ISSN 1749-8775

ALL SAINTS' CHURCH, SANCTON, NEAR MARKET WEIGHTON, EAST YORKSHIRE TREE-RING ANALYSIS OF TIMBERS FROM THE BELFRY FLOOR AND BELLFRAME

SCIENTIFIC DATING REPORT

Martin Bridge

ARCHAEOLOGICAL SCIENCE Research Department Report Series 82-2009

ALL SAINTS' CHURCH, SANCTON, NEAR MARKET WEIGHTON, EAST YORKSHIRE

TREE-RING ANALYSIS OF TIMBERS FROM THE BELFRY FLOOR AND BELLFRAME

Dr M C Bridge

NGR: SE 899 392

© English Heritage

ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk or by writing to: English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

Fourteen timbers were sampled from the belfry floor and the bellframe. Six samples were found to have too few rings to be considered for further analysis. Six samples, representing timbers in both the belfry floor and the bellframe, matched each other and appear to form a group of timbers most likely felled at the same time. Their ring-width series were averaged to produce a site chronology, which was subsequently dated to the period AD 1620–1719. Three timbers retained complete sapwood; two were found to have been felled in winter AD 1719/20 and one in spring AD 1720. This dates the construction of the present belfry floor and bellframe to AD 1720, or within a year or two after this date. Two further samples failed to date.

CONTRIBUTOR

Dr M C Bridge

ACKNOWLEDGEMENTS

I would to thank the churchwarden, Mr Jim Reckitt, for arranging access and his assistance during the fieldwork. The work was commissioned by Isabelle Parsons (EH) and sketch drawings provided by Graham Pledger (EH). Cathy Tyers (Sheffield University) and John Meadows (EH) are thanked for their comments on an earlier draft of this report.

ARCHIVE LOCATION

Humber Sites and Monuments Record The Old School Northumberland Avenue Hull HU2 0LN

DATE OF INVESTIGATION

2008-9

CONTACT DETAILS

Dr M C Bridge UCL Institute of Archaeology, 31–34 Gordon Square, London WC1H 0PY E-mail: <u>martin.bridge@ucl.ac.uk</u>

CONTENTS

Introduction	I
Methodology	I
Ascribing felling dates and date ranges	.2
Results	2
Discussion	3
BibliographyI	0
AppendixI	I

INTRODUCTION

Sancton lies about 3km to the south-east of Market Weighton, and the church is at the north end of the village (Figs I and 2). The bellframe of this grade II* listed church sits in the fifteenth-century octagonal west tower, and had been previously surveyed by the EH Senior Conservation Engineer, Graham Pledger. The bellframe itself is supported by four north-south spanning beams, which overlie three east-west spanning belfry floor beams at the lowest level. The central of these three beams is clearly reused, but it was thought that the other beams and the bellframe were contemporary. Dating was requested by Dr Diane Green (EH Historic Buildings Inspector) in order to establish whether the belfry floor is indeed of the same age as the bellframe, and to inform decisions about lifting and so retaining the bellframe and its foundations, whilst accommodating a new ring of bells below it.

METHODOLOGY

The site was visited in December 2008. In the initial assessment, accessible oak timbers with more than 50 rings and where possible traces of sapwood were sought, although slightly shorter sequences are sometimes sampled if little other material is available. Those building timbers judged to be potentially useful were cored using a 15mm auger attached to an electric drill. The cores were glued to wooden laths, labelled, and stored for subsequent analysis. The cores removed were polished on a belt sander using 60 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their tree-ring sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by lan Tyers (2004). Cross-matching was accomplished by a combination of visual matching and a process of qualified statistical comparison by computer. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted to allow visual comparisons to be made between sequences on a light table. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples crossmatch.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-value ranges of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external

characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring, ie if it has only the spring vessels or early wood formed, or the latewood or summer growth, a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem (tpq)* or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation. For this region, the sapwood estimate used is 12–45 (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

RESULTS

Details of the samples taken are given in Table 1, and their approximate locations are illustrated in Figures 3–9. Six samples were found to have too few rings to be considered for further analysis. Of the eight measured samples, six were cross-matched, as is shown in Table 2, and were combined to produce a site master chronology of 100 years, SANCTON. Samples snc03 and snc08 are seen to match very well (t = 10.7) and might be considered to have come from the same tree. However, as they were from the two different structures under investigation, the floor and the bellframe, and there was no other evidence, such as matching grain and knot patterns, for them having come from the same tree, their series were not first combined into a single-tree sequence before making the site chronology. The 100-year-long site chronology, formed by combining the six matched individual series, SANCTON, was dated to the period AD 1620–1719, some of the strongest matches being shown in Table 3. The relative positions of overlap of the samples is shown, along with their actual or interpreted likely felling dates/date ranges, in Figure 10.

