# HARTLEBURY CASTLE, NEAR STOURPORT-ON-SEVERN, WORCESTERSHIRE DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS 

SCIENTIFIC DATING REPORT lan Tyers

# HARTLEBURY CASTLE NEAR STOURPORT-ON-SEVERN WORCESTERSHIRE 

## DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

lan Tyers

NGR: SO 83607125
© English Heritage
ISSN I749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.


#### Abstract

SUMMARY A tree-ring dating programme was commissioned on timbers from Hartlebury Castle. The results identified that timbers in four areas of roof and a bell cupola were datable by tree-ring dating techniques, with these areas using timbers felled during the fifteenth, seventeenth, and eighteenth centuries. This dating programme was commissioned on this Grade I historic residence of the Bishops of Worcester to support casework during its sale and consideration for entry on the Buildings at Risk register. This report archives the dendrochronological results.


## CONTRIBUTORS

lan Tyers

## ACKNOWLEDGEMENTS

The sampling and analysis of timbers at Hartlebury Castle was funded by English Heritage (EH). Practical help and valuable discussions were provided by Nicholas Molyneux, Historic Buildings Inspector West Midlands Region (EH). Robin Hill from Worcestershire County Council kindly facilitated access.

## ARCHIVE LOCATION

Historic Environment Record
Worcestershire Historic Environment and Archaeology Service
University of Worcester
Worcester
Worcestershire
WR2 6AJ

## DATE OF INVESTIGATION

2008

## CONTACT DETAILS

Dendrochronological Consultancy Ltd, 65 Crimicar Drive Sheffield SIO 4EF lan Tyers; ian@dendro.co.uk

## CONTENTS

Introduction .....
Methodology .....
Results ..... 3
Discussion ..... 4
Great Hall roof ..... 4
Kitchen roof ..... 6
Saloon roof ..... 7
Early timbers ..... 7
Later timbers ..... 8
Five tiebeams and a wall plate ..... 8
Five principal rafters, two purlins, a collar, and a common rafter ..... 9
Chapel roof ..... 9
Bell cupola ..... II
The Hurd Library roof ..... 12
References ..... 13
Figures ..... 15
Tables ..... 21
Appendix 1 ..... 26

## INTRODUCTION

This document is a technical archive report on the tree-ring analysis of oak timbers from Hartlebury Castle, Worcestershire. It is beyond the dendrochronological brief to describe the building in detail or to undertake the production of detailed drawings. Elements of this report may be combined with detailed descriptions, drawings, and other technical reports at some point in the future to form either a comprehensive publication or an archive deposition on the building.

Hartlebury Castle stands to the western edge of the village of Hartlebury, c5km south of Kidderminster, and $c 2.5 \mathrm{~km}$ east of Stourport-on-Severn (NGR SO 83607125 ) within the county of Worcestershire (Fig I). This Grade-I listed building has been a principal residence of the Bishops of Worcester since at least the later thirteenth century. It comprises a large C-shaped building, standing in parkland with formal gardens to the east, and a large moat to the west. At the time of sampling, the northern wing was occupied as the county museum for Worcestershire. The central and southern wings stood empty, with most of the contents in the process of being moved to a residence in the cathedral precincts in Worcester. The building contains extensive remains of the medieval hall and service areas, and a series of roofs reflecting programmes of aggrandisement during the seventeenth and eighteenth centuries. Apart from the magnificent Great Hall, the Castle also contains Bishop Hurd's important collection of books and its purpose-built library, and the architecturally important mid-eighteenth century chapel decorated with fan vaulting in plasterwork.

## METHODOLOGY

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

Hartlebury was visited in March 2008. An assessment of the dendrochronological potential of timbers throughout the castle had been requested by Nicholas Molyneux. This assessment aimed to identify whether oak timbers with sufficient numbers of rings for analysis existed in any part of the complex. This assessment concluded that the timbers in four separate areas of roof, along with the bell cupola base frame, all contained suitable material. The area of roof over the saloon appeared to contain a variety of timbers, perhaps from several different periods of construction, whilst on a subsequent visit the Hurd library roof timbers were assessed as unsuitable for sampling and analysis.

The sampling took place during May 2008. The selected timbers were sampled using a 15 mm -diameter corer attached to an electric drill. The cores were taken as closely as possible along the radius of the timbers, so that the maximum number of rings could be obtained for subsequent analysis. The ring sequences in the cores were revealed by sanding.

This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant anatomical features, such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (see eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in the suitable samples was measured to an accuracy of 0.01 mm using a micro-computer based travelling stage. The sequences of ring widths were then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, crosscorrelation algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated (Tyers 2004). Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any $t$-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A tvalue of 3.5 or over is usually indicative of a good match, although this is with the proviso that high $t$-values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions were supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; sitespecific issues (for example, a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5$20 \%$ of all oak trees cannot be reliably cross-matched, even when enough rings are obtained.

Converting the date obtained for a tree-ring sequence into a useful date requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a terminus post quem for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by region. This report uses a
minimum of 10 rings and a maximum of 46 rings as a sapwood estimate (see eg English Heritage 1998, I0-11).

Where bark-edge or bark survives, the season of felling can be determined by examining the completeness or otherwise of the terminal ring lying directly under the bark. Complete material can be divided into three major categories:

- 'early spring', where only the initial cells of the new growth have begun - this is equivalent to a period in March/April, when the oaks begin leaf-bud formation;
- 'later spring/summer' where the early wood is complete but the late wood is evidently incomplete, which is equivalent to May-through-September of a normal year, and
- 'winter' where the latewood is evidently complete and this is roughly equivalent to September-to-March (of the following year) since the tree is dormant throughout this period and there is no additional growth put on the trunk.

These categories can overlap as, for example, not all oaks simultaneously initiate leaf-bud formation. It should also be noted that slow growing or compressed material cannot always be safely categorised.

Timber technology studies demonstrate that many of the tool marks recorded on ancient timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in the medieval period (see eg English Heritage 1998, II-I2).

Reused timbers can only provide tree-ring dates for the original usage date, not their reuse. Identifying reused timbers requires careful timber recording which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of earlier usage, and are thus 'hidden reused' timbers. The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or sometimes more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several timbers date but only one has any sapwood, or where same-tree identifications yield linkages between different areas.

## RESULTS

In May 200845 timbers of five separate areas of the building were cored. These cores were labelled I-45 inclusive. Sampling proceeded from the chapel in the south-east through to the kitchen area in the north. Eight timbers were sampled in the chapel roofs,

17 from a variety of types of material in the saloon roof, six from the bell cupola base frame, eight from the great hall roof, and six from the kitchen (Figures 2-8). Each sample was assessed for the wood type, the number of rings it contained, and whether the sequence of ring widths could be reliably resolved. This assessment confirmed that all the sampled timbers were oak (Quercus spp.) and that 4 I were suitable for dendrochronological analysis. The four exceptions were sample 8 from a roof to the north of the chapel area, and samples 40-2 inclusive from the kitchen roof, all of which had either too few rings for analysis or had fragmented badly during sampling. The readily accessible areas of the building have had an extensive programme of defrassing (physical removal of sapwood, usually with a hatchet) in the relatively recent past, hence survival of sapwood was poor and bark-edge survived only rarely. The details of these samples are provided in Table I.

The samples were prepared for analysis and measured, and the resultant ring sequences were then compared with each other. All eight of the samples from the great hall roof were found to cross-match each other (Table 2), the three suitable samples from the kitchen roof cross-matched (Table 3), all seventeen samples from the saloon roof crossmatched (Table 4), the seven suitable samples from the chapel roof cross-matched (Table 5), and all six of the samples from the bell cupola cross matched (Table 6). Each crossmatched group was then combined into a single composite data set. These were then compared with each other, the composite series from the first four areas were found to form an internally consistent group (Table 7), with a tentative very short overlap link to the fifth, later, bell cupola sequence. These site composites are of rather different growth characteristics, lengths, and dates, so each of the five composite sequences was therefore compared separately with medieval and later tree-ring data from throughout England and Wales. Each of the composite sequences was found to cross-match, particularly against data from sites in the West Midlands and/or South-West regions (Tables 8-II). This cross-matching provided consistent calendar dates for each of the sequences, and confirmed the correlations between them shown in Table 7. A summary of the results for the component samples of these chronologies are provided in Table I and Figure 9. The measurement data for all the measured samples are listed in Appendix I.

## DISCUSSION

The dated samples are derived from five different parts of Hartlebury, each of a different date, or in one case of at least two different dates. These parts are discussed in their date order below.

## Great Hall roof

The Great Hall roof comprises six trusses (numbered TI to T6 from the north, following Molyneux in prep, and the medieval numbers; Fig 3). The end trusses are set against the north and south walls of the hall, which is $c 8 \mathrm{~m}$ east-west by c 19 m north-south. Each truss rises from moulded stone corbels high up the walls of the hall. There are no
tiebeams; instead, the trusses are more akin to jointed crucks, with the short wall posts jointed to the principal rafters. Arch braces support a collar, V-struts rise from the centre of the collar, the purlins and principal rafters are decorated with roll mouldings, and the central common rafter of each bay forms an intermediate truss. The roof now has a ceiling just above collar level, possibly inserted to give access to the bell cupola. Here there is evidence for wind bracing formerly rising to the main trusses. There is some disturbance in one bay, and a change of ridge configuration suggestive of the presence of a smoke louvre.

The eight samples from this area comprised three principal rafters, three purlins, and two of the V -struts. All were sampled in the narrow access corridor formed by the high ceiling. All the samples were suitable for analysis and all were found to cross-match. The composite sequence was found to date and thus there are tree-ring dates for all eight of these structural elements. The 194-year composite sequence was found to strongly match composite sequences obtained from the surrounding regions (Table 8) and it is most likely that these timbers were derived from the general vicinity of Hartlebury. It should be noted that this material comprised oaks of a variety of growth rates and ages, perhaps indicating the material was derived from a variety of locations, a suggestion supported by the poorer inter-correlation values of this material compared with the other sample groups from the building. The cross-dating indicated an early-fifteenth century date for all the datable timbers.

The tree-ring analysis dates the rings present in the cores. The correct interpretation of those dates relies upon the characteristics of the final rings in them. Bark-edge survived on none of these timbers, but significant amounts of sapwood were recovered from one, the heartwood/sapwood boundary was present on a further six, and the remaining sample entirely consisted of heartwood. Making allowances for minimum and maximum likely amounts of missing sapwood provides individual felling date ranges or terminus post quem dates for each of the datable timbers. Figure 9 and Table I includes the interpreted felling date ranges or terminus post quem dates for each of the datable samples.

The calculation of the common felling period for each sampled timber from this roof suggests a construction date between AD 1428 and cAD I447. The mathematical combination of estimated sapwood distributions is statistically complex, and to achieve a tighter interpretation would require reliable sapwood data for the area, period, and the specific character of these oaks. Such data are not presently available. Until that point, the use of robust combinatorial methods or alternative statistical approaches might sacrifice a broad and indicative date for a narrower one of potentially spurious precision. It is clear, however, that this roof uses timbers felled in the second quarter of the fifteenth century.

Sadly, this result excludes any possibility that the existing roof structure was built using 22 great oak trees documented to have been brought to the castle in AD I 395/6 from Welland, which is $c 30 \mathrm{~km}$ south of Hartlebury (Molyneux pers comm). This phase is therefore due to the period of Bishops Poulton, Brunce, Bourchier, or Carpenter, and not

Bishop Tideman as has previously been suggested. It is possible that documentary research may identify a likely reference to its construction somewhere within the relatively narrow date range identified by the tree-ring analysis.

## Kitchen roof

Running to the north and off to the west of the Great Hall is a five-bay building that may be the medieval kitchen; or it may be a brewhouse, since a five-bay brewhouse was recorded in a later survey. Some of the wall posts and tiebeams of the southern trusses are visible in the present visitor cafeteria. It is accessible from above via a rather difficult route through a later roof built over it. This roof is considered to be the structure in the poorest condition of all those in the complex. The two visible roof trusses at the southern end have V -struts and two rows of purlins (Fig 4). The timbers in this roof mostly comprised halved young oaks. The six samples were obtained from a principal rafter, two purlins, the collar, and two $V$-struts from the southernmost truss, the only one safely accessible. Only three of these samples were suitable for analysis. Each yielded a short but usable sequence and all three were cross-matched and dated. The 80-year composite sequence was found to strongly match the material from the saloon and chapel roofs at Hartlebury (Table 7), as well as other composite sequences obtained from the vicinity (Table 9). It is thus most likely that these timbers were derived from the immediate vicinity of Hartlebury. This material comprised faster-growing and shorter-lived oaks than many of those used elsewhere at Hartlebury. The cross-dating indicated a later fifteenthcentury date for the datable timbers from this truss.

