CLIFTON QUARRY, WORCESTERSHIRE DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

SCIENTIFIC DATING REPORT

lan Tyers

ARCHAEOLOGICAL SCIENCE

Research Department Report Series 108-2007

CLIFTON QUARRY, WORCESTERSHIRE

DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

IAN TYERS

NGR SO 846 467

© English Heritage 2007

ISSN 1749-8775

The Research Department Report Series, incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey; and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers are must the author before citing these reports in any publication. Opinions expressed in Research Department Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: <u>Res.reports@english-heritage.org.uk</u>.

or by writing to English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

A tree-ring dating programme was commissioned on timbers excavated at Clifton Quarry Worcestershire. The results indicated that the structure, possibly a well, included timbers felled in AD 704/5. This dating evidence was used to inform the publication of the archaeological excavations. This report archives the dendrochronological results.

CONTRIBUTORS

lan Tyers

ACKNOWLEDGEMENTS

The analysis of the samples from the Clifton Quarry site was funded by York Archaeological Trust (YAT), on behalf of Worcestershire County Council. Practical help and valuable discussions were provided by Ian Panter and Steve Allen from YAT. Andrew Mann from Worcestershire Historic Environment and Archaeology Service (WHEAS) provided site interim reports, plans, and valuable discussion. In 2006, WHEAS undertook an archaeological watching brief and contingency excavation at Clifton Quarry on behalf of Tarmac Limited. Following the discovery of unexpectedly significant deposits of local, regional, and national importance, PPG16 Assistance funding was provided by the Aggregates Levy Sustainability Fund, administered by English Heritage (project 5379), to allow completion of a full programme of analysis.

ARCHIVE LOCATION

Historic Environment Record Worcestershire Historic Environment and Archaeology Service University of Worcester Worcester WR2 6AJ

DATE OF INVESTIGATION

2007

CONTACT DETAILS

Ian Tyers Dendrochronological Consultancy Ltd, 65 Crimicar Drive Sheffield S10 4EF Email: <u>ian@dendro.co.uk</u>

CONTENTS

METHODOLOGY	
RESULTS	
DISCUSSION	
REFERENCES	
APPENDIX I	

INTRODUCTION

This document is a technical archive report on the tree-ring analysis of six oak timbers excavated at Clifton Quarry, Severn Stoke, Worcestershire (sitecode WSM35069, NGR c SO 846 467). Clifton Quarry lies on the eastern side of the river Severn, c 7km east of Great Malvern (Fig 1). In 2006, an archaeological watching brief and salvage excavation in advance of a quarry extension was undertaken by the Worcestershire County Council, Historic Environment and Archaeology Service, on behalf of Tarmac Ltd. One of the features excavated consisted of a large pit c 3m across and c 1m deep that contained a wooden structure, interpreted as a well. The structure consisted of sharpened vertical posts, with substantial planks around the outside of them. This report describes the analytical results of the dendrochronological analysis of some of this material.

METHODOLOGY

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

Each sample was placed in a deep-freeze for 48 hours in order to consolidate the timber. A surface equivalent to the original horizontal plane of the parent tree was then prepared with a variety of bladed tools. This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant anatomical features, such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in the suitable samples were measured to an accuracy of 0.01 mm using a micro-computer based travelling stage. The sequence of ring widths were then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, cross-correlation algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated (Tyers 2004). Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any *t*-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A *t*-value of 3.5 or over is usually indicative of a good match, although this is with the proviso that high *t*-values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions were supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; site-specific issues (for example a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5–20% of all oak trees cannot be reliably cross-matched, even when enough rings are obtained. With the additional problems of archaeological material it is typically found that less than 80% of apparently suitable archaeological oak samples are datable.

Converting the date obtained for a tree-ring sequence into a useful archaeological date requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a *terminus post quem* for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by region. This report uses a minimum of 10 rings and a maximum of 46 rings as a sapwood estimate.

Where bark-edge or bark survives, the season of felling can be determined by examining the completeness or otherwise of the terminal ring lying directly under the bark. Complete material can be divided into three major categories:

- 'early spring', where only the initial cells of the new growth have begun this is equivalent to a period in March/April, when the oaks begin leaf-bud formation;
- 'later spring/summer' where the early wood is complete but the late wood is evidently incomplete, which is equivalent to May-through-September of a normal year, and
- 'winter' where the latewood is complete and this is roughly equivalent to Septemberto-March (of the following year) since the tree is dormant throughout this period and there is no additional growth put on the trunk.

These categories can overlap as not all oaks simultaneously initiate leaf-bud formation at the same time. It should also be noted that slow growing or compressed material cannot always be safely categorised.

