8-9, 9A, AND THE LAW LIBRARY, THE CLOSE, EXETER, DEVON TREE-RING ANALYSIS OF TIMBERS

 SCIENTIFIC DATING REPORT

 SCIENTIFIC DATING REPORT}

Alison Arnold and Robert Howard

8-9, 9A, AND THE LAW LIBRARY, THE CLOSE, EXETER, DEVON

TREE-RING ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: SX 921926
© English Heritage
ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Interpretation of the sapwood on the dated samples indicates that the timbers of both the roof and floor of 8-9 The Close (the front range) were cut as part of a single felling operation in the period AD 1402-27, with the timbers of roof 2 of 9a The Close (the north end of the rear east range) felled AD I406-3I. It is possible, therefore, that these two roofs, and roof I (at the south end of the rear east range, and structurally earlier than roof 2), are all co-eval.
Two dated timbers from the roof of the Law Library (the rear west range) have an estimated felling date in the period AD 14|7-42, suggesting that this part of the complex might be very slightly later.
One timber from roof I of 9a The Close has an estimated felling date of AD I468-93 and probably represents a repair phase.
Thus, while there may have been breaks, it is possible that this whole complex was constructed as part of a single, extended, work programme dating to the early-fifteenth century.
Five other, site chronologies and 19 individual samples remain ungrouped and undated.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Nottingham Tree-ring Dating Laboratory would like to take this opportunity to thank all those who assisted with the sampling of the timbers. In particular thanks are due to the Dean and Chapter of Exeter Cathedral in the form of the Chapter Clerk, Tony le Riche, and to works staff such as Gary Morley, head carpenter, for their considerable help during sampling. We would also like to thank John Allan, Stuart Blaylock, and Richard Parker of Exeter Archaeology who between them have undertaken liaison duties between all the parties concerned, assisted with viewing and interpretation, and who provided the drawings used in this report.

ARCHIVE LOCATION

Historic Environment Service
Matford Offices
County Hall
Exeter EX2 4QW

DATE OF INVESTIGATION

2006-10

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory

20 Hillcrest Grove

Sherwood
Nottingham NG5 IFT
01I5 9603833
roberthoward@tree-ringdating.co.uk
alison arnold@tree-ringdating.co.uk

CONTENTS

Introduction
Sampling 2
Analysis 4
Interpretation and Discussion 5
Conclusion 7
Bibliography 9
Tables II
Figures 17
Data of Measured Samples 44
Appendix: Tree-Ring Dating 57
The Principles of Tree-Ring Dating 57
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 57
I. Inspecting the Building and Sampling the Timbers 57
2. Measuring Ring Widths 62
3. Cross-Matching and Dating the Samples 62
4. Estimating the Felling Date 63
5. Estimating the Date of Construction 64
6. Master Chronological Sequences 65
7. Ring-Width Indices 65
References 69

INTRODUCTION

This complex of buildings under investigation is located on The Close in Exeter (SX 921 926; Figs I and 2). Number 8-9 forms a broad front range facing south onto Cathedral Green, whilst two additional ranges run from the rear of this front range at obtuse angles (Fig 3). The rear range at the east end forms 9a The Close, whilst the rear range at the west end is known as the Law Library. Together the three ranges thus almost enclose a small, elongated, courtyard (Figs 3 and 4).

The following paragraphs are based mainly on on-site observation with input from Richard Parker, John Allan and Stuart Blaylock all at the time from Exeter Archaeology.

The front range, 8-9 The Close, is of two storeys, coursed in Heavitree stone to the ground floor, with a wide, decorated, arched passageway at its west end (Fig 5). The halftimbered upper floor over-sails the lower, being supported on curved oak brackets resting on stone corbels. The roof of the front range is of comparatively plain principal rafter trusses with collars and arch-braces, the principals carrying double through-purlins. All such timbers are lightly carved with shallow roll-mouldings. Although no date has been ascribed to this range, it is thought to be late-medieval.

The roof to the rear east range, 9a The Close, appears to be of two distinct parts. Roof I, at the southern end of this range, is of four bays formed by three open trusses, with a fourth closed truss at the north end forming the boundary with roof 2, which lies further north still. The three open trusses have straight collars with the collar to the fourth, end, truss being cranked. The collars are supported by chamfered arch braces. Roof 2 is a simpler, two-and-a-half bay structure, now somewhat altered from its original form. This roof is formed by two principal rafter trusses with double purlins and the north gable wall. Redundant mortices indicate the existence of former collars. The date of these roofs is unknown.

The rear west range, the Law Library, contains a three-bay open hall formed by four single hammer beam roof trusses of a design similar to that of Westminster Hall. Between the main trusses there are intermediate frames. The hammer-beams, arch-braces, coved rafters, and purlins, along with many other elements, are all highly moulded and carved, as is the open-work tracery in-fill. The ends of the hammer beams are decorated with angels, whilst ornately carved bosses hide the joints between timbers (Fig 6a/b). The roof is thus exceptionally decorative, even by the standards of the Exeter group, of which other examples include The Archdeacon's House, The Guildhall, and The Deanery (Howard et al 1999a, I999b, 2000). The Law Library is believed to date to c AD I450-AD I550, but a date as early as c AD 1390 has also been suggested.

The structural relationship of the roofs suggests that roof I of number 9a (rear east range) is either coeval with, or possibly slightly later than, that of 8-9 (the front range). The ridge of roof I extends into the roof space of the front range, and the ragged nature of the wall-top at the back of the front range here would not be expected if it originally
formed an outside wall, as would be the case if it were built as a discrete and separate structure, although it might be explicable if it this part of the wall was never intended to be visible, being hidden by a roof. The rear slope of the front range might also have survived here had it been built separately. It appears that, in turn, roof 2 of number 9a was added to roof I, the upper purlins of roof 2 being neatly cut into the principal rafters of truss I (the closed truss) of roof I. Again this second roof might possibly have been added almost immediately, but also, possibly, some time later.

It is believed that the front range and the open hall of the Law Library once comprised the Canon's House, access between these two parts being via an ornately carved multicusped and foiled doorway in a now-blocked partition wall (Fig 7).

SAMPLING

Tree-ring dating of timbers from both 8-9 The Close and from the roof of the Law Library has been attempted in the past, but without great success (Howard et al 2000). This was in some measure due to the difficulty of accessing the roof of the Law Library and obtaining sufficient suitable samples, a consequence of this part of the building once being used as office space, and in part due to the paucity at that time of relevant reference material with which site data could be compared. Since 2008, however, a sequence of building developments and alterations has taken place, allowing greater access not only to the Law Library, but also, gradually, to different parts of number 9a, particularly the rear east range and its previously inaccessible roof timbers. Furthermore, not only has the amount of tree-ring reference material greatly increased over the intervening years, but the complex has benefited from further survey and recording (Allan and Ives 2007, Parker 2009) adding to that undertaken previously by Thorp and Brown (1979).

Sampling and analysis by tree-ring dating of timbers from the three constituent parts of this building complex, 8-9 The Close, 9a The Close, and the Law Library, were commissioned by English Heritage. Apart from the roof timbers of each part, this programme of analysis was to include a series of joists to the ground-floor ceiling of the front range, both those always exposed in the external west passageway and those exposed by the lifting of a small number of first-floor floorboards during internal renovation works. The sampling and analysis of a small section of wall panelling temporarily removed from the front range during repairs was also requested (Fig 8).

The purpose of this analysis was to establish a date for the various elements of the building and to more accurately place the roofs, for comparative purposes, within the context of a group of similar roofs in Exeter and the surrounding region. This research into the Exeter roofs has been undertaken in connection with a major programme of recording and repair at Bowhill in Devon, which was being funded by English Heritage (Blaylock 2004).

A further purpose of the original sampling was to obtain additional tree-ring data for this area. Although in recent years, as a consequence of English Heritage funded work, Exeter itself has provided a number of well-replicated and dated site chronologies, the southwest in general still remains relatively under-represented. This is in part due to the fact that samples obtained in this area frequently have relatively few rings. This is a result of relatively rapid growth of the trees and their subsequent use whilst still relatively young; such trees producing timbers with either too few rings or only borderline suitability for analysis. It was believed that this complex of buildings, which contain a substantial amount of timber, provided an opportunity to produce a long and well-replicated site chronology. This would therefore add to the localised network of reference material available and hence aid the dating of sites in this sometimes problematic area in future studies.

Thus, from the material exposed during the various stages of building and alteration work here, a total of 80 samples was obtained. Each sample was given the code EXT-D (for Exeter, site "D"), and numbered between 01 and 93 . Gaps were intentionally left in the sequence of sample numbers to allow for the possibility that additional timbers might subsequently become available in certain parts of the complex should further repair work have been undertaken in an area already sampled.

A total of 24 samples, EXT-D0 I-24, was obtained by coring the roof timbers of numbers 8-9 The Close, with a further four cores, EXT-D25-28, being obtained from the common joists of the ground-floor ceiling of the passageway. Four cores, EXT-D30-33, were obtained from the principal beams of the ground-floor ceiling (Figs 9a-e).

In addition using an eye-piece with graticule, an attempt was also made to obtain ringwidth measurements from the prepared edges of six oak wall panels removed from their fixings during repairs to this front range, these being designated as samples EXT-D4I-47 (Fig 9f).

