compared individually with the reference chronologies, but again, there was no satisfactory cross-matching and these samples must, therefore, remain undated.

This analysis can be summarised as follows:

Site chronology	Number of samples	Number of rings	Date span (where dated)
OKMASQ0।	18	220	AD \| I73-1392
OKMASQ02	9	184	AD \|408-159।
OKMASQ03	10	90	AD I570-1659
OKMASQ04	2	$8 \mid$	undated
	9	---	undated
	10	---	unmeasured

INTERPRETATION

Hall range

The hall range roof is represented by seven dated samples in site chronology OKMASQ0I (Figs 22 and 24). Two of the samples, OKM-A04 and AIO, retain complete sapwood, and were both felled in AD 1378. The heartwood/sapwood boundary is present on only one other sample, OKM-A07. Using the 95\% confidence limit of I5-40 sapwood rings appropriate for mature oaks in this part of England, an estimated felling date in the range AD 1370-95 is obtained. This encompasses the precise felling date produced and hence, given that there is no structural evidence to the contrary, it is probable that this timber was also felled in AD 1378. The remaining four dated samples from the hall range roof have no trace of sapwood and it is thus not possible to calculate their likely felling date ranges. However, the dates of their last measured rings range from AD 1317 (A08) to AD 1348 (A06), therefore it is possible that they too were felled in AD 1378. This is supported by the fact that the timbers are integral to the structure, and that there is no evidence for insertion or reuse, as well as by the level of cross-matching within this group.

The lower level of the hall range is also represented by a sample, OKM-A43, in site chronology OKMASQ0 I, this being from a plate above the east entry to the crosspassage of the hall (Fig 6). This sample also retains the heartwood/sapwood boundary, this being dated to AD I36|. An estimated felling date in the range AD |376-|40| is obtained, which encompasses the precise felling date obtained for the hall-range roof. It is thus possible that this timber was also cut in AD I378. Given that it is not directly
associated with the roof structure, this is less certain, though it is clearly broadly coeval with the dated roof timbers.

The inserted floor of the hall range is represented by nine dated samples in site chronology OKMASQ02 (Figs 22 and 24). Eight were from the ceiling and one from the front east wall post, which is structurally integral to the ceiling. One of these samples, OKM-A48, retains complete sapwood and was felled in AD I59I. The relative position of the heartwood/sapwood boundary on four other samples is very similar, again suggesting a single phase of felling, and it is probable that these four timbers were felled in AD I59I as well. The remaining four dated samples from the inserted floor do not have the heartwood/sapwood boundary and it is not possible to calculate their likely felling date ranges. However, the dates of their last measured rings range from AD 1517 (A44) to $A D$ I543 (A4 I). It is therefore possible that they too were felled in AD 159 I since, in addition to the level of cross-matching within this group, they are again integral to the structure and there is no evidence for insertion or reuse.

North cross-wing

The north cross-wing roof is represented by ten dated samples in site chronology OKMASQ03 (Figs 22 and 24). One of these samples, OKM-A34, retains complete sapwood, thus the felling of the timber is dated to AD 1659. Six other samples have retained the heartwood/sapwood boundaries, which again, with a variation of only 12 years between them, suggest a single phase of felling. It is thus probable that these timbers were also felled in AD 1659. The remaining three dated timbers cross-match well within the group and there is no evidence, in the form of possible insertion or reuse, to indicate that these timbers were not also felled in AD 1659 as well since their last measured ring dates range from AD 1619 (A56) to AD 1631 (A50).

South cross-wing

The south cross-wing is represented by 10 dated samples in site chronology OKMASQ0 I (Figs 22 and 24). Four of these samples retain some trace of sapwood. The heartwood/sapwood boundaries date to within five years of each other, thus being indicative of timbers representing a single felling phase. The average date of the heartwood/sapwood boundary on these samples is AD I 386 which, using the same sapwood estimate as above, would give an estimated felling date in the range AD |40|26. However, this estimated felling date range can be refined as the outermost approximately 15 mm of sapwood, complete to the bark edge, was lost during coring from sample OKM-A25, due to its fragile nature. It was noted at the time of sampling that this loss represents between approximately 15 and 18 rings. Given that the last sapwood ring on sample OKM-A25 is dated to AD I392, such a loss would indicate that this timber, and hence the other three as well, was felled in the range circa AD 1407-10.

The remaining six dated samples from the south cross-wing do not have heartwood/ sapwood boundaries present and it is thus not possible to calculate their likely felling date ranges. However, with last measured ring dates ranging from AD I324 (A22) to AD 1380, and bearing in mind the level of cross-matching within this group, it is possible that they too were felled in circa AD 1407-I0. This is supported by the fact that once again the timbers are integral, and that there is no evidence for insertion or reuse.

DISCUSSION

Though it had previously been suggested that the stone door jambs in the hall may be of thirteenth-century date (Pevsner 1974; Barley 1975), no timbers this early were found during this programme of tree-ring dating. The earliest extant timbers at Flore's House to be dated by tree-ring analysis are those from the hall range roof, which were felled in $A D$ 1378. The plate above the east entry to the cross-passage of the hall dates to the latefourteenth century, and may well be coeval with the hall range roof. These results therefore suggest that the most likely candidate for undertaking this work is William Flore, rather than his son Roger, as he was controller of the works at Oakham Castle at this time. A further phase of work is indicated in the hall range, where a floor and an associated post were inserted using timbers felled in AD I59|.

The south cross-wing contains a series of timbers felled in circa AD 1407-10, which suggests a somewhat earlier date of construction than expected, only approximately 30 years after the major works in the hall range. Roger Flore's political career was ascending during these years (Roskell 1957), so it appears that he would have been in a financial position to commission such building work, though it is possible that his father, William, was still alive at this point and that he sanctioned the work.

The north cross-wing roof is constructed of timbers felled in AD 1659. It has previously been thought to be broadly coeval with that of the south cross-wing, due to its similar stylistic features. These seventeenth-century timbers suggest that further reappraisal of the structural evidence is needed, in order to clarify whether these represent a replacement roof inserted during major works on the original building, or whether they represent the construction of the north cross-wing. It should be noted here that there may be additional timbers that are suitable for dendrochronological analysis from the lower levels of the north cross-wing. Unfortunately, at the time of sampling these were either concealed by modern office fittings and equipment, or were inaccessible due to the presence of a busy café. Clearly if access issues can be resolved in the future, it would be worth assessing the timbers as to their suitability for tree-ring sampling, as they may have the potential to aid the understanding of this north cross-wing.

A number of noticeably high t-values, identified during cross-matching, combined with the conversion method for the timbers from which these cores were taken, suggest the possibility that some timbers are derived from the same tree. These comprise: OKMA06/AI2 ($t=12.9$) from the hall range roof; OKM-A27/A3I ($t=11.9$) and OKM-A28/A35
($t=\| \mid .0$) from the north cross-wing roof; OKM-A4|/A45 ($t=12.6$), OKM-A45/A48 ($t=\| .1$) and OKM-A4I/A48 from the inserted ceiling in the hall range, all three of which are likely to be derived from the same tree. The intra-phase cross-matching for the inserted ceiling timbers is particularly high, which strongly suggests that this group of material is derived from a single woodland source. However, the inter-phase crossmatching between the late fourteenth-century samples from the hall range and the early fifteenth-century samples from the south cross-wing is slightly poorer, as they come together with a minimum value of $t=4.4$. This suggests that these two broadly coeval groups of timber may come from slightly different woodland sources.