Bark-edge survived on one of these timbers, significant amounts of sapwood on another, and only heartwood on the third. No allowance needs to be made for missing sapwood from the complete sample, allowances for minimum and maximum likely amounts of missing sapwood provide a individual felling date range and a terminus post quem date for the other two datable timbers. Figure 9 and Table I include the interpreted felling date, felling date range, and terminus post quem date for each of the datable samples.

The interpretation of this material is straightforward. The sample complete to bark edge retains a complete ring for AD 1468, and the onset of growth for AD 1469, so this sample (a $V$-strut) were felled in the early spring of AD 1469. The calculated felling date range, and terminus post quem date for the remaining two samples indicated this material was either precisely or broadly contemporaneous.

The kitchen, or brewhouse, roof was therefore built with timber felled in AD 1469, which is 20 to 40 years later than the present Great Hall roof. This structure can therefore be associated with the extensively documented building works of Bishop Carpenter, who was the bishop until AD 1476.

## Saloon roof

The area over the saloon is roofed with five trusses, each with massive principal rafter and queen strut trusses, with relatively slight vertical struts rising to large collars (Fig 5). The intended effect was to bring the roof line of the Great Hall and Saloon into alignment making it appear to be a continuous structure. The northernmost truss (numbered T5 after Molyneux in prep) is against the formerly external wall of the Great Hall. The southernmost truss (numbered TI after Molyneux in prep) is against the presumed seventeenth-century brick wall of the staircase block, and is closed, with widely spaced stud work. This roof appears to contain a mixture of timber; there are some certainly reused elements. These are usually, though not exclusively, in the queen struts, but in addition the beautifully finished and clean timbers of the principal rafters, derived from quartered oaks, are jointed into very roughly hewn whole-oak tiebeams. The mortises in the latter appear too large, and have too many peg holes, for the principal rafters that are currently in them.

An extensive programme of sampling was undertaken in this roof in an attempt to understand this structure. In total, I7 samples were obtained: five principal rafters, all five tiebeams, two purlins, a collar, a queen strut, two common rafters, and the western wall plate. All 17 were suitable for analysis and all 17 were cross-matched and dated. The 270year composite sequence was found to strongly match sequences from the chapel roof (Table 7) as well as other composite sequences obtained from the vicinity (Table IO). It is thus most likely that these timbers were derived from the immediate vicinity of Hartlebury. The material comprised a mixture of fast- and slow-growing and short- and long-lived oaks. This cross-dating indicated an early seventeenth-century date for most the datable timbers from this area, although two were evidently of mid-fifteenth-century date.

Bark-edge survived on none of these timbers, sapwood survived on five, the heartwood/sapwood boundaries were present on another seven, and the remaining five comprised only heartwood. Making allowances for minimum and maximum likely amounts of missing sapwood provides individual felling date ranges or terminus post quem dates for each of the datable timbers. Figure 9 and Table I include the interpreted felling date ranges and terminus post quem dates for each of the datable samples.

The analytical results from this area clearly indicate the presence of two different groups of material. The discussion that follows segregates the material firstly on the basis of the analytical results and secondly on their differing structural sources.

## Early timbers

Samples 17 (a timber reused as a queen strut) and 20 (a common rafter) retain heartwood/sapwood boundaries at AD 1408 and AD 1420 respectively. The calculation of the common felling period for these, if we assume they were derived from a single structure, suggests a felling date between cAD 1430 and cAD I454. The mathematical
combination of estimated sapwood distributions is statistically complex, and to achieve a tighter interpretation would require reliable sapwood data for the area, period, and the specific character of these oaks. Such data are not presently available. Until that point, the use of robust combinatorial methods or alternative statistical approaches might sacrifice a broad and indicative date for a narrower one of potentially spurious precision. It is clear, however, that the saloon roof utilises a handful of timbers felled in the second quarter of the fifteenth century. If this material was derived from Hartlebury, which is not certain, these timbers could have been salvaged from modifications to the Great Hall roof, or some other fifteenth-century structure that is no longer extant.

## Later timbers

The remaining 15 samples include ten that retain some sapwood or the heartwood/sapwood boundaries. The calculation of the common felling period for these, if we assume they were derived from a single structure, suggests a felling date between AD 1608 and cAD 1629. The mathematical combination of estimated sapwood distributions is statistically complex, and to achieve a tighter interpretation would require reliable sapwood data for the area, period, and the specific character of these oaks. Such data are not presently available. Until that point the use of robust combinatorial methods, or alternative statistical approaches might sacrifice a broad and indicative date for a narrower one of potentially spurious precision. It is clear, however, that this roof utilises a lot of timbers felled in the first quarter of the seventeenth century. This material can be further divided by its location within the structure.

## Five tiebeams and a wall plate

Samples II, 13, 16, 21, and 23 comprise the five saloon roof tiebeams in the order T5TI. Sample 39 was obtained from the western wall plate between T3 and T4. These timbers are fully jointed elements of the roof, and each has the same relatively roughhewn finish. The tiebeams are, at present, surrounded by modern insulating glass fibre and are difficult to examine in detail. The identification of the presence of sapwood and, with their awkward proximity to the end walls, even obtaining the correct coring angle was unusually difficult with the TI and T5 tiebeams, as well as with the wall plate. These six timbers include four of the five from the saloon area that are exclusively heartwood, and they have heartwood end-dates of AD I486, AD I487, AD I545, and AD I584. The other two retained heartwood/sapwood boundaries, and the boundary rings were dated to AD 1590 and AD I593. The calculation of the common felling period for these suggests a felling date between cAD 1603 and cAD 1636, which is certainly appropriate for the tiebeams from T2 and T3 and almost inevitably for the T4 tiebeam, since this ends in heartwood at AD I584.

A viable conclusion is that despite the widely differing end dates, which may be entirely due to access difficulties resulting in sub-optimal sampling, these elements do not appear to be any different in date to the other primary parts of the saloon roof.

An alternative hypothesis, that these results could allow for, is that the TI and T5 tiebeams and the western wall plate are reused, the two tiebeams from no earlier than AD I497, the wall plate from no earlier than AD I555. However, since there were no differences noted at the time of sampling between these and the central three tiebeams, this is probably not a viable suggestion, particularly as the wall plate was pegged to two of these tiebeams. One anomaly is that the western wall plate retains chamfers and stops, but these were not observed on the tiebeams, although access was restricted to this material. If the glass fibre insulating material can be safely moved, it would be worthwhile carefully examining this framework for both carpenters' numbers and decorative mouldings. It is not unknown for decorative features to be hacked off the bottoms of such timbers in order to provide a level platform for a plaster ceiling.

## Five principal rafters, two purlins, a collar, and a common rafter

The remaining nine samples comprise elements of the above-tiebeam saloon roof structure. These include one entirely heartwood sample, ending at AD 1531, three samples ending at heartwood/sapwood boundaries dating to AD I588, AD I589, and AD I597, and the five samples with some sapwood. The latter have their heartwood/sapwood boundaries dating to AD I583, AD I586, AD I592, AD I595, and AD 1598. Two of these retain sufficient sapwood to constrain their earliest possible felling dates to AD 1606 and AD 1608. The calculation of the common felling period for these suggests a felling date between AD 1608 and cAD 1629. These elements appear to be the same age as the tiebeams to which they are connected, and their different surface patina and their apparently ill-fitting joints thus do not appear to reflect their origin in different structures.

When the dendrochronological investigation was commissioned, it was suggested that this roof could be part of an unknown phase of construction from the sixteenth century, possibly related to a visit by Elizabeth I in AD I575. This clearly cannot be the case for the roof structure as it presently stands, although, as noted above, two of the tiebeams and the wall plate could be part of such a phase. Instead this roof appears to have been constructed during the bishoprics of Babington, Parry, or Thornborough.

## Chapel roof

Following its surrender during the Civil War, the castle was restored to the diocese in AD 1660. Repair work seems to have mostly been undertaken under Bishop Fleetwood (AD 1675-83) who certainly refitted the chapel with panelling, altar rail, and gallery (Molyneux pers comm). The chapel was subsequently refitted again in the period AD 1748-50 by

Bishop Maddox, with Hurd stating that Maddox 'put a new roof to it' (Molyneux pers comm). This later chapel includes a plaster fan-vaulted ceiling.

The present chapel roof is of queen strut design, with paired vertical posts supporting a collar, it is hipped to the east (Fig 6). The arrangement of the trusses does not respect the arrangement of the fan vaulting below. The four trusses over the chapel are identical to three more trusses in attic bedrooms with dormer windows immediately to the west. Two further east-west roofs, mostly in further attic rooms over the stair block and drawing room respectively, are of similar design and dimensions, whilst the east face of these blocks has a roof with another series of similar trusses, and dormer windows running north-south.

The chapel roof has been heavily defrassed, but fortunately this was done rather badly and some sapwood and bark-edge has survived. The roof contains a lot of relatively accessible timbers. A number of timbers were located with evidence for surviving sapwood. The eight samples include six from the area directly over the chapel, and two from the north-east corner of the drawing room block. The samples were obtained from two tiebeams, two principal rafters, and two hip-end timbers, all from over the chapel, and a principal rafter, and a common rafter from over the drawing room. Only one of these (sample 8, the north-east area common rafter) was found to be unsuitable for analysis. The remaining seven each yielded good sequences and all seven were crossmatched and dated. The 280-year composite sequence was found to strongly match to the material from the saloon and kitchen roofs at Hartlebury (Table 7), as well as to other composite sequences obtained from the vicinity (Table IO). It is thus most likely that these timbers were derived from the immediate vicinity of Hartlebury. This material comprised long-lived slow-growing oaks. The cross-dating indicated a later seventeenth century date for the datable timbers from these roofs.

Bark-edge survived on two of these timbers, some sapwood on another four, and the heartwood/sapwood boundary on the final datable sample. No allowance needs to be made for missing sapwood from the two complete samples, allowances for minimum and maximum likely amounts of missing sapwood provide individual felling date ranges for the other five datable timbers. Figure 9 and Table I include the interpreted felling dates, and felling date ranges for each of the datable samples.

The interpretation of this material is straightforward. The samples complete to bark edge both retain a complete ring for AD 1678, with no evidence for the onset of growth for the following year. These samples (a tiebeam over the chapel and a principal rafter in the north-east roof) were felled in the winter of AD 1678/9. The calculated felling date ranges for the remaining five samples indicated this material was either precisely or broadly contemporaneous.

These different areas of roof were therefore probably built shortly after felling in $A D$ 1678 or 1679 . This structure can therefore be associated with the extensively documented building works of Bishop Fleetwood.

## Bell cupola

An octagonal bell cupola stands on the ridge at the centre of the aligned Great Hall and Parlour roof lines. It is aligned on the decorative doorway into the Great Hall and emphasises the pleasant symmetry of the structure. Hurd states that Maddox added this structure (Molyneux pers comm). The oak octagonal base frame of this structure is part of the floor of the inserted ceiling of the Great Hall, standing between trusses T5 and T6. From it rise the (presumably replacement) softwood posts of the cupola itself. The base frame timbers are neatly box-halved oak trees, neatly pegged and with short chisel-struck numbers. Visual similarities of the timbers suggested relatively few trees were needed in its construction (Fig 7). Six of the eight timbers forming this frame were sampled. All of these were found to be suitable for analysis, and these each yielded sequences which were cross-matched and dated. The 88 -year composite sequence was found to match composite sequences from across England (Table II), which is a common phenomenon for data of this period, so it is not certain, but nevertheless likely, that these timbers were derived from the vicinity of Hartlebury. This material comprised relatively short-lived and medium growth-rate oaks. The cross-dating indicated a mid-eighteenth-century date for the datable timbers from this framework.

Bark-edge survived on none of these timbers, some unusually large amounts of sapwood were present on two (in both cases including additional detached fragments), less sapwood on another two, and the remaining two samples were heartwood only. Allowances for minimum and maximum likely amounts of missing sapwood provide individual felling date ranges, or terminus post quem dates, for the six sampled timbers. Figure 9 and Table I include the felling date ranges or terminus post quem dates for each of these samples.

The calculation of the common felling period for each sampled timber from this roof suggests a construction date between AD I749 and cAD I754. The mathematical combination of estimated sapwood distributions is statistically complex, and to achieve a tighter interpretation would require reliable sapwood data for the area, period, and the specific character of these oaks. Such data are not presently available. In fact, the remarkably different sapwood values present on this material illustrate the general problem of calculating reliable sapwood estimates: these timbers are of similar age, geographic origin, growth rates, and period, yet, if we assume they were felled at the same time, they have completely different amounts of sapwood. The contemporaneous sampling notes provide strong support for the proximity of the bark-edges on the two timbers with the latest rings, and not in the other material. Until the point that the sapwood models can deal with this kind of assemblage, the use of robust combinatorial methods, or alternative statistical approaches, would in this case probably suggest the material is derived from two separate periods, for which there is no other suggestion or evidence. The material appears to have been used green, so this is not an issue associated with stockpiling. So it is most likely that this frame utilises timbers felled in the middle years of the eighteenth century.