Timber technology studies demonstrate that many of the tool marks recorded on archaeological timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in the early medieval period.

Reused timbers can only provide tree-ring dates for the original usage date, not their reuse. Identifying reused timbers requires careful timber recording during or after archaeological field work, which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of earlier usage, and are thus 'hidden reused' timbers. The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or sometimes more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several slices each have

lots of rings but only one has any sapwood or where same-tree identifications yield linkages between different structures.

RESULTS

In September 2007, six subsamples of the plank timbers from the site were supplied by York Archaeological Trust, where they had been sent for detailed recording and conservation. Each sample was provided as a complete cross section. Each was assumed to have been obtained by sawing a cross section from the timber at the optimum location to maximise the dendrochronological potential. Each sample was assessed for the wood type, the number of rings it contained, and whether the sequence of ring widths could be reliably resolved. This assessment confirmed that this material was oak (*Quercus* spp.) and that each appeared to be suitable for dendrochronological analysis.

The six samples were large sections of radial and tangential split oak planks, between 200–345mm in height and 35–90mm thick. One was complete with sapwood and bark. The details of these samples are provided in Table 1.

The six samples were prepared for analysis, measured and then compared with each other. Five of the samples were found to cross-match each other (Table 2). The cross-matched data was combined to create a single composite data set which was then compared with prehistoric, Roman, and medieval tree-ring data from throughout England and Wales. The composite sequence was found to cross-match against mid-Saxon data from chronologies of the Midlands and elsewhere. This cross-matching provided consistent calendar dates for this sequence (Table 3). A summary of the results for the five component samples of the composite sequence are provided in Table 1 and Figure 2. The measurement data are listed in Appendix 1.

DISCUSSION

The site composite sequence was found to strongly match the sequence obtained from the Tamworth horizontal mill (Table 3) as well as other series from across the London, South-East, and Yorkshire regions. There is a general lack of early- and mid-Saxon tree-ring data from the western counties of England. This cross-dating indicated an early 8th century AD date for this group of timbers with the composite tree-ring sequence dated to AD 458–704 inclusive. Five of the six samples were cross-matched; the undated timber does not appear to be different in character from the others. None of the sequences from these samples were sufficiently alike such that they are considered to be derived from a single tree.

The tree-ring analysis dates the rings present in the datable samples. The correct interpretation of those dates relies upon the characteristics of the final rings in the dated samples. One of the dated samples is complete to bark-edge, but the other dated sequences were exclusively heartwood samples, two of which were identified as retaining the terminal heartwood ring. The felling date of the timber complete to bark-edge was identified as having occurred in the winter of AD 704/5, since the timber does not include the preliminary cells of the growth ring for the subsequent year. The other dated samples

appear likely to have been felled at the same time, but in the absence of sapwood this cannot be proven. Figure 2 and Table 1 include an interpreted felling date for each of the datable samples. The dated material comprised samples from a selection of timbers forming the plank lining of this wooden structure. The felling date of AD 704/5 identified for these timbers indicates that the structure was in use during the early eighth century. Further archaeological information is required to determine whether the selected timbers represent the initial construction of the structure as opposed to a later repair and whether they are primary rather than reused timbers.

REFERENCES

Baillie, M G L 1992 Dendrochronology, in *An Anglo-Saxon Watermill at Tamworth: Excavations in the Bolebridge Street area of Tamworth, Staffordshire in 1971 and 1978* (P Rahtz and R Meeson), CBA Res Rep, **83**, 122-4

Baillie, M G L and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7-14

English Heritage, 1998 *Dendrochronology: guidelines on producing and interpreting dendrochronological dates*, English Heritage

Hillam, J, 1992 *Tree-ring analysis of timbers from The Brooks, Winchester, Hampshire*, Anc Mon Lab Rep, **69/92**

Tyers, I, 1994 *Bull Wharf and the east side of Queenhithe; Tree-ring analysis for BUF90 incorporating data from BLL79, and UPT90, City of London*, MoLAS Dendro Rep, **01/94**

Tyers, I, 2004 Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b

Tyers, I, 2007a *Tree-ring spot-dates of archaeological samples: CTRL Springhead & Northfleet site, Ebbsfleet Valley, Kent (sitecode ARCEBB01)*, Dendro Co Rep, **8**

Tyers, I, 2007b *Tree-ring spot-dates of archaeological samples: Welham Bridge logboat, East Riding of Yorkshire (sitecode ERYMS 2004.19)*, Dendro Co Rep, **76**