A total of 18 samples, EXT-D5I-68, was obtained from the roof timbers of the Law Library (Figs IOa-d), with a further 23 samples being obtained from number 9a, EXT-D7I-85, from roof 2 at the northern end of number 9a (Figs II a-c) and EXT-D86-93 from roof I at the south end of number 9a (Figs I Ia, and I Id-e). It should be pointed out, however, that in an attempt to obtain the maximum number of rings from one particular timber, it was cored twice, firstly as EXT-D75 and again as EXT-D79, as more of the timber was revealed during building works. Given that the two samples do not overlap with each other sufficiently to cross-match, they were retained as two individual samples.

The plans and drawings (Figs 9a-1 Ie) on which the positions of the cores were recorded at the time of sampling, where possible, were obtained from either Exeter Archaeology or the archives of the Ministry of Works, Ancient Monument Branch. Details of the samples are given in Table I. In this table the trusses, frames, and other timbers are numbered following the schema on the drawings provided and further identified on a north-south or east-west basis as appropriate.

Abstract

ANALYSIS

Each of the core samples obtained was prepared by sanding and polishing. It was seen at this time that 14 of these had fewer than the minimum of 54 rings necessary for reliable dating, and these were rejected as being unsuitable.

In addition, due to the nature of the material, presenting as it did narrow growth rings on thin, non-radially split, boards with the ring sequence consequently being broken into segments by the medullary rays, it was impossible, to obtain reliable measurements from the prepared edges of the six oak wall panels. Given this uncertainty, the data is not included in this report and the samples are listed in Table I as being unmeasured.

The growth-ring widths of the remaining 59 cores were, however, measured, these data then being compared with each other by the Litton/Zainodin grouping procedure (see Appendix). The ring width data are given at the end of this report. By this comparative process, seven different groups, accounting for 40 samples, could be formed, the samples of each group cross-matching at the relative positions shown in the bar diagrams, Figures 12-18.

The samples of each cross-matching group were combined at the indicated off-set positions to form site chronologies EXTDSQ0I-SQ07. Each site chronology was then compared with the remaining 19 individual ungrouped samples but there was no further reliable cross-matching. Each of the seven site chronologies was then compared with a full range of reference chronologies for oak, this indicating a cross-match and date for two of these. The first dated site chronology EXTDSQ0I accounts for 26 measured samples, I5 of them from the front range, 8-9 The Close, nine of them from roof 2 of number 9a, and two of them from the Law Library. This site chronology has 199 rings spanning the years AD I208-| 406; the evidence for this dating is given in the t-values of Table 2.

The second dated site chronology EXTDSQ07 accounts for two measured samples, both from roof I (the rear east range roof) of 9a. This site chronology has 94 rings spanning the years AD 1346-1439; the evidence for this dating is given in the t-values of Table 3.

Site chronologies EXTDSQ02-SQ06 comprise three, three, two, two, and two samples each. In length these site chronologies range from 55 to 108 rings; none of these site chronologies can be dated.

Each of the 19 measured but ungrouped samples was than compared individually with the full range of reference chronologies for the oak, but again there was no satisfactory crossmatching, and these samples must also remain undated.

This analysis can be summarised as follows:

Site chronology	Number of samples	Number of rings	Date span (where dated)
EXTDSQ0I	26	199	AD 1208-1406
EXTDSQ02	3	108	undated
EXTDSQ03	3	80	undated
EXTDSQ04	2	80	undated
EXTDSQ05	2	68	undated
EXTDSQ06	2	55	undated
EXTDSQ07	2	94	$1346-1439$
Undated singles	19	---	undated
Unmeasured	21	---	---

INTERPRETATION AND DISCUSSION

None of the 26 dated samples in site chronology EXTDSQ0 I retains complete sapwood and it is thus not possible to give a precise felling date for any of the timbers represented, although it is clear that all are broadly coeval. Thirteen of these 26 samples do, however, retain the heartwood/sapwood boundary, that is, only the sapwood rings of the trees are missing, and it is thus possible to give an estimated likely felling date range for these timbers.

As may be seen from Table I and the bar diagram, Figure I2, where the cross-matching samples of dated site chronology EXTDSQ0 I are shown sorted by sample location and in last measured ring date order, the overall position of the heartwood/sapwood boundary varies by some 26 years. The earliest sapwood boundary is a relative position 173 (AD 1380), on sample EXT-D03, with the latest boundary being at relative position 199 (AD 1406) on sample EXT-D86. This variation is possibly slightly wider than might be expected in a group of timbers were they all cut at the same time as each other in a single episode of felling, but might be explicable in timbers felled over a period of time. In respect of this possibility, it may be of interest to note that if the samples are examined by area group, a slight difference in felling date range may be detected. Although this dating would support the relative sequence of building construction as intimated by the structural evidence, because the date ranges have a significant overlap, this does not necessarily indicate that the two parts of the building are definitely of different construction dates.

The potentially earliest phase of felling appears to be represented by the roof and firstfloor timbers of the front range, numbers 8-9 The Close (samples EXT-D01-33), the portion which structurally appears to precede by some unknown time the building of the rear east range, number 9a. Within this sub-group the sapwood boundary varies by only II years from relative position 173 (AD I380), on sample EXT-D03 to relative position 184 (AD 1391) on sample EXT-D I9, such a limited variation being consistent in representing a group of timbers felled at the same time as each other. The average date
of the boundary on the six samples in this sub-group where it exists is AD I 387. Using a 95% confidence limit of $15-40$ rings for the amount of sapwood these trees might have had would give the timbers represented an estimated felling date in the range AD 140227.

A second, potentially slightly later, phase of felling appears to be represented by the timbers of roof 2 of the rear east range, number 9a (samples EXT-D7I-85), a portion that is, structurally, believed to post-date the building of the front range. Within this subgroup the sapwood boundary varies by 24 years from relative position 175 (AD I382), on samples EXT-D79 and D80, to relative position 199 (AD I406) on sample EXT-D86. The average date of the boundary on the five samples in this sub-group where it exists is slightly later at AD 139 I. Using again a 95\% confidence limit of I5-40 rings for the amount of sapwood these trees might have had would give the timbers represented an estimated felling date in the range AD |406-3|, though given the variation in heartwood/sapwood boundary date these timbers could possibly have been felled over a period of a few years.

A possible further phase of felling is represented by two dated samples, EXT-D53 and D56, from the Law Library roof. Both these samples retain the heartwood/sapwood boundary, dated in each case to AD I402. Using the same sapwood estimate as above, 15-40 rings, would give the timbers represented an estimated felling date in the range AD |4|7-42.

It may be seen therefore, that although the exact felling date of none of the timbers can be determined, the estimated felling date ranges for the various groups are very similar, and certainly overlap with each other to a considerable degree. This would suggest that although the timbers may not all have been felled at exactly the same time as each other, they are likely to have been felled over a fairly short period.

Thirteen other dated samples in site chronology EXTDSQ0I do not have the heartwood/sapwood boundary and it is thus not possible to be completely certain that they too were definitely cut as part of their respective building sequence. However, such is the level of cross-matching between some of these samples and those with the heartwood/sapwood boundary that it is likely that all the trees represented by this group were growing close together in the same copse or stand of woodland. The trees they represent, therefore, are more likely to have been felled at the same or very similar times rather than being felled at different times yet still being used in the same part of the building. There is, for example, a cross-match with a value of $t=8.0$ between sample EXTD06, which is sans heartwood/sapwood boundary and sample EXT-DI8, on which it is present, or similarly samples EXT-D26 and D27 which cross-match with a value of $t=7.6$. Likewise at match with a value of $t=5.9$ is found between sample EXT-DI2 (no sapwood boundary) and DI5 (sapwood boundary), the value probably representing trees from at least the same woodland area. There is, in any case, no evidence on any of the timbers
themselves of reuse, such as redundant mortices or peg holes, and it is thus almost certain that all the dated timbers of each part of the building were felled at the same time.

Two samples, EXT-D89 and D9 I, respectively from a common rafter and purlin of roof I of number 9a, have been dated as site chronology EXTDSQ07. Although, because of compaction to its outer rings, the heartwood/sapwood boundary is not included in the measured portion of sample EXT-D9 I, this is in fact present on the core, approximately 15 rings later than the last ring which has been measured. Given that this last measured ring is dated to AD 1438 , the heartwood/sapwood boundary itself would be dated circa ADI453. Using the usual sapwood estimate of $15-40$ rings, would give this timber an estimated felling date of circa AD 1468-93.

The other sample in site chronology EXTDSQ07, EXT-D89, does not have the heartwood/sapwood boundary and the felling date of the timber this represents cannot thus be determined. However, with a last measured, heartwood, ring date of 1439 , this is unlikely to be before AD 1455, this date being based on a 95% limit of a minimum of 15 sapwood rings. As such these two timbers are later than the majority of others which have been dated, and may be explicable as being later repairs.

Felling date ranges or felled-after dates cannot of course be given for any of the trees represented by the samples of the undated site chronologies. However, judging by the relative position of the heartwood/sapwood boundary on them, some of these undated samples probably also represent trees felled at the same, unknown, time as each other. Those represented by samples EXT-D09, DI0, and DII (Fig I4), samples EXT-D02 and D07 (Fig l7), and those from which samples EXT-D52 and D60 (Fig I3) have been obtained, being examples.

