TRERICE, KESTLE MILL, CORNWALL TREE-RING ANALYSIS OF TIMBERS

SCIENTIFIC DATING REPORT

Matt Hurford, Alison Arnold, Robert Howard and Cathy Tyers

TRERICE, KESTLE MILL, CORNWALL

TREE-RING ANALYSIS OF TIMBERS

M Hurford, A J Arnold, R E Howard, and C Tyers

NGR: SW84II258475
© English Heritage
ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

Dendrochronological analysis was undertaken on 31 of the 35 samples taken from three different roofs at Trerice, Kestle Mill: the Great Hall, the West Wing, and the Great Chamber. This resulted in the production of two site chronologies, TRCESQ0I and TRCESQ02. These comprise 28 and 3 samples with overall lengths of 169 rings and 115 rings respectively. The first site chronology can be dated as spanning the years AD 1394I562, whilst the second site chronology is undated.

Interpretation of the sapwood and the heartwood/sapwood boundary on the dated samples indicates that the timbers from all three roofs are likely to represent a single programme of felling, probably dated to the early AD I570s, with the possible exception of one timber that may have been felled over a decade earlier. The dendrochronological results therefore support the suggestion that the Great Hall, the Great Chamber, and the West Wing were constructed as part of the scheme of works commissioned by Sir John Arundel IV, High Sheriff of Cornwall, between AD 1570-3.

CONTRIBUTORS

Matt Hurford, Alison Arnold, Robert Howard, and Cathy Tyers

ACKNOWLEDGEMENTS

The Laboratory would like to thank James Breslin, The National Trust Assistant Property Manager, and Shirley Blaylock, The National Trust Regional Archaeologist for the South West, for their support throughout the project. The drawings were produced by Nigel Thomas, Senior Archaeologist, Cornwall County Council.

ARCHIVE LOCATION

Cornwall and Scilly Historic Environment Record
Historic Environment Service
Kennall Building, Old County Hall
Station Road
Truro TRI 3AY

DATE OF INVESTIGATION

2008/2009

CONTACT DETAILS

M Hurford and C Tyers
Dendrochronology Laboratory, Archaeology Graduate School, The University of Sheffield, West Court, 2 Mappin Street, Sheffield, SI 4DT
Tel: 0 II4 276 3I46. Email: m.hurford@sheffield.ac.uk, c.m.tyers@sheffield.ac.uk
A J Arnold and R E Howard
Nottingham Tree-Ring Dating Laboratory, 20 Hillcrest Grove, Nottingham, NG5 IFT
Tel: 0|I59603833. Email: roberthoward I 0@hotmail.com, alisonjarnold@hotmail.com

CONTENTS

Introduction I
Sampling I
Analysis and Results 2
Interpretation 3
Roof over the Great Hall 3
Roof over the West Wing 3
Roof over the Great Chamber 4
Discussion and Conclusion 5
Bibliography 7
Tables 8
Figures 10
Data of measured samples 25
Appendix: Tree-Ring Dating 32
The Principles of Tree-Ring Dating 32
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 32
I. Inspecting the Building and Sampling the Timbers. 32
2. Measuring Ring Widths 37
3. Cross-Matching and Dating the Samples 37
4. Estimating the Felling Date. 38
5. Estimating the Date of Construction 39
6. Master Chronological Sequences. 40
7. Ring-Width Indices 40

INTRODUCTION

The grade I* listed manor house of Trerice, Kestle Mill, Cornwall (SW84 I I 258475; Figs I-4) has fifteenth- and sixteenth-century origins. The earliest phase, potentially associated with Sir John Arundel I (died AD I47I), is thought to have comprised a tower house with a low block, which was extended early in the sixteenth century by a two-storey range, elements of which form the current south-west range. The main north-east E-plan range is thought to have been built by Sir John Arundel IV, High Sheriff of Cornwall, in AD 1570-3. It comprises a central porch to screens passage, a hall to the left and services to the right, and an open cloister walk at the rear, with a projecting polygonal stair tower giving access to a long gallery over. This range abuts the earlier south-west range comprising the Great Chamber and West Wing, which is thought to have been mostly rebuilt during the same time that the north-east facing range was being constructed. The northern service end of the main north-east range, with the exception of the lower two floors of the outer walls, was demolished in cAD 1860 and rebuilt in AD 1954. The rear elevation was also remodelled in the twentieth century (Listed Building Description).

The focus of this investigation is three elements of the building complex believed to have been constructed by Sir John Arundel IV. These are: the roof over the Great Hall (Fig 5) comprising seven trusses with cranked collars and principal rafters and threaded purlins; the roof over the West Wing (Fig 6) comprising three trusses with cranked collars and principal rafters and threaded purlins; and the roof timbers over the Great Chamber (Fig 7) which consists of 24 scissor-braced frames with collars, with evidence for an earlier phase comprising two collars embedded in the ceiling just beyond the entrance hatch (Eric Berry pers comm). These roofs are all thought likely to date to the very early AD 1570s, as the plaster overmantle of the Great Hall dates to AD 1572 and that of the Great Chamber to AD 1573, with the West Wing appearing to have been mostly rebuilt at the same time (Listed Building Description).

SAMPLING

Analysis by dendrochronology at Trerice, specifically the roofs over the Great Hall, the West Wing, and the Great Chamber, was requested by Francis Kelly, Historic Buildings Inspector at English Heritage's Bristol office. The primary purpose of this programme of analysis was to support a reassessment of the structural development of this important building complex. In addition it was hoped that this analysis would enhance the understanding of the stylistic dating evidence in the county. A further potential benefit of the dendrochronological investigation was the contribution of the data to the corpus of reference material available for this currently under-represented area. This investigation also formed part of the English Heritage funded dendrochronological training programme for the first author.

In order to address these objectives, a total of 35 timbers was sampled by coring. Each sample was given the code TRC-E (for Trerice, site 'E') and numbered 0 I-35. Thirteen
samples, TRC-EOI-I3, were taken from the roof of the Great Hall. A further four samples, TRC-E14-17, were obtained from the small number of timbers available in the roof of the West Wing. Sampling was restricted in this roof, as it contained only six original oak timbers, with two of these, the cut-off remains of collars, being unsuitable for analysis, as they were derived from fast-grown trees and had less than the minimum of number of rings necessary for reliable analysis. The remaining timbers of this roof were of modern softwood. Finally, I 8 samples, TRC-E I8-35, were taken from the roof of the Great Chamber. Sampling was restricted to rafters and braces, as the collars proved inaccessible for coring. The two collars located beneath the scissor braces which were thought to potentially represent an earlier phase of construction could not be sampled, as there was the risk that the vibrations generated during coring would damage the plaster ceiling below.