Although dendrochronology cannot be used to identify the precise source of timber (eg Bridge 2000), it would appear that the timbers analysed from Flore's House are likely to be derived from woodlands that were reasonably local to Oakham. As will be seen from Tables 2-4, many of the highest t-values, and thus the greatest degree of similarity, obtained during the dating of the three site sequences are with reference chronologies from sites elsewhere in the East Midlands region.

Of the 48 samples which were measured, nine remain ungrouped and undated. Most of these ungrouped samples have ring numbers which are close to the lower limit of statistical reliability; only a few have higher numbers. None of these samples have obvious growth abnormalities, such as distortion or compression of the rings, which would make cross-matching and dating difficult. It is possible that the undated timbers are from different woodland sources, making them, in effect 'singletons'. Such samples are often more difficult to date than longer well-replicated site chronologies. There were however noticeable growth abnormalities with a number of the samples from the north cross-wing roof. The inner rings on cores OKM-A27, A34, A36, A50 and A56 were excluded from the analysis due to distortion of their rings which clearly hampered overall cross-matching between the individuals.

BIBLIOGRAPHY

Arnold, A J, and Howard, R E, 2006 Kingsbury Hall, Kingsbury, Warwickshire: tree-ring analysis of timbers, Centre for Archaeol Rep, 53/2006

Arnold, A J, and Howard, R E, 2006 unpubl Tree-ring analysis of timbers from St Stephen's Church, Sneinton (Bellframe), Nottingham - Nottingham Tree-ring Dating Laboratory unpubl computer file SNEBSQ0 I

Arnold, A J, and Howard, R E, 2007a unpubl Tree-ring analysis of timbers from Lodge Farm, Staunton Harold, Leicestershire - Nottingham Tree-ring Dating Laboratory unpubl computer file STHDSQ0 I

Arnold, A J, and Howard, R E, 2007b unpubl Nottingham Tree-ring Dating Laboratory, unpublished computer file for Hilltop Farm, Staunton Harold, Leics, STHESQ0 I

Arnold, A J, Howard, R E, and Litton, C D, 2008 Tree-ring analysis of timbers from Ulvesrcroft Priory, Charnwood, Leicestershire, EH Res Dep Res Rep, 48/2008

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G, 2005 The tree-ring dating of a number of bellframes in Leicestershire, Centre for Archaeol Rep, 5/2005

Barley, M W, 1975 Flore's House, Oakham, Rutland, Trans Leics Archaeol Hist Soc, 50, 37-40

Bridge, M, 1998 Tree-ring analysis of timbers from the Chicheley Chapel, St Andrew's Church, Wimpole, Cambridgeshire, Anc Mon Lab Rep, 59/98

Bridge, M, 2000 Can dendrochronology be used to indicate the source of oak within Britain?, Vernacular Architect, 31, 67-72

Groves, C, Locatelli, C, and Bridge, M, 2005 Tree-ring analysis of oak timbers from Wymondleybury, Little Wymondley, Hertfordshire, Centre for Archaeol Rep, I4/2005

Hill, N, 2007 unpubl Flore's House, Oakham, Rutland Historic Building Report
Howard, R E, 200 I unpubl Tree-ring analysis of timbers from Nevill Holt, Leicestershire Nottingham Tree-ring Dating Laboratory unpubl computer file NVHASQ02

Howard, R E, Laxton, R R, and Litton, C D, 1997 List 75 no 8 - Nottingham University Tree-Ring Dating Laboratory Results: general list, Vernacular Architect, 28, 124-7

Howard, R E, Laxton, R R, and Litton, C D, 1999 List 96 no 2 - Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 30, 90-1

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1995 List 61 no I - Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1994-95, Vernacular Architect, 26, 53-4

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1985 Tree-ring dates for some East Midlands buildings: 3, Table I, no.3, Trans Thoroton Soc Notts, 89, 30-36

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1988 List 27 no 4 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 19, 467

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Laxton, R R, Litton, C D, and Simpson, W G, 1984 List I2 no 5 - Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in Eastern and Midland England, Vernacular Architect, I5, 65-8

Pevsner, N, 1974 The Buildings of England Leicestershire and Rutland, Harmondsworth (Penguin)

Roskell, J S, 1957 Roger Flore of Oakham Speaker for the Commons in 14I6, 14I7, 1419 and 1422 Trans Leics Archaeol Hist Soc, 33, 36-44

Tyers, I, I 997 Tree-ring analysis of timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

Tyers, I, I999a Dendrochronological analysis of timbers from Black Ladies, near Brewood, Staffordshire, ARCUS Rep, 484

Tyers, I, I999b Tree-ring analysis of the bell tower of the Church of St Mary, Pembridge, Herefordshire, Anc Mon Lab Rep, I/99

TABLES

Table I: Details of samples from Flore's House, Oakham, Rutland

Sample number	Sample location	Total rings	*Sapwood Rings	First measured ring date	Last heartwood ring date	Last measured ring date
	Hall range roof					
OKM-A0I	Crown post, truss A	156	no h/s	AD 1173	------	AD 1328
OKM-A02	S brace truss A to crown plate	53	no h/s	------	------	------
OKM-A03	N brace truss B to crown plate	77	no h/s	------	------	------
OKM-A04	S brace truss B to crown plate	71	33C	AD 1308	AD 1345	AD 1378
OKM-A05	E brace, crown post to collar, truss B	nm	---	------	------	------
OKM-A06	N brace truss C to crown plate	161	no h/s	AD 1188	------	AD 1348
OKM-A07	E arch brace, truss C	183	11	AD 1184	AD 1355	AD 1366
OKM-A08	E spandrel strut, truss C	93	no h/s	AD 1225	------	AD 1317
OKM-A09	W brace, crown post to collar, truss D	70	no h/s	---	---	------
OKM-AIO	E wall plate, truss C - D	104	22C	AD 1275	AD 1356	AD 1378
OKM-AII	Tiebeam, truss D	nm	---	-----	------	---
OKM-AI2	W arch brace truss D	132	no h/s	AD 1215	------	AD 1346
	South cross-wing					
OKM-AI3	N wall post, truss I	145	no h/s	AD 1236	------	AD 1380
OKM-AI4	North principal rafter, truss I	63	no h/s	------	------	------
OKM-AI5	Tiebeam, truss I	123	3	AD 1268	AD 1387	AD 1390
OKM-AI6	S common rafter 2, bay I	55	12	------	------	------
OKM-AI7	Stud post 5, south wall, bay I	58	no h/s	------	------	------
OKM-AI8	N wall post, truss 2	59	h / s	AD 1324	AD 1382	AD 1382
OKM-Al9	Tiebeam, truss 2	189	no h/s	AD 1191	------	AD 1379
OKM-A20	N principal rafter, truss 2	53	hs	------	------	------
OKM-A2I	N common rafter I, bay 2	68	h/s	AD 1320	AD 1387	AD 1387
OKM-A22	Stud post I, south wall, bay 2	140	no h/s	AD 1185	------	AD 1324
OKM-A23	Stud post 3, south wall, bay 2	96	no h/s	AD 1282	------	AD 1377
OKM-A24	Stud post 4, south wall, bay 2	107	no h/s	AD 1240	------	AD 1346
OKM-A25	Tiebeam, truss 3	176	5c*	AD 1217	AD 1387	AD 1392
OKM-A26	South wall post, truss 3	80	no h/s	AD 1259	------	AD 1338
	North cross-wing roof					
OKM-A27	S strut, truss 7	77	h/s	AD 1570	AD 1646	AD 1646
OKM-A28	Stud post 6 from N, truss 5 (E gable)	49	h / s	------	------	------
OKM-A29	Intermediate collar, bay I	63	no h/s	------	------	------
OKM-A30	S common rafter 3, bay I	nm	---	------	------	------
OKM-A3I	N strut, truss 6	73	6	AD 1579	AD 1645	AD 1651
OKM-A32	Tiebeam, truss 6	74	h/s	------	------	------
OKM-A33	N common rafter 3, bay 2	nm	---	------	------	------
OKM-A34	N strut, truss 7	89	18C	AD 1571	AD 1641	AD 1659
OKM-A35	Tiebeam, truss 7	81	h/s	------	------	------