This result suggests this base frame was built shortly after AD I749. This structure can therefore be firmly associated with the building works of Bishop Maddox (AD I743-59), as was recorded by Bishop Hurd.

## The Hurd Library roof

One final area was on the dating commission. This is the roof of the library which was purpose-built (cAD 1782) to house Bishop Hurd's large collection of books. This room was built as a long gallery on the west side of the castle. During the initial assessment visit no route for accessing this space was located; there are no hatches in the library, or in the vestibules at either end, nor are there roof hatches into it from above. However, during the sampling in the saloon roof, a dormer-like linking roof was noticed which gives direct access to the roof of this room. Here is a simple oak roof, of king-post form, with joggled raking braces (Fig 8). The timbers were derived from small young fast-growing oaks, that were carefully assessed but were deemed unsuitable for sampling and analysis.

## REFERENCES

Arnold, A, Howard, R, and Litton, C, 2006a The Commandery, Worcester: tree-ring analysis of timbers, EH Res Dept Rep Ser, 7I/2006

Arnold, A, Howard, R, and Litton, C, 2006b The Guildhall Complex and Pedagogue's House, Stratford-upon-Avon, Warwickshire: tree-ring analysis of timbers, EH Res Dept Rep Ser, 68/2006

Arnold, A, Howard, R, and Litton, C, 2006c Kingsbury Hall, Kingsbury, Warwickshire: treering analysis of timbers, EH Res Dept Rep Ser, 53/2006

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-ring analysis of oak timbers from the Chapter House, Worcester Cathedral, Worcester, Centre for Archaeol Rep, 65/2004

Baillie, M G L, and Pilcher, J R, I973 A simple crossdating program for tree-ring research, Tree Ring Bull, 33, 7-14

Barefoot, A C, 1975 A Winchester dendrochronology for 1635-1972 AD - its validity and possible extension, J Inst Wood Sci, 7(I), 25-32

Bridge, M C, 2002 Tree-ring analysis of timbers from Ashleworth Tithe Barn, Quay Lane, Gloucestershire, Centre for Archaeol Rep, 17/2002

English Heritage, I 998 Dendrochronology: guidelines on producing and interpreting dendrochronological dates, London

Groves, C, 2002 Dendrochronological analysis of Bowhill, Exeter, Devon, Centre for Archaeol Rep, 23/2002

Groves, C, and Hillam, J, 1993 Tree-ring analysis of oak timbers from the medieval barn, King's Pyon, near Leominster, Hereford and Worcester, 1992 - interim report, Anc Mon Lab Rep, 24/93

Groves, C, and Hillam, J, 1997 Tree-ring analysis and dating of timbers, in A multi-period salt production site at Droitwich: Excavations at Upwich (J D Hurst), CBA Res Rep, I07, |2|-6

Howard, R, Litton, C, and Arnold, A, 2006 Guildhall, High Street, Worcester: tree-ring analysis of timbers, EH Res Dept Rep Ser, 42/2006

Howard, R E, Laxton, R R, and Litton, C D, 1996 Tree-ring analysis of timbers from Mercer's Hall, Mercer's Lane, Gloucester, Anc Mon Lab Rep, I3/96

Howard, R E, Laxton, R R, and Litton, C D, I998a Tree-ring analysis of timbers from 26 Westgate Street, Gloucester, Anc Mon Lab Rep, 43/98

Howard, R E, Laxton, R R, and Litton, C D, 1998b Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, 30/98

Nayling, N, I999 Tree-ring analysis of timbers from the White House, Vowchurch, Herefordshire, Anc Mon Lab Rep, 73/I999

Nayling, N, 200 I Tree-ring analysis of timbers from Lower Brockhampton Gatehouse, near Bromyard, Herefordshire, Centre for Archaeol Rep, 98/200 I

Tyers, I, I998a Tree-ring analysis of oak timbers from St Nicholas' Church, Warndon, Worcestershire, Anc Mon Lab Rep, 34/98

Tyers, I, I998b Tree-ring analysis of oak timbers from the "Brewhouse" and "Refectory" at Nostell Priory, near Wakefield, West Yorkshire, Anc Mon Lab Rep, 20/98

Tyers, I, I999 Dendrochronological analysis of timbers from Black Ladies, near Brewood, Staffordshire, ARCUS Rep, 484

Tyers, I, 2000a Tree-ring analysis of oak timbers from the church of St Swithin, Clunbury, Shropshire, Anc Mon Lab Rep, 8/2000

Tyers, I, 2000b Tree-ring spot-dates and wood identifications from the Royal Arsenal, Woolwich, ARCUS Rep, 559

Tyers, I, 200 I Dendrochronological analysis of timbers from New House Grange Tithe Barn, Sheepy Magna, Leicestershire, ARCUS Rep, 574d

Tyers, I, 2002 Tree-ring analysis of oak timbers from the Abbot's Hall and Parlour at Wigmore Abbey, near Adforton, Herefordshire, Centre for Archaeol Rep, I I2/2002

Tyers, I, 2003 The tree-ring analysis of the Bellframe at the church of St Bartholomew the Less, London ECI, ARCUS Rep, 7I7g

Tyers, I, 2004 Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b
Tyers, I, 2007a The tree-ring dating of 3 timber framed buildings in Weobley, Herefordshire, Dendro Co Rep, 22

Tyers, I, 2007b The tree-ring dating of 8 buildings in Wribbenhall, Worcestershire, Dendro Co Rep, 9

Tyers, I, 2008a Tree-ring analysis of timbers from a building: Tickenhill Manor, Bewdley, Worcestershire, Dendro Co Rep, I24

Tyers, I, 2008b The tree-ring dating of buildings in Whitbourne, Herefordshire, Dendro Co Rep, 42

Tyers, I, and Groves, C, I 997 Dendrochronological analysis of timbers from Poole's Wharf, Hotwells, Bristol, ARCUS Rep, 303

Tyers, I, and Wilson, R, 2000 Tree-ring analysis of oak timbers from 66 and 68 Westgate Street, Gloucester, Anc Mon Lab Rep, 19/2000

FIGURES


Figure I. Location of Hartlebury Castle (circled). © Crown Copyright. All rights reserved. English Heritage 100019088. 2009


Figure 2．Plan of Hartlebury Castle showing the location of the areas discussed in this report．Based on a plan supplied by EH


Figure 3. Great Hall roof truss (schematic representation). Figure supplied by English Heritage


Figure 4. Kitchen roof truss (schematic representation). Figure supplied by English Heritage


Figure 5. Saloon truss (schematic representation). Figure supplied by English Heritage


Figure 6. Chapel roof truss (schematic representation). Figure supplied by English Heritage


Figure 7. Bell cupola base frame (schematic representation). Figure supplied by English Heritage


Figure 8. Hurd library truss (schematic representation). Figure supplied by English Heritage


Figure 9. Bar diagram showing the absolute dating positions of the 41 dated tree-ring sequences for samples from Hartlebury Castle. The interpreted felling dates are also shown for each sample
KEY White bars are oak heartwood, hatched bars are sapwood, the narrow bars represent unmeasured sapwood

## TABLES

Table I. Details of the 45 samples from timbers from Hartlebury Castle

| Sample | Location | Rings | Sap | Date of measured sequence | Interpreted result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| , | CR lower hip purlin | 127 | H/S | AD 1525-165\| | AD 1661-97 |
| 2 | CR hip principal | 117 | 6 | AD 1549-1665 | AD 1669-1705 |
| 3 | CR T2 tiebeam | 202 | 11 | AD 1470-1671 | AD 1671-1706 |
| 4 | CR T2 S principal | 158 | 9 | AD 1499-1656 | AD 1657-93 |
| 5 | CR T3 N principal | 258 | 2 | AD 1399-1656 | AD 1664-1700 |
| 6 | CR T4 tiebeam | 98 | $21+B w$ | AD 1581-1678 | AD 1678 winter |
| 7 | CR NE S principal | 188 | $36+$ Bw | AD 1491-1678 | AD 1678 winter |
| 8 | CR NE rafter 2 | - | - | unmeasured | - |
| 9 | SA T5 W principal | 169 | 2 | AD 1432-1600 | AD 1608-44 |
| 10 | SA T5 E principal | 171 | 13 | AD 1438-1608 | AD 1608-4\| |
| 11 | SA T5 tiebeam | 101 | - | AD 1386-1486 | after AD 1496 |
| 12 | SA T4-5 E purlin | 186 | H/S | AD 1403-1588 | AD I598-1634 |
| 13 | SA T4 tiebeam | 212 | - | AD 1373-1584 | after AD 1594 |
| 14 | SA T4 W principal | 168 | I | AD 1417-1584 | AD I593-1629 |
| 15 | SA T4-5 W purlin | 186 | $2+20$ | AD 1401-1586 | AD 1606-30 |
| 16 | SA T3 tiebeam | 113 | H/S | AD 148I-1593 | AD 1603-39 |
| 17 | SA TI queen strut | 70 | H/S | AD 1339-1408 | AD 1418-54 |
| 18 | SA T3 W principal | 178 | - | AD 1354-1531 | after AD 154। |
| 19 | SA T5 E rafter 2 | 84 | H/S | AD 1514-1597 | AD 1607-43 |
| 20 | SA T5 E rafter I | 80 | H/S | AD 1341-1420 | AD 1430-66 |
| 21 | SA T2 tiebeam | 216 | ? $\mathrm{H} / \mathrm{S}$ | AD 1375-1590 | AD 1600-36? |
| 22 | SA T2 W principal | 214 | 7 | AD 1386-1599 | AD 1602-38 |
| 23 | SA TI tiebeam | 95 | - | AD 1393-1487 | after AD 1497 |
| 24 | SA TI lower collar | 139 | H/S | AD 145I-1589 | AD 1599-1635 |
| 25 | BC E joist | 75 | 10 | AD 1658-1732 | AD 1732-68 |
| 26 | BC SE brace | 85 | 37+4 | AD 1661-1745 | AD 1749-54 |
| 27 | BC S stretcher | 74 | 9 | AD 1661-1734 | AD 1735-71 |
| 28 | BC SW brace | 47 | - | AD 1668-1714 | after AD 1724 |
| 29 | BC NW brace | 72 | 30+7 | AD 1668-1739 | AD 1746-55 |
| 30 | BC N stretcher | 47 | - | AD 1666-1712 | after AD 1722 |
| 31 | GH T6 W principal | 68 | H/S | AD 1343-1410 | AD 1420-56 |
| 32 | GH T6 E principal | 69 | H/S | AD 1344-1412 | AD 1422-58 |
| 33 | GH T6 E V-strut | 135 | H/S | AD 1267-140\| | AD 1411-47 |
| 34 | GH T5 W principal | 194 | 23 | AD 1235-1428 | AD 1428-5 \| |
| 35 | GH T4-5 W purlin | 62 | - | AD 1355-1416 | after AD 1426 |
| 36 | GH T4-5 E purlin | 89 | H/S | AD 1330-1418 | AD 1428-64 |
| 37 | GH T3-4 E purlin | 60 | ?H/S | AD 1357-1416 | AD 1426-62? |
| 38 | GH T2 W V-strut | 100 | H/S | AD 1316-1415 | AD 1425-6\| |
| 39 | SA T3-4 W plate | 193 | - | AD 1353-1545 | after AD 1555 |

Table / (continued)

| Sample | Location | Rings | Sap | Date of measured sequence | Interpreted result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | KI E principal | - | - | unmeasured | - |
| 41 | KI SE lower purlin | - | - | unmeasured | - |
| 42 | KI E lower purlin | - | - | unmeasured | - |
| 43 | KI collar | 58 | - | AD 1389-1446 | after AD 1456 |
| 44 | KI E V-strut | 58 | 6+12 | AD 1398-1455 | AD 1467-95 |
| 45 | KI W V-strut | 78 | $17+$ Bs | AD 1391-1468 | AD 1469 spring |

KEY For locations see Figure 2. GH; Great Hall roof, trusses TI-6 from north. KI; Kitchen roof, southernmost truss; SA Saloon roof, trusses TI-5 from south. CR; Chapel roof, TI-4 from east. BC; Bell cupola base frame. N north, S south, E east, W west, H/S is heartwood/sapwood edge, Bw bark after complete ring, Bs bark after incomplete additional annual ring, italics gives the estimated numbers of unmeasured sapwood rings.