CONCLUSION

Analysis by dendrochronology of 59 samples from timbers in three different parts of this building complex has produced seven site chronologies. Only two of these seven, site chronologies EXTDSQ0 I comprising 26 samples, and site chronology EXTDSQ07, accounting for two samples can be dated.

Interpretation of the sapwood on the dated samples indicates the probability that the timbers of both the roof and floor of 8-9 The Close (the front range) were cut as part of a single felling operation some time in the period AD 1402-27, with the timbers of roof 2 of 9a The Close (the rear east range) having an estimated felling date in the period AD |406-3|. Two dated timbers from the roof of the Law Library (the rear west range) have an estimated felling date in the period AD 1417-42. One timber from roof I of 9a The Close has an estimated felling date of AD 1468-93.

Despite the imprecision of this dating, it would appear that this whole complex dates to the early-fifteenth century, and that, although possibly built in stages, it may all have been envisioned as a single programme of construction, with relatively little time between one
stage and another. It would appear that later repairs were made using later-fifteenth century timbers.

The results make an important contribution to the interpretation of this complex of buildings, showing that the front range, and the form of its roof, is neither as late as was generally believed, nor quite as early as was possibly proposed. The building is thus now set within the context of similar early-fifteenth century buildings in urban Exeter, including the Archdeacon's House and the Deanery.

In this context it may be of interest to note that the level of cross-matching found between the samples of the building analysed here is repeated, particularly amongst the samples of both the Archdeacon's House and the Deanery, Exeter. Both these buildings have been dated by dendrochronology to the early-fifteenth century. In these two latter cases, as here, whilst some samples cross-match with each other very well, suggesting that some of the trees used in each building have come from the same source, and although the overall cross-matching within the groups of samples from each building is usually satisfactory overall, the individual cross-matches are sometimes low, though satisfactory, and there are many samples which either do not cross-match with any others, or if they do form groups, the groups contain few samples and they remain undated.

Taken all together this may suggest that either the supply of timbers from any one source near Exeter was limited in the early-fifteenth century, leading to the timbers having to be found from many different places with a resultant greater than normal variation in the tree-ring patterns found within the buildings, or there is some peculiarity about the growth regime of fourteenth-century trees in the area resulting in them having an unusual growth pattern. The samples themselves, however, show no peculiarities such as compressed, distorted, or indistinct rings suggesting anything unusual about their growth.

Judging by the t-values given in Table 2, which lists some of the reference chronologies with which site chronology EXTDSQ0I has been cross-matched and dated, there is a general impression that the timbers represented have come from a relatively local source or sources. The later-fifteenth century timber represented by site chronology EXTDSQ07 and used for what appears to be a repair to roof I of 9a, is probably from a different woodland, and possibly sourced from further afield.

As intimated above, some of the samples represent trees growing close together, perhaps in the same copse and certainly very likely within the same woodland. It is possible, however, that some timbers might indeed be derived from the same tree, those represented by samples EXT-D09, DIO, and DII, which cross-matching with values between in excess of $t=11.0$ to higher than $t=14.0$.

BIBLIOGRAPHY

Allan, J P, and Ives, T, 2007 An Archaeological Assessment of Nos 8 and 9a Cathedral Close, Exeter, Exeter Archaeology Report, 07.97

Arnold, A J, and Howard, R E, 2004 unpubl Composite working mean of samples from New Inn House, 7 Wotton Road, and the Abbey Gatehouse, Kingswood, Gloucestershire

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G, 2005 The Tree-Ring Dating of a Number of Bellframes in Leicestershire, Centre for Archaeol Rep, 5/2005

Arnold, A J, Howard, R E, and Litton, C D 2005 Tree-ring analysis of roof timbers at the church of Saint Ciricus and Saint Julitta, St Veep, near Lostwithiel, Cornwall, Centre for Archaeol Rep 47/2005

Arnold, A, Howard, R, and Litton, C, 2006 The Commandery, Worcester: Scientific Dating Report - Tree-Ring Analysis of Timbers, EH Res Dept Rep Ser, 7 I/2006

Arnold, A and Howard, R, 2009 St Andrew's Church, Alwington, Devon: Tree-ring analysis of timbers from the South Aisle and Nave roofs, EH Res Dep Rep Ser, 42/2009

Blaylock, S R, 2004 Bowhill: The archaeological study of a building under repair in Exeter, Devon, 1977-95, English Heritage

Groves, C, 2005 Dendrochronological Research in Devon: Phase I, Centre for Archaeol Rep, 56/2005

Haddon-Reece, D, Miles, D, and Munby, J, 1990 Tree-ring dates from the Ancient Monuments Laboratory: List 38, Vernacular Architect, 21 , 46-50

Howard, R E, Laxton, R R, and Litton, C D, 1999 Tree-ring analysis of timbers from the Archdeacon of Exeter's House, Palace Gate, Exeter, Anc Mon Lab Rep, 4I/I999

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from the floor and roof of the Great Chamber, The Deanery, Cathedral Close, Exeter, Devon, Anc Mon Lab Rep, I/2000

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from the Law Library and 8-9 The Close, Exeter, Devon, Anc Mon Lab Rep, 47/2000

Miles, D W H, 200 I Tree-Ring Analysis Dating of the Galleried Building and 'Dairy', 40 Broad Street, Leominster, Herefordshire, Centre for Archaeol Rep, 38/200 I

Miles, D H, and Worthington, M J, 200 I Tree-ring dates for Surrey 2: List I I9, Vernacular Architect, 32, 82-4

Miles, D W H, Howard, R E, and Simpson, W G, 2004 The Tree-Ring Dating of the Tower and Spire at Salisbury Cathedral, Wiltshire, Centre for Archaeol Rep, 44/2004

Parker, R.W. 2009 Recent Observations during Building Works at 8-9 The Close, Exeter, Exeter Archaeology Report, No. 07.97.

Thorp, J R L and Brown, S. 1979 Unpublished drawings and notes relating to No. 9a The Close: Exeter Archaeology Archive, No. 235

Tyers, I, I 997 Tree-ring analysis of timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/I997

Tyers, C, Arnold, A, Howard, R, and Hurford, M forthcoming Dendrochronological Research in Devon: Phase 2, EH Res Dep Rep Ser.

Wilson, R, and Tyers, I, I 999 Tree-ring analysis of oak timbers from the church of St Mary the Virgin, Yatton, North Somerset, Anc Mon Lab Rep, 6I/I999

TABLES
Table I: Details of samples from 8-9, The Close, 9a The Close, and the Law Library, Exeter, Devon

| Sample
 number | Sample location | Total
 rings* | Sapwood
 rings** | First measured ring
 date (AD) | Last heartwood ring
 date (AD) |
| :--- | :--- | :--- | :--- | :--- | :--- | | Last measured ring |
| :--- |

8-9 The Close (front range) roof timbers

EXT-D01	South principal rafter, truss 4	54	no h/s	------	------	------
EXT-D02	Collar, truss 4	54	no h/s	------	------	
EXT-D03	South principal rafter, truss 5	103	h / s	1278	1380	1380
EXT-D04	North principal rafter, truss 5	99	no h/s	------	------	------
EXT-D05	South principal rafter, truss 6	146	h / s	1246	\|391	\|391
EXT-D06	North principal rafter, truss 6	122	no h/s	1251	------	1372
EXT-D07	Collar, truss 6	54	h / s	------	------	------
EXT-D08	South upper purlin, truss 5-6	54	h / s	------	------	------
EXT-D09	North upper purlin, truss 5-6	80	h / s	------	------	------
EXT-DIO	South common rafter I, truss 5-6	56	no h/s	------	------	------
EXT-DII	North common rafter 3, truss 5-6	75	h / s	------	------	------
EXT-DI2	South upper purlin, truss 8-9	119	no h/s	1222	------	1340
EXT-DI3	South upper purlin, truss 9-10	67	no h/s	1208	------	1274
EXT-DI4	North upper purlin, truss 9-10	54	no h/s	1307	------	1360
EXT-DI5	South common rafter 3, truss 2-3	122	h / s	1265	1386	1386
EXT-D16	South common rafter 4, truss 4-5	67	no h/s	1239	------	1305
EXT-DI7	North upper archbrace, truss 5	69	no h/s	-----	-----	------
EXT-DI8	North principal rafter, truss 8	157	h / s	1231	1387	1387
EXT-D19	South principal rafter, truss 8	99	h / s	1293	\|391	\| 391
EXT-D20	North upper purlin, truss 8-9	128	no h/s	1251	------	1378
EXT-D21	North principal rafter, truss 9	60	3	-----	----	---
EXT-D22	South lower arch brace, truss 9	58	4	---	---	------
EXT-D23	South principal rafter, truss 9	113	no h/s	1246	------	1358
EXT-D24	North principal rafter, truss 10	nm	---	------	------	------

Table I: continued

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)

Law Library (rear west range open hall)