The location of samples was noted at the time of coring and marked on the drawings provided by Nigel Thomas, Senior Archaeologist, Cornwall County Council, these being reproduced here as Figures $8-28$. Further details relating to the samples can be found in Table I, in which the timbers have been located and numbered following the scheme on the drawings provided.

ANALYSIS AND RESULTS

Each of the 35 samples obtained was prepared by sanding and polishing. It was seen at this point that four samples, TRC-E02, E15, E20, and E29 had an insufficient number of rings for reliable dating, and so these samples were rejected from this programme of analysis. The annual growth rings of the remaining 3 I samples were measured, the data of these measurements being given at the end of this report. The data of these 31 samples was then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), allowing two groups to be formed at a minimum value of $t=3.9$, the samples of each group cross-matching with each other as shown in the bar diagrams (Figs 29 and 30). The minimum t-value is low, but within the main group of 28 samples a subgroup of four timbers is readily identified that produce lower intra-site cross-matching than the rest of the large group. However, as this four-timber site sequence can be dated independently, and as it produces a low but significant t-value with the 24 -timber mean, it was decided to amalgamate them.

Both site chronologies, TRCESQ0I and TRCESQ02, were compared to an extensive range of reference chronologies for oak, this indicating repeated cross-matches and dates for one of them. The evidence for the dating of TRCESQ01 is given in Table 2.

This analysis can be summarised as below:

Site chronology	Number of samples	Number of rings	Date span (where dated)
TRCESQ0	28	169	AD 1394-\|562
TRCESQ02	3	115	undated

INTERPRETATION

Roof over the Great Hall

The roof over the Great Hall is represented by 12 dated samples in site chronology TRCESQ0I (Fig 29). None of these 12 samples has complete sapwood and it is thus not possible to calculate a precise felling date for the timbers represented. However, five of the samples did retain their heartwood/sapwood boundary ring, the average date for this being AD I544. Using the 95% confidence limit of $15-40$ sapwood rings appropriate for mature oaks in this part of England, an estimated felling date in the range of AD I559-84 can be calculated for these timbers. The heartwood/sapwood boundary on these five timbers varies by 18 years. This, combined with the overall level of cross-matching (see below), suggests that these timbers are likely to represent a single felling programme with the timbers felled at the same time, or possibly over a short period spanning a small number of years.

The remaining seven dated samples have no trace of sapwood and thus it is not possible to calculate their likely felling date ranges. The dates of their last measured rings vary from AD I463 to AD I53I which, as the level of cross-matching implies that all dated timbers from the Great Hall roof form a coherent group, suggests that some of these timbers represent the inner sections of long-lived trees. This, combined with the fact that they appear integral to the roof structure with no evidence for reuse or insertion, suggests that it is likely that they were part of the same felling programme dating to AD I559-84.

A full complement of sapwood was present on one of the dated timbers from this roof, TRC-E06, but, due to its highly friable nature, the outer $20-25 \mathrm{~mm}$ was lost during coring. Generally this would be used to suggest a narrower felling date range that that produced above using the average heartwood/sapwood boundary date. However in this instance TRC-E06 appears to be anomalous. The average ring width of 1.41 mm suggests that approximately 14-I8 sapwood rings were lost, indicating a felling date of cAD I556-60. This only just overlaps the earlier end of the estimated felling date range indicated above and, bearing in mind the overall level of cross-matching between the material from all three roofs (see below), suggests that either its outermost sapwood rings are significantly narrower than the average ring width implies, or that this timber was potentially felled slightly earlier than the majority of the material.

Roof over the West Wing

The roof over the West Wing is represented by three dated samples in site chronology TRCESQ0 I (Fig 29). None of these three samples has complete sapwood and thus again it is not possible to calculate a precise felling date for the timbers represented. However, two of the samples did retain their heartwood/sapwood boundary ring, which varies in date by seven years, indicating that they are likely to represent a single programme of
felling. The average date for the heartwood/sapwood boundary is AD I542. Using the same sapwood estimate as above, an estimated felling date in the range of AD I557-82 can be calculated for these timbers. This estimate can be truncated to AD I563-82, as the outermost measured ring on sample TRC-EI 6 dates to AD 1562.

The remaining dated sample has no trace of sapwood and thus it is not possible to calculate its likely felling date range. The date of its last measured ring is AD 1485, which is considerably earlier than the other two dated samples. Again, taking into account the overall level of cross-matching and the lack of evidence for reuse or insertion, it appears most likely that this timber represents the inner section of a long-lived tree, and that its felling is coeval with the two other dated timbers from this roof.

In this instance it is possible to suggest a potential further refinement to the estimated felling date range of AD 1563-82, due to the presence of bark edge on the timber from which sample TRC-EI 6 was obtained. Due to its friable nature, the outermost $10-15 \mathrm{~mm}$ of sapwood was lost during coring. The average ring width of 1.13 mm indicates that this represents approximately $9-13$ rings which would suggest a felling date of c AD $|57|-5$. This clearly lies within the estimated felling date range based on the average heartwood/sapwood boundary date, and it is therefore possible that the dated timbers from the West Wing roof were actually felled in this period spanning only a few years in the early AD 1570s.

Roof over the Great Chamber

The roof over the Great Chamber is represented by 13 dated samples in site chronology TRCESQ0 (Fig 29). As none of these samples has complete sapwood, a precise felling date for the timbers represented cannot be calculated. However, I I of the samples did retain their heartwood/sapwood boundary ring, the average date for this being AD I547 which, using the sapwood estimate as above, gives an estimated felling date in the range of AD 1562-87 for these timbers. The heartwood/sapwood boundary on these timbers varies by 20 years. This, combined with the overall level of cross-matching (see below), suggests that these timbers are likely to represent a single felling programme, with the timbers felled at the same time or possibly over a short period spanning a small number of years.

The remaining two dated samples have no trace of sapwood and thus it is not possible to calculate their likely felling date ranges. The dates of their last measured rings vary from AD 1509 to AD 1523. The level of cross-matching within the dated timbers from the Great Chamber roof is such that it suggests that they are a clearly coherent group. Hence, bearing in mind the lack of evidence for reuse or insertion, it seems likely that these two timbers were part of the same felling programme of AD 1562-87.