Table I (contd). Details of samples from Flore's House, Oakham, Rutland

Sample number	Sample location	Total rings	*Sapwood Rings	First measured ring date	Last heartwood ring date	Last measured ring date
OKM-A36	SW windbrace, truss 7	57	no h/s	AD I570	------	AD 1626
OKM-A37	S common rafter 6, bay 3	nm	---	------	------	------
OKM-A38	Intermediate collar, bay 3	nm	---	------	------	------
	Hall range inserted ceiling and ground floor timbers					
OKM-A39	Joist I	96	no h/s	AD 1427	------	AD 1522
OKM-A40	Joist 2	111	no h/s	AD 1408	------	AD 1518
OKM-A4I	Joist 3	84	no h/s	AD 1460	------	AD 1543
OKM-A42	Front (E) wall post, adj to arch brace Truss B	93	h / s	AD 1477	AD 1569	AD I569
OKM-A43	Front plate over E cross-passage door	151	h/s	AD 1211	AD 136\|	AD 1361
OKM-A44	Joist 8	80	no h/s	AD 1438	------	AD 1517
OKM-A45	Joist 9	86	h / s	AD 1483	AD 1568	AD 1568
OKM-A46	Joist I0	105	18	AD 1485	AD 1571	AD 1589
OKM-A47	Joist II	94	h/s	AD 1477	AD 1570	AD 1570
OKM-A48	Main central spine beam	129	32 C	AD 1463	AD I559	AD 1591
	North cross-wing roof (contd)					
OKM-A49	NE windbrace, truss 6	55	h/s	AD 158\|	AD 1635	AD 1635
OKM-A50	NW windbrace, truss 6	62	no h/s	AD 1570	------	AD 1631
OKM-A5I	S strut, truss 6	69	h/s	AD 1573	AD 1641	AD 1641
OKM-A52	SE windbrace, truss 6	61	h/s	AD 1573	AD 1633	AD 1633
OKM-A53	SW windbrace, truss 6	nm	---	------	------	------
OKM-A54	NE windbrace, truss 7	54	h/s	AD I585	AD 1638	AD 1638
OKM-A55	SE windbrace, truss 7	nm	---	------	------	------
OKM-A56	N strut, truss 8	50	no h/s	AD 1570	------	AD 1619
OKM-A57	S strut, truss 8	nm	---	------	------	------
OKM-A58	SE brace, truss 8	nm	---	------	------	-----

*h/s = heartwood/sapwood boundary
$\mathrm{C}=$ complete sapwood is retained on the sample, the last measured ring date is the felling date of the timber
nm = sample not measured

* - sample OKM-A25 had complete sapwood to bark edge on the timber, but the outermost approximately 15 - 18 rings were lost during coring

Table 2: Results of the cross-matching of site chronology OKMASQOI and relevant reference chronologies when first ring date is AD //73 and last ring date is AD /392

Reference chronology	Span of chronology	t-value	
East Midlands Master Chronology	AD 882-1981	13.7	(Laxton and Litton 1988)
Ulverscroft Priory, Charnwood, Leicestershire	AD 1219-1461	12.3	(Arnold et a/2008)
College House, Oakham School, Oakham, Rutland	AD 1172-1307	10.1	(Howard et a/ 1999)
Cross Keys Inn, Leicester	AD 1104-1309	8.7	(Howard et al 1988)
Braunston, Leicestershire	AD 1165-1279	8.7	(Laxton et a/ I984)
Glenfield well, Glenfield, Leicestershire	AD 1182-1393	8.3	(Howard et al 1985)
Wymondley Bury, Little Wymondley, Hertfordshire	AD 1184-1379	8.4	(Groves et a/ 2005)
Sinai Park, Burton, Staffordshire	AD 1227-1750	8.1	(Tyers 1997)

Table 3: Results of the cross-matching of site chronology OKMASQ02 and relevant reference chronologies when first ring date is AD 1408 and last ring date is AD 159/

Reference chronology	Span of chronology	t-value	
East Midlands Master Chronology	AD 882-1981	10.2	(Laxton and Litton 1988)
Nevill Holt, Leicestershire	AD 1274-1534	9.9	(Howard 2001 unpubl)
St Andrews Church, Wimpole, Cambridgeshire	AD 1469-1615	9.1	(Bridge 1998)
Kingsbury Hall, Kingsbury, Warwickshire	AD 1391-1564	9.6	(Arnold and Howard 2006)
Church of St Nicholas, Bringhurst, Leicestershire	AD 1502-1687	9.4	(Arnold et a/ 2005)
Sinai Park, Burton, Staffordshire	AD 1227-1750	9.2	(Tyers 1997)
St Stephen's Church, Sneinton, Nottingham	AD 1484-1654	8.8	(Arnold and Howard 2006 unpubl)
Lowdham Old Hall (barn), Lowdham, Nottinghamshire	AD 1422-1527	8.7	(Howard et al 1997)

Table 4: Results of the cross-matching of site chronology OKMASQ03 and relevant reference chronologies when first ring date is AD 1570 and last ring date is AD 1659

Reference chronology	Span of chronology	t-value	
England mid-west regional	AD 860-1790	5.9	(Tyers pers comm)
Lodge Farm, Staunton Harold, Leicestershire	AD 1533-1647	5.8	(Arnold and Howard 2007a unpubl)
I5/I7 St John's St, Wirksworth, Derbyshire	AD 1586-1676	5.7	(Howard et al 1995)
England mid-east regional	AD 947-1805	5.7	(Tyers pers comm)
Black Ladies, Brewood, Staffordshire	AD 1372-1671	5.4	(Tyers 1999a)
Bell Tower, Pembridge, Herefordshire	AD 1559-1668	5.4	(Tyers 1999b)
King's Manor, York, North Yorkshire	AD 1361-1667	5.2	(King pers comm)

FIGURES

Figure I: Map to show general location of Flore's House (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)

Figure 2: Map to show the location of Flore's House (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)

Figure 3: Flore's House looking south west

Figure 4: Flore's House ground floor plan (based on a drawing by M W Barley 1975)

Figure 5: The hall range roof truss B viewed from truss C looking north-west

Figure 6: General view of the cross passage looking east towards the front door

Figure 7: North cross-wing truss 7 viewed looking west

Figure 8: South cross-wing truss 2 looking south-east

Figure 9: Upper floor plan showing location of samples not shown on the elevation and sections below (based on a drawing provided by N Hill)

Figure IO: Ground floor plan showing sample locations (based on a drawing by M W Barley 1975)

Figure / I: East elevation showing sample locations (based on a drawing provided by N Hill)

Figure 12: Hall range truss A showing sample location viewed from the south looking north (based on a drawing by M W Barley 1975)

Figure 13: Hall range truss C showing sample locations viewed from the north looking south (based on a drawing provided by N Hill)