EXT-D5।	North diagonal rib, east bay I
EXT-D52	Lower intermediate rafter, east bay I
EXT-D53	South diagonal rib, east bay I
EXT-D54	North diagonal rib, west, bay 2
EXT-D55	South diagonal rib, west, bay 2
EXT-D56	Lower intermediate rafter, west bay 2
EXT-D57	West archbrace, truss I
EXT-D58	West archbrace, truss 2
EXT-D59	North diagonal rib, east bay 2
EXT-D60	Lower intermediate rafter, east bay 2
EXT-D61	South diagonal rib, east bay 2
EXT-D62	South archbrace, east bay 3
EXT-D63	Upper intermediate rafter, east bay 3
EXT-D64	South diagonal rib, east bay 3
EXT-D65	East upper architrave, truss 4
EXT-D66	South archbrace, west bay 2
EXT-D67	North archbrace, east bay 3
EXT-D68	South archbrace, east bay 2

no h/s	---	----	-----
h / s	-----	------	---
h / s	1349	1402	1402
no h/s	------	------	------
no h/s	------	------	-----
h / s	1335	1402	1402
no h/s	----	------	---
---	---	------	----
no h/s	------	------	----
h/s	-----	------	-----
---	------	------	------
h / s	------	------	----
no h/s	---	------	----
---	------	------	------
---	------	------	------
no h/s	---	--	----
---	------	------	------
---	------	------	------

Table I: continued

| Sample
 number | Sample location | Total
 rings* | Sapwood
 rings** | First measured ring
 date (AD) | Last heartwood ring
 date (AD) |
| :--- | :--- | :--- | :--- | :--- | :--- | | Last measured ring |
| :--- |
| date (AD) |

9a The Close (rear east range) roof 2

EXT-D71	East upper purlin, truss A-B	108	no h/s	1267	---	1374
EXT-D72	East common rafter 7, truss A-B	62	h / s	1335	1396	1396
EXT-D73	West principal rafter, truss B	100	h / s	------	------	------
EXT-D74	East upper purlin, truss B-truss I	nm	---	------	------	------
EXT-D75	West principal rafter, truss A (i, inner)	56	no h/s	1268	------	1323
EXT-D76	West common rafter I, truss A-B	64	h / s	1343	1406	1406
EXT-D77	West common rafter 4, truss A-B	nm	---	------	------	------
EXT-D78	East principal rafter, truss B	70	no h/s	1272	------	1341
EXT-D79	West principal rafter, truss A (ii, outer)	87	h / s	1296	1382	1382
EXT-D80	East principal rafter, truss A	78	h/s	1305	1382	1382
EXT-D8I	West common rafter 5 , north end bay	60	h / s	------	------	------
EXT-D82	East common rafter 5, north end bay	76	no h/s	1270	------	1345
EXT-D83	West common rafter 4, north end bay	54	no h/s	------	------	------
EXT-D84	East common rafter 4, north end bay	55	no h/s	------	------	------
EXT-D85	East common rafter 3, north end bay	98	h / s	1293	1390	1390

Table I: continued

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
9a The Close (rear east range) roof I						
EXT-D86	Middle west purlin, truss 3-4	nm	---	------	------	------
EXT-D87	West principal rafter, truss I	54	h / s	------	------	------
EXT-D88	West common rafter 5, truss 2-3	63	h / s	----	------	----
	East common rafter 5, truss 3-4	94	no h/s	1346	------	1439
EXT-D89						
EXT-D90	East common rafter 6, truss 3-4	72	no h/s	------	------	------
EXT-D91	Middle east purlin, truss 2-3	75	no h/s	1364	----	1438
EXT-D92	Upper west purlin, truss 2-3	80	h / s	---	------	------
EXT-D93	Middle west purlin, truss 2-3	nm	---	------	---	------

*nm $=$ not measured
**h/s = the heartwood/sapwood ring is the last ring on the sample
NB; Samples D75 and D79 are from the same timber: D9| has approximately 15 unmeasured rings to the heartwood/sapwood boundary

Table 2: Results of the cross-matching of site chronology EXTDSQOI and relevant reference chronologies when first ring date is AD I 208 and last ring date is AD 1406

Reference chronology	Span of chronology	t-value	
Wadhayes, Awliscombe, Devon	AD 1179-1331	7.3	(Tyers et al forthcoming)
St Andrew's Church, Alwington, Devon	AD 1253-1391	7.3	(Arnold and Howard 2009)
St Mary the Virgin's Church, Yatton, Somerset	AD 1321-1400	6.7	(Wilson and Tyers 1999)
Kingswood, Glos (composite working mean)	AD 1191-1519	6.6	(Arnold and Howard 2004 unpubl)
Salisbury Cathedral spire and tower (sarum 1 6), Wiltshire	AD 1229-1338	6.3	(Miles et al 2004)
The Deanery, Exeter Cathedral, Devon	AD 1233-1403	6.2	(Howard et al 2000)
Windsor Castle Round Tower, Berkshire	AD 1231-1354	6.1	(Haddon-Reece et al 1990)
Archdeacon's House, Exeter, Devon	AD 1186-1404	5.1	(Howard et al 1999)

Table 3: Results of the cross-matching of site chronology EXTDSQ07 and relevant reference chronologies when first ring date is AD I346 and last ring date is AD 1439

Reference chronology	Span of chronology	t-value	
St Ciricus \& St Julitta Church, St Veep, Cornwall	$1352-15 \mid 2$	6.4	(Arnold et al 2005)
Prowse barn, Sandford, Devon	$1380-1473$	6.3	(Groves 2005)
40 Broad Street, Leominster, Herefordshire	$1338-1499$	6.2	(Miles 200 I)
All Saints Church, Knipton, Leicestershire	$1348-1488$	6.2	(Arnold et al 2005)
Sinai Park, near Burton, Staffordshire	$1227-1750$	5.8	(Tyers I997)
The Cottage, Charlwood, Surrey	$1288-1406$	5.7	(Miles and Worthington 200 I)
Bridford Barton, Bridford, Devon	$128 \mid-1474$	5.6	(Tyers et al forthcoming)
The Commandery, Worcester, Worcestershire	$1284-1473$	5.5	(Arnold et al 2006)

FIGURES

Figure I: Map to show the location of the Law Library, 8-9, and 9a, The Close (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationary Office, © Crown Copyright)

Figure 2: Map to show the location of the Law Library, 8-9, and 9a, The Close (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)

Figure 3: General plan to show layout of 8-9 The Close, 9a The Close, and the Law Library (Exeter Archaeology)

Figure 4: View of the small enclosed rear courtyard area from the attic of 9a The Close. To the right may be seen the southern end of the Law Library attached to the rear of numbers 8 9 The Close. Exeter Cathedral may be glimpsed beyond

Figure 5: 8-9 The Close; view of the passageway with its decorated arch at the west end of the front range

Figure 6a (top): View of Law Library roof
Figure 6b (bottom): View of a boss hiding the junction of timbers

Figure 7: Drawing of the doorway (now blocked) between the open hall of the Law Library (rear west range) and 8-9 The Close (the front range) (after John Thorp)

Figure 8: View of the panels from 8-9 The Close

Figure 9a: 8-9 The Close; plan to show approximate position of sampled timbers (after Richard Parker, Exeter Archaeology)

Figure 9b: 8-9 The Close (front range); long-sections to show sample locations (after Richard Parker, Exeter Archaeology)

Figure 9c: 8-9 The Close (front range); cross-sections at trusses 4 and 5 to show sample locations (viewed from the east looking west) (after Richard Parker, Exeter Archaeology)

Figure 9d: 8-9 The Close (front range); cross-sections at trusses 6 and 8 to show sample locations (viewed from the east looking west) (after Richard Parker, Exeter Archaeology)

Figure 9e: 8-9 The Close (front range); cross-sections at trusses 9 and 10 to show sample locations (viewed from the east looking west) (after Richard Parker, Exeter Archaeology)

Figure 9f: Drawing of the panels from 8-9 The Close to show sample locations (after Richard Parker, Exeter Archaeology)

Figure IOa: Law Library (rear west range); plan to show approximate position of sampled timbers (after Richard Parker, Exeter Archaeology)

Figure IOb: Law Library (rear west range); drawing of the trusses to show sample locations (viewed from the south looking north) (after Ministry of Works, Ancient Monument Branch)

Figure IOc：Law Library（rear west range）；drawing of east bays I and 2 to show sample locations（after Ministry of Works，Ancient Monument Branch）

Figure IOd: Law Library (rear west range); drawing of east bay 3 and west bay 2 to show sample locations (after Ministry of Works, Ancient Monument Branch)

Figure I I a: 9a The Close; plan to show approximate position of sampled timbers (after Richard Parker, Exeter Archaeology)

Figure I lb: 9a The Close (roof 2); trusses A and B showing sample locations (viewed from the south looking north)

Figure I Ic: 9a The Close (roof 2); long-sections through trusses A-B to show sample locations (after John Allan, Exeter Archaeology)

Figure IId: 9a The Close (roof I); long-sections through upper parts of trusses I-4 showing sample locations (after John Allan, Exeter Archaeology)

Figure I Ie: 9a The Close (roof I); cross-section at truss I showing sample location (viewed from the north looking south) (after John Allan, Exeter Archaeology)
Empty bars \square = heartwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring on the sample is at the heartwood/sapwood boundary, only the sapwood rings are missing. NB: Samples D75 \& D79 are from the same timber)