Again it is possible to suggest a potential refinement to this estimated felling date range of AD 1562-87, due to the presence of bark edge on the timber from which sample TRC-

El 8 was obtained. Due to its friable nature, the outermost $15-20 \mathrm{~mm}$ of sapwood was lost during coring. The average ring width of 1.25 mm indicates that this represents approximately $12-16$ rings, which would suggest a felling date of c AD $|57|-5$. This clearly lies within the estimated felling date range based on the average heartwood/sapwood boundary date, and it is therefore possible to that these timbers were actually felled in this period spanning only a few years in the early AD 1570s.

DISCUSSION AND CONCLUSION

Prior to tree-ring analysis being undertaken at Trerice, the roofs were generally believed to be part of the work commissioned by Sir John Arundel IV, during the period AD 1570-3. The basic tree-ring results indicate that the timbers from the roof of the Great Hall were probably felled in the period AD 1559-84, those from the West Wing in the period AD 1563-82, and those from the Great Chamber in the period AD 1562-87, thus providing broad support to the view that Sir John Arundel IV was responsible for the building work in these areas.

The overall level of cross-matching, including a range of t-values in excess of 7.0 , between the dated timbers from all three roofs is such that it suggests a common woodland source. In addition, there are two notably high t-values which imply that timbers utilised in different roofs may have been derived from the same tree: TRC-EOI and EI6 ($t=1 \mathrm{I} .2$) from the Great Hall and West Wing; TRC-E09 and E22 ($t=15.7$) from the Great Chamber and Great Hall. This evidence, combined with the overall heartwood/sapwood boundary date variation of 20 years, suggests that it is likely that all of the dated timbers represent a single felling programme occurring sometime in the AD I560s to AD I580s, with the possible exception of one sample, TRC-E06 (see above). However, based on the evidence of the amount of sapwood, including bark edge, lost during sampling from two cores (TRC-EI6 and TRC-EI8), it is possible to suggest that this main programme of felling may have occurred, either in one year or over a small number of years, in the early AD 1570s. This would clearly provide further support for Sir John Arundel IV having commissioned this programme of building works.

Table 2 includes some of the highest t-values obtained, and thus demonstrates the greatest degree of similarity, with reference chronologies during the dating of TRCESQ0 I. This clearly includes reference chronologies from the South East and West Midlands regions, amongst a number from the South West region. Previous analyses of sites in the South West region (eg Tyers 2004b; Groves 2005; Arnold and Howard 2007) have noted strong similarities with some reference chronologies from western counties, in particular. However, the most consistent and widespread cross-matching is found with a wide range of reference chronologies from the south-west, thus suggesting that the Trerice material is likely to have been derived from relatively local woodlands.

Site sequence TRCESQ02 incorporates the only three measured but undated samples, all from quartered timbers. Notably high t-values exist between these three samples (9.8,
13.8, and 12.2), suggesting that they are likely to have been derived from the same tree. The lack of conclusive cross-matching with TRCESQ0I and reference chronologies may well be due to a series of periodic growth retardation events in the first half of the sequence. Thus, although on structural evidence there is no reason to suppose that these timbers are of a different date to the rest of the Great Chamber roof, the dendrochronological evidence can neither confirm nor refute this supposition.

The successful dating of these three roofs should add to the overall understanding of the development of this building complex, as well as providing additional information for stylistic dating in this county. The production of a well-replicated, relatively long dated site sequence, TRCESQ0 I, is a valuable addition to the local network of reference chronologies and will no doubt prove of use in future analyses in this area.

BIBLIOGRAPHY

Arnold A J, and Howard, R E, 2005 unpubl Tree-ring analysis of timbers from 49/50 Quarry Street, Guildford, Surrey - Nottingham Tree-Ring Dating Laboratory, unpublished computer file GFDASQO/

Arnold, A J, Howard, R E, and Litton, C D, 2006 Tree-ring analysis of timbers from the Church of St Martin, East Looe, Cornwall, EH Res Dep Rep Ser, 46/2006

Arnold, A J, and Howard, R E, 2006 unpubl, Tree-ring analysis of timbers from Newnham Hall Farm, Newnham Murren, near Wallingford, Oxfordshire - Nottingham Tree-ring Dating Laboratory unpublished computer file CMGASQOI

Bridge, M, 2000 Can dendrochronology be used to indicate the source of oak within Britain? Vernacular Architect, 31, 67-72

Howard, R E, Laxton, R R, and Litton, C D, 2000 unpubl, Tree-ring analysis of timbers from Chalgrove Manor, Chalgrove, Oxfordshire - Nottingham University Tree-ring Dating Laboratory unpubl computer file CHLASQO I

Miles, D, Haddon-Reece, D, Moran, M, and Mercer, E, 1993 Tree-ring dates for buildings: List 54, Vernacular Architect, 24, 54-60

Tyers, I, I 996 Tree-ring analysis of six secular buildings from the City of Hereford, Anc Mon Lab Rep, I7/96

Tyers, I, I 999 Tree-ring analysis of three buildings from the Clarendon Estate, Wiltshire, ARCUS Rep, 429

Tyers, I, 2004a Tree-ring analysis of oak timbers from Roscarrock, near Port Isaac, Cornwall, Centre for Archaeol Rep, 30/2004

Tyers, I, 2004b Tree-ring analysis of oak timbers from Pendennis Castle, Near Falmouth, Cornwall, Centre for Archaeol Rep, 38/2004

Tyers, I, 2005 Report on the tree-ring analysis of properties in Eardisley, Herefordshire, ARCUS Rep, 895