Figure 14: Hall range truss D showing sample locations, viewed looking north to south (based on a drawing by M W Barley 1975)

Figure 15: South cross-wing truss 2 showing sample locations, viewed from the east looking west (based on a drawing provided by N Hill)

Figure 16: South cross-wing truss 3 showing sample locations, viewed from the east looking west (based on a drawing provided by N Hill)

Figure 17: North cross-wing truss 6 showing sample locations, viewed from east looking west (based on drawings provided by N Hill)

Figure 18: North cross-wing truss 7 showing sample locations, viewed from east looking west (based on drawings provided by N Hill)

Figure 19: North cross-wing truss 8 showing sample locations, viewed from east looking west (based on drawings provided by N Hill)

Figure 20: North cross-wing intermediate truss bay 3 showing sample location viewed from the east looking west (based on drawings provided by N Hill)

Figure 21: North cross-wing intermediate truss bay I showing sample location viewed from the east looking west (based on drawings provided by N Hill)

[^0]
Whis tev \square - hewtroot mge Sivelas * Lepwed rigt \square - mivnent number if intrestireit sepebet mipe

Figure 22: Bar diagram of the samples in site chronologies OKMASQOI, OKMASQO2 and OKMASQO3

White bars $\square=$ heartwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring of the sample is at the heartwood/sapwood boundary

Figure 23: Bar diagram of the samples in site chronology OKMASQ04

Figure 24: Bar diagrams sorted by area group

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

OKM-AOIA 156
$3223143253753252221972062772952791982692191767012718014 \mid 179$ $2|82| 6204|9| 156|8| 3|2235228| 88|45| 2||25897| 475255$ |||||3 120117889894617346383431383338396168515564 7961734465765434552840324037463631426667 $847510464845780|55| 72|638| 76|008596| 47|92| 70 \mid 3782$ $9379688586|1359165256| 88|75177| 82|38| 18|34228205| 43 \mid 22$
 42454837413136353044514055506070
OKM-AOIB 156
$3473 \mid 2304353320233$ |90 |95 27| $30327920527522 \mid$ |72 76 ||5 | 86 |40 | 8 | $22|198210| 89163|853| 423|220| 94|48| 22|\mid 58662493655105$ |26 128100899698587747313229384025465758584870 7466764663666044403745303346433429436867 $8|791006784627| 136|62| 6|7677889592| 4||80| 67| 3689$ $957473858910256|7| 248|87| 80|82| 80|37| 24|29235| 98|46| \mid 4$ $11090826575102909211 \mid 929610599721127181583744$ 40414937403442313245494844525874
OKM-A02A 53
$41241 \mid 3793453592652562532813463092503092832151889783173199$ 19| 285219203 | 38 | $762333|6| 68324$ | 88246 | 47 | 56 | 63322244328334 26| 25। 236 25। | 54 | 82 | 46 | $8727|232| 822292002 \mid 5$
OKM-A02B 53
39। 41835235839723327323827934434825929825821820010897167198 208278234 |69 |4| | $7823730 \mid 182290$ |97 226 | 56 |42 |73 $3 \mid 2245336326$
 OKM-A03A 77
$2972854 \mid 2366290$ 35। 4I| $3972832882633033592|42| 5$ |53|88|82 206 |43 |08 |50 |34 20| 9| I55 $2092724303|437| 256206267 \mid 29274340398290$ 307 | 50 | 65 | 40 । $0 \mid 253$ | $6|229| 3|2| 5|59245222202| 86230289|432| 4 \mid 68$ 219278279269362399419358 I58 92 I36|72|69 2473 I3 274229 I50 OKM-A03B 77
$28426846330229033640 \mid 364283259285295334220207$ |52|83 | 74 । 83 $146971501381899315619822944|3| 8373254197257137312343388329$ 300 |63 |95 | 88 ||6 248 |64 228 |4| 200 | $8|19| 237|98| 73240283|472|||6|$ $2||3032683003584| 24| 83|5| 65$ |।| | $30|74| 6724532 \mid 289232$ | 86 OKM-A04A 71
$88676962896675|43| 70|2510998888387\|\|\||49284| 44$
 |42 |47 | 48 | 86 | | 7 | 74 |24 |00 $7682384669|00| 4687||\mid ~ 936059$

79936575 |29 9681574680119
OKM-A04B 71

|4| | 35 | $83|302| 32|9| 25|4|||2| 03||7| 45|54| 9||9|| 89|5||05| 08$ 108 |42 |42 |52 |80 |08 |83 ||5 |02 $797848396697|4692| \mid 5906363$ 68881037712110279565177118

OKM-A06A 161

|2| $85324177167263213|46957867541| 9206200|43| 42|40192| 5 \mid$ 229212257323285366244253235222244305246208164199309295235 $248262236|47| 32|38| 62|58230203302| 65 \mid 891278948102757052$ $8245827982731239274477047557379574036 \quad 6336$

 $9611876971427311925917210|737| 647582931107585163$ | 36 | $2|188| 22|8| 2|2| 34|7|||7| 84| 70204199255286283256230197$ 157215
OKM-A06B 161
$1|3100343155162272199| 5390796452|20204193| 42|38| 53|8| \mid 52$ $22521223827524137724425223922022831026020415620 \mid 308290235$ $22226|235| 48|43| 54|55| 5924820830|178| 87 \mid 25846688797952$
 $452726453329282918323427 \mid 14159495445754242$
 $10111282102|2276| 1|238| 60|1| 7 \mid 846285801041147291165$
 148228
OKM-A07A 183
212241278279266255498562584400193239243172180287288310214 $19915516|156| 34|128| 7412570|39| 19 \mid 268073779878776974$
 6487661126884123112789510373811126411397939273 8663744794561069578914710469715471125909776 $988974827|133| 3 \mid 124105885377537773102107806589$ 114919191631046961763271797156476855572643 $4143426361426561658276447058 \quad 858472639760$ 8। IO। 896972595679769651929168517573769191 1218695
OKM-A07B 183
22। 245276286260247496554489399174245242176185295288303211
$20215716217|129105787211285136| 201257581709877836964$ $8260749083534881778413012296 \mid 37909170876683$ $608766|02758||34| 0|96871057274| 2564|249| 889 \mid 84$ 906783479559 |।| $8877976098678|467| 122978980$ $9788737770|35| 44\|\|\|\| 895277517678104104836198$

IOI $9792866999666278356974685355715153 ~ 31 ~ 44$

$79109817562576369889 \mid 5473113825479816896110$ 11087103
OKM-A08A 93
108 | $36|402131679893103| 16|37| 295710988872637293527$
29264722263639373494432522253148631135059
42475989 | $27|30|||7777675| 10| 73974790|3| 102|42| 60$ 175 | 24 |09 | $212392|4252| 74|87| 48|38||9| 29|46| 57|4||63| 04 \mid 37$ $167|46| 09|2410410469| 109||||98|| 66980$
OKM-A08B 93

$464|5985| 33|45| 18738372628897954582|26| 07|34| 50$ |65 |2| | 08 | $2724423225|174| 94|44| 40||6| 2||56| 54|39| 9096|34| 59$ |3| |16|22 102 $9290969|1||9910| 9093$
OKM-A09A 70
223 |57 | 33 |98 262 |45 |90 225223 |45 |53 |99 $22744234|3964202064| 4$
 316167335285323233363251309355225398262427318427394255182316 344488585521433302365478479437535
OKM-A09B 70
220 |38|45 |95 269 | 5 | 167237259 |49 |63 $2042473603394064402224 \mid 9$ $253|828789122245| 66|58| 12|25| 70 \mid 57270340228408246249180192$ 304164328307335243385250316348239368272436317423381257198322 332 48I 576524450303 36I 465462432533
OKM-AIOA 104
 $126||29| 796695||4| 28|008589| 02||7| 46| 84|28| 64|77| 45 \mid 94$