Figure 12: Bar diagram of the samples in site chronology EXTDSQOI sorted by sample location in last measured ring date order

Figure I3: Bar diagram of the samples in site chronology EXTDSQ02

Empty bars \square = heartwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring on the sample is at the heartwood/sapwood boundary, only the sapwood rings are missing

Figure 14: Bar diagram of the samples in site chronology EXTDSQ03

Figure 15: Bar diagram of the samples in site chronology EXTDSQ04
$\stackrel{A}{N}$

Empty bars \square $=$ heartwood rings
$\mathrm{h} / \mathrm{s}=$ the last ring on the sample is at the heartwood/sapwood boundary, only the sapwood rings are missing

Figure 16: Bar diagram of the samples in site chronology EXTDSQ05

$\begin{aligned} & \text { Off- } \\ & \text { set } \end{aligned}$				Total rings	Relative heartwood/sapwood boundary position
00 D07			h/s	54	54
01 D02			h/s	54	55
01	20	40		0 ye	relative

Figure 17: Bar diagram of the samples in site chronology EXTDSQ06

ω	Offset						Total rings	Relative heartwood/sapwood boundary position
	18	D91			no h/s		75	--
	00 D89						94	94
	01		I	I	,	1		
		20	40	60	80	100	120 ye	s relative
	1346	1365	1385	1405	1425	1445	1465 cal	ndar years AD
Empty bars		= heartwood rings, shaded area $\quad[\mathrm{mmm} / \mathrm{dmm}$ = unmeasured heartwood rings						
	$\mathrm{h} / \mathrm{s}=$ the la	sample	vood	ary, o	d rings are missi			

Figure I8: Bar diagram of the samples in site chronology EXTDSQ07

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
EXT-D0IA 54
274 323 386 346228298366354383286282287 266 |22 |30 |60 269 277 324 268
|8| | 30 | 30 | 39 224 293 |56 74 |09 |22 |45 82 93 42 47 74 ||2 223 |44 | 80
207 27| 263 343 4|| 2| | |57 |82 |90 228 283 262 32। 439
EXT-DOIB 54
238343 38834326828| 367 35| 363 3| 8 305 3|5 245 |23 | 38|52 285 343 335 24|
|64 | 64 |26 |50 244 307 |49 68 |24 ||6 |33 77 |07 43 39 83 |09 229 | |8| |9
23027427232942। 223 17| 199 202194 274 258336402
EXT-D02A 54
```



```
|48 |78 207 | 68|58 292 306 258 204 |52 260 |65 229 |93 236 242 |65 |93 23| 249
286 2|9 32| 277 233 |92 I85 22| 296 205 |59 200 2| | 289
EXT-D02B 54
```



```
3032283|6273237202219 |74 153 197 | || | 88 226 3|4
EXT-D03A 103
    33 44 48 5| 54 75 53 50 68 55 63 63 83 67 ||2 |04 |36 |58 | 80 |70
    |52||2 8| 78 96 85 65 46 67 62 83 63 46 67 84 94 85 97 ||3||5
    |36 |08 94 I23 |22 72 109 82 82 80 49 54 54 57 7| 7l 47 60 74 68
    78 85 90 67 74 45 44 74 82 8| IO| |29 |O| lO5 70 77 74 42 47 82
    50 66 73 78 44 93 67 72 63 69 68 89 8| 82 74 89 |37 |22 8| 70
    606988
EXT-D03B 103
    38 36 50 49 5| 73 6| 46 67 53 62 70 87 57 109 108 | 35 | 53 176 167
    155 ||3 79 7| 103 86 58 54 64 58 98 65 43 69 100 80 87 106 104 120
    |44 |08 |0| || |26 97 99 96 77 74 47 5| 60 58 7| 58 49 69 67 65
    73 106 81 65 66 54 46 72 9| 82 104 124 97 94 77 83 68 37 59 73
    497067 73 56 90 73 72 70 7| 68 93 75 84 59 |0| ||7|22 88 66
    6073 89
EXT-D04A 99
    |60 68 74 88 67 ||6 |05 84 69 84 88 |44 |05 ||2 |3| |38||7 92 77 77
    |00 I20 96 I03 92 80 I04 |52 | 34 |9| |98 |64 |96 226 27| 230 224 238 27| 255
    329 293|20 65 48 66 74 67 I06 84 84 |02 |39||2||8 82 57 44 77 79
    98 |02 98 ||| | 33 ||5 | 43 |28 | 30 | 45 |55 | 38 |27 |50 |25 97 |03 ||5 |26 |4|
```



```
EXT-D04B 99
    |46 65 69 82 65 ||4 95 87 70 76 88 |35 || 95 |22 |3| |20 93 8| 75
    ||2 99 |09 87 9| 89 |08 |56 | 37 | 87 |9| | 68 206 2|9 3|0 226 234 256 269 263
    3|7 285 |35 77 53 64 76 59 |09 65 96 |20 |22 ||| |20 68 58 52 79 76
    98 |00 98 | | | || ||5 | 40 |28 |20 |65 |59 |4| | 24 |5| |20 99 98 |23 |3| |27
    |38 |20 |46 |57 |84 |95 |53 |69 |57 |32 96 99 ||0 |2| |2| ||| |70 | 48 |65
EXT-D05A 146
    83|30||4 202 |33 |02 96 84 43 44 26 3| 48 67 ||9|34|46 88 49 82
    |5| |56 2|| 206 |68 255 232 275 |65 78 82 82 5| 90 ||4 |37 |00 |09 72 89
    126 74 86 ||4 99 97 127 75 73 62 93 74 7| 4| 26 37 70 80 42 42
    38 5| 44 63 68 4| 44 53 64 60 8| 98||7||| | 54 |40 158 |09 108 76
```

 $4843837|657869103904990| 3687|53| 7|254259187| 80 \mid 69$ 239377410293233255217279225 |57|48|25|68|5| |09106|09 $2242262 \mid 9$ $253|52| 93|5| 109 \mid 37$
EXT-D05B 146
$84120127198133106|15784635254| 476|12913| 142|0| 5985$ $16216|2252121642522| 4227163946879608|1| 3|44| 2|1| 66887$ $114708599126961327 \mid 636490876940253865794549$ $394|52637| 593752765|73| 06|17| 42|49| 30|58| 33 \mid 0486$ 91 931019879512128313639433337362940333242 $40538384567566|1289498812896137| 8326 \mid 239183173187$ $25136441728 \mid 22626421626224317415013917415796104106216217221$ $25|153| 94126|2017|$
EXT-D06A 122
 8796119145738710475789689106807475113829298103 $11217622621|15822019721216| 14613413011469524051604892$ $12817215519014418 \mid 182163166165207236170157164108105132130119$

 127190
EXT-D06B 122
$1626868959960921048597|17| 189|342953739510| 93$
891061211341059098849010710998797578119838011697
12217424720616923417921415514312513610665573944605693

$120|38| 6|133| 34122|53| 09|2||42| 44|22| 14|26| 42|38| 64|50| 20|\mid 57$
235140145180144148173184218139162110154176127208172160237163
144192
EXT-D07A 54
$239230206|632| 0|78| 65|58| 94|922| 8236|83| 36||0| 49| 63||5| 20| 45$ $2||2252| 84| 73073|8459370353208| 5|174| 152|||2|| 692| 8|03| 38|4|$

EXT-D07B 54
223239199198213184147163185216169216190174122136209122114149 $20424724|41432431442239836320| 13518910 \mid 223127155238120130134$
$19521916518423|212150210139223| 46 \mid 2485178$
EXT-D08A 54
222249290349281229292282273199279240212390184338234265266209 294318413432340258286359394305342349346321244356343329268385 217250254229362202 35। 208272273206247268259
EXT-D08B 54
284261276367276169299268266199268253214362241330264248270205
$34032739243333324829 \mid 411399280334353328294243342360321270382$
18924226524734922 | 33220728629220227825828 ।

EXT-D09A 80

$53442249541651744|287332305304207187235207| 172|8| 43$ ||| | 39 |3|
$14911011298114134841549474902944747787656165 \quad 56$
$\begin{array}{llllllllllllllllll}41 & 23 & 24 & 21 & 44 & 28 & 29 & 56 & 93 & 107 & 53 & 69 & 51 & 53 & 60 & 66 & 33 & 32 \\ 36 & 14\end{array}$

EXT-D09B 80
$5074254704|75024| 929032931930|2071862401951| 82 \mid 413099143$ | 22 | 50 |08 |0| ||2 |05 |3| 99 |50 ||3 $76833 \mid 3369739952667548$