TABLES

Table I: Details of tree-ring samples from Trerice, Kestle Mill, Cornwall

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)	
Roof above the Great Hall							
TRC-EOI	Truss I north principal	90	--	1413	----	1502	
TRC-E02	Truss I collar	nm	--	----	----	----	
TRC-E03	Truss I south principal	84	--	1408	----	1491	
TRC-E04	Truss 2 south principal	80	--	1424	----	1503	
TRC-E05	Truss 3 north principal	88	--	1396	----	1483	
TRC-E06	Truss 3 collar	87	4c	1456	1538	1542	
TRC-E07	Truss 3 south principal	81	--	1446	----	1526	
TRC-E08	Truss 4 south principal	83	h/s	1459	\| 541	1541	
TRC-E09	Truss 4 north principal	119	h/s	1438	1556	1556	
TRC-EIO	Truss 5 collar	90	--	1442	----	1531	
TRC-EII	Truss 6 north principal	56	--	1408	----	1463	
TRC-EI2	Truss 7 collar	152	h/s	1394	1545	1545	
TRC-EI3	Truss 7 north principal	69	2	1472	1538	1540	
Roof remains over the West Wing							
TRC-EI4	Truss 2 east principal	88	--	1398	---	1485	
TRC-EI5	Bay 3 east upper purlin	nm	--	---	----	----	
TRC-EI6	Truss 3 east principal	110	17c	1453	1545	1562	
TRC-EI7	Bay 4 east upper purlin	71	2	1470	1538	1540	
Roof over the Great Chamber							
TRC-EI8	Truss 5 east brace	72	4c	1488	1555	1559	
TRC-EI9	Truss 5 west rafter	102	h/s	1448	1549	1549	
TRC-E20	Truss 7 west rafter	nm	--	----	----	----	
TRC-E2I	Truss 7 east brace	76	h/s	1476	\| 55		\| 551
TRC-E22	Truss 8 west rafter	88	--	1436	----	1523	
TRC-E23	Truss 9 east rafter	91	h/s	1454	1544	1544	
TRC-E24	Truss 9 west rafter	96	--	----	----	----	
TRC-E25	Truss 13 east rafter	77	h/s	1478	1554	1554	

TRC-E26	Truss 14 east rafter	83	--	1427	----	1509
TRC-E27	Truss 15 east rafter	80	--	----	----	----
TRC-E28	Truss 16 west rafter	94	h/s	1460	1553	1553
TRC-E29	Truss 17 east brace	nm	--	----	----	----
TRC-E30	Truss 17 east rafter	85	h / s	1456	1540	1540
TRC-E31	Truss 17 west rafter	109	h / s	----	----	----
TRC-E32	Truss 18 west rafter	89	h / s	1447	1535	1535
TRC-E33	Truss 18 east brace	68	6	1476	1537	1543
TRC-E34	Truss 19 west brace	101	h / s	1442	1542	1542
TRC-E35	Truss 19 east brace	80	h/s	1473	1552	1552

$\mathrm{nm}=$ not measured
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample
$c=$ complete sapwood exists on the timber but all or part of the sapwood has been lost from the sample during coring

Table 2: Results of the cross-matching of site sequence TRCESQOI and relevant reference chronologies when the first-ring date is $A D$ I394 and the last-ring date is AD 1562

Reference chronology	t-value	Span of chronology	Reference			
Farmers Club, Widemarsh Street, Hereford	8.9	AD 1313-1617	(Tyers 1996)			
Chalgrove Manor, Chalgrove, Oxfordshire	8.5	AD 1355-1503	(Howard et a/ 2000 unpubl)			
Roscarrock, near St Endellion, Cornwall	8.0	AD 1373-1500	(Tyers 2004a)			
Newnham Hall Farm, Newnham Murren, Oxfordshire	7.7	AD \|4	4-	55		(Arnold and Howard 2006 unpubl)
49/50 Quarry Street, Guildford, Surrey	7.6	AD \|341-	583	(Arnold and Howard 2005 unpubl)		
Castle Close, Eardisley, Herefordshire	7.4	AD 1367-1530	(Tyers 2005)			
Pendennis Castle, near Falmouth, Cornwall	7.2	AD 1358-154\|	(Tyers 2004b)			
The Old Mansion, Clarendon, Wiltshire	7.2	AD 1315-1625	(Tyers 1999)			
Brookgate Farm, Plealy, Shropshire	7.2	AD 1362-1611	(Miles 1993)			
St Martin's Church, Looe, Cornwall	7.0	AD 1445-1580	(Arnold et a/ 2006)			

FIGURES

Figure I: Map to show the location of Trerice, Kestle Mill (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)

Figure 2: Map to show the location of Trerice, Kestle Mill (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: General view of the front north-east range of Trerice viewed looking west

Figure 4: General plan of the south-west and north-east range

Figure 5: Roof timbers over the Great Hall viewed looking south-west

Figure 6: The east principals of Trusses 2 and 3 of the roof over the West Wing viewed looking south-east

Figure 7: Roof timbers over the Great Chamber viewed looking south-east

Figure 8: Plan showing the truss numbering scheme and the locations of samples TRCEI5 and EI7 (based on a drawing provided by Nigel Thomas)

Figure 9: The Great Hall sample locations truss / (based on drawings provided by Nigel Thomas)

Figure 10: The Great Hall sample locations truss 2 (based on drawings provided by Nigel Thomas)

Figure II: The Great Hall sample locations truss 3 (based on drawings provided by Nigel Thomas)

Figure 12: The Great Hall sample locations truss 4 (based on drawings provided by Nigel Thomas)

Figure 13: The Great Hall sample locations truss 5 (based on drawings provided by Nigel Thomas)

Figure 14: The Great Hall sample locations truss 6 (based on drawings provided by Nigel Thomas)

Figure 15: The Great Hall sample locations truss 7 (based on drawings provided by Nigel Thomas)

Figure 16: The West Wing sample locations truss 2 (based on drawings provided by Nigel Thomas)

Figure 17: The West Wing sample locations truss 3 (based on drawings provided by Nigel Thomas)

Figure 18: The Great Chamber sample locations truss 5 (based on drawings provided by Nigel Thomas)

Figure 19: The Great Chamber sample locations truss 7 (based on drawings provided by Nigel Thomas)

Figure 20: The Great Chamber sample locations truss 8 (based on drawings provided by Nigel Thomas)

Figure 21: The Great Chamber sample locations truss 9 (based on drawings provided by Nigel Thomas)

Figure 22: The Great Chamber sample locations truss I3 (based on drawings provided by Nigel Thomas)

Figure 23: The Great Chamber sample locations truss 14 (based on drawings provided by Nigel Thomas)

Figure 24: The Great Chamber sample locations truss 15 (based on drawings provided by Nigel Thomas)

Figure 25: The Great Chamber sample locations truss 16 (based on drawings provided by Nigel Thomas)

Figure 26: The Great Chamber sample locations truss I7 (based on drawings provided by Nigel Thomas)

Figure 27: The Great Chamber sample locations truss 18 (based on drawings provided by Nigel Thomas)

Figure 28: The Great Chamber sample locations truss 19 (based on drawings provided by Nigel Thomas)

\square White bars = heartwood rings;
\square filled bars = sapwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring of the sample at the heartwood/sapwood boundary
c = complete sapwood exists the timber but all or part of the sapwood has been lost from the sample during coring.