Two of the measured series, snc04 and snc12, did not match the other series, nor did they date independently.

DISCUSSION

The series SANCTON appears to match most strongly with reference material from the Midlands, although the geographical spread of the matches is quite wide. Fewer chronologies are available in this post-medieval period, and therefore not too much emphasis should be put on this finding, which may reflect the distribution of available data as much as the geographical origin of the timbers. It seems likely that the timber source was relatively local. The level of cross-matching, and the similarity in felling dates between the timbers suggests that they represent a single group of timbers felled within the short period winter AD 1719/20 to spring AD 1720 (Fig 10). Although the lower support beams were not dated, the study shows that the upper four beams are contemporaneous with the bellframe itself.

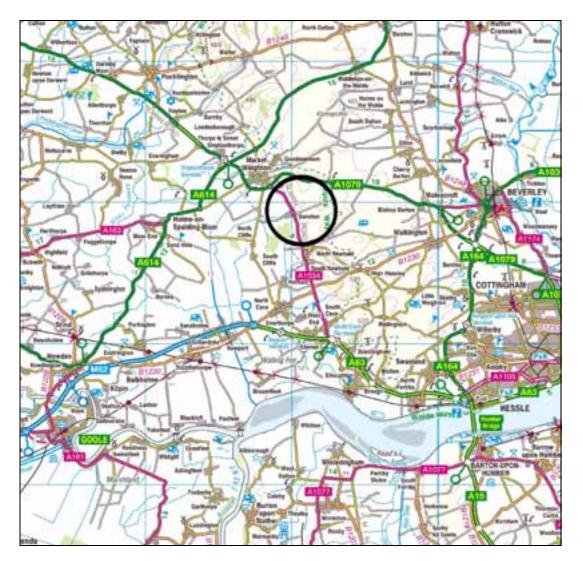


Figure 1. Map to show the location of the church (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 2. Map showing the location of the church (circled) within its immediate environs (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

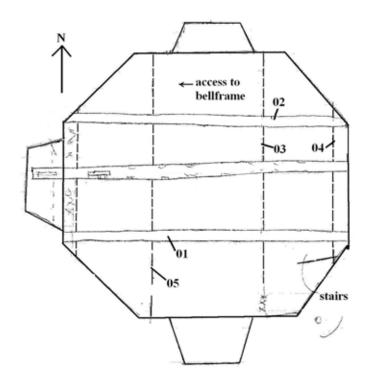


Figure 3. Sketch plan of the tower showing the locations of the three support beams and the four north-south beams supported by them, with the approximate locations of samples taken for dendrochronology added.

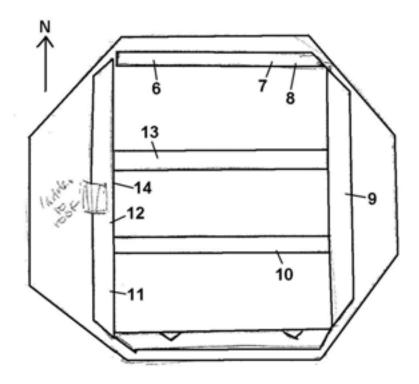


Figure 4. Sketch plan of the bellframe showing the approximate positions of the samples taken, and detailed in subsequent figures

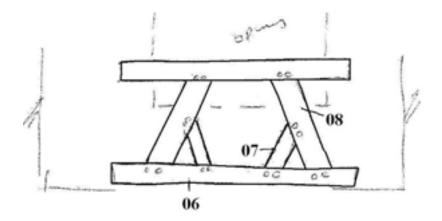


Figure 5. Sketch of the northern east-west frame, looking north, showing the timbers sampled for dendrochronology