```
    40 29 26 20 38 38 27 56 84||9 47 67 42 70 69 58 28 28 29 20
    57 55 57 l00 76 63 46 60 60 59 93 65 33 32 56 42 3| 28 35 42
EXT-DIOA 56
    83||O||4 I2| 76|46 99 56 80 26 37 69 89 7| 62 46 78 47 42 29
    25 25 35 25 26 30 93 96 4| 6| 33 46 52 43 24 3| 27 27 44 47
    56 83 79 66 52 66 57 62 82 79 60 41 62 45 33 28
EXT-DIOB 56
    8। 99 |2| ||3 8| |45 |05 57 75 26 38 64 89 80 58 56 72 53 38 26
    24 28 35 2| 27 38 88 96 4| 54 33 53 42 49 22 24 23 16 24 43
    62।|O 90 64 52 65 53 72 77 74 62 38 60 47 46 41
EXT-DIIA 75
    369408354294289302296 205 |78 233 208||0|87 |2| 85 |25 ||6|24 |06 78
    |04 ||4|25 88 |36 92 69 77 26 45 7| 76 87 52 60 77 43 36 36 35
    2। 3| 25 26 37 87 95 38 57 35 5। 44 48 24 23 30 27 48 54 54
    77 86 65 47 67 60 64 73 79 63 4| 60 42 49 36
EXT-D|IB 75
405429366290300 3| 8 302 2|0 | 82 232 208||| |94 |25 83 |22 ||9 |22 |05 82
|03 ||7 ||9 82।39 93 67 78 37 4| 65 8| 80 55 62 72 45 42 28 32
24 28 24 33 36 93 94 4| 54 39 43 45 49 19 25 30 3| 47 49 61
72 93 64 49 69 57 60 84 76 60 45 50 46 50 35
EXT-DI2A II9
235 307 256 I27 246 |39 |44 296 389 296 329 357 259 277 |6| 284 I76 98 33 35
    69 ||7 |06 | 38 ||6 |29 ||3|95||8|22 8| 39 34 52 30 37 66 3| 46 49
    18 17 15 18 27 44 55 43 44 45 56 59 52 20 22 30 2। 30 58 55
    ||8|34 | 40 | 28 | 60||2 74 8| | 36 |0| | 63 | 67 | |7 |08|02 |02 86 5| 42 28
    5। 30 19 26 25 27 34 44 43 55 47 46 38 42 42 69 59 89 77 120
    |80 |48||3|30 |22 |43 |3| | 86 99 |20 |57 69 |06 |52 59 75 60 78 |20
EXT-DI2B |।9
    2।9300 257 |32 245 |45 |34 300 394 296 324 359 267 267 I77 276 I75 105 35 32
    66 ||8 93 |50 ||4|37 98 |92 |24 |28 85 46 26 53 39 37 64 26 54 47
    18 23 20 24 28 40 53 47 38 44 5| 39 4| 23 3| 27 27 25 56 59
    |09 |27 |39 | 32 |60 ||3 72 97 |20 |02 |69 |53 |48 |0| |05 |02 89 50 42 40
    47 25 27 27 20 2| 33 45 42 46 48 35 55 4| 54 65 67 73 96 |||
    |56 |38 |28 ||7 |27 |43 |27 |8| |06 ||4 |49 64 |05 |47 62 7| 64 54 |20
EXT-DI3A 67
255 303 89 65 4| 32 54 |03 |0| 60 53 79 ||9 8| |05 |37 |68|55 |87 87
|42 |73 |84||3|46 |54 92 |30||0 |03 |00||6 38 35 55 || | |2 |32 |50 |66
188 193 158 125 80 72 43 88 50 63 96 69 70 78 59 45 37 39 45 48
5। 33 24 41 64 46 61
EXT-DI3B 67
232257 80 50 36 36 68 9| |07 67 6| 90 |06 ||7 |2| | 32 | |4 |55 | 82 87
|4| |76 |8| ||0 |53 |52 89 |32 || |09 |06 || 43 26 60 |06 |75 |36 |54 |66
|79 |8| |5| |26 85 75 48 79 56 59 96 65 73 80 53 50 4| 35 39 47
52 30 4| 34 69 56 53
EXT-DI4A 54
|23 |33 95 98 |22 ||7 97 85 |20 |53 |20 |22 ||4 ||8|44 |56 ||7 |39 |05 ||6
|76 ||9 |7| |5| ||| | |2 |68 |78 255 |92 253 278 208 20| |4| |27 |3| 73 |30 |35
||6 |39 |03||2 | 37 |5| | 34 |52 97 ||| | 86 |22 | |4 |45
EXT-DI4B 54
|2| |2| ||4 98 |25 ||6 9| 72 |42 |37 |28 |26 99 ||4 |32 |82 || | | |6 ||| ||0
|79 ||6 |72 |54 ||2 | 38 |68 |50 270 I94 273 256 2|0 2|4 ||5 |35 |35 70 |47 |34
|25 |28 |08 |08 |39 |63 |26 |44 97 |22 |88 |22 |45 |38
EXT-DI5A I22
```

 78937761991038911110397897795891086596132145118

 88124
EXT-DI5B 122
| 39 | 88 | 53 |98 | $34||5| 30||4| 451037080656788||888|| 8 \mid 0980$ 77107865788961001071118680657586977996126148116

 90131
EXT-D16A 67
$185217|45136| 58174193|74175183224193209| 56|43| 32|9| 237248295$ $22419716013698627410 \mid 10611977731051401499561706565$ 75 | $2|10| 12593$ | 02 | 29 | $66||9| 58| 40|36| 46|6||92| 30|6||25| 36 \mid 30$ 1039464879689103

EXT-D16B67

$197194160|42957| 829|122| 24668386|30| 539385575971$
73 ||9 |06 | $2010093|30| 54|2097| 33|3||38| 54|76| 36|62| 3||3|| 35$
1048567879466101
EXT-DI7A 69
2384543392442391921801722032251501271431852061891391067784

EXT-DI7B 69
$2444|5369246226| 99|7||83| 98225|53| 22|4||882| 4|83| 28 \mid 087589$
|09 ||6|32|48|54|85 $2732|0| 43|38| 57|322572432| 8|88| 45|5| 206 \mid 94$

10989165 | $32109106 \mid 25195$ |50
EXT-DI8A 157
$187157194188208173176150140904797206194|18| 6|12013016| \mid 44$

 $88149133120121100127127|1| 1261291081|7105968| 86 \mid 169682$ $8261707811111189108103122103104888 \mid 7676888491102$ $14797999|9996| 20|22| 30|13||3959| 1|387||0| 29123|53| 32$ $1|8| 7||44| 28| 37878978|20| 4083|34| 26|84| 26||6| 48$ EXT-DI8B 157

$718866706948493766717367 \quad 736710410386776381$ 1161451331701221421201339572107997778525138506372 $87|46| 4|127| 14|06| 28|30||||24| 43| 20||3||29| 8082 \mid 209499$ $76636772102|1492| 1410913295989|7787769| 8997105$
 $1|0| 6||48| 39| 30||4607695| 09| 2||25| 80| 69|46||7| 39$

EXT-DI9A 99

|5| |33 |3| |46|6| |55 |09 72 $90|49| 40||092|| 26|65799893| 06$
 4255726910490103114108548064109757510594617666 968964 |23 | $4968|||74| 26| 078||30||4| 45|5||45| 46|30||3| 24$
 EXT-D19B 99
| 32 | 28 | 29 | 52 | 57 | 62 |05 $879||40| 2897| 03|0765648388| 03 \mid 00$ 89 |04 |04 ||5 ||2 ||3|39 |44 |29 |33 $867 \mid 7082768278733951$ 54697873999310911896566774101807110895667076 $909469102|307710876| 241079|120| 17|44| 58|55| 36|42| 05 \mid 24$
 EXT-D20A 128
$16|85112801326676| 25113106 \mid 159166666780981636761$

 $1031571569911|8010379931291491451149| 1029310812712498$ $7|13919717821| 18924222917317789106106|16| 8418512496120109$
 70837587809275105

EXT-D20B 128

|6| $84 \mid 3675$ |25 6979 |24 ||3 |03 |03 $846859768299 \mid 576566$

 64101169168210192235220189157107107104109183199115104127129 $166|38| 58|40| 52|14| 33|25| 58|08| 6089 \mid l 685708970657769$ 8073727780798097
EXT-D2IA 60
 $27834520924|3| 223423429037937|29432| 308367345390369185242232$ $2152262|7| 632|6280287| 83222$ |9| | $64|56| 37||7| 44| 7||60| 35| 54236$ EXT-D2IA 60
| $8519221223928|22916029927729| 2332|4| 69264$ |73|30|56 $2772453 \mid 8$ $23732322425|28820528| 29936336331332|28936433| 40|356| 8|2422| 5$
 EXT-D22A 58
261224300385396317334313261358405425390253223215245247229202 $21422031912722117918220725227322619321417|26| 172147170270202$ $22030|31022721| 203172174138104144166167136|4024| 24722 \mid$

EXT-D22B 58

255236274375421288329308295366395420386238225223238248238192 $2262|3328| 4320417918920924|27823| 1572|||7| 258| 69| 26|5| 268207$
$2263043|422| 2|7206| 77|64| 42107|4| 170|52| 53|3723524| 2 \mid 9$
EXT-D23A 113

$869320|97|||147| 34| 24|454329446358| 15|12| 04896456$
$84403562884495886363817268865151 \quad 58 \quad 665743$
$4565855911412910897978|9| 9|8| 96|1912| 97807878$
$9412299905291119961281391941671301558811312|10818| 189$
$11486|199610588| 19|30109123| 45$ | 03 | 05
EXT-D23B 113

$5|6677691001261068910084102809599| 15 \mid 3395847472$ $86119949|579412110| 13414017617812|15| 96109118109177196$ $931031179510983|24| 3|10| 1|7| 4 \mid 97117$
EXT-D25A 62
322214360305271273213289422268321201223247262175294237287270 209228 | 85 | 73 | 27 | 37 | $5030723|18529730823||64| 2525||55| 44| 33 \mid 48$
 307442
EXT-D25B 62
320209337325265278209300430269288201228250255174283250283278
 |53 |5| $20|12899| 4431333826 \mid 208216257$ |9| $39|37| 3294743 \mid 4427365$ 298478
EXT-D26A 147
$11221726720|19425| 22430918422 \mid 143194133190209192233167179239$ $1146338609|130| 66|66| 20|27| 24 \mid 279259475247396891$
831077897147951081009262897979779678112777366
40493962606371841001261068910084403945334255

10269746468596167646667565643395650635267

68839590108104145
EXT-D26B 147
$97|8| 213202156262228310195220144185135195192194207164155233$

6444455450686773544152485149505656967988
10273755866606672537468495741415154605166

72789882114100155

EXT-D27A 56

$18928517682|26204263| 45|27195303268| 63|73| 73|66| 47|60| 48 \mid 27$
|48 ||2 |4| |62 |00 $773358669|139| 2|107| 32|38| 5 \mid ~ 99667057$
$6663789310410080951501439910111 \mid 96119106$
EXT-D27B 56
$24|283165791132132571851351983| 0267|5| 17|177| 69126 \mid 62153135$
$130|23| 45|551037343507585| 42|30| 24|30| 48|49| 196 \mid 5862$
646077951061057589 |53 |43 9699 || $2100|2| 103$
EXT-D28A 146
$26312919425828 \mid 21624225819313610421219516711975103210145157$

3447725451486966453822192323414164494153

$2727353934353|4| 32366684|037| 92|3| 135|3| 108 \mid 18$
$1091341021||9992728| 6672697394| 15 \mid 167674676084$
$105106103|30| 48|43| 30|29| 17||4| 17| 26||||22| 10| 008986| 10100$
108105991058097
EXT-D28B 146
$229|3720325329724| 235258|86| 59|||204| 79| 68| 2572|26| 97|48| 55$

$2739735 \left\lvert\, \begin{array}{lllllllllllll} & 36 & 68 & 67 & 57 & 4 \mid & 21 & 16 & 16 & 19 & 45 & 52 & 55 \\ 52 & 37 & 59\end{array}\right.$
$6738666375749492||2| 33| 40||2| 67| 39707750522929$
$3|384930264| 273938396688986899|37 \| 5| 39|17| 30$
 92 |06 ||7|3| | 40 |49 |29 | | $7||8| 26| 06|3|||5|| 8|0794969||0| \mid 04$ 104109102958887
EXT-D33A 57
454465363296372318400285272 23। 259299371239212317372310274277 229246261204196210270276256217183220255254306259241300190230 $1572742532863333||3003| 53553| 8239226$ | 85 | 83309 | 88260

EXT-D33B 57

499360359272368304400304253205250308351234208322362290274290 20025527819920019829228525 | $21618921925024730926223 \mid 295185228$ I70 279272 29। 35। $3322553223593 \mid 2234234208$ | 80324227233

EXT-D5IA 79

$16286|55| 09|83| 5|224| 34|78| 09|16| 70|8929| 160|44249237| 59 \mid 66$ 17815123921829432320522921119831920421912719515517816515295 $9313016718926519015 \mid 10211295$ | $27|48| 5|23099| 452|7| 70|97| 80$ 239 |77 206 |92 | $8|18| 153|86| 55|46| 2||23|||9898| 38|9729| 226$
EXT-D5IB 79
|52 98 |32 |27 |78 |66 2|| | $38|65||3| 07|77| 84290|90| 53254243|49| 69$ $2501372362|529429523| 2392|8| 873|72||197| 39192|70| 94|36| 7783$ $88|34| 58|86265| 84|6498||||08|| 6| 42|5722483| 65203|69| 93 \mid 94$ 228 |74 209 | 84 | 80 | 70 |94 |77|59 | 48 | 29 || 5 | $06||||09| 26| 98297229$ EXT-D52A 88