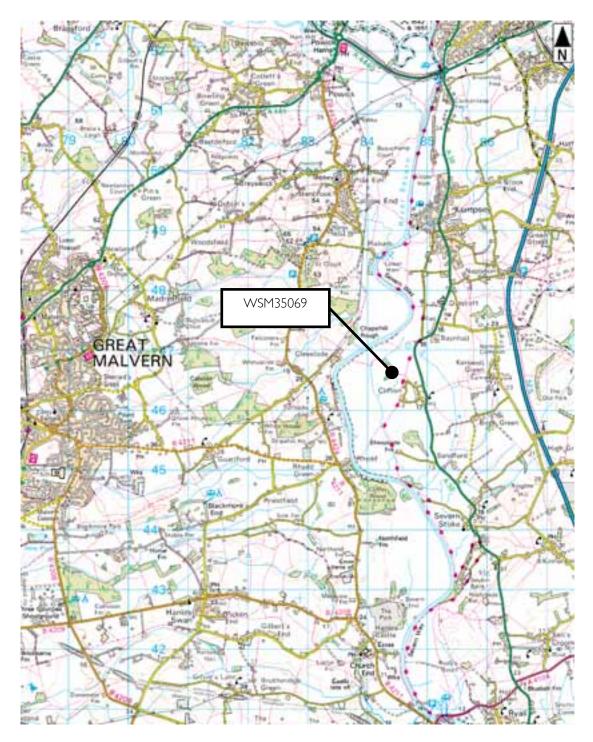


Figure 1. Location of Clifton Quarry, Worcestershire (WSM35069). © Crown Copyright. All rights reserved. English Heritage 100019088. 2007

Clifton Quarry, Wor	rcestershire	Span of ring sequences	
WSM 35069	2185 2 2279	283 183 12271	→ after AD 660 → after AD 662 → AD 683–719 → AD 684–720 → AD 704 winter
Calendar Years	AD 500	AD 600	AD 700

Figure 2. Bar diagram showing the absolute dating positions of the five dated tree-ring sequences for samples from Clifton Quarry site WSM35069. The interpreted felling dates are also shown.

KEY White bars are oak heartwood, hatched bars are oak sapwood.

Sample	Size (mm)	Rings	Sap	Date of measured sequence	Interpreted result
2183 36	210 x 55	4	H/S	AD 533-673	AD 683–719
2185 47	295 x 45	192	-	AD 459–650	after AD 660
2271 46	200 × 50	128	H/S	AD 547–674	AD 684–720
2278 51	315 x 70	147	?H/S	undated	-
2279 54	345 × 90	222	21+Bw	AD 483–704	AD 704 winter
2283 56	210 x 35	121	-	AD 532–652	after AD 662

Table I. Details of the six oak samples from Clifton Quarry site WSM35069.

KEY In the sap column H/S is heartwood/sapwood edge, ?H/S is possible heartwood/sapwood edge, Bw is bark-edge winter felled.

Table 2. The t-values (Baillie and Pilcher 1973) between the individual series from the five dated timbers from Clifton Quarry site WSM35069. – t-value less than 3.0.

	2185	2271	2279	2283
2183	3.05	4.61	4.28	4.51
2185		-	4.09	4.72
2271			4.90	4.22
2279				-

Table 3. Showing example t-values (Baillie and Pilcher 1973) between the composite sequence from the Clifton Quarry site WSM35069 and oak reference data.

Reference chronology	Clifton Quarry T5 AD 459–704
Berkshire, Old Windsor (Fletcher unpubl data)	4.48
Hampshire, Winchester The Brooks (Hillam 1992)	4.09
Kent, Ebbsfleet horizontal mill (Tyers 2007a)	4.09
London, Bull Wharf UPT90 (Tyers 1994)	4.58
London, Jewel Tower Wharf Abingdon St (Brett unpubl data)	4.39
Staffordshire, Tamworth 72–4 Bolebridge Street (Baillie 1992)	7.36
Yorkshire, Skerne (Hillam unpubl data)	4.37
Yorkshire, Welham Bridge logboat (Tyers 2007b)	5.45