Table 2. The $t$-values (Baillie and Pilcher 1973) between the 8 sampled timbers from the Great Hall roof (samples 3/-8) from Hartlebury Castle. - $t$-value less than 3.0

|  | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 3.68 | 3.30 | - | 4.70 | 3.98 | 3.58 | 3.03 |
| 32 |  | - | 3.05 | - | 3.54 | 4.13 | - |
| 33 |  |  | 4.93 | - | - | - | 3.55 |
| 34 |  |  |  | - | - | 3.42 | - |
| 35 |  |  |  |  | - | 3.26 | - |
| 36 |  |  |  |  |  | 3.53 | - |
| 37 |  |  |  |  |  |  | - |

Table 3. The $t$-values (Baillie and Pilcher 1973) between 3 sampled timbers from the Kitchen roof (samples 43-5) from Hartlebury Castle.

|  | 44 | 45 |
| :---: | :---: | :---: |
| 43 | 4.80 | 4.47 |
| 44 |  | 4.78 |

Table 4. The $t$-values (Baillie and Pilcher 1973) between the 17 sampled timbers from the Saloon roof (samples 9-24 and 39) from Hartlebury Castle. - $t$-value less than 3.0, I no or short overlap.

|  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 10.66 | 3.23 | 7.45 | 5.93 | - | $7.6 \mid$ | 9.51 | 1 | 6.36 | 4.80 | 1 | 12.57 | 6.46 | - | 6.69 | - |
| 10 |  | 3.66 | 9.16 | 4.96 | - | 4.13 | 6.12 | 1 | $4.9 \mid$ | 3.96 | $\backslash$ | 8.40 | 6.44 | - | 5.96 | - |
| 11 |  |  | 5.39 | 5.31 | 5.50 | 6.05 | 1 | - | 8.82 | 1 | 6.95 | 5.02 | 4.33 | 6.10 | 3.35 | 4.63 |
| 12 |  |  |  | 5.61 | 5.73 | 5.49 | 6.68 | 1 | 6.20 | 4.85 | - | 8.29 | 10.79 | 4.43 | 6.92 | 3.03 |
| 13 |  |  |  |  | 4.68 | 5.27 | - | 4.24 | 6.50 | - | 3.26 | 6.67 | 5.50 | 4.18 | 5.35 | 4.67 |
| 14 |  |  |  |  |  | 7.09 | 3.23 | 1 | 5.56 | 6.75 | $\backslash$ | 3.67 | 3.63 | 6.80 | 3.31 | 8.38 |
| 15 |  |  |  |  |  |  | 4.52 | 1 | 7.44 | 5.39 | 4.21 | 6.52 | 4.19 | 5.90 | 3.69 | 6.62 |
| 16 |  |  |  |  |  |  |  | 1 | - | 3.70 | $\backslash$ | 7.53 | 5.13 | 1 | 7.38 | - |
| 17 |  |  |  |  |  |  |  |  | 4.74 | 1 | 6.88 | 3.13 | - | - | 1 | - |
| 18 |  |  |  |  |  |  |  |  |  | - | 5.02 | 6.09 | 5.41 | 5.75 | 3.53 | 4.89 |
| 19 |  |  |  |  |  |  |  |  |  |  | $\backslash$ | 3.30 | - | 1 | - | 4.96 |
| 20 |  |  |  |  |  |  |  |  |  |  |  | 3.13 | - | 3.16 | $\backslash$ | - |
| 21 |  |  |  |  |  |  |  |  |  |  |  |  | 8.22 | 4.77 | 10.61 | 4.48 |
| 22 |  |  |  |  |  |  |  |  |  |  |  |  |  | 5.13 | 8.50 | - |
| 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | 6.53 |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |

Table 5. The $t$-values (Baillie and Pilcher 1973) between 7 sampled timbers from the Chapel roofs (samples I-7) from Hartlebury Castle.

|  | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.42 | 6.47 | 8.18 | $7.5 ।$ | 4.41 | 7.03 |
| 2 |  | 7.54 | 5.87 | 6.69 | 7.06 | 5.47 |
| 3 |  |  | 9.55 | 8.39 | 5.02 | 7.88 |
| 4 |  |  |  | 10.54 | 4.18 | 7.18 |
| 5 |  |  |  |  | 4.46 | 9.13 |
| 6 |  |  |  |  |  | 3.76 |

Table 6. The $t$-values (Baillie and Pilcher 1973) between the 6 sampled timbers from the Bell cupola (samples 25-30) from Hartlebury Castle.

|  | 26 | 27 | 28 | 29 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 7.56 | 8.33 | 7.04 | 6.96 | 6.66 |
| 26 |  | 7.13 | 9.12 | 9.50 | 6.27 |
| 27 |  |  | 5.76 | 5.90 | 13.82 |
| 28 |  |  |  | 8.01 | 5.50 |
| 29 |  |  |  |  | 5.28 |

Table 7. The $t$-values (Baillie and Pilcher 1973) between the 5 composite sequences constructed from timbers from the sampled areas of Hartlebury Castle. - $t$-value less than 3.0, I no or short overlap.

|  | Kitchen roof | Saloon roof | Chapel roof | Bell cupola |
| :---: | :---: | :---: | :---: | :---: |
| Great Hall roof | 3.09 | 8.64 | - | $\\ ) \\ \hline Kitchen roof & & 6.08 & 6.19 & \(\\ ) \\ \hline Saloon roof & & & 11.88 & \(\backslash$ |
| Chapel roof |  |  |  | 4.09 |

Table 8. Showing example $t$-values (Baillie and Pilcher 1973) between the composite sequence constructed from the Great Hall samples at Hartlebury Castle and oak reference data.

| Reference chronology | Hartlebury <br> Great Hall <br> AD I235-1428 |
| :--- | :---: |
| Devon, Exeter Bowhill (Groves 2002) | 7.36 |
| Gloucestershire, 66/68 Westgate St Gloucester (Tyers and Wilson 2000) | 10.75 |
| Gloucestershire, Ashleworth Tithe Barn (Bridge 2002) | 7.97 |
| Herefordshire, Wigmore Abbey (Tyers 2002) | 8.16 |
| Warwickshire, Guildhall Stratford upon Avon (Arnold et a/2006b) | 8.06 |
| Worcestershire ,The Commandery Worcester (Arnold et a/2006a) | 7.82 |
| Worcestershire, Warndon church (Tyers I998a) | 7.62 |
| Worcestershire, Worcester Cathedral (Arnold et a/2004) | 11.36 |

Table 9. Showing example $t$-values (Baillie and Pilcher 1973) between the composite sequence constructed from the Kitchen samples at Hartlebury Castle and oak reference data.

| Reference chronology | Hartlebury <br> Kitchen <br> AD $3889-1468$ |
| :--- | :---: |
| Gloucestershire, Gloucester Mercers Hall (Howard et a/ I996) | 7.55 |
| Herefordshire, Kings Pyon barn (Groves and Hillam I993) | 6.82 |
| Herefordshire, Weobley Broad St (Tyers 2007a) | 6.4 I |
| Herefordshire, Whitbourne Ring o' Bells/Virginia Cottage (Tyers 2008b) | 6.46 |
| Leicestershire, New House Grange Barn Sheepy Magna (Tyers 200I) | 6.34 |
| London, St Barts the Less bellframe (Tyers 2003) | 6.89 |
| Worcestershire, The Commandery Worcester (Arnold et a/2006a) | 6.33 |
| Worcestershire, Tickenhill Manor (Tyers 2008a) | 6.23 |

Table IO. Showing example $t$-values (Baillie and Pilcher 1973) between the composite sequences constructed from the Saloon roof and Chapel roof samples at Hartlebury Castle and oak reference data.

| Reference chronology | Hartlebury <br> Saloon roof <br> AD 1339- <br> 1608 | Hartlebury <br> Chapel roof <br> AD 1399- <br> 1678 |
| :--- | :---: | :---: |
| Gloucestershire, Gloucester 26 Westgate Street (Howard et a/ I998a) | 13.8 I | 14.96 |
| Herefordshire, Lower Brockhampton Gatehouse (Nayling 200I) | 11.93 | 10.78 |
| Herefordshire, White House Vowchurch (Nayling I999) | 10.31 | 10.52 |
| Staffordshire, Black Ladies nr Brewood (Tyers I999) | 10.53 | 10.43 |
| Warwickshire, Kingsbury Hall (Arnold et a/2006c) | 11.03 | 10.79 |
| Worcestershire, Hoarstone Farm (Tyers 2008) | 13.2 I | 12.79 |
| Worcestershire, Worcester The Guildhall (Howard et a/2006) | 10.89 | 10.89 |
| Worcestershire, Wribbenhall 3 Beales Corner (Tyers 2007b) | 12.63 | 11.33 |

Table I/. Showing example $t$-values (Baillie and Pilcher 1973) between the composite sequence constructed from the Bell cupola samples at Hartlebury Castle and oak reference data.

| Reference chronology | Hartlebury <br> Bell cupola <br> AD I658-I745 |
| :--- | :---: |
| Avon, Bristol Pooles Wharf (Tyers and Groves 1997) | 5.92 |
| Bedfordshire, Chicksands Priory (Howard et a/ I998b) | 6.50 |
| London, HMS Victory (Barefoot I975) | 9.22 |
| London, Royal Arsenal Woolwich (Tyers 2000b) | 6.44 |
| Shropshire, Clunbury Church nr Ludlow (Tyers 2000a) | 5.29 |
| Worcestershire, Droitwich Upwich (Groves and Hillam 1997) | 7.24 |
| Worcestershire, Worcester Cathedral (Arnold et a/2004) | 9.26 |
| Yorkshire, Nostell Priory nr Wakefield (Tyers 1998b) | 7.01 |

## APPENDIX I

| hbcl |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 262 | 233 | 211 | 247 | 216 | 203 | 365 | 238 | 211 | 217 |
| 319 | 256 | 317 | 366 | 306 | 285 | 279 | 184 | 247 | 237 |
| 201 | 153 | 98 | 153 | 196 | 227 | 247 | 177 | 196 | 195 |
| 259 | 133 | 83 | 75 | 94 | 111 | 118 | 129 | 80 | 117 |
| 71 | 61 | 84 | 86 | 110 | 162 | 144 | 85 | 95 | 66 |
| 105 | 102 | 117 | 89 | 91 | 114 | 113 | 91 | 84 | 107 |
| 108 | 132 | 125 | 113 | 125 | 90 | 77 | 99 | 106 | 120 |
| 124 | 126 | 100 | 102 | 104 | 92 | 98 | 124 | 113 | 128 |
| 97 | 92 | 109 | 102 | 100 | 98 | 84 | 73 | 81 | 73 |
| 61 | 65 | 81 | 123 | 77 | 88 | 112 | 128 | 103 | 79 |
| 56 | 75 | 131 | 89 | 109 | 123 | 91 | 102 | 106 | 72 |
| 68 | 50 | 66 | 83 | 83 | 65 | 86 | 92 | 105 | 135 |
| 125 | 95 | 78 | 89 | 88 | 93 | 75 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| $\mathrm{hbc2}$ |  |  |  |  |  |  |  |  |  |
| 177 | 162 | 205 | 142 | 157 | 158 | 156 | 104 | 94 | 76 |
| 110 | 180 | 124 | 165 | 91 | 110 | 91 | 62 | 77 | 75 |
| 177 | 167 | 160 | 95 | 70 | 55 | 54 | 60 | 86 | 98 |
| 160 | 267 | 209 | 197 | 205 | 215 | 244 | 190 | 214 | 155 |
| 196 | 122 | 111 | 145 | 165 | 238 | 250 | 281 | 222 | 185 |
| 123 | 128 | 155 | 248 | 217 | 198 | 152 | 164 | 134 | 134 |
| 94 | 89 | 121 | 102 | 111 | 138 | 91 | 82 | 94 | 137 |
| 128 | 157 | 189 | 206 | 166 | 109 | 88 | 91 | 143 | 156 |
| 157 | 174 | 176 | 261 | 378 | 215 | 319 | 257 | 328 | 399 |
| 311 | 318 | 299 | 406 | 315 | 317 | 242 | 259 | 219 | 239 |
| 236 | 222 | 152 | 116 | 119 | 107 | 172 | 191 | 192 | 212 |
| 165 | 132 | 94 | 99 | 200 | 182 | 124 |  |  |  |