$5084363546544|743832738230942| 3|72| 5234637504406270292243$ | 50 $25925626125822038325729623 \mid 214205251183214259198255299213463$ $250285203192275167|79240| 37|49| 4|130| 692062|3| 54|5420| 133 \mid 88$ 179163214139153190177193187216307198310218269200173296216220 239242226233255300252265

EXT-D52B 88

$48843534955941 \mid 444349365324420316210251631497408263306238$ । 5 । 235252 25I 23I 239367225302219246199230173220248203251290219455 $25427420 \mid 194284$ |78|63 234 |42 | 37 |39 | 47 | 64 20| 208 |59 |43 202 |43 |79 190 |54 |90 |67 |55 | 85 | 88 |60 202242267 2|| 300 |96 $298200 \mid 70284208239$ 209256237203243335215226

EXT-D53A 54

69 |02 |44 89 |2| |20 $86858975949|1001252823552773553| 9196$ 184 | 40 |। 2 | 25 |67 | $8620423|20230737226| 30026 \mid 200233423335222229$

EXT-D53B 54

$82103|5492121| 1290869379968698129321337294345310196$
|75 |26 ||0 |28 |7| |8| 20| 24| $2073|442| 2803232452052654|934420| 248$ 209 |60 |67|57 202 |70 | $872|8| 50|632| \mid 265$ |90 226
EXT-D54A 61
$3653043983 \mid 8403262296269359278235266234$ |96|67|73|942|432| 294 395352225 | 77 | $6 \mid$ | $8|186200223| 402462|92| 32|8| 08|5||372||\mid 45289$
|55 |84 |0| |57 2|9 | 85219 |64 |52 $2682822502352882|83| 3|8727627| 254$ 251
EXT-D54B 61
$3453134263|44292383| 2259362302243290216$ | 80 I77 | 87 | $892183 \mid 829$ |

252
EXT-D55A 62
$41035837749434654|50| 48042655|47757659| 4||46240936322026| 249$
 |62 | 5 | | 62 |43 |74 $2092082272422|433725029924722529522426| 249$ | 62 148171
EXT-D55B 62
39। 34। 404474422484478485466550444567605416468416372220251248
 |6| | 47 | 52 |4| | $762||2| 32| 92482|530925728823523030| 205263247$ | 58 154173
EXT-D56A 68
103 | 38 | $351332542|9| 73|85| 57|26| 75|53| 87|69| 50|22| 67||7| 80| 69$ $137|12| 1792124107|4| 188327426298306294194|48| 24|38| 3||84| 72$ 192237222320400237289226180248387269243287 । 88 । 70163155226 । 70 $16723|147| 23|9424| 17 \mid 240$
EXT-D56B 68
| 38 |48|43|34 $250226|73| 85|55| 3|162| 662|9| 68|52||7| 78|00| 96 \mid 69$ |49 |0| ||2 ||4 |27||9|52|97 $2974||3| 43| 3269|99| 5||20| 36| 44|92| 74$ 19| $21419430839426231522219923340628522 \mid 267207157178155218$ |47 166 222 | 45 | 32 |99 247 | 56 | 96
EXT-D57A 80
352 38। $2442934|83854| 357|2824443922373| 8 \mid 92207195252182187296$ $26624 \mid 237282205229217175144359229320247234177174227260229280$ $21223419737530136030|25425924| 365227|44198197306| 46202203227$ $20021620219716413013215516020|196| 581522271281622001|817623|$ EXT-D57B 80
$31639|27| 272438365440526310467375247270176209$ |9। 259 । $8 \mid 188297$ $25224723 \mid 269188225200164164364253318236219186182220244231276$ $2082222023722853622942722732253382|3| 5|20| 22|278| 821972 \mid 6228$ $206|902||197| 60|2| 138|64| 63|922| 7|42| 59224|34| 7||86| 3| \mid 64229$ EXT-D59A 70

 $165217|53| 79|502| 7|49| 32 \mid 27 \quad 97$
EXT-D59B 70
$10421819923433|3042081931422| 3|70253229263380| 40153143180132$

 180215 | 58 | 85 |48 203 | 58 | 24 | 30 | 07

EXT-D60A 77

164257304215 | 86 | 7629 | $17425616622423235625929334330822 \mid 193286$ 223130243327449 I74 28। 230225219234193238100575466514748

$229|4726617032885766455128264| 55240|4| 136|472| 9$
EXT-D60B 77
$1642633032001841942661722591772|224035527430328632619321| 286$ 22511824731845416029321219922623719724099535853634244 $5|4| 545269857984868|1238784| 2399|27| 15252275275$ $21815825817|3| 475756855130258160234140138150215$ EXT-D62A 54
45292031346463 । 402544480560398254268269249228390258162 |78। 192
$2343093572 \mid 3289232298227233275223$ |5। | 87224373377475243 |64 72 7265 |l4 238 | 45 | 84 | 40 | 06 | 34 | 28 | 85 | 65 | 92 | 74
EXT-D62B 54
438910291473626410547497561397262265216249230394272163197197 23932239024728024127422021930621915619317836439348622816476
7268109238159177149102124140172173190174
EXT-D63A 55
442510570483366582422371399454504499249378364484326217158218 $2282|324924945037| 320440339$ 38। 306 27। I7। 256335373355356423289 35 | 383355375 3।| 4।। | 8690 |33 | 842793043574 |4 420
EXT-D63B 55
398512579481315625462402409399499468262371380467328221157230 215221240237466364298443345398324263186241349382356343404307
352387342384316418 । 8890 |23 ।9। 285293349435415
EXT-D66A 66
$29861 \mid 507605433402363278$ |72 |7| $2042762242691982462422822 \mid 1215$
$139|1513221918717417019820818922222110313012626| 17534919 \mid 284$
183185236197259186167306349286248377272496300474397300210217
I54 279203295 I 88335
EXT-D66B 66
302625503595451393346295156193208253219279204246213292209263

$1962022241942441831773063||30625438227| 5| 727246 \mid 407296219207$
| 58 28। 208294196356
EXT-D7IA 108
 $146 \mid 48189190182883057495359776445$
 $61886767899|107| 44|5577132| 8222515 \mid 11013786588683$ $15012472681482501201687513696109897910211730 \mid 289177155$ 67476489 | 34 | 51135 | 95
EXT-D7IB 108
190168137216228256244244193223330209204133124125655287143 1351472191801858540465356796766465564564766129
 $658764758595105150|4688| 13|84228| 48|17| 3677657694$ 14311278631502491251657612993928778123119306283166144 $7|465693136157| 4 \mid 201$
EXT-D72A 62
$19712|88| 14|39166| 93|56| 74|13| 9|170206| 86|5290| 66|38| 792 \mid 8$
 $9670951081108911915320021217|2591961671239710012612| 94$ 9998
EXT-D72B 62
204 |24 $80|16| 35|5920| 154|82| 03|94| 832|0| 9||55| 00| 60|49| 79229$
 99699010211310011214416715717327018217911693106123125105 7574
EXT-D73A 100
$19821224423718719927536333838044646030 \mid 456658625513492424343$ $29421724022116|22419769557577725| 5510 \mid 109135826779$ $666359104138|4912612013012| 12|1| 9103682644385 \mid 4074$ 444443647011011476774661685173956228214651
 EXT-D73B 100
2182192492441901932853453373274404712704836596065 I। 455412279
27924723621915321619856647863734648105113142865994
$755562105138|68| 12|13| 34134|20| 1510265274638444574$
$5142436972109108 \quad 81794569735469946629284446$

EXT-D75A 56
$18618427628739636533328331450|33| 279150|8922512393| 43273194$ $1582222382082109018617617726220220 \mid 162264245$ |9| 213165258226

EXT-D75B 56
$19918427429542|3583| 927329|5| 43372551581802487796130286202$
$12924726723721|9319418416626| 206207158252249187214|8728| 206$

EXT-D76A 64
2131792512362972762181332031652102669813222521919314922793
$728980119106981121007|999011411210911410| 1329413316 \mid$
1731752612572362171589512016617317014419415497214239229161 16112293158
EXT-D76B 64
$20917626 \mid 23329729321414321717017727710014722022315617219995$
$71967911510794115927210 \mid 9211711910910410513499132176$

165115103154
EXT-D78A 70
$19327231828824423818420|119127135835| 65133107989795138$

| 53 |70 24625299 || 8 ||3|64 284243
EXT-D78B 70
$18727333228525025|178207| 13|43| 2|925| 86|2| 951099296 \mid 39$
$178|29| 78|49| 62|50| 78|26| 3|||||40758268| 27| 4|| 57| 35|24| \mid 6$ $11314719317220611712|789212912415211312610914319022| 209144$ 163 I7| 25526288 I24 108 173 274219
EXT-D79A 87
$98|66233| 75|80| 73|35| 18|06| 5526325028732|173| 5365155153 \mid 43$
$255139576|4510478| 026||14| 6| 148|8||78| 64|68| 52||5| 3| \mid 48$
$89667211513912017213587133116|34190968012| 12610314475$
$8070857055823997|16| 35203 \mid 4385100584833242055$
42615974806366
EXT-D79B 87
$97|73236| 78|68197| 4511396|372732472963| 7|68| 5472 \mid 47155137$ $260130596250103899056||4| 70| 34|69| 88|69162| 5||30| 19| 43$ $876680|19| 45124166|2278| 38|08| 24|83| 0080|32||9| 00 \mid 5663$
877789695574401101161172161478096664624272158 $41 \quad 62 \quad 6172737270$
EXT-D80A 78
137252259337372228 | $8 \mid 102$ |7| | $8|120209| 4778585088738564$ $10316215018919519219619015413514693789014217914215 \mid 9876$
 99 ।92 ।47 I00 ।IO 89422924264330253159564952
EXT-D80B 78
$144239267338369220|7593| 73|76| 27|82| 4378564788749655$
 |05 | 10 | 34 | $8|~||6||4| 66|48| 22|326587859076576240| 23|\mid 9$

EXT-D8।A 60
$1038525723012523313815613817213|7| 1|6| 1919522618319786102$
157 |43 109 | 2610218234937621323319020912694195200327299229183
$1456594939|1| 960907075$ ||7|48225|52|786| 68||4||5|42
EXT-D8IB 60
$110902582||123248| 27| 65138|73| 2380|07| 10|882| 6|9| 18993100$

EXT-D82A 76
$33656|57069053343925| 366384267123104 \mid 10594868109$ || 19144213
$193179873134385667|1312| 878945363744170 \mid 50114105$
$13010210521626518 \mid 247894361459977875486119135148174$

EXT-D82B 76

192193913530366067109125828356483466 |76।49।|5 ||6
128 106 992232551872578061545010369984793130134130189
| 26 ||9 | 33 | 40 | 3320498 | 28 |96 273256 | 74 | $62|3| \mid 06220$
EXT-D83A 54
$29750653263|50640725| 1396099465579$ |44 | 88 | 48 |50 264168294

137|88 125 ا88 239 199136 8094153265160213246
EXT-D83B 54
$30050|510622503399230117849647548| 138$ |9। 139 | 55259 | 81259

EXT-D84A 55
$37528227734845832543833|34026823321320| 2|2| 18|86| 86 \mid 248894$

209 |4| | 87 |90 | 04 |02 ||4|39 | 58 | $67|36| 33|73| 54 \mid 55$

EXT-D84B 55

38228029230944333646133633327720922321923213321814312293103
$7781781728612819822926418412296119425581 \mid 55139106125$
$2|5| 4|172| 79|1096| 14|4||64| 66|48| 3||75| 57| 59$
EXT-D85A 98
 |5। $947876133108721089816 \mid 148951097595109152173102128$ $104||3| 329493| 20|8| 169|07| 36||2|| 7|76| 34|33| 23||9|| 5|24| 02$

EXT-D85B 98

$2072|8| 90238|5| 209242243263304|4084| 72253|68| 99|75| 74|80| 20$
$14|848376| 2710|79| 12105156|54951067697||4| 43 \mid 7793130$
$10612212493104|16| 89172107|30| 14|16| 821291351|3| 40107 \mid 19105$
1421218097139128120961249310813515219012914411812895120

EXT-D87A 54
269206305294279240302288331319265264285279297295335281475395 408427328337276454443372374525320396453232178217297395526487