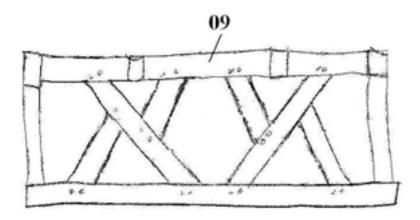


Figure 6. Sketch of the eastern north-south frame, looking east, showing the timber sampled for dendrochronology

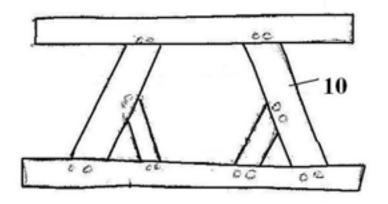


Figure 7. Sketch of the third east-west frame from the north end, looking north, showing the timber sampled for dendrochronology

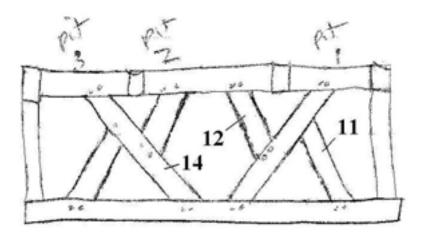


Figure 8. Sketch of the western north-south frame, looking east, showing the timbers sampled for dendrochronology

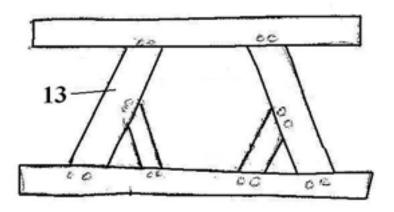


Figure 9. Sketch of the second east-west frame from the north end, looking north, showing the timber sampled for dendrochronology

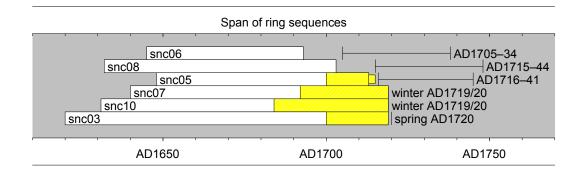


Figure 10. Bar diagram showing the relative positions of overlap of the dated samples, along with their actual or interpreted felling dates/date ranges

Sample	Timber and position	No of	Mean	Mean sens	Spanning	H/S bdry	Sapwood	Felling seasons and
		rings	width	(mm)	Dates AD	AD		dates/date ranges
			(mm)					(AD)
Belfry su	pport beams							
snc01	Southern east-west lower beam	<40	NM	-	undated	-	9	unknown
snc02	Northern east-west lower beam	<40	NM	-	undated	-	H/S	unknown
snc03	Upper beam, 3rd from west	100	1.14	0.20	1620-1719	1700	19¼C	spring 1720
snc04	Upper beam, 4th from west	72	1.71	0.19	undated	-	H/S	unknown
snc05	Upper beam, 2nd from west	66	1.40	0.23	1648-1713	1700	13+2NM	1716–41
Bellframe	2							
snc06	Sill beam, northernmost east-west frame	49	1.79	0.17	1645–93	1693	H/S	1705–34
snc07	East lower brace, northernmost east-west frame	80	1.80	0.21	1640-1719	1692	27C	winter 1719/20
snc08	East upper brace, northernmost east-west frame	72	1.18	0.25	1632-1703	1703	H/S	1715–44
snc09	Headbeam, east end of north-south frame	<40	NM	-	undated	-	-	unknown
snc10	East diagonal brace, third east-west frame from north	89	1.26	0.24	1631-1719	1684	35C	winter 1719/20
sncll	South lower brace, west end north-south frame	<40	NM	-	undated	-	H/S	unknown
snc12	Middle sloping brace, west end north-south frame	50	2.47	0.22	undated	-	181/4C	unknown
snc13	West brace, second east-west frame from north	<40	NM	-	undated	-	251/2C	unknown
snc14	Long north brace, west end north-south frame	<40	NM	-	undated	-	-	unknown

Table 1: Details of oak (Quercus spp.) timbers sampled from All Saints' Church tower, Sancton