| hbc3 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 167 | 168 | 103 | 130 | 169 | 144 | 105 | 87 | 92 | 98 |
| 128 | 113 | 88 | 90 | 94 | 78 | 69 | 95 | 70 | 76 |
| 109 | 88 | 75 | 94 | 116 | 111 | 137 | 130 | 121 | 135 |
| 81 | 48 | 40 | 40 | 55 | 113 | 94 | 67 | 76 | 112 |
| 112 | 157 | 163 | 179 | 131 | 121 | 109 | 93 | 144 | 226 |
| 136 | 132 | 138 | 129 | 118 | 116 | 95 | 90 | 109 | 149 |
| 122 | 172 | 129 | 134 | 132 | 179 | 191 | 142 | 135 | 169 |
| 181 | 168 | 118 | 148 | 178 | 215 | 162 | 104 | 120 | 122 |
| 135 | 172 | 118 | 156 | 134 | 172 | 116 | 75 | 84 | 96 |
| 168 | 184 | 242 | 147 | 167 | 81 | 78 | 37 | 61 | 76 |
| 86 | 105 | 106 | 54 | 59 | 41 | 47 | 57 | 49 | 58 |
| 238 | 253 | 221 | 156 | 212 | 293 | 239 | 200 | 136 | 158 |
| 84 | 94 | 110 | 120 | 123 | 125 | 103 | 99 | 94 | 63 |
| 56 | 92 | 101 | 97 | 120 | 77 | 81 | 70 | 68 | 52 |
| 64 | 60 | 47 | 88 | 84 | 63 | 51 | 69 | 94 | 85 |
| 124 | 150 | 172 | 170 | 125 | 88 | 83 | 105 | 113 | 174 |
| 134 | 125 | 151 | 156 | 121 | 122 | 111 | 116 | 207 | 159 |
| 168 | 150 | 168 | 147 | 135 | 142 | 153 | 157 | 166 | 164 |
| 154 | 131 | 91 | 105 | 81 | 176 | 138 | 172 | 160 | 120 |
| 143 | 160 | 156 | 222 | 204 | 228 | 193 | 168 | 252 | 173 |
| 166 | 185 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| hbc4 |  |  |  |  |  |  |  |  |  |
| 296 | 325 | 295 | 209 | 234 | 261 | 328 | 268 | 295 | 221 |
| 213 | 204 | 221 | 184 | 165 | 112 | 157 | 109 | 72 | 107 |
| 226 | 117 | 182 | 258 | 225 | 163 | 151 | 178 | 189 | 232 |
| 199 | 138 | 192 | 170 | 143 | 133 | 203 | 203 | 158 | 158 |
| 154 | 156 | 151 | 112 | 147 | 176 | 165 | 97 | 82 | 97 |
| 110 | 137 | 161 | 93 | 124 | 118 | 158 | 141 | 110 | 65 |
| 75 | 98 | 146 | 172 | 117 | 154 | 146 | 96 | 77 | 106 |
| 127 | 134 | 161 | 116 | 124 | 128 | 126 | 113 | 122 | 89 |
| 106 | 148 | 162 | 124 | 101 | 130 | 157 | 126 | 116 | 119 |
| 148 | 103 | 100 | 91 | 141 | 121 | 150 | 129 | 124 | 117 |
| 115 | 97 | 128 | 135 | 136 | 161 | 110 | 128 | 114 | 124 |
| 116 | 117 | 111 | 110 | 146 | 111 | 117 | 116 | 114 | 132 |
| 98 | 126 | 142 | 181 | 122 | 96 | 93 | 109 | 114 | 97 |
| 157 | 124 | 100 | 127 | 130 | 95 | 100 | 79 | 90 | 103 |
| 99 | 96 | 106 | 113 | 99 | 113 | 108 | 93 | 107 | 114 |
| 121 | 110 | 122 | 113 | 90 | 83 | 123 | 126 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 130 |  |  |  |  |  |  |  |  |  |


| hbc5 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 165 | 95 | 100 | 40 | 117 | 83 | 58 | 48 | 44 | 51 |
| 88 | 63 | 51 | 55 | 46 | 41 | 52 | 47 | 52 | 69 |
| 42 | 103 | 77 | 45 | 69 | 63 | 58 | 56 | 51 | 85 |
| 63 | 56 | 51 | 89 | 53 | 65 | 81 | 61 | 75 | 75 |
| 63 | 68 | 84 | 47 | 45 | 73 | 75 | 49 | 56 | 63 |
| 66 | 50 | 97 | 60 | 61 | 80 | 66 | 73 | 65 | 73 |
| 43 | 90 | 60 | 44 | 60 | 42 | 48 | 49 | 45 | 76 |
| 125 | 161 | 124 | 79 | 80 | 87 | 197 | 136 | 104 | 102 |
| 147 | 127 | 132 | 144 | 145 | 115 | 135 | 111 | 153 | 111 |
| 104 | 117 | 115 | 80 | 101 | 109 | 90 | 117 | 106 | 65 |
| 91 | 92 | 74 | 69 | 84 | 79 | 101 | 87 | 84 | 101 |
| 99 | 100 | 83 | 83 | 103 | 83 | 113 | 65 | 55 | 78 |
| 123 | 64 | 70 | 94 | 94 | 81 | 62 | 65 | 79 | 98 |
| 78 | 63 | 95 | 71 | 74 | 58 | 103 | 70 | 74 | 71 |
| 65 | 71 | 81 | 53 | 76 | 85 | 59 | 61 | 51 | 48 |
| 87 | 79 | 96 | 58 | 72 | 64 | 108 | 60 | 57 | 55 |
| 58 | 92 | 79 | 101 | 68 | 96 | 59 | 49 | 44 | 59 |
| 110 | 92 | 98 | 69 | 80 | 72 | 74 | 77 | 78 | 86 |
| 72 | 120 | 101 | 71 | 73 | 105 | 121 | 92 | 113 | 109 |
| 134 | 73 | 84 | 69 | 81 | 78 | 107 | 94 | 73 | 79 |
| 88 | 65 | 83 | 100 | 97 | 81 | 56 | 89 | 74 | 88 |
| 65 | 73 | 57 | 57 | 126 | 87 | 58 | 57 | 77 | 83 |
| 66 | 68 | 87 | 89 | 47 | 58 | 49 | 68 | 65 | 55 |
| 85 | 69 | 97 | 153 | 115 | 65 | 81 | 53 | 74 | 129 |
| 106 | 99 | 81 | 110 | 92 | 83 | 68 | 91 | 73 | 94 |
| 62 | 86 | 59 | 74 | 57 | 49 | 95 | 77 |  |  |
| hbc6 |  |  |  |  |  |  |  |  |  |
| 199 | 167 | 169 | 179 | 202 | 159 | 220 | 201 | 236 | 141 |
| 151 | 158 | 186 | \|51 | 158 | 190 | 154 | 154 | 167 | 134 |
| 160 | 210 | 176 | 170 | 148 | 167 | 157 | 165 | 156 | \| 51 |
| 144 | 117 | 130 | 127 | 119 | 127 | 155 | 141 | 121 | 136 |
| 148 | 186 | 157 | 125 | 129 | 96 | 165 | 166 | 171 | 138 |
| 110 | 132 | 153 | 113 | 126 | 98 | 127 | 149 | 115 | 129 |
| 104 | 100 | 91 | 111 | 87 | 99 | 105 | 115 | 86 | 108 |
| 83 | 81 | 93 | 94 | 122 | 103 | 103 | 116 | 94 | 111 |
| 90 | 117 | 154 | 143 | 128 | 121 | 149 | 142 | 118 | 117 |
| 161 | 145 | 135 | 101 | 120 | 114 | 149 | 150 |  |  |


| hbc7 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | 62 | 78 | 69 | 91 | 154 | 99 | 86 | 79 | 65 |
| 56 | 56 | 44 | 42 | 42 | 33 | 30 | 54 | 78 | 72 |
| 92 | 81 | 79 | 67 | 88 | 51 | 37 | 40 | 72 | 46 |
| 47 | 41 | 33 | 36 | 38 | 23 | 49 | 68 | 61 | 52 |
| 69 | 71 | 77 | 84 | 137 | 101 | 135 | 129 | 112 | 116 |
| 93 | 64 | 79 | 118 | 121 | 114 | 73 | 75 | 88 | 84 |
| 116 | 70 | 81 | 63 | 86 | 62 | 51 | 48 | 39 | 36 |
| 39 | 47 | 43 | 57 | 26 | 15 | 19 | 28 | 35 | 52 |
| 46 | 31 | 26 | 24 | 20 | 18 | 32 | 36 | 47 | 61 |
| 51 | 39 | 29 | 40 | 47 | 49 | 52 | 53 | 44 | 48 |
| 39 | 48 | 59 | 70 | 79 | 72 | 43 | 45 | 41 | 50 |
| 56 | 73 | 72 | 103 | 71 | 80 | 68 | 48 | 54 | 61 |
| 64 | 59 | 72 | 52 | 39 | 38 | 44 | 60 | 44 | 48 |
| 57 | 50 | 44 | 45 | 24 | 27 | 31 | 32 | 65 | 47 |
| 37 | 75 | 60 | 46 | 55 | 28 | 31 | 41 | 48 | 44 |
| 46 | 50 | 47 | 36 | 35 | 45 | 38 | 39 | 38 | 41 |
| 34 | 28 | 37 | 25 | 59 | 47 | 44 | 29 | 30 | 34 |
| 28 | 26 | 34 | 44 | 36 | 31 | 35 | 48 | 30 | 29 |
| 34 | 43 | 43 | 31 | 26 | 31 | 55 | 40 |  |  |
| hbc9 |  |  |  |  |  |  |  |  |  |
| 193 | 164 | 143 | 178 | 136 | 120 | 82 | 83 | 95 | 116 |
| 85 | 144 | 218 | 137 | 107 | 136 | 189 | 171 | 128 | 147 |
| 148 | 160 | 181 | 190 | 183 | 192 | 209 | 149 | 163 | 142 |
| 164 | 160 | 93 | 155 | 180 | 273 | 220 | 288 | 268 | 258 |
| 282 | 308 | 309 | 409 | 325 | 304 | 233 | 271 | 172 | 261 |
| 217 | 256 | 295 | 240 | 323 | 235 | 235 | 177 | 177 | 165 |
| 140 | 240 | 178 | 126 | 305 | 172 | 189 | 179 | 150 | 162 |
| 133 | \| 51 | 188 | 167 | 186 | 162 | 105 | 155 | 155 | 128 |
| 166 | 153 | 134 | 159 | 117 | 142 | 154 | 165 | 117 | 126 |
| 172 | 174 | 109 | 114 | 133 | 140 | 160 | 136 | 140 | 194 |
| 122 | 216 | 199 | 247 | 281 | 182 | 202 | 200 | 166 | 306 |
| 143 | 300 | 222 | 230 | 171 | 158 | 213 | 243 | 290 | 381 |
| 277 | 244 | 261 | 305 | 198 | 181 | 177 | 211 | 187 | 190 |
| 162 | 111 | 198 | 150 | 102 | 90 | 119 | 202 | 201 | 230 |
| 185 | 207 | 141 | 124 | 118 | 123 | 105 | 127 | 169 | 162 |
| 145 | 130 | 174 | 233 | 191 | 185 | 138 | 67 | 44 | 65 |
| 78 | 78 | 124 | 104 | 110 | 80 | 87 | 112 | 83 |  |

hbcl0

| 90 | 61 | 82 | 107 | 106 | 108 | 186 | 116 | 104 | 95 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 109 | 114 | 97 | 136 | 127 | 134 | 159 | 149 | 129 | 166 |
| 154 | 94 | 109 | 91 | 123 | 118 | 73 | 92 | 116 | 159 |
| 145 | 171 | 200 | 127 | 167 | 157 | 182 | 287 | 249 | 164 |
| 152 | 158 | 113 | 138 | 104 | 88 | 129 | 102 | 123 | 126 |
| 104 | 97 | 97 | 112 | 127 | 128 | 122 | 182 | 516 | 379 |
| 296 | 279 | 190 | 172 | 195 | 223 | 263 | 203 | 197 | 148 |
| 119 | 81 | 49 | 61 | 94 | 75 | 76 | 69 | 86 | 84 |
| 79 | 83 | 77 | 72 | 96 | 66 | 76 | 65 | 70 | 63 |
| 64 | 62 | 53 | 85 | 63 | 82 | 96 | 96 | 98 | 101 |
| 109 | 116 | 133 | 235 | 118 | 176 | 143 | 131 | 116 | 133 |
| 159 | 259 | 290 | 381 | 277 | 321 | 250 | 300 | 192 | 155 |
| 143 | 181 | 156 | 162 | 82 | 75 | 95 | 108 | 67 | 74 |
| 115 | 159 | 115 | 147 | 137 | 137 | 105 | 117 | 101 | 100 |
| 79 | 112 | 173 | 167 | 112 | 98 | 147 | 192 | 162 | 173 |
| 127 | 86 | 71 | 92 | 80 | 98 | 115 | 136 | 79 | 74 |
| 82 | 116 | 101 | 137 | 112 | 122 | 118 | 94 | 74 | 113 |
| 108 |  |  |  |  |  |  |  |  |  |