$1429910|75| 45134|38| 4513296|20| 3|126| 36|45| 72|204| 27|26| 42$
7392 |03 $6882|06| 08|29| 42|62||8| 04|06| 27|37| 28|07| 29|27| 37$ |15 ||2 |25 99
OKM-AIOB IO4
202 |66 | 89 | 54 | $3619326824523|177| 74249|43| 702302|3| 54|56| 48|\mid 6$
 $2052|2| 68|94| 842|||85| 60| 26| 4||47| 57| 78|82| 35|4| 10||||153| 56$ |38||2 $929||38| 24| 40|42| 3|85| 4||29| 25| 48|52| 562|2| 49|50| 30$ $66|0883908685||9| 08|7||43| 05||||||28| 34| 3| ~ 99| 28| 39| 29$ 117 IOI 132 | 37
OKM-AI2A 132
$23525320|137205| 22|25||0| 25|65| 72|522| 7|9| 2|5| 37|42| 40 \mid 50$ | $8|250| 39274|66| 69|4| 877|124||7| 25|0||397||24| 08|2493| 59$ 808354613944645251282531292428252540372731
$2326453531575553746882884|4986||2| 20|59| 1978$ $7482727686|59206||46674| 40|94| 20||8| 308346544957$ $791059763563752526484575798817312488 \mid 48187112$ । 43 । 06 I50 22। 198 I77 $23426 \mid 327290297$ I 82
OKM-AI2B I32
$239249|98| 362||124| 26||5| 26|64| 62|742| 9|97209||8| 43|43| 43$
$185247|64264| 63|73| 438067||2| 24| 2|l 02| 4062|29| 239999 \mid 54$ 958247663746675343242836272525302936293034
 $6379747386|4||86||67| 66|4||84| 25|23| 327447573846$
 |4| I07 |47 223 |96 |90 22| 278320298263 |92
OKM-AI3A 145
134192205332255212195272348 | 82 |9| | 35 | $531883172772 \mid 0164$ | 84 $22514523420322226230441123621 \mid 217219174300204275305206192202$ 21921724418223932627523615916519516011710319321923520519097
 I7| $2|7| 57|7||46| 02|02| 06|34| 53|57| 20|65| 72|3||50| 0585 \mid 0988$ $126|026280| 2|||5859390|| 4||282| 02|24| 3||2|| 24|2||43| 04$ 6393675866586165949680851056789646083656569 $86|35| 45|47| 35$
OKM-AI3B 145
$14620821028527422021 \mid 284294190182152179258328269216164183$ $23614523719019825027941525517621320317727821326926623519 \mid 197$
 || 8 | 22 | $632|||82255234224| 38| 72228| 9|2| 7|47| 60||8| 32| 46|39| 27$ $17322015017|15586100| 18|48| 53179|19| 65167|39| 4|1| 386|\mid 598$ |32 |0| $6987|20||7| 05849|102||682| 08|32| 36|39| 27|48| 59 \mid 29$ 6999626264725763979886721126590617364825384 75 | 42 | 36 | 49 | 36
OKM-AI4A 63
$27922526|263197| 33|36| 00|53| 60|52| 98798773|46| 83|39| 7558$

 78 91 118
OKM-AI4B 63
$29821324226|192| 26|22| 03|5| 152|74| 9|84| 0|89| 52|34| 23 \mid 6862$ 609413316518523823723422620929531530823325620320018713393 63497289 | 09 | 64 | $40|45| 47|2685||0| 079|||0| 22|| 55869|0|$ 7394 I20
OKM-AI5A 123

 100|1591 63758413622220413098778392584326385272
$777710380107||493| 3| 999776|18| 095742476582827 \mid$ $75906|7| 6|9086766497105103107| 16|46| 46|54| 45|58| 48$
 233235 I59 200
OKM-AI5B 123
$402346628595256256|67| 462|4276225| 78322256|68| 08|37| 25 \mid 27$
||5 $77328348280355286|56| 4|123||6| 72|43| 97|33||0| 0387|63| 2 \mid$ 93105 |l0 9759828011721918212786967896494141415671 $85909384108|1293| 3393|1078| 301026 \mid 536464779981$ $775963695210690775811310510493135128|42| 65143165150$
 232229 I62 192
OKM-A16A 55
342 26। 3I3 23। $36037927627|29420625232530636| 308360308253263$ $2506059406|396092| 09|37| 43|58| 40|57||3| 35|39| 56|56| 29$ 123।I5 89759492109868367859386 ।05 ।। 120 OKM-AI6B 55
362258300255336372285290305206245322298371303356306247258 $25|6466356| 305993||2| 32| 52|53| 52|56| 08|42| 4||43| 65| 29$
 OKM-AI7A 58
$6396|2382| 2099754 \mid 333734424337333049546775$
$131628675|15137100| 1089928061867367761039013471$

OKM-AI7B 58
$6596 \mid 2281127927243443634303544382546596776$
 91 8276636451664565543971523648263427 OKM-AI8A 59
$167 \mid 69$ |52 $2852783|4376| 6|122| 072|4| 7486|60| 49|70| 32 \mid 58 ~ 206205$ 288264 | 89 | 55 |55 257304349248304262 | 32 24| 209 | 85 | 72 |03 | 28 | 98
 OKM-AI8B 59
226 | $6|152272292329347| 64|36| 22209|8299| 6||46| 64| 4|168225| 89$ 300263 |96 | 39 | $582572773||23332| 257| 4724922||76| 7686| \mid 9196222$
 OKM-AI9A 189
$4682604463302|2300207| 88|43| 34|88| 50|50||3| 4|\mid 7298977382$