APPENDIX I

CLQ2183									
129 99 127 88 160 136 188 175 160 181 110 135 131 139 78	150 108 127 106 153 117 177 209 202 133 99 124 146 100	44 05 05 60 96 84 57 87 05 38 3 70	170 153 115 154 154 153 166 171 124 98 180 131 111	222 185 101 161 83 160 134 186 170 104 90 115 161 153	181 186 140 180 146 138 138 175 208 124 87 96 167 135	148 177 134 184 142 156 225 160 160 115 83 88 137 133	127 210 143 221 138 166 210 142 168 106 100 146 139 110	 130 132 129 223 207 110 224 195 175 132 97 150 141 135 	127 114 123 193 202 125 126 191 144 150 88 129 159 75
CLQ2	185								
343 285 165 188 156 109 108 99 65 85 89 163 220 173 180 88 149 93 125 96	383 325 141 185 165 101 98 117 72 71 82 158 177 138 121 150 122 71 107 92	453 313 170 205 160 99 91 76 86 93 100 154 166 143 106 130 129 95 108	385 268 250 196 169 85 82 60 77 87 87 165 126 146 94 95 123 94 86	371 330 221 244 138 97 98 72 77 63 73 140 117 220 132 125 170 98 103	429 307 179 188 128 97 110 101 101 101 66 101 166 132 167 136 109 129 119 99	425 334 201 192 143 113 121 83 94 94 69 131 177 173 120 106 89 124 117	490 282 269 172 148 100 139 97 104 96 81 138 138 138 130 89 137 108 128 114	455 219 266 117 108 150 85 116 99 82 122 199 198 154 112 175 125 132 143	359 118 234 154 77 100 97 84 96 86 154 221 122 133 82 142 156 111 140

CLQ2271

97 97 83 93 146 136 149 125 123 260 231 162 185	87 113 142 141 172 95 110 179 188 182 142 171 135	107 144 163 137 180 241 99 112 149 211 179 171 148	143 165 171 89 198 241 131 175 129 267 146 156 178	162 119 165 103 183 149 150 167 163 138 102 155	9 15 74 30 97 51 15 76 89 36 73 25 26	143 62 98 147 217 151 118 232 212 137 165 213 125	189 114 106 143 165 135 194 148 181 178 193 155 189	163 82 145 184 169 93 167 150 208 200 163 188	84 93 115 189 132 108 112 158 143 147 174 214
CLQ2	278								
381 254 319 187 163 192 132 176 111 90 109 105 129 210 68	585 313 276 227 113 156 118 113 83 77 107 127 177 152 81	408 331 261 226 172 105 143 54 92 85 130 188 153 127 56	336 295 319 293 229 165 146 89 72 84 117 161 95 151 75	351 217 454 257 182 90 115 81 69 97 138 119 114 151 87	402 276 346 343 152 140 89 73 63 96 122 131 137 103 106	351 290 430 194 133 151 106 82 49 58 128 74 237 99 75	349 442 439 277 165 251 105 84 73 55 83 82 218 146	467 304 396 198 222 114 135 85 44 80 80 70 119 146	408 353 327 196 179 146 144 101 68 67 66 117 134 102

CLQ2279

492 415 164 194 230 285 166 191 88 107 112 102 51 37 46 39 27 62 158 118 89 161 144	448 606 231 161 220 251 224 216 128 126 68 66 82 49 56 53 22 102 105 170 117 147 114	351 561 210 207 230 205 179 227 146 118 76 67 61 41 56 57 24 75 115 203 100 142	337 574 264 161 245 208 204 143 164 127 82 62 42 30 45 56 22 53 204 146 144 162	471 554 245 238 271 249 170 142 159 154 125 67 61 30 34 78 34 94 161 167 125 176	377 455 176 216 241 243 205 150 163 220 80 67 40 41 39 44 32 98 116 131 136 108	350 352 260 167 293 162 154 135 187 205 72 97 48 36 51 45 31 114 124 102 131 108	327 328 231 146 278 160 168 135 202 159 73 102 68 39 39 32 45 87 119 95 140 141	304 253 277 233 322 204 190 144 181 157 76 67 47 40 35 24 38 121 118 104 156 166	416 289 226 155 184 150 146 151 147 179 93 47 38 40 31 26 44 148 95 72 164 125
CLQ22	283								
160 212 123 86 212 191 159 176 156 207 145 119 177	217 137 148 96 156 156 199 207 160 300 187 163	149 155 93 112 180 174 174 199 170 184 141 157	121 142 115 96 169 285 198 195 133 175 173 185	108 157 101 100 145 212 194 193 148 201 129 163	190 122 133 91 175 285 193 233 179 170 133 172	99 146 118 114 170 212 147 213 243 243 235 140 163	122 123 119 154 176 195 228 164 218 203 140 166	9 93 99 70 40 51 96 67 243 46 56 54	143 105 127 186 212 146 186 198 286 155 126 193

ENGLISH HERITAGE RESEARCH DEPARTMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.

The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

- * Aerial Survey and Investigation
- * Archaeological Projects (excavation)
- * Archaeological Science
- * Archaeological Survey and Investigation (landscape analysis)
- * Architectural Investigation
- Imaging, Graphics and Survey (including measured and metric survey, and photography)
- * Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.

We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports

For further information visit www.english-heritage.org.uk