Key: NM = not measured; C = complete sapwood, winter felled; $\frac{1}{4}C$ = complete sapwood felled the following spring; $\frac{1}{2}C$ = complete sapwood, felled the following summer. Uses sapwood estimate 12–45 from Miles (1997)

<i>t</i> -values								
Sample No	snc05	snc06	snc07	snc08	snc10			
snc03	5.7	3.9	6.7	10.7	5.1			
snc05		4.9	4.2	5.6	-			
snc06			4.3	3.8	4.3			
snc07				7.4	9.3			
snc08					4.4			

Table 2: Cross-matching between the dated timbers from All Saints' Church, Sancton

- = t value is less than 3.5

Table 3: Dating evidence for the series SANCTON, AD 1620–1719, file names in BOLD represent regional chronologies

0				, 0		0
County/ region:	Chronology name:	Short publication reference:	File name:	Spanning: (yrs AD)	Overlap (yrs)	<i>t</i> -value
Shropshire	Llan Farmhouse, Clunbury	(Miles <i>et al</i> 2006)	LLANFMHS	1544–1740	100	5.9
East Midlands	East Midlands Master	(Laxton and Litton 1988)	EASTMID	882-1981	100	5.5
Leicestershire	Church Farm, Bringhurst	(Groves <i>et a</i> /2004)	BRNGHSTI	1664–1781	56	5.4
Nottinghamshire	Manor Farm barn, Askham	(Howard <i>et al</i> 2003)	ASKASQ02	1629–1724	91	5.4
Oxfordshire	Old Clarendon Building, Oxford	(Worthington and Miles 2006)	CLRNDNOX	1539–1711	92	5.3
Bedfordshire	Chicksands Priory	(Howard <i>et al</i> 1998)	CHKSAND2	1611–1814	100	5.1
Warwickshire	Middleton Hall	(Amold <i>et al</i> 2006)	MIDHSQ01	1593-1718	99	5.0
Kent	Wheelwrights' Shop, Chatham	(Bridge 1998)	CHATHAM2	1615–1780	100	4.9
Buckinghamshire	Claydon House	(Tyers 1995)	CLAYDON	1613–1756	100	4.9
Essex	Doddinghurst Church	(Tyers 2002)	DODNG_XY	1637–1735	83	4.8
Berkshire	Maidenhead Bridge	(Miles <i>et al</i> 2003)	MDNHEAD2	1605-1750	100	4.8
Derbyshire	Bolsover Castle	(Arnold <i>et al</i> 2003)	BLSBSQ01	1532-1749	100	4.8

BIBLIOGRAPHY

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2003 *Tree-ring analysis of timbers from Bolsover Castle, Bolsover, Derbyshire*, Centre for Archaeol Rep, **15/2003**

Arnold, A J, Howard R, and Litton, C D, 2006 *Tree-ring analysis of timbers from Middleton Hall, Warwickshire*, Res Dept Rep, **13/2006**

Bridge, M C, 1998 List 86, Vernacular Architect, 29, 105-106

English Heritage, 1998 *Dendrochronology: guidelines on producing and interpreting dendrochronological dates*, London

Groves, C, Locatelli, C, and Howard, R, *2004 Tree-ring analysis of timbers from Church Farm, Bringhurst, Leicestershire*, Centre for Archaeol Rep, **56/2004**

Howard, R E, Laxton R R, and Litton, C D, 1998 *Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire*, Anc Mon Lab Rep, **30/98**

Howard, R E, Laxton, R R, and Litton, C D, 2003 *Tree-ring analysis of timbers from Manor Farm Barn, Town Street, Askham, Nottinghamshire,* Centre for Archaeol Rep, 11/2003

Laxton, R R, and Litton, C D, 1988 *An East Midlands Master Tree-Ring Chronology and its use for dating Vernacular Buildings*, Univ Nottingham, Dept of Classical and Archaeol Studies, Monograph Ser, 3

Miles, D, 1997 The interpretation, presentation, and use of tree-ring dates, Vernacular Architect, **28**, 40–56

Miles, D H, Worthington, M J, and Bridge, M C, 2003 Tree-ring dates, *Vernacular Architect*, **34**, 109–13

Miles, D H, Worthington, M J, and Bridge, M C, 2006 Tree-ring dates, *Vernacular Architect*, **37**, 118–32