Figure 29: Bar diagram of the samples in site chronology TRCESQOI

\square White bars = heartwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring of the sample at the heartwood/sapwood boundary
Figure 30: Bar diagram of the samples in site chronology TRCESQ02

DATA OF MEASURED SAMPLES

measurements in 0.01 mm units

| 35 |26 | 45 |47 |89 207 |99 | 82 | 87 |72 225237 | $83|53| 22|33| 07|50| 56 \mid 72$
 $9 \mid 103$ |4| |53 | 32 |00 | 32 || 8 |08 $97|2073858696| 2||0478||||3|$ 147|20||6 89 |03 |02||7
TRC-E06B 87
$21521|18410| 173|12| 57|89167226| 58|57| 57|43109| 169512295149$ $14512015015|187217| 87|8916917923| 237|90| 46|19| 37|13| 46|36| 65$ |96 | 33 | 20 | 33 | $5 \mid$ | 35 |4| | $70 \mid 32$ | 29 | 29 | 55 | $82|70| 37|47| 32||7| 53| 07$
 | 50 | 23 |। 8 85 ||4 |03 |22

TRC-E07A 81

$1|5100| 702|62| 9|89| 56|76200| 95|93| 2|106| 33|42| 3397|44| 43 \mid 27$
 $16611495791139177749911698689699172145|2820525315|$
 204
TRC-E07B 8।

 $16912696861089976701071031165987104|57| 50|1622525| 150$ $193244280230|5822| 20|150| 96|36| 62|58| 93225|67| 44|47| 49|68| 62$ 210
TRC-E08A 83
$16918022321019820624324019824918525321516523321 \mid 276299202255$ 260226308275302219103209121133120146168130160194329304216175 $23623718121024618|208202218214274247174245163176107991| 4144$ 199 |6| | 74 |9| | 66 ||3 $88|0276869| 9|132734278| 04998273$ 576160
TRC-E08B 83
$208|69206207| 9320|22724| 203260|76253204| 4524|2||3| 429322 \mid 243$ $25522532826|2932| 4|03| 97|49| 42|34| 60|72| 3||44| 783463| 7205 \mid 77$ 24| 219 | $7219323320420919323420826523|190244| 54|8510693||5| 4 \mid$
 746347
TRC-E09A 119
348263305247416339283283265234313299244176155177219 |9। | 66 | 58

 $128|6| 18|22216629916298| 44196263216|3920| 195|39| 98|239| 12 \mid$ $206305223|34| 62|5||45| 5320|170| 27|0288| 92||2238| 96| 8 \mid 164244$
 TRC-E09B 119
$3362643 \mid 8236399352267284269244289288233$ |7| | 62 | 83195 | 85175 |49 |9| | 62 | $64203|43| 68|67| 65|50| 34|4||44| 5||8| 2| 2|205| 80|96| 4|\mid 20$ 197|37|99 $200|40| 58|27| 232|0| 32|47| 22|54| 50|23| 26|74| 89263 \mid 35$
 $18|31223812914514616016419617| 1209694200119207202167168248$ $207|4| 163269$ | 24 | 42 | 36 | 93 | 85 | $20|36230| 50240|452| 22|722| 192$ TRC-EIOA 90
8। $23421425819822919921818324323622127818820523825524931 \mid 337$ $28936725821532716|21616| 201238227238236244264$ | $9118315421 \mid 146$ | 22 | 23 | 53 || 5 |97 $2|422| 196263203|792| 32852923242 \mid 323029830925$ |


```
2I2235 |79 |7| 20| 244 240252240 290
TRC-EIOB 90
    IO। 22। 23327221222820। 219 203 238212 224 3|5 177 205 247 283218309 35।
```



```
    ||0126 158 I29 | 88 212 224196 252 214 175 208 292 282 325 228 219 289 32। 252
    226293229 | 89 |9| 272 250205 |78236233 235 253 |76|47 | | 20| 284 | 87 259
    208269|63 |66 I92 24| 258 228 264 332
TRC-EIIA 56
    192278208 199227483567472343297242226409 33| 259 370 349253177 200
    275 378 325 272 2|0 | | | |6 20| |4| | 50 ||0 ||6 334 556 399 4|3 323 |25 ||2 2||
    284380 24| 223 207 |3| 79 |42 93 |39 ||9 |09 94 |6| |58 200
TRC-EIIB 56
    20। 290 24923421045756746। 358275245 259440358259387342303173208
    288354344293203 |94 | 69 |9| | 37 | 32 99 ||7 342 558 42| 475 363 |34 | |2 25|
    285465 235 198 2|| | 35 97 |53 |24 | 64 | 34 |09 87 |54 |57 262
TRC-EI2A 152
    ||6 197 208 202 |4| | 40 |59 65 |04 | 38 |90 |77 |50 98 8| 98 84 7| |53 |62
```



```
    147 8| 77 |34 66 96 55 84 68 78 129 ||8 83 68 79 76 56 43 29 4|
    45 41 54 54 38 47 52 52 54 73 60 45 63 32 36 23 27 24 33 42
    47 58 49 35 65 36 68 8| 92 86 89 74 83 93 84 87 l0। 8| 70 7।
    63 66 69 28 42 40 52 52 46 92 93 50 58 46 75 79 66 62 49 44
    52 52 48 35 47 65 42 72 66 61 55 35 69 71 64 74 45 85 73 58
    84 |03 | | | | | | |3 | 35 | 56 | |7 |24 |46 96 97
TRC-EI2B I52
    209236 235 |88 |45 |39 | 6| 62 93|46 225 |73 |69 |07 74 ||3 77 6| |45 |7|
```



```
    127 82 68 |17 100 102 59 92 65 94 ||6 ||3 87 69 78 76 58 53 35 3|
    56 46 45 48 46 44 48 63 54 63 66 45 59 37 33 23 25 31 35 38
    46 58 44 40 56 49 65 73 9| 77 94 73 84 9| 87 86 96 85 67 72
    60 69 74 32 35 43 53 5| 5| 83 102 64 54 5| 82 80 52 65 45 47
    48 50 48 36 50 66 42 72 64 61 48 45 60 75 75 76 47 86 72 58
    96 |00 | 58 | 64 | 49 | 40 | 58 | 34 | |7 |49 89 |22
TRC-EI3A 69
    |33 |87 |93 246 |67 |22 |22 80 |4| |4| | 36 222 23| |65 278 237 2|2 226 268 |77
```



```
    | 52 |45 |02 |2| 208 2|2 252 |88 |90
TRC-EI3B 69
    ||5 |87 207 247 |82 |07 |40 |00 |46 |37 ||0 204 246 |7| 29| |84 |90 2|6 27| |90
    |89207 263 3|7 305 |96 |0| | 87 | 57 |32 |49 254 22| 90 | 35 | || |98 |79 |3| |58
    ||| |53 220 | 36 86 | 30 | 70 245 | 83 | 84 2| | | 86 | |3 | | | ||| |4 |96 |55 |42 |96
    |64 |52 89 |27 207 243 25| | 85 |90
TRC-EI4A 88
277242 23। 275 358 392 395 364 362374 369 356349350 35। 34| 336 329237 260
|66 |84 284 2582|5 228|7| |3| 84 70 I24 |77 |99 199 |72 212 203 228 2|4 248
```



```
|84 |2| | 50 |28 2|2 2|7 |56 | 89 | 68 | 52 ||| | 35 | 80 | 82 202 205 | 82 202 | 66 |54
178 182 170 16| 137 169 218 172
TRC-EI4B }8
304248225277 35। 377 388 36। 37| 429342347 329 36। 349354342310 250260
|62 |78 262 268 2|7 209 |79 |33 76 73 |43 | 80 | |7 |98 |65 2| | 200 222 |9| 268
25| 223 209 254 2|2 204 2|3 | || | 42 |94 | 55 209 | 75 |74 | 43 | 37 | 50 | 5| | 28 |77
```