| hbcll |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 111 | 93 | 78 | 103 | 82 | 103 | 92 | 72 | 84 | 92 |
| 109 | 101 | 130 | 146 | 149 | 168 | 104 | 127 | 147 | 123 |
| 127 | 122 | 108 | 121 | 124 | 117 | 110 | 85 | 97 | 121 |
| 114 | 107 | 118 | 64 | 116 | 94 | 83 | 115 | 106 | 90 |
| 80 | 99 | 108 | 85 | 148 | 107 | 116 | 99 | 103 | 128 |
| 116 | 114 | 113 | 80 | 103 | 148 | 88 | 98 | 125 | 131 |
| 103 | 104 | 100 | 113 | 114 | 165 | 119 | 116 | 136 | 113 |
| 142 | 110 | 145 | 110 | 206 | 155 | 151 | 117 | 78 | 110 |
| 112 | 139 | 174 | 213 | 213 | 173 | 229 | 180 | 190 | 185 |
| 167 | 128 | 96 | 131 | 140 | 159 | 133 | 124 | 129 | 203 |
| 190 |  |  |  |  |  |  |  |  |  |

hbcl2

| 91 | 73 | 90 | 104 | 83 | 99 | 125 | 119 | 92 | 86 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 98 | 95 | 155 | 209 | 196 | 170 | 112 | 142 | 128 | 132 |
| 174 | 133 | 151 | 145 | 139 | 168 | 161 | 136 | 152 | 139 |
| 114 | 110 | 122 | 116 | 88 | 68 | 59 | 98 | 126 | 113 |
| 124 | 133 | 117 | 110 | 101 | 91 | 87 | 93 | 107 | 102 |
| 96 | 129 | 121 | 129 | 108 | 119 | 95 | 128 | 86 | 106 |
| 106 | 90 | 98 | 99 | 110 | 131 | 149 | 140 | 100 | 154 |
| 125 | 150 | 213 | 172 | 147 | 152 | 184 | 160 | 172 | 112 |
| 135 | 127 | 144 | 121 | 112 | 120 | 102 | 109 | 113 | 93 |
| 115 | 60 | 57 | 113 | 120 | 114 | 135 | 100 | 83 | 89 |
| 87 | 109 | 78 | 92 | 60 | 47 | 75 | 74 | 97 | 143 |
| 105 | 74 | 84 | 82 | 107 | 91 | 112 | 88 | 84 | 84 |
| 71 | 79 | 67 | 67 | 79 | 96 | 71 | 85 | 77 | 78 |
| 78 | 96 | 71 | 104 | 92 | 88 | 92 | 103 | 147 | 99 |
| 111 | 92 | 90 | 78 | 84 | 107 | 127 | 168 | 245 | 158 |
| 237 | 211 | 192 | 181 | 131 | 118 | 108 | 121 | 134 | 165 |
| 156 | 170 | 159 | 111 | 89 | 150 | 188 | 118 | 165 | 121 |
| 133 | 97 | 104 | 84 | 113 | 86 | 117 | 136 | 149 | 139 |
| 110 | 141 | 165 | 158 | 216 | 186 |  |  |  |  |

hbcl3

| 116 | 138 | 111 | 148 | 145 | 143 | 203 | 130 | 127 | 137 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 142 | 175 | 146 | 176 | 135 | 139 | 115 | 106 | 124 | 107 |
| 105 | 78 | 63 | 55 | 79 | 107 | 126 | 131 | 132 | 95 |
| 136 | 123 | 121 | 98 | 91 | 101 | 128 | 108 | 117 | 106 |
| 92 | 111 | 118 | 107 | 112 | 102 | 98 | 93 | 100 | 90 |
| 124 | 101 | 115 | 98 | 121 | 120 | 114 | 121 | 150 | 151 |
| 133 | 141 | 126 | 106 | 89 | 86 | 63 | 93 | 119 | 84 |
| 105 | 111 | 112 | 109 | 96 | 114 | 104 | 100 | 97 | 99 |
| 87 | 120 | 98 | 97 | 121 | 109 | 85 | 106 | 86 | 98 |
| 101 | 60 | 106 | 108 | 113 | 121 | 123 | 113 | 97 | 110 |
| 102 | 110 | 112 | 99 | 104 | 136 | 162 | 131 | 139 | 123 |
| 105 | 101 | 119 | 119 | 116 | 121 | 145 | 172 | 130 | 107 |
| 128 | 130 | 108 | 134 | 104 | 103 | 134 | 98 | 70 | 60 |
| 77 | 78 | 76 | 71 | 63 | 75 | 75 | 67 | 54 | 69 |
| 72 | 67 | 72 | 63 | 81 | 80 | 84 | 77 | 83 | 85 |
| 83 | 77 | 66 | 62 | 71 | 75 | 81 | 76 | 90 | 90 |
| 94 | 91 | 109 | 104 | 95 | 99 | 89 | 103 | 104 | 94 |
| 116 | 114 | 85 | 85 | 94 | 85 | 104 | 81 | 109 | 90 |
| 97 | 89 | 86 | 80 | 70 | 71 | 61 | 69 | 78 | 67 |
| 71 | 69 | 70 | 55 | 57 | 72 | 77 | 82 | 74 | 80 |
| 77 | 76 | 68 | 65 | 69 | 70 | 79 | 84 | 81 | 86 |
| 76 | 94 |  |  |  |  |  |  |  |  |


| hbcl4 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | 127 | 108 | 144 | 143 | 107 | 158 | 136 | 148 | 123 |
| 111 | 161 | 154 | 182 | 172 | 174 | 143 | 158 | 171 | 136 |
| 113 | 147 | 109 | 203 | 200 | 144 | 183 | 177 | 232 | 223 |
| 135 | 132 | 100 | 159 | 231 | 140 | 126 | 134 | 127 | 178 |
| 141 | 147 | 128 | 184 | 137 | 130 | 139 | 97 | 118 | 159 |
| 139 | 185 | 200 | 303 | 190 | 180 | 197 | 189 | 286 | 148 |
| 171 | 148 | 188 | 217 | 215 | 229 | 180 | 175 | 197 | 162 |
| 216 | 165 | 157 | 164 | 148 | 101 | 131 | 151 | 142 | 146 |
| 134 | 135 | 183 | 142 | 137 | 129 | 97 | 95 | 135 | 142 |
| 131 | 113 | 164 | 162 | 161 | 164 | 111 | 79 | 148 | 95 |
| 107 | 119 | 122 | 115 | 93 | 161 | 93 | 116 | 79 | 54 |
| 51 | 86 | 63 | 54 | 48 | 42 | 42 | 47 | 46 | 42 |
| 32 | 40 | 44 | 52 | 60 | 57 | 48 | 52 | 57 | 50 |
| 51 | 50 | 59 | 56 | 67 | 56 | 67 | 59 | 81 | 84 |
| 68 | 65 | 69 | 95 | 96 | 127 | 91 | 89 | 94 | 78 |
| 68 | 83 | 126 | 106 | 115 | 114 | 146 | 136 | 129 | 96 |
| 102 | 99 | 98 | 173 | 138 | 142 | 101 | 134 |  |  |


| hbcl5 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 109 | 73 | 106 | 88 | 81 | 120 | 87 | 85 | 99 | 78 |
| 60 | 58 | 66 | 82 | 83 | 80 | 70 | 80 | 55 | 69 |
| 79 | 68 | 95 | 93 | 75 | 78 | 105 | 114 | 97 | 101 |
| 88 | 92 | 59 | 76 | 83 | 85 | 60 | 57 | 55 | 69 |
| 72 | 58 | 67 | 87 | 81 | 67 | 64 | 73 | 59 | 49 |
| 75 | 48 | 58 | 71 | 69 | 76 | 64 | 64 | 44 | 74 |
| 59 | 91 | 97 | 60 | 94 | 95 | 122 | 121 | 125 | 109 |
| 95 | 99 | 89 | 74 | 108 | 98 | 99 | 117 | 143 | 116 |
| 133 | 155 | 116 | 104 | 120 | 131 | 107 | 117 | 107 | 122 |
| 141 | 97 | 161 | 171 | 107 | 108 | 118 | 87 | 95 | 84 |
| 114 | 151 | 107 | 112 | 227 | 176 | 177 | 135 | 219 | 214 |
| 192 | 182 | 202 | 122 | 100 | 100 | 160 | 187 | 215 | 164 |
| 122 | 163 | 101 | 115 | 105 | 101 | 120 | 161 | 134 | 104 |
| 143 | 106 | 152 | 126 | 143 | 120 | 90 | 92 | 97 | 100 |
| 98 | 63 | 66 | 82 | 85 | 72 | 63 | 67 | 94 | 93 |
| 81 | 55 | 62 | 68 | 100 | 64 | 53 | 55 | 76 | 85 |
| 85 | 93 | 77 | 116 | 121 | 64 | 60 | 76 | 104 | 103 |
| 108 | 93 | 110 | 107 | 80 | 81 | 95 | 110 | 97 | 135 |
| 113 | 152 | 117 | 121 | 133 | 120 |  |  |  |  |

hbcl6

| 140 | 112 | 153 | 208 | 156 | 177 | 119 | 128 | 111 | 135 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 123 | 110 | 157 | 110 | 137 | 181 | 165 | 177 | 178 | 122 |
| 151 | 139 | 142 | 178 | 161 | 135 | 118 | 89 | 111 | 80 |
| 103 | 102 | 85 | 82 | 90 | 80 | 89 | 98 | 88 | 63 |
| 84 | 101 | 99 | 79 | 79 | 72 | 76 | 80 | 81 | 67 |
| 95 | 82 | 101 | 101 | 118 | 142 | 112 | 105 | 95 | 121 |
| 155 | 101 | 129 | 128 | 119 | 121 | 90 | 150 | 141 | 129 |
| 160 | 123 | 141 | 149 | 143 | 112 | 107 | 86 | 136 | 108 |
| 114 | 134 | 95 | 113 | 98 | 66 | 78 | 102 | 156 | 115 |
| 159 | 117 | 130 | 110 | 103 | 72 | 107 | 108 | 114 | 125 |
| 123 | 127 | 111 | 142 | 128 | 147 | 180 | 141 | 63 | 57 |
| 68 | 78 | 67 |  |  |  |  |  |  |  |


| $\mathrm{hbcI7}$ |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 248 | 198 | 213 | 196 | 232 | 184 | 192 | 163 | 132 | 187 |
| 233 | 198 | 147 | 141 | 184 | 176 | 113 | 135 | 162 | 173 |
| 149 | 98 | 118 | 152 | 138 | 141 | 120 | 129 | 124 | 104 |
| 174 | 137 | 103 | 105 | 131 | 106 | 105 | 127 | 143 | 118 |
| 145 | 112 | 77 | 79 | 93 | 122 | 80 | 102 | 107 | 92 |
| 99 | 82 | 113 | 76 | 83 | 92 | 68 | 73 | 68 | 95 |
| 107 | 132 | 116 | 84 | 125 | 89 | 93 | 101 | 93 | 255 |


| hbcl8 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 169 | 186 | 208 | 213 | 200 | 115 | 135 | 207 | 227 |
| 232 | 199 | 287 | 254 | 176 | 503 | 476 | 331 | 242 | 279 |
| 241 | 199 | 268 | 242 | 175 | 175 | 144 | 145 | 157 | 98 |
| 160 | 94 | 138 | 113 | 108 | 119 | 117 | 118 | 110 | 109 |
| 105 | 110 | 134 | 147 | 143 | 130 | 113 | 151 | 102 | 125 |
| 95 | 74 | 85 | 68 | 78 | 76 | 79 | 88 | 89 | 76 |
| 89 | 107 | 113 | 102 | 106 | 70 | 110 | 87 | 86 | 108 |
| 119 | 97 | 85 | 126 | 122 | 91 | 104 | 101 | 128 | 102 |
| 118 | 150 | 129 | 111 | 86 | 74 | 100 | 148 | 88 | 119 |
| 188 | 131 | 107 | 113 | 101 | 115 | 94 | 109 | 127 | 118 |
| 125 | 120 | 133 | 106 | 131 | 75 | 128 | 80 | 99 | 88 |
| 52 | 87 | 100 | 112 | 139 | 136 | 157 | 96 | 125 | 121 |
| 117 | 143 | 119 | 111 | 101 | 194 | 149 | 137 | 147 | 170 |
| 150 | 169 | 161 | 176 | 164 | 148 | 167 | 149 | 87 | 114 |
| 136 | 112 | 190 | 129 | 103 | 164 | 145 | 143 | 212 | 130 |
| 180 | 216 | 168 | 156 | 139 | 170 | 158 | 227 | 303 | 257 |
| 155 | 187 | 147 | 147 | 118 | 204 | 138 | 120 | 154 | 166 |
| 146 | 101 | 114 | 103 | 159 | 170 | 146 | 211 |  |  |
| hbcl9 |  |  |  |  |  |  |  |  |  |
| 90 | 122 | 106 | 83 | 103 | 145 | 87 | 110 | 150 | 111 |
| 101 | 74 | 61 | 76 | 106 | 83 | 92 | 139 | 109 | 110 |
| 98 | 123 | 112 | 119 | 121 | 99 | 97 | 106 | 94 | 100 |
| 118 | 116 | 90 | 72 | 81 | 100 | 86 | 91 | 86 | 102 |
| 82 | 125 | 91 | 76 | 89 | 87 | 114 | 106 | 160 | 87 |
| 97 | 84 | 69 | 56 | 98 | 162 | 115 | 164 | 112 | 142 |
| 104 | 113 | 108 | 131 | 95 | 106 | 173 | 170 | 165 | 162 |
| 153 | 254 | 235 | 232 | 224 | 241 | 119 | 119 | 166 | 196 |
| 185 | 185 | 224 | 188 |  |  |  |  |  |  |
| hbc20 |  |  |  |  |  |  |  |  |  |
| 168 | 144 | 120 | 126 | 144 | 124 | 104 | 126 | 220 | 159 |
| 150 | 154 | 162 | 134 | 136 | 87 | 148 | 159 | 132 | 102 |
| 93 | 109 | 113 | 123 | 106 | 115 | 111 | 96 | 136 | 115 |
| 76 | 69 | 75 | 69 | 71 | 78 | 91 | 78 | 96 | 114 |
| 75 | 67 | 60 | 97 | 77 | 106 | 83 | 77 | 91 | 63 |
| 84 | 64 | 55 | 64 | 67 | 77 | 78 | 105 | 114 | 132 |
| 132 | 79 | 124 | 112 | 99 | 117 | 98 | 103 | 124 | 99 |
| 89 | 96 | 81 | 100 | 113 | 105 | 93 | 100 | 58 | 67 |