 4645676682515249627648586046606642636064 7659833852485855385742282417182327306293 ||4|।|।|। $048560|0| 76708698628289|17100| 66|68| 45|\mid 4$ $10483575264444242464249494538 \quad 344947 \quad 67 \quad 6970$
$\begin{array}{lllllllllllllllll}34 & 41 & 67 & 84 & 90 & 72 & 92 & 103 & 97 & 66 & 57 & 44 & 47 & 39 & 56 & 42 & 46 \\ 49 & 53 & 29\end{array}$
 $538971|168| 6492|16| 80$
OKM-AI9B 189
$46826545433|23429022| 187|5||27| 93|5||54| 07|56| 78 \mid 03957779$ $95829080|04| 2516996|78| 20|39| 3|20033519924224038| 15|||\mid$ $1481572292422571394052643552|8| 2387206|20| 27|0010099686|$ 4650518272555349656555606439685247635564 $7860864142535649326944303210162531 \quad 266190$
$12797|20| 0|9| 589980777910|677498| 1593|6516914| 128$
 3448618285739896976751424542604039515531 4247505140604743533438353741364440449276 449376 IIO 776893118205
OKM-A20A 53
| 57236 | 85 | $87260253|4532958944| 42646442545966 \mid 448456268264$ $23221822424323810580745077|18| 27|80| 6016416|159126| 62209$
 OKM-A20B 53
|74 2|9 |77 ||9 |88 277 |5| 39| 564369425499406434659472447276259 $239219215274238103817859701201251741621481621441151642 \mid 5$
 OKM-A2IA 68
$136|50125187213147| 141992182523165343022693123 \mid 8133179306$ $2683073303|025625| 2|5| 65|279| 145|322| 6|25| 58|268||30| 3690$ 4843488311890725635306259395942703122366054 $4961597231 \quad 6471110$
OKM-A2IB 68
|59 |54 |44 | 84 | 89 | 36 |56 $2 \mid 9$ |9| 28| $3334352562673|93| 8|33| 67297$ $2683063233||254268205157| 2795| 19|352| 6|22| 50|34| 00|22| 4595$ 5447478012082726329395558426433722537375349 57626060307070109
OKM-A22A 140
|52 |72 2||||6|25 $230|69| 35|83| 53|68| 74|34||47582||092859|$
6736433335307834544360748062123798690149118
$7494868|795973| 03|23| 70|52| 03|29| 08|5|||6| 20909865$
787710473889389728753494573427610293923976
$60995310066|4| 1497376377357646466 \mid 1479604950$
5743844980808656817248313851515347245356
59617071848743455360924748413449425150101
OKM-A22B 140
|78 |74 207 | | 9 | 29237 |52 |33 |74 |54 |72 |76 |2| ||0 $6677||784958|$ 6238383525346830465657727364120839086149119 $769|10082895679||||17| 76| 44| 05134|07| 38|27| 2384 \mid 0267$
 $6410553995513 \mid 146835852596165576511581584751$
 5762707482915243505792515238374748515267 OKM-A23A 96
$123779094877750183186|8823| 1938482589296103|18| 98$
$828479|47| 049662649|183| 146676|33| 3387558686|2|$

$12078869596|26| 32|64| 46|9| 123|76| 289697 \mid 0968826367$ $124173127109137124809210075988013367 \mid 38159$
OKM-A23B 96
|54 $86889|757946| 77|90| 86229|848| 8250|0| 80|27| 32|7|$ $745563|459810660788| 159115607712912493568288127$ $106|37| 169580|46| 47|9| 2|97232334363791332842833072| \mid$ $117638090102109142157153206|391671388510410964806| 74$ $12315713496|321338879106721058414060133| 8 \mid$
OKM-A24A 107
|96|58|66 289 |98 234203252266 | $7424|198| 28234|39| 2870|39| 27 \mid 84$
 $11526075576076939710458126|78| 53127 \mid 1310489847410380$ $781159410510713411910979898386898890133 \| 13956478$
 5350527369 |।। 130
OKM-A24B 107
$2|0| 55|56275| 762582||243256| 6| 237|92| 52239|46| 4|7||49| 27 \mid 83$
$24 \mid 177202$ | 34 | 52 | 38 |42|49 207235 |99 |94 |22 $200|38||4| 35|58| \mid 2$ $124256655463789|9510860| 18|80| 56|25| 199883808310385$

$87769586||4| 105532456268647383| 12|39 \| 0566| 62$
5444546879 |l3135
OKM-A25A 176
|64 |55 242 |72 $23022|22024223522| 2 \mid 9225$ |38 99 |0| |09 |2| |49 235 |4|

$1479985|13| 15|86| 158683785810785153|5798| 388293 \mid 03$
$1076751103|11729210776734669158| 48148158 \mid 481089374$
$10781|1390| 49836|9095118| 43104 \mid 39106796859666442$
$\begin{array}{llllllllllllllll}44 & 45 & 42 & 34 & 42 & 43 & 47 & 36 & 36 & 34 & 37 & 40 & 49 & 34 & 22 & 20 \\ 27 & 41 & 44 & 75\end{array}$

OKM-A25B 176
$210|49246| 8|2| 82|42| 426|2| 224424223|14296| 04|||||2| 502| 6| 43$ $267|7625| 158|1997| 90||6| 37| 35|88| 5796|387| 84|24||2| 269 \mid$

$987648|04| 10729|10| 85744960|64| 43|5| 160|43||49| 89$ $103781078814787728595120|30| 1|146| 14766652666749$
 717014063445445436150445667477263938475123 ||5 7| 595046575243675438345459527451795756 51 445352474532363254624949627678

OKM-A26A 80

$2554183272892||286274252| 473| 519024728924025419794$ ||4|47|36 972042652322352232201501056311018323529429015693607784 19020718694 | 44 | 16 | 73 | 57 | 89 |3| | $5573797396 \mid 1480797559$ $8057875886777475538984|13| 00|48| 93|95989| 125 \mid 46$ OKM-A26B 80
$26640927630623|2993| । 2291633162|2286272277236| 72|00| 18 \mid 68$ 153 |19 | $8828|23426923220716310066| 17|8024| 284295138897471$ $95197203166|151| 51392001891791291346276668412994637561$ $9252835683827|7| 479|97| 069|143206| 92|0078||4| 40$ OKM-A27A 77
4।| $3212472903513472783172|631732623821020| 15 \mid 205$ |99|30|।0 | 50 | 79 | $8024725333|336| 92|34| 60|56| 43|63| 25205200888 \mid 175$ |9| |49 |97 | $563152342582022102453|\mid 294257210220224$ |4| |7| | 49206250 $27 \mid 194190245248$ | $382701932443|6| 75204200|3697| 38$ |। 4 | 80 OKM-A27B 77
$3923262462833593362863462123253202442092 \mid । 157203$ | 81 | 46 || 5 $144177168250249316353216123|48139140| 47|3| 2031958896185176$ $146210167326244256214210244306299244225218226 \mid 35$ | 88142207255 268202 | 7725 | 245 |57 252 | $892453|2| 88|99| 72|23||7| 33||3| 87$ OKM-A28A 49
347425202 I 86224 I 89263 I77 237229263 24| 32626535728730628589 |25 I04 | 36 I70 2092982472784434743993303543674 I7 43644 I 364295445 250293398348372298205255235290
OKM-A28B 49
370433206183228 I90 25618723524524925031527334830030729899 ।। 8 92 |4। | 8 | 196282 24| $2764464544283453703604324 \mid 9460367302448252$ 305 43। 349376272224 24| 236 29।
OKM-A29A 63
|53 |45 | 32 | 40 |92 |65 |08 $60|20| 23|4||35| 6||05|| 8||6| 3| 283209 \mid 88$ $10513820915710915920314820616817880931021501|3| 38 \mid 24183218$
 726974

OKM-A29B 63

$172|45129| 3716417212664|13| 07|29| 19173801079313 \mid 263206184$ 102 | 30207 | 49 | | 4 | $5|157| 68|95| 75|698689| 0||45|| 4|33| 33|72| 99$ $83|06| 66|78| 04|7||29||||62| 3|| 84226209|38| 3||8| 203| 6||3| ~ 8|$ 668398

OKM-A3IA 73
$23343243036424|24438228715717321827723637236| 433585239158$ $1802392172351271751959910424622619217816827 \mid 272273193198274$ 443371354251230210140146123216206222239207254264 I7| 276187244 312203219238 | 83 | 40 | $6 \mid 157266227243222$ 28| |97
OKM-A3IB 73
366444440355244256 39| 262 |48 164229293235350332431570246 I53
$1892402212251301691789610825|23317415717327026628217722226|$
417369350277218215135 I54 | 22205209215253205267273164280185239
317216218234196112185145317222260206263238
OKM-A32A 74
680554452 |34 $738386|1399| 25|09| 69|66| 8|8785| 48202|80| 94$
 $24216723923319216922419|9914616419322| 199|48| 90|65158| 43103$ I06 89 I05 I50 I57 I99 230262 I76 244200208 ।94 I03 । 84 OKM-A32B 74
6925664531307991100115931131021661691788188167225173182