 | 83 |6| 164 | 75 |48 |7| 208206

TRC-EI6A 110

$168248|44| 3||44954779107| 03207||9| 3|755444| 32|45| 3|\mid 27$
$146|189| 6|56568095126647490107| 3|7996| 15|289| 53$
$539711712877536772708194957981 \mid 48172177103147130$ $140|78| 2057|33| 30257|64220| 8882436369|37| 7||57| 29| 5868$ 4474 | 67 | 65 | $57|40| 62|59| 6||4596|| 0|237897| 48|49| 37|54| \mid 7$ $69485|5290| 24|2||3||17| 4 \mid$
TRC-EI6B 110
| $8024|145| 18|48| 2|7494| 36|4| 204|06| 3566485|||3| 53| 28| 26$ |49 ||3 95 5| $59667|94| 26697798||2| 308386||3| 377055$
5895 II7 |3। $745457787884841047082|55156173102| 40123$

 $665|525973| 35|19| 35|24| 46$
TRC-EI7A 71
|78 |87 $24425022|25721318523823| 2|629| 32529232023 \mid 243266285$ |95 209 |94।42 |53 $2333|43772752| 6258276|89287264| 75$ | 28 |3| $202 \mid 84202$ |54 239263 |77 244 | 72 | 48 | 34 | $8 \mid$ | 65 | 33 | 76 | 79 | 48 | | $8|32| 42||8| 00| 0 \mid$ IO6 IOI $5983446 \mid 74$ | 24 | $2|138| 20$
TRC-EI7B 7I
|72 |5। 256243224245225 | $8423 \mid 238223282336298328220247262285207$ 208 |74 | 48 |53 $2343|237727222| 253273|85285266| 80|35| 192|6| 72205$
$153230259|84244| 7||47| 43| 75|7| 127|77| 92|57| 28|3||46| \mid 39999$
1021095571595865122128132109
TRC-EI8A 72
 $97|23106| 76|69| 70|98| 42||7| 2|||5| 68||||0| 9293|| 582|20| \mid 9$ 92 ||3||9|62|96|9| 20| $220340204|3770735| 485866525962$ 69 | 23 | $5|2| 0284228$ | 46 |03 | 23 | 72 | 3570
TRC-EI8B 71
|83 |40 | 58 |59 | 36 |09 || 8 |04 ||| $7|82| 08696879|38| 24565757$ 85 |30 99 |67 | $7|1772| 3|03| 2||25| 35| 7|107| 269788|0692| 06 \mid 20$
 68 ||9 | $5521928|226| 4697|38| 65 \mid 27$
TRC-EI9A 102
$109170104102114104|189| 768070485969 \mid 1316417913818995$ $6572671391591551851801757010592145143|48| 69|4||16| 65138$ 135 | $33160123108859896105845895|30||4| 38|4090546| 96$
 $1048094|23785562| 04||||28| 42|| 4| 94|89| 267975595374$ 5767
TRC-EI9B 102
$1431781031001071091149078781024|597||15162170| 17194100$ 647072 | $21|44| 63|73| 79|68779393| 45|5||69| 56|28||9| 58|4|$ 1451291671379684899510472729812512813314980536793
 1027499120665756105107136147991961831287287575170 6695
TRC-E2IA 76
| 56 | 28 | $77|20| 44|3392| 38|67||3| 6||34| 58| 242|2| 48|0889| 45 \mid 23$ |7| | | 084 |62 | $68169206226|38103981942572842322392362| 5299169$
|37 95 |09 |42 |37 |8| |7| ||9 |3| |03 |57 |50 |45 |48 |55 |65 828978 |35 150222 | 87 |39 209224 |56 $99645253657 \mid \quad 78$ |08 | 39
TRC-E2IB 76
$230|34| 89109167|2510| 126|74| 14|63| 4||56| 2||99| 57||097| 32| 25$
$179998816816|17021622813610| 10|20326328| 245229237228288180$