Tyers, I, 1995 *Tree-ring analysis of Claydon House, Middle Claydon, Buckinghamshire*, Anc Mon Lab Rep, **13/95**

Tyers, I, 2002 *Tree-ring analysis of further oak timbers from the belfry of All Saints Church, Doddinghust, Essex*, Centre for Archaeol Rep, **116/2002**

Tyers, I, 2004 *Dendro for Windows Program Guide 3rd edn*, ARCUS Report, **500**

Worthington, M, and Miles, D, 2006 *Tree-ring analysis of timbers from the Old Clarendon Building, Oxford, Oxfordshire*, Res Dept Rep, **67/2006**

© ENGLISH HERITAGE

APPENDIX

Ring width values (units of 0.01mm)

snc03 237 142 174 104 104 99 77 58 39 43	305 177 223 108 94 93 69 58 56 64	432 189 169 116 100 108 110 68 34 62	256 166 147 164 140 123 90 82 59 63	146 112 121 179 86 127 57 80 84 71	186 95 152 174 82 73 53 57 85 71	235 83 164 165 78 112 65 50 86 71	172 144 147 118 91 124 75 60 83 56	168 146 139 118 70 117 104 70 70 50	158 216 114 97 121 101 82 52 58 66
snc04 290 169 227 263 178 157 65 75	304 183 287 166 142 122 95 90	205 176 270 195 126 139 83	212 195 264 156 131 98 145	180 192 201 212 158 75 131	42 96 54 86 07 12 16	281 153 160 178 100 131 125	185 195 212 184 260 135 83	247 173 236 194 250 112 74	165 201 264 199 274 104 64
snc05 244 154 139 185 149 56 77	161 183 245 152 135 49 90	34 92 233 20 85 66 86	171 123 188 141 62 72 81	7 236 22 90 82 6 28	175 270 203 149 75 163 114	210 231 186 112 95 131	216 166 116 102 73 138	80 16 30 04 63 64	 68 77 28 69 09
snc06 205 399 131 99 132	318 263 113 118 117	247 277 166 182 169	272 260 154 162 135	230 206 174 131 143	166 218 164 135 87	174 194 177 132 94	170 202 158 161 100	198 231 163 136 89	375 195 117 120
snc07 320 107 179 227 197 125 166 107	311 116 173 251 127 159 185 146	227 95 181 268 224 145 144 158	210 113 331 246 135 157 150 192	203 191 147 164 85 234 150 143	310 219 188 136 126 136 226 106	235 236 164 158 119 132 184 129	94 45 77 235 33 4 77 46	207 160 181 271 175 226 181 170	34 67 252 234 97 59 73 59

snc08 146 167 104 167 109 134 78 72	115 216 120 169 97 101 97 130	84 179 125 124 78 64 105	61 208 164 107 48 55 86	113 220 148 106 62 78 74	170 194 136 114 89 98 75	110 220 133 67 102 124 121	249 165 126 101 103 108 88	153 131 146 72 68 73 72	229 116 103 74 68 75 110
snc10 208 179 73 168 235 113 130 61 92	169 137 70 165 236 178 95 63 113	124 103 95 216 238 131 96 60 113	119 93 168 126 117 77 125 85 76	141 171 276 112 108 116 86 98 73	115 166 209 90 118 120 58 98 93	160 123 179 92 215 92 62 150 76	160 137 136 67 177 134 60 158 61	205 102 113 128 198 93 53 136 132	227 83 122 131 175 73 53 72
snc12 264 147 182 186 179	362 150 212 227 146	468 199 172 303 241	485 326 196 315 222	453 224 312 214 161	442 234 259 295 181	269 138 242 244 157	282 194 196 231 166	407 236 185 263 155	339 178 285 222 187

ENGLISH HERITAGE RESEARCH DEPARTMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.

The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

- * Aerial Survey and Investigation
- * Archaeological Projects (excavation)
- * Archaeological Science
- * Archaeological Survey and Investigation (landscape analysis)
- * Architectural Investigation
- Imaging, Graphics and Survey (including measured and metric survey, and photography)
- * Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.

We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports

For further information visit www.english-heritage.org.uk