 $948810715616019019725017 \mid 26019720419091204$
OKM-A34A 89
349 |।4 I74 $2553733654763093902172742101542542582231561372 \mid 7$ $244215307257|831566966| 221088|87| 19|46| 174|77| 26|32| 33$ | 47 |3| 204 | 88205 |2| | $4920726622|154| 25|56| 8|~ 75| 0983|50| 48 \mid 06$ |3| $1071088989|56| 23|52| 73|05| 22|6||2292| 46|5|||7| 57| 62 \mid 40$ 193 |68 205 | 85 | 42 | 58 । $0 \mid 79$ 9| 127
OKM-A34B 89
$33|123| 6224940535|567306356232282227| 55244227229|52| 33209$ $266219296250|821639676| 3210|7495| 29|36| 344|69| 25|47| 25$ | 52 | $29209202|80| 13|462072682| 9|5||28| 32|696||2587| 62|6||\mid 0$ $1351001098784|6| 126|53| 75|10||5| 70|2493| 42|39| 05|56| 52 \mid 37$ $2|5| 62|97| 66|5||4793| 1894 \mid 30$
OKM-A35A 81
$34|304267233227| 78|48| 55|47| 27||4| 23||5| 64|54| 6||036385| 20$
169 | 89 | 61186258247259203 | $771 \mid 316517416570636767938095$ IOI I04 9| |32 88|IO||4|23|2| $424235597696|65||388| 52|9|$ $18417718921023726024826620729 \mid 165179235248250190145$ । 70175 190210
OKM-A35B 8 I
$385299268233226|76| 45|49| 48|25||3||9| 29|55| 58|55| 0|6087| 06$ $167|75| 77|9| 262240254224172$ |l2 157 |84 169 6978698294105107 $9410990|2890||5||5| 3|1035243396768| 0||54| 1795| 48$ |9| $1751642152122322522602532 \mid 4305159190225246242$ | 96 | 46 | $6 \mid 186$ 197218

OKM-A36A 57
245 I50 I53 $2188310318719420|20322020517317623| 288458163154274$
$28529030127527630121917925730028428 \mid 218370296176170207235$
129 | $3416820225727426923023928025220 \mid 177275213163194218$
OKM-A36B 57
$2711951652157810117917 \mid 175190213210177176220316448159160274$ $2673003152552853042|720| 254303257293228366286|88| 7320325$ ।
 OKM-A39A 96
3603352372062173441932843593673742311921802592101821528363
 8076 |05 |27 |20 $9878|43| 77|10| 3|||2| 98| 52| 56|3|||6| 07| 46|\mid 9$ $13418713910683769|13497| 49|147472| 27|10| 07949092108$
 OKM-A39B 96
$37033224324621|378| 85270372390386202$ |75 |89 25। 208 |9| | 527964 $78|13| 69196297|98| 58|9| 1672|8| 47|32127| 48|19| 059073|\mid 5107$ $737596|26||39| 78|36| 79||3| 34||4| 98|46| 6||39| 06||3| 37 \mid 22$

OKM-A40A 111
|09 |04 76 |7| 309 |53 |5| | $82|63| 70236|46326223| 06293|60| 52|\mid 7222$ $202243268277289|46265374357298| 87|56229| 89|80| 78 \mid 08755646$ $6|1251672| 3|73| 6835723|246| 57|77| 9|2|||54| 23| 079|125| 2592$ $132|252| 7|27| 63|3430640| 2|2233| 84246|86| 66|448387| 3380 \mid 35$ 179 | $34144847665856710280587 \mid 12488567464667868$ $67|05| 37|62| 68|45| 067 \mid 564489$
OKM-A40B III
||3 |0| 74 |56 31099 |28 |57 |66 | $80237|44299209| 0|276| 59|55| 372 \mid 4$ ।9| 244260273278 |58 $28037 \mid 352273205$ |64 223 | 89 | $8 \mid 174$ |। $069574 \mid$ $66124154203182168377223253185194207228|44| 299510|1231| 885$

 74 । 02 |42 168 |63 |46 108 $68596 \mid 74$
OKM-A4IA 84 $2854234034483694|44033153223133362632| 2|582362732| 8257258$ $327286278274|59| 23|14| 242|3| 68|65| 85|46| 63|57222| 942|||42| 22$
 $1|2| 2293|47||6| 9382|23| 48|7||54||4| 59|0||06| 35|83| 43|35| 67$ 156|18|22 98 | 10
OKM-A4IB 84
$3194134 \mid 5463347434405309340308331273205167219267209253276$

||| | 24 | 03 | 68 | 25 |92 |00 | $27|40| 72|64| 09|52||2||8| 32|85| 44|4||6|$
|5| | 18 | 17 |0| |16
OKM-A42A 93
|40 |90 202 |6| $2 \mid 5239$ |35 |27 |49 |23 |39 |76|87 $265243232 \mid 97226274$ 254 |52 |38 $8994|2087| 3||4889| 53| 0384|43| 57|63| 65|52| 55 \mid 25$ $14969|14758| 89|3| 125|7| 90|52| 09|49| 43|24| 037464657959$ $836994627253646189895810610 \mid 727174888910282$ 74 I09 9687 I02 I02 II3 76747797 |।3।I5
OKM-A42B 93
198189212174218232134120138117154179207253238218208240254 $262|54| 4|9098|||~ 95| 33| 4782|599589| 4||50| 63| 63|48| 58 \mid 28$ $14964 \mid 16787789$ |24 |33 |58 98 |50 | $10|54| 43 \mid 22938460686955$ 9075826263576960838159109115796980948911386 721049787 9| 109 |। 972817894 108 I37
OKM-A43A 151
$7980|3| 95|05| 18|65| 60|9||59| 54||8| 36| 70|47| 20||9| 30| 4495$
$1098|140| 26|1576| 54|07| 22|49| 23|28| 88|46| 42|6||88| 33|\mid 885$
8283 | 82 | 29 | 88 | 75 | $7|1| 5 \mid 75$ | $59|482| 2|64| 33|58| 53|2||02| 26 \mid 47$

12110914510487818780106117961017495731001079812198
8। |2। |04 ।।| 821028674798679887876706693828494

$8692|30||||10|| 4| 28||5|| 5||7| 22$
OKM-A43B 151
||4 $66|24| 06|05| 06|62| 66|94| 56|56| 22|46| 60|35| 42|22| 2||3| ~ 98$ $10990|40||9| 1888|50| 00||4| 46| 29|4||8||47| 55|66| 85|24| \mid 798$

 $821171031019211|8272789| 977078806874947 \mid 8292$ $578010393|158| 9|127| 22|0| 859583|16| 459 \mid 95839972$ 8799 |3| | 02 ||9 | 20 | 23 || 9 || 5 ||4 | 32
OKM-A44A 80
$37039647455229038741834522|2502| 22|516521| 163|422| 9|9| 266$
222 | $842222 \mid 3224$ | 89 | $86|50| 76|69| 4|2| 7|93250| 74|65| 37|6||73| 42$

$10067651048|58858| 46885898|03| 33|5| 132|54| 26|43| 65107$
OKM-A44B 80
304354473566308408429336220247204202 |67 2|। | 57 |4| $2241942 \mid 3$
$196192215212228196198150162165157212214243169175 \mid 22182162149$