| hbc2\| |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 101 | 100 | 91 | 81 | 118 | 86 | 65 | 90 | 77 | 97 |
| 89 | 90 | 88 | 71 | 73 | 87 | 105 | 98 | 76 | 76 |
| 56 | 84 | 97 | 99 | 109 | 154 | 111 | 100 | 135 | 136 |
| 124 | 113 | 105 | 110 | 116 | 86 | 85 | 83 | 86 | 89 |
| 129 | 116 | 113 | 123 | 94 | 105 | 95 | 96 | 130 | 104 |
| 97 | 80 | 89 | 124 | 114 | 135 | 119 | 150 | 123 | 116 |
| 138 | 106 | 115 | 79 | 92 | 111 | 132 | 105 | 96 | 133 |
| 109 | 98 | 131 | 155 | 123 | 126 | 164 | 152 | 151 | 172 |
| 135 | 132 | 149 | 181 | 139 | 167 | 166 | 154 | 158 | 92 |
| 132 | 140 | 145 | 138 | 199 | 205 | 184 | 176 | 190 | 174 |
| 268 | 198 | 215 | 202 | 252 | 201 | 211 | 126 | 177 | 227 |
| 185 | 258 | 209 | 170 | 144 | 152 | 163 | 140 | 211 | 116 |
| 106 | 168 | 164 | 130 | 155 | 155 | 150 | 144 | 129 | 181 |
| 168 | 149 | 134 | 94 | 157 | 155 | 172 | 180 | 188 | 175 |
| 164 | 130 | 139 | 181 | 198 | 161 | 162 | 162 | 168 | 129 |
| 114 | 106 | 127 | 137 | 121 | 134 | 140 | 112 | 159 | 151 |
| 169 | 202 | 159 | 153 | 149 | 180 | 222 | 122 | 165 | 174 |
| 147 | 138 | 133 | 161 | 155 | 146 | 167 | 143 | 159 | 176 |
| 176 | 152 | 142 | 107 | 172 | 129 | 116 | 109 | 84 | 110 |
| 112 | 76 | 72 | 95 | 112 | 115 | 125 | 118 | 120 | 103 |
| 120 | 109 | 86 | 94 | 119 | 126 | 101 | 92 | 122 | 170 |
| 190 | 164 | 149 | 108 | 79 | 69 |  |  |  |  |


| hbc22 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 340 | 300 | 284 | 263 | 202 | 183 | 166 | 195 | 185 | 167 |
| 203 | 190 | 178 | 211 | 146 | 158 | 116 | 156 | 123 | 185 |
| 115 | 91 | 86 | 89 | 93 | 82 | 87 | 83 | 91 | 123 |
| 140 | 153 | 162 | 132 | 167 | 117 | 103 | 157 | 108 | 121 |
| 102 | 114 | 103 | 110 | 111 | 139 | 131 | 110 | 129 | 137 |
| 85 | 82 | 67 | 66 | 81 | 131 | 112 | 112 | 108 | 96 |
| 84 | 94 | 103 | 81 | 92 | 101 | 95 | 95 | 112 | 113 |
| 119 | 91 | 111 | 81 | 133 | 113 | 110 | 89 | 94 | 85 |
| 101 | 94 | 92 | 121 | 110 | 76 | 110 | 87 | 130 | 183 |
| 129 | 126 | 129 | 143 | 110 | 130 | 116 | 147 | 156 | 149 |
| 136 | 118 | 113 | 131 | 115 | 115 | 108 | 141 | 97 | 86 |
| 114 | 102 | 107 | 127 | 113 | 81 | 85 | 89 | 125 | 109 |
| 102 | 77 | 53 | 83 | 86 | 91 | 116 | 114 | 87 | 80 |
| 100 | 99 | 81 | 115 | 92 | 100 | 95 | 88 | 75 | 66 |
| 77 | 71 | 86 | 67 | 76 | 85 | 78 | 85 | 89 | 84 |
| 106 | 89 | 87 | 97 | 102 | 117 | 84 | 82 | 84 | 68 |
| 65 | 75 | 65 | 94 | 92 | 92 | 83 | 91 | 86 | 79 |
| 99 | 68 | 63 | 70 | 65 | 68 | 87 | 90 | 138 | 117 |
| 82 | 84 | 122 | 97 | 102 | 138 | 84 | 95 | 72 | 93 |
| 90 | 94 | 86 | 97 | 111 | 102 | 85 | 100 | 128 | 128 |
| 109 | 133 | 94 | 78 | 75 | 101 | 108 | 128 | 116 | 149 |
| 122 | 138 | 107 | 112 |  |  |  |  |  |  |


| hbc 23 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 103 | 106 | 82 | 110 | 142 | 141 | 182 | 127 | 155 | 98 |
| 170 | 138 | 159 | 158 | 191 | 200 | 214 | 179 | 155 | 186 |
| 142 | 135 | 157 | 141 | 138 | 144 | 85 | 135 | 140 | 89 |
| 179 | 124 | 111 | 90 | 93 | 119 | 125 | 135 | 123 | 146 |
| 108 | 109 | 123 | 83 | 74 | 88 | 102 | 159 | 177 | 140 |
| 157 | 173 | 141 | 168 | 131 | 136 | 117 | 110 | 191 | 134 |
| 132 | 133 | 124 | 169 | 119 | 154 | 122 | 140 | 119 | 132 |
| 136 | 97 | 110 | 106 | 104 | 110 | 139 | 187 | 142 | 153 |
| 120 | 162 | 165 | 184 | 154 | 144 | 208 | 184 | 231 | 262 |
| 255 | 178 | 190 | 174 | 235 |  |  |  |  |  |

## hbc24

| 114 | 120 | 112 | 146 | 122 | 117 | 106 | 134 | 100 | 124 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 142 | 112 | 115 | 90 | 113 | 138 | 155 | 161 | 196 | 174 |
| 133 | 138 | 151 | 158 | 232 | 186 | 197 | 162 | 183 | 173 |
| 148 | 95 | 113 | 140 | 154 | 157 | 110 | 84 | 101 | 98 |
| 99 | 88 | 110 | 97 | 99 | 126 | 91 | 105 | 111 | 88 |
| 83 | 75 | 87 | 104 | 94 | 81 | 70 | 57 | 69 | 74 |
| 92 | 88 | 90 | 90 | 84 | 74 | 94 | 92 | 110 | 87 |
| 95 | 100 | 79 | 86 | 58 | 69 | 76 | 98 | 75 | 77 |
| 75 | 77 | 78 | 100 | 83 | 104 | 98 | 84 | 93 | 98 |
| 122 | 78 | 111 | 125 | 96 | 105 | 112 | 119 | 114 | 124 |
| 147 | 122 | 125 | 137 | 123 | 129 | 101 | 67 | 96 | 84 |
| 101 | 103 | 81 | 113 | 105 | 63 | 78 | 91 | 100 | 98 |
| 107 | 90 | 91 | 89 | 81 | 74 | 68 | 66 | 97 | 97 |
| 80 | 89 | 78 | 102 | 92 | 85 | 116 | 77 | 72 |  |


| hbc25 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 444 | 425 | 272 | 402 | 299 | 311 | $43 \mid$ | 280 | 214 | 179 |
| 277 | 179 | 163 | 239 | 184 | 224 | 128 | 96 | 98 | 185 |
| 199 | 168 | 364 | 170 | 275 | 177 | 174 | 165 | 181 | 158 |
| 199 | 198 | 151 | 212 | 180 | 139 | 149 | 207 | 314 | 232 |
| 246 | 200 | 242 | 252 | 178 | 243 | 209 | 146 | 181 | 156 |
| 213 | 165 | 92 | 123 | 97 | 120 | 89 | 82 | 141 | 154 |
| 111 | 95 | 109 | 140 | 113 | 91 | 166 | 218 | 170 | 185 |
| 181 | 140 | 137 | 120 | 88 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| hbc26 |  |  |  |  |  |  |  |  |  |
| 152 | 137 | 161 | 171 | 140 | 159 | 175 | 286 | 188 | 137 |
| 231 | 171 | 232 | 128 | 123 | 91 | 214 | 216 | 184 | 315 |
| 177 | 263 | 247 | 110 | 101 | 111 | 99 | 125 | 105 | 111 |
| 141 | 169 | 215 | 181 | 197 | 309 | 232 | 250 | 144 | 197 |
| 233 | 181 | 294 | 214 | 132 | 235 | 276 | 248 | 232 | 147 |
| 189 | 187 | 199 | 156 | 153 | 195 | 162 | 131 | 154 | 245 |
| 186 | 174 | 142 | 157 | 274 | 245 | 199 | 156 | 167 | 159 |
| 125 | 160 | 127 | 147 | 205 | 153 | 116 | 117 | 147 | 113 |
| 110 | 152 | 142 | 151 | 165 |  |  |  |  |  |


| hbc27 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87 | 50 | 56 | 102 | 122 | 133 | 172 | 400 | 213 | 168 |
| 272 | 218 | 288 | 137 | 140 | 203 | 310 | 253 | 275 | 334 |
| 330 | 304 | 315 | 185 | 176 | 207 | 262 | 274 | 315 | 272 |
| 445 | 333 | 243 | 322 | 371 | 371 | 265 | 314 | 211 | 286 |
| 310 | 224 | 364 | 327 | 239 | 387 | 292 | 351 | 234 | 99 |
| 102 | 102 | 169 | 120 | 172 | 201 | 168 | 140 | 159 | 217 |
| 236 | 121 | 108 | 142 | 198 | 154 | 158 | 133 | 145 | 174 |
| 150 | 232 | 152 | 209 |  |  |  |  |  |  |
| hbc28 |  |  |  |  |  |  |  |  |  |
| 437 | 284 | 235 | 345 | 247 | 374 | 206 | 158 | 137 | 228 |
| 256 | 217 | 349 | 198 | 284 | 240 | 124 | 105 | 76 | 79 |
| 135 | 99 | 130 | 157 | 178 | 154 | 180 | 174 | 226 | 229 |
| 202 | 163 | 203 | 196 | 136 | 345 | 248 | 179 | 231 | 309 |
| 297 | 192 | 107 | 164 | 157 | 235 | 127 |  |  |  |
| hbc29 |  |  |  |  |  |  |  |  |  |
| 157 | 155 | 142 | 188 | 129 | 182 | 104 | 89 | 87 | 158 |
| 187 | 134 | 211 | 136 | 322 | 240 | 136 | 133 | 120 | 85 |
| 114 | 103 | 101 | 144 | 180 | 218 | 264 | 249 | 345 | 306 |
| 287 | 197 | 263 | 271 | 190 | 355 | 326 | 207 | 477 | 317 |
| 373 | 322 | 149 | 166 | 166 | 178 | 124 | 217 | 207 | 267 |
| 183 | 154 | 270 | 272 | 271 | 189 | 198 | 246 | 230 | 214 |
| 173 | 160 | 120 | 123 | 119 | 123 | 148 | 158 | 115 | 122 |
| 111 | 131 |  |  |  |  |  |  |  |  |
| hbc30 |  |  |  |  |  |  |  |  |  |
| 161 | 123 | 352 | 128 | 96 | 194 | 168 | 263 | 108 | 106 |
| 138 | 210 | 210 | 212 | 231 | 156 | 214 | 205 | 130 | 103 |
| 147 | 183 | 232 | 264 | 219 | 340 | 278 | 223 | 297 | 381 |
| 360 | 281 | 370 | 240 | 303 | 344 | 248 | 397 | 409 | 305 |
| 537 | 348 | 440 | 286 | 204 | 180 | 224 |  |  |  |
| hbc31 |  |  |  |  |  |  |  |  |  |
| 459 | 451 | 375 | 409 | 270 | 427 | 491 | 310 | 394 | 239 |
| 318 | 316 | 215 | 232 | 229 | 313 | 341 | 206 | 267 | 271 |
| 248 | 284 | 195 | 232 | 225 | 197 | 340 | 242 | 213 | 217 |
| 187 | 219 | 191 | 160 | 188 | 197 | 225 | 149 | 139 | 146 |
| 169 | 144 | 158 | 207 | 159 | 172 | 153 | 138 | 169 | 104 |
| 154 | 146 | 127 | 154 | 152 | 138 | 139 | 154 | 139 | 102 |
| 180 | 162 | 175 | 178 | 147 | 157 | 183 | 164 |  |  |
| hbc32 |  |  |  |  |  |  |  |  |  |
| 179 | 253 | 203 | 207 | 311 | 279 | 252 | 262 | 240 | 259 |
| 243 | 226 | 209 | 242 | 285 | 235 | 223 | 286 | 253 | 295 |
| 286 | 268 | 271 | 248 | 219 | 259 | 221 | 186 | 188 | 180 |
| 165 | 166 | 193 | 208 | 216 | 265 | 201 | 154 | 154 | 165 |
| 233 | 192 | 230 | 164 | 185 | 155 | 147 | 190 | 158 | 142 |
| 118 | 96 | 112 | 118 | 143 | 149 | 128 | 175 | 128 | 150 |
| 177 | 251 | 224 | 221 | 261 | 308 | 235 | 193 | 166 |  |