TRC-E22A 88
$19832745|236200| 17|59| 73|26| 48|40| 74|65206| 6||04|| 2|2||54| 35$ ||| | 36 | 79 | 65 | 65 | $57||6| 33| 22||7|||||3|| 7||4| 2|||3| 3|| 43|29| 79$
 $19984109|23| 44|49| 17239|5| 85|03| 39|92| 4784|27||5| 22|98| 22$ 10785134165258165133190
TRC-E22B 87
208337442234202 ||| | $68|74| 26|47| 44|67| 9|195| 78||5| 05| 23|6| \mid 48$ $1|5| 4|186| 7||85| 56||4| 34|19| 12|29| 08|06||3| 22|20||8| 50|34| 72$
 $2048710012914416 \mid 1082241607810312220314086127103116174109$ 69 | 32 |74 245 | 79 | 55 |93
TRC-E23A 91
|66|46 243 |95 |96 229233230 |74 |76|30|93 227229227 |26|84|35|40|29
 10410714610310210182828210598648069947158708671
 69558464596572106696484
TRC-E23B 91
| $38144248193200229222202179173133196227224213125194127|42| 33$ |65 |6| | 46 || $3139|36||||94200| 40| 39||0| 23||7| 29| 45||4| 59|||\mid 04$ $10910713610691 \mid 1078818210895697367966655728381$ 85625067759266848675704950584352436165106 6668826761567297686986
TRC-E24A 96

$535279|24| 17|2||86| 83|53| 5||84| 7053584750566398| 75$
19| $3437403327476789977 \mid 74799110212397126118143$
$148|49137| 28|802142232| 3167|50| 52206204233209 \mid 8315398104163$
| 55 | 55 | 53 | 44 | $5 \mid$ | | $7|26| 34|58| 66|46| 35|29| 76||||\mid 3$