$8763679673639|7753838582| 03|30| 43|40| 48|30| 44|64| 34$
OKM-A45A 86
|48 |62 | 25 |4| 225 | $76|69| 88|4||33| 45|84| 9624||47| 4||5825| \mid 54$ $148|571701262||107132206203174197205198187| 7296|7| 184|58| 43$ $20014520510516219823421821228|15| 170164264176 \mid 73184185146139$ |2| | 58 | 30 | 95 | $3|7||85| 65|28| 4598|22| 25|77| 48 ~ 94|22| 24|24| 38$ | 57 |64|45 |23 | 24 | $4 \mid$ | 29
OKM-A45B 86
|77 |60|34|45 258 |4| | $56|80| 4||44| 40| 85228243|48| 24|60259| 45$ $140|49184126207| 0|135198| 82|632| 5|99207| 78|6| 89|63| 67|63| 42$ $188|40203117142199228219210288| 47|54150244| 70|96| 82|8||36| 58$ |2| | 34 | $4|189||676| 62|5| 137|37| 06|24| 27|77| 4099||||4|| 07| 34$ $16||58| 47| 3|||6| 34| 68$
OKM-A46A 105
|6| | $54|36| 63|58| 33|2||47| 57|44| 302|5| 07|00| 209693 ~ 84 \mid 0399$

$859376|19| 30|0| 12994|32| 34|5| 128|0893||398||||30| 09| 10$ 1056575124120121135931008397765457649565414774 8793714980
OKM-A46B 105
105 ||9 | 39 | 65 |63 | $53|27| 33|43| 49|292| 9|||106| 33|| 8907590|\mid 4$ 97116687388106949081736457499310067649369115 $7989|23| 22|0| 678966759||2097|| 3||3| 38| 26 \mid 46578488$ $7988701071271041178210913916213410493|1| 105109|17| 27 \mid 12$ |0| 6673 |। 7105 |33|।| 9| 938797795749728946504359 86102804281
OKM-A47A 94
$117|15208| 3 \mid 1461129880103931761741361048668899882123$ $697477849|84756388939778| 14125 \mid 99167125827368$ $53|12866876| 50|33| 2|5097| 29928870|55645656| 0964$ 71676751944686757955349512047102649110421674 $466|8| 1568||59| 12| 08|||729892| 43| 59$
OKM-A47B 94
| 48 |23 | 95 |23 | $5511592909399|62| 78|3396787| 84|0576| 27$ $8276771217572697386102988412215719216|13| 8 \mid 7659$ $48|08956582| 43|3||2346| 04|2| 998582|49696950| 3572$ $636668488551926978654082 \mid 184793658510323371$ $5|67| 06|568||55| 12|0| 967397|0||42| 55$
OKM-A48A 129
$348270240 \mid 36$ |03 ||3 | $30|53| 64|37| 28|5||842| 4 \mid 82200248286255$ $23|187108122| 45206|6319624| 152|75| 66|8| 195246|40| 52|25197| 66$
$189|70| 7|120| 79|19| 42|64| 8|174| 73|52| 30|39| 446692|40||5| 00$
 10086988260879058806656577663444852426263 $\begin{array}{lllllllllllllll}47 & 49 & 44 & 40 & 30 & 45 & 59 & 48 & 46 & 30 & 45 & 30 & 32 & 48 & 51 \\ 50 & 62 & 81 & 57 & 67\end{array}$

468084 IO। $9 \mid 86985995$
OKM-A48B 129
306268 |69 | 3498 | 17 |36 |62 |64 | $30|30| 50|82209| 892 \mid 9233263257253$ $17011212513921|15519824917218715218| 189229144153120205170$ $183|7| 163|22| 75|18| 52|63| 68|69| 79|50| 27|39| 437295|39| 2097$ $112|12| 588|110| 1310312210413687999311483699476667 \mid 74$

 507793998092836698 OKM-A49A 55
| 58 |78 $174208166220132|45206| 88|87207| 9|19326| 203|53| 9 \mid 185$ 206286283350295201198203235165143203209262228199159160224216 209 | 58232 | 59125 | 85217227226198207167192149127176
OKM-A49B 55
 192289288359248209200198227158143204210267233208169166231226

OKM-A50A 62
$207|69| 40206|3398| 3|185194254| 57|5| 164|36| 79234254|32| 282 \mid 7$ 164199237166196272 ||4|3| $2|7| 98|57242197279196| 87|66| 94228$
 135 |63|26
OKM-A50B 62

 147162125
OKM-A5IA 68
$45944041133042534|49249952347028| 300340252 \mid 45159254276257$ $33035939653535|256214223179217| 4423923|88| 1825|226| 54|88| 3 \mid$ $26823126914313616228823821817517723713 \mid 10772157168190182126$ 13610310114211016917080145
OKM-A5IB 69
$48243846437|4| 73464985||54| 46| 30030232627|164| 4624626925 \mid$
$33|34| 4|05| 5365256178235|842| 2|4024723488| 0923|2| 6 \mid 53209$ I 31
$25924826|147| 33|7| 2992442|8| 59|8| 226|34| 0578|60| 67|9||83| 34$ $13510992 \mid 4310416517279160$ |90
OKM-A52A 61
||4 89 94||4|27|78|85|792|4245|96277208288|33||2|67|99248265 224327345211187247213234343287368356217244265270198139204
25। $25523823 \mid 240267297285260208235206147176163172203244202177$ 216173
OKM-A52B 61
$1958|9011512216817717021025| 22 \mid 299202279168135185198238261$
 249246242239227262320280260208244 | 86 |4। | 65183172213234208 I77 201 155
OKM-A54A 53
255380 |09 |08 | 58 |73 | 66 |98 |72 29| $36 \mid 192205244237225273265343$
$229|22| 84224210|25| 35|5| 206|86| 66|34| 5|163| 94|44| 29|07| 74$
||5 |47 |57 283 |99 $2 \mid 7$ |63 ||7 | 34 | 24 | 03 | 85 |59 236
OKM-A54B 54
$254332|30|||170| 571692| 3|59242358| 9|2| 0263258192273273347$ 264 |3| |9| 23| 219 |07 | 33 | $382||\mid 85$ | 56$| 35| 33|53| 90|56| 29||7| 202| 88$
 OKM-A56A 49
$169|95769| 5079|4| 2451672692||1562032|| 2792|0262| 44 \mid 47239$ 23| $23527422|28| 285180225252268227269198256268194$ I75 I 89195 |।7 |।| | 75216232237 |97 |74 20| 30|
OKM-A56B 49
16020574936063142240172268216148225220275212276151143225 232225263225268302 | 88258273276224285194244272 I 90 I74 196 214 |08 ||5 |7| $2 \mid 5232244$ |93 |63 2|| 300237

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin |99|; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I 506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981 . It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

	C45	C08	$\mathrm{CO5}$	C 04
C45		+20	+37	+47
C08	5.6		+17	+27
C05	5.2	10.4		+10
C04	5.9	3.7	5.1	

Bar Diagram

| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | |

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure $A 7$ (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure $A 7$ (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, I973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I 987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Hughes, M K, Milson, S J, and Legett, P A, 198। Sapwood estimates in the interpretation of tree-ring dates, / Archaeol Sci, 8, 38 I-90

Laxon, R R, Litton, C D, and Zainodin, H J, I 988 An objective method for forming a master ring-width sequence, $P A \subset T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99I Statistical models of dendrochronology, / Archaeo/ Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

[^0]: -
 -
 -

 39
 39
 304
 208
 307