| hbc33 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 103 | 77 | 56 | 88 | 121 | 161 | 173 | 269 | 179 |
| 183 | 166 | 174 | 207 | 151 | 154 | 133 | 125 | 93 | 123 |
| 108 | 132 | 142 | 184 | 138 | 168 | 166 | 112 | 100 | 100 |
| 94 | 121 | 124 | 126 | 168 | 159 | 160 | 171 | 147 | 232 |
| 226 | 184 | 183 | 214 | 196 | 214 | 204 | 250 | 226 | 193 |
| 151 | 124 | 143 | 147 | 143 | 122 | 91 | 88 | 79 | 79 |
| 97 | 77 | 80 | 82 | 65 | 63 | 81 | 61 | 93 | 73 |
| 92 | 118 | 150 | 132 | 140 | 140 | 130 | 140 | 187 | 174 |
| 199 | 189 | 187 | 114 | 98 | 85 | 100 | 142 | 120 | 93 |
| 119 | 101 | 115 | 82 | 90 | 119 | 155 | 152 | 115 | 164 |
| 169 | 117 | 151 | 155 | 163 | 140 | 134 | 103 | 122 | 127 |
| 140 | 155 | 179 | 153 | 122 | 130 | 97 | 119 | 92 | 120 |
| 112 | 118 | 139 | 85 | 132 | 89 | 89 | 109 | 93 | 148 |
| 110 | 91 | 90 | 112 | 112 |  |  |  |  |  |
| hbc34 |  |  |  |  |  |  |  |  |  |
| 205 | 182 | 294 | 220 | 213 | 288 | \|81 | 198 | 269 | 253 |
| 242 | 223 | 265 | 231 | 252 | 195 | 256 | 182 | 265 | 205 |
| 261 | 283 | 124 | 101 | 102 | 87 | 134 | 213 | 201 | 223 |
| 216 | 201 | 137 | 218 | 160 | 173 | 162 | 144 | 162 | 196 |
| 185 | 160 | 161 | 171 | 141 | 142 | 120 | 127 | 148 | 152 |
| 110 | 157 | 127 | 129 | 100 | 155 | 88 | 150 | 158 | 164 |
| 135 | 149 | 126 | 95 | 95 | 102 | 155 | 153 | 133 | 139 |
| 120 | 117 | 117 | 105 | 103 | 110 | 121 | 107 | 116 | 111 |
| 189 | 139 | 139 | 145 | 207 | 164 | 162 | 176 | 183 | 159 |
| 90 | 97 | 131 | 106 | 76 | 74 | 62 | 67 | 80 | 64 |
| 106 | 97 | 106 | 96 | 105 | 96 | 98 | 87 | 83 | 68 |
| 94 | 83 | 103 | 113 | 128 | 124 | 132 | 101 | 83 | 90 |
| 87 | 61 | 83 | 79 | 78 | 77 | 70 | 77 | 98 | 119 |
| 79 | 109 | 94 | 87 | 89 | 105 | 103 | 92 | 87 | 89 |
| 98 | 58 | 75 | 68 | 90 | 75 | 64 | 72 | 56 | 82 |
| 69 | 99 | 66 | 68 | 57 | 63 | 74 | 55 | 53 | 48 |
| 52 | 66 | 55 | 69 | 75 | 74 | 72 | 50 | 83 | 64 |
| 65 | 49 | 63 | 79 | 87 | 57 | 54 | 53 | 51 | 49 |
| 57 | 51 | 53 | 47 | 40 | 42 | 38 | 40 | 41 | 49 |
| 34 | 28 | 28 | 37 |  |  |  |  |  |  |
| hbc35 |  |  |  |  |  |  |  |  |  |
| 219 | 160 | 117 | 140 | 107 | 96 | 80 | 307 | 362 | 603 |
| 511 | 408 | 251 | 238 | 356 | 255 | 213 | 267 | 205 | 297 |
| 272 | 312 | 241 | 232 | 225 | 179 | 153 | 147 | 165 | 189 |
| 166 | 293 | 189 | 205 | 259 | 208 | 304 | 168 | 251 | 204 |
| 132 | 209 | 209 | 246 | 233 | 257 | 202 | 158 | 215 | 208 |
| 272 | 207 | 264 | 213 | 275 | 204 | 149 | 160 | 172 | 188 |
| 164 | 171 |  |  |  |  |  |  |  |  |


| hbc36 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 183 | 109 | 124 | 115 | 63 | 90 | 71 | 164 | 286 | 226 |
| 185 | 334 | 208 | 270 | 259 | 234 | 266 | 247 | 295 | 243 |
| 227 | 203 | 155 | 204 | 196 | 204 | 155 | 165 | 138 | 181 |
| 155 | 152 | 155 | 151 | 144 | 144 | 146 | 155 | 110 | 146 |
| 104 | 103 | 80 | 111 | 131 | 120 | 124 | 134 | 125 | 155 |
| 114 | 104 | 112 | 130 | 110 | 99 | 111 | 88 | 74 | 91 |
| 95 | 107 | 94 | 87 | 79 | 60 | 58 | 77 | 91 | 118 |
| 136 | 163 | 87 | 103 | 108 | 105 | 112 | 109 | 108 | 127 |
| 109 | 83 | 102 | 103 | 97 | 117 | 96 | 78 | 93 |  |

hbc37

| 333 | 298 | 245 | 281 | 304 | 383 | 294 | 316 | 193 | 296 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 269 | 225 | 314 | 195 | 168 | 178 | 183 | 243 | 200 | 205 |
| 240 | 214 | 189 | 193 | 151 | 146 | 109 | 179 | 151 | 244 |
| 179 | 150 | 135 | 160 | 226 | 163 | 166 | 131 | 63 | 103 |
| 92 | 124 | 139 | 151 | 185 | 144 | 197 | 167 | 167 | 158 |
| 136 | 156 | 195 | 157 | 131 | 143 | 130 | 169 | 134 | 145 |


| hbc38 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 307 | 175 | 225 | 232 | 193 | 250 | 189 | 383 | 304 | 210 |
| 161 | 205 | 169 | 202 | 195 | 189 | 214 | 161 | 188 | 268 |
| 198 | 187 | 236 | 247 | 249 | 233 | 240 | 96 | 105 | 169 |
| 160 | 215 | 281 | 332 | 101 | 72 | 76 | 95 | 79 | 61 |
| 50 | 85 | 89 | 83 | 69 | 76 | 112 | 129 | 156 | 142 |
| 181 | 81 | 113 | 190 | 226 | 157 | 156 | 156 | 122 | 99 |
| 86 | 67 | 119 | 106 | 102 | 116 | 86 | 98 | 99 | 82 |
| 89 | 104 | 104 | 126 | 124 | 126 | 107 | 64 | 57 | 57 |
| 87 | 72 | 91 | 124 | 166 | 127 | 90 | 116 | 99 | 91 |
| 110 | 83 | 101 | 63 | 41 | 56 | 59 | 75 | 74 | 74 |


| hbc39 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 96 | 106 | 103 | 117 | 179 | 140 | 87 | 111 | 82 |
| 123 | 183 | 139 | 144 | 146 | 120 | 117 | 146 | 143 | 107 |
| 101 | 102 | 99 | 134 | 79 | 90 | 106 | 85 | 90 | 88 |
| 103 | 106 | 98 | 131 | 108 | 139 | 122 | 83 | 129 | 120 |
| 94 | 79 | 83 | 81 | 101 | 114 | 91 | 154 | 145 | 133 |
| 158 | 150 | 170 | 193 | 197 | 239 | 254 | 199 | 136 | 166 |
| 164 | 139 | 170 | 122 | 129 | 132 | 85 | 132 | 144 | 111 |
| 150 | 126 | 86 | 82 | 106 | 161 | 161 | 164 | 106 | 156 |
| 133 | 123 | 112 | 94 | 106 | 125 | 163 | 183 | 236 | 174 |
| 167 | 163 | 157 | 195 | 133 | 160 | 117 | 148 | 186 | 142 |
| 109 | 162 | 145 | 175 | 134 | 178 | 158 | 174 | 136 | 169 |
| 186 | 114 | 109 | 109 | 109 | 127 | 155 | 142 | 117 | 114 |
| 165 | 138 | 163 | 124 | 108 | 103 | 157 | 122 | 166 | 146 |
| 108 | 113 | 150 | 143 | 190 | 118 | 118 | 138 | 112 | 80 |
| 116 | 151 | 127 | 129 | 106 | 109 | 154 | 123 | 129 | 146 |
| 116 | 101 | 146 | 124 | 140 | 147 | 189 | 142 | 178 | 152 |
| 130 | 105 | 126 | 117 | 118 | 178 | 209 | 107 | 193 | 203 |
| 149 | 141 | 113 | 82 | 82 | 123 | 63 | 70 | 59 | 39 |
| 56 | 44 | 47 | 38 | 44 | 56 | 64 | 59 | 67 | 55 |


| hbc43 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 269 | 197 | 288 | 182 | 140 | 116 | 91 | 131 | 133 | 92 |
| 115 | 93 | 129 | 94 | 137 | 126 | 140 | 171 | 199 | 170 |
| 223 | 134 | 79 | 52 | 41 | 43 | 45 | 47 | 71 | 103 |
| 80 | 70 | 117 | 98 | 173 | 145 | 131 | 109 | 79 | 106 |
| 108 | 112 | 106 | 184 | 91 | 122 | 162 | 147 | 143 | 159 |
| 152 | 173 | 215 | 149 | 188 | 256 | 187 | 123 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| hbc44 |  |  |  |  |  |  |  |  |  |
| 255 | 301 | 210 | 206 | 122 | 201 | 247 | 167 | 233 | 169 |
| 193 | 261 | 187 | 137 | 95 | 105 | 70 | 104 | 117 | 178 |
| 168 | 172 | 220 | 185 | 161 | 267 | 209 | 243 | 143 | 109 |
| 238 | 165 | 183 | 205 | 289 | 208 | 188 | 259 | 138 | 132 |
| 82 | 99 | 77 | 95 | 79 | 151 | 230 | 119 | 98 | 65 |
| 99 | 90 | 134 | 202 | 105 | 102 | 104 | 123 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| hbc45 |  |  |  |  |  |  |  |  |  |
| 255 | 159 | 110 | 126 | 150 | 284 | 209 | 203 | 198 | 291 |
| 322 | 193 | 231 | 195 | 200 | 214 | 173 | 164 | 186 | 114 |
| 68 | 58 | 72 | 64 | 69 | 54 | 78 | 196 | 140 | 190 |
| 120 | 113 | 146 | 123 | 95 | 60 | 61 | 102 | 89 | 139 |
| 135 | 200 | 179 | 146 | 172 | 69 | 85 | 56 | 71 | 64 |
| 86 | 74 | 102 | 95 | 84 | 91 | 104 | 121 | 82 | 119 |
| 129 | 92 | 87 | 85 | 71 | 89 | 70 | 83 | 90 | 87 |
| 84 | 53 | 76 | 60 | 93 | 77 | 84 | 98 |  |  |

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