TRC-E24B 96

$93878465971391771696|43506758607| 1038010 \mid 4835$
$4459729211612620019|15916| 196|6| 806958546589117176$
$19240394|353444639794607| 889|10| 12|106| 19109139$
| 54 | 46 | 42 | $34|722252232| 4|59| 5||5| 2| 7200245|93| 8||4896|| 6 \mid 52$
| 60 | 56 | 42 | 55 | 60 | 05 | 45 | $3||6|| 73|54| 29|39| 7|||0| 46$
TRC-E25A 77
 14011889991029858568913312912373123988198698696
103138105681079870801131421151107913862125128204129166
$16|14794| 1585122|13| 05951|2| 10|89103| 34|1698| 03$
TRC-E25B 77
| 57 |33 | $4 \mid 259209$ |34 |65 |20 $24022023|2002| 3|83| 46220230|502| 8|4|$ $138117871039895665290901141198011499741077 \mid 8592$ $991568|721091057967122| 40|16| 1678|3775| 20|3| 197|4| 164$ |68|38 98 ||7 84 | $2||16| 0| 100||5|| 4|82||||28|| 3|||\mid 07$

```
TRC-E26A 83
    |76245345367325453 340307274 238 283 |99 |24 ||| 90 |06 202 2|| |83 |58
    |26 |88 |65 |67 ||7 ||3 ||| |65 |39 |88 |6| |53 |45 |5| |4| |49 |99 98 |96 260
```



```
    |53 |53 |50 |3| |59 |09 |02 |23 ||5 |42 |03 |05 || |2| 97 99 |25 |20 88 98
    124||4 |26
TRC-E26B }8
    |70 279 36| 380 343445372285 257244 300 |85 |36 95 95 ||0 193 225 |66 I70
```



```
    226 242 | 54 |57 |57 |26 |2| | || | 79 | 66 |26 |29 |22 |43 253 222 |94 2|3|47 2|6
    |49 |6| |45 || |63 98 ||3 |23 |22 |48 ||7 |07 ||7 |06 96 82 |33 |2| 79 98
    |20 ||5 |25
TRC-E27A 80
    250 I69 249 234 435467 389 356 205 |58 |29 |23 |48 |50 |66 230 I72 73 89 72
    |02 |07 ||3 |07 |5| |43 |70 59 76 65 62 76 70 78 ||4|42 |52 |6| |36 |65
    219 78 60 46 58 87 97 129 |53 164 53 54 63 78 56 107 I53 |87 |74 |64
```



```
TRC-E27B }8
    235200246267458459375372 259 |59 |5| | 25 |4| |40 |65 22| |70 87 70 75
    |02 87 97 ||3|57 |26 |69 62 63 73 67 72 79 77 |07 |42 |58 | 60 | 38 |57
    2|9 85 5| 48 66 84 97 |20 |54 |84 72 62 56 76 60 |04 |44 |95 |58 |73
    |86 |77 |48 |99 268 200 247 |84 |95 | 84 |54 |6| |58 | 85 202 242 |67 |59 22| 249
TRC-E28A 94
    |66 |54 |34 |59 | 33 |44 |74 |49 |79 |49 |40 || | |4 ||2 |07 |54 |39 | 30 |48 |54
    203 209 |69 |23 | 84 ||0 |57 |28 |45 | 35 |20 |07 ||4 |2| |3| |62 |54 73 94 78
    90 88 95|47||| 73 92 |00||3 89 64 90 |2| |02 |04 85 59 92 99||8
    64 90 |10112 74 59 107 104 122 102 40 34 20 21 38 58 65 5| 70 76
    ||5 |20 78 78 100 76 70 88 137 95 96 199 |42 | 40
TRC-E28B 94
    ||| |3| | 33 |56 |33 | 36 |59 |52 |6| |49 |52 | 30 |0| |2| | 08 | 50 | |2 | 38 |46 |38
    |88 |95 |69 | 33 |97 |20 |48 |42 |44 |26 |2| ||6 |07 |2| |36 |72 |48 63 94 79
    98 8| 99|44 |05 77 89 |22 |27 83 74 93||| |02||3 70 64 89 98|27
    7| 77 ||| I09 73 60 IO| ||8|37||8 34 35 2| 27 40 62 6| 5| 62 8।
    I20 ||8 72 82 94 80 6| 96|34 99 88 207 |39 |28
TRC-E30A }8
206 |6| ||6 |37 |50 |54 |56 234 ||| 207 233 205 |6| |29 |34 |09 |22 |26 |39 |62
|42 |3| | | | | 35 ||0 225 | 67 | || | 85 | 45 2|0 |52 |93 | |0 | 55 | 74 || | | | | |5 | 30
|78 |34 |25 |65 |07 ||3 |03 |52 |29 |20 |0| |33 |33 |00 85 ||3 |34 89 |34 97
85 72 85 |20 87 102 106 94 84 77 98 85 79 86 77 85 75 62 89 95
95 96 81 61 64
TRC-E30B 85
205 |74 || | 32 |40 |59 |46 232 ||4 |98 246 |99 |6| |3| | 34 ||2 ||7 |28 |50 |58
|30 |26 |43 |24 |24 2|9 |72 |63 | 86 |4| 2|3 |6| |92 |89 |44 |6| |20 |44 |7| |45
|68 |33 |20 |7| ||5 ||2||8|45 |22 |39 |07 |37 |33 87 93 |04 |25 94 |29 |02
83 67 86 |22 89 |0| ||| 90 83 83 93 76 8| 89 78 69 75 65 85 90
9592797369
TRC-E3IA I09
342366 300 | 83 | 62 |42 || | | | |46 | 78 |62 58 69 75 78 62 85 96 || | 9|
|35 58 5| 5| 45 53 67 62 72 |2| | | | | |7|44 |78 |96 58 70 48 48 65
67 8| |28|28 50 27 3| 36 35 54 |07 |35 ||4 |26||6|54 |34 |72 |39 ||2
|66 ||| | 6| |73 ||4 |36 |53 | |4 | 89 227 |73 |53 |47 |3| 229 209 |98 200 |64 |52
96 |08 |59 | 64 |48 |43 | 80 |26 98 |20 |3| |46 | 39 |77 |5| | 67 207 | 33 | 33 ||0
77 70 92 88 |02 ||4 |57 | 68 |54
```

```
TRC-E3IB IO9
    292 353 305 |66 |62 |44 ||3 |00 |37 |89 |53 78 66 65 84 59 82 97||3 95
    |28 56 60 52 54 59 64 69 79 |47 | 34 | 58|45 |78|88 69 62 47 57 63
    66 95 ||7 |23 46 32 30 33 3| 73 |04 |43 |23||9 |22 |55 |35 |78|38||9
```



```
    70 80 9| 94 99 | 20 |52 | 72 |58
TRC-E32A 89
```



```
    |84 |33 92 |6| |49 83 78 |23 |06 2|5 |85 |06 95 93 88 67||5 ||8 73 96
    |59 |54 |59 |64 |22 |22 85 ||9 82 75 75 93 99 74 68 94 85 69 64 68
    88 97 ||2||8|6| 79 6| 59 |23
TRC-E32B }8
    450359464 36228428| I83 353232257306 373240253288 2।6 32। |73 |32 96
```



```
    |77 ||| ||2 |52 |48 83 75 |08 |2| | 98 |67 98 93 |0| 93 69 |07 ||9 69 97
    |64 |65 |59 |7| ||7 |28 87 |34 82 72 80 l07 98 75 57 98 94 74 60 72
    88 93 102 |28 |68 70 6| 6| ||2
TRC-E33A 68
    |53 |48 | 88 |90 222 348|86 207 274 |95 283 227 227 |44 | 67 | 86 |04 | 5| |9| | 84
    267 |46 |55 |7| | 34 |25 |22 ||7 |20 86 94 |3| |32 ||8 |0| |2| |08 90 |36 77
    94 97 98 |47 I20 80 99 9| 82 85 I05 |30 93 89 75 |0| 64 60 94 90
    |09 |27 83 84 I08 I06 63 ||0
TRC-E33B 68
    |62 |6| | 76 |92 230 35| | 68 207 282 |96 272 224 2|7 |46 | 7| | 85 ||| |4| |95 |86
    269 |42 |44 |77 |29 |28||9||6||9|06 89 |27 |33||4 90 |25 99 84|44 7|
    |02 10| 90 |46 ||4 89 97 89 63 79||5 ||9 92 93 85 |03 52 64 90 97
    94 I29 83 99 I04 I33 62 94
TRC-E34A I00
    |55 239 2|2 |53 |28 | 45 2|0 |94 |64 253 |79 |4| 2|0 |44 25| |92 |84 |53 267 255
    |59 |55 || ||6 |76 |40 200 |38 |39 ||8 |03 97 ||6 |50 ||5 87 |26 ||3 |07 |47
    |।2 98 I3| 85 I09 |22 I08 I07 79 82 56 69 76 70 I00 78 92 I03 84 93
    89 |40 80 I26 99 |20 I22 |02 72 ||| | 35 95 |20 84 62 |00 ||6 |0| 94 I09
    |45 I2। IO0 76 IO9 I08 99 85 78 82 85 6| 88 I04 I05 87 9| 8| 90 96
TRC-E34B 101
    |5| 252 | 89 | 50 | 40 | 56 | 83 | |8 | 78 250 |73 | 47 2|4 |32 24| | 78 |77 |66 227 223
```



```
    |12 109 |27 |0| 106 |37 |0| 103 87 76 58 68 78 74 92 85 90 98 87 9|
    99 |27 77 |32 87 |27||2|03 76 99|55 94||3 84 72 85||8|09 96||3
    |29 ||5 99 73 ||5 |03 98 97 84 8| 77 62 |02 |06 |02 9| 95 85 9| 99
    84
TRC-E35A 80
    327297280242233280248 | 8| 42| 27| 208 32| 204 |9| 275 308 |84 | 84 | 60 ||7
    |30 |4| | 68 2|7 |29 | 39 207 |64 ||9 | 39 | 64 96 | 34 |04 |22 |5| | 30 88 | 38 |67
    |24 |43 |04 ||6 |46 |24 |40 ||9 |04 ||4 ||7 |04 64 74 89 88 96 83 83 74
    83 79 |||||3 96 |02 |09 ||7 |38|09 6| 8| 82 74 60 79 |08 93||| |03
TRC-E35B 80
309289295265205278243210383288162 297202 192 276 3|3 20| |9| |7| ||0
|35 | 36 |76 2|| | 34 | 39 207 |6| |26 | 37 | 48 96 | 35 |03 |29 |5| ||9 93 |48 |55
|20 |4| |07 |23 |38 |23 |4| ||7||3 |0| |08 |08 65 77 87 86 97 86 86 72
75 95 l04 ||8 94 |03 |07 ||3|4|||2 59 79 80 6| 73 84|20 89 ||3 |07
```


APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I 506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 110 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | |

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure $A 7$ (a): The raw ring-widths of two samples, THO-AOI and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-I4

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I 987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, I65-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Hughes, M K, Milson, S J, and Legett, P A, I98I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38 I-90

Laxon, R R, Litton, C D, and Zainodin, H J, I988 An objective method for forming a master ring-width sequence, $P A \subset T, 22,25-35$

Laxton, R R, and Litton, C D, I988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, / Archaeol SCi, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