```
    4|3 3302602972|3 246 |92 28| 307 27| 278 2|2 |54 |70
EXT-D87B 54
    268207303 300274249300293 322 330243273282300290302295345462424
    4|8383 373 3692804274|8375 37| 5|| 340 38845| 234 |83 20| 306405 573 5||
    4023422602942।0238 199267 3|0 259243 20| |59 | 85
EXT-D88A 63
    |66 263 |5| 30| ||9 69 64 7| 86 77 74 60 63 65 8| 56 35 46 39 53
    43}493538 31 32 36 44 28 27 28 25 32 27 29 32 24 27 30 37
    30 4| 46 56 66 79 99 95 8| 69 77 89 97 99 96 l25 93 |32 | 36 128
    92 81 |22
EXT-D88B 63
    |73 27| |52 294 ||5 77 65 67 88 74 7| 64 67 69 89 54 39 45 37 55
    42 49 34 4| 30 32 34 43 30 27 28 27 33 25 27 30 23 27 29 33
    3| 39 43 6| 65 79 98 89 78 72 77 90 97 |02 |00 ||8 9| |34 | 33 |20
    96 84127
EXT-D89A 94
4843024|2508256459 20| 226 |97 |70 ||| |08||| |08||4 87 254 2|6 |22 |0|
104 I2| 96 |26 |74 |07 |35 8| 137 78 78 6| 76 l03 89 77 99 l05 72 69
    84 59 65 78 65 78 55 40 44 44 65 63 78 75 79 79 58 73 109 74
    67 64 54 59 50 57 60 69 58 52 50 34 38 38 76 55 38 87 47 45
    4| 53 46 46 48 75 ||8 56 57 67 43 59 5| 78
EXT-D89B 94
    473 3|04|8508276420207 245 |85 |84 ||9 |04 ||2 |08 ||9 87 272 |84 ||4 |0|
    |02 |06 ||2 |40 |82 |09 |29 79 |25 76 77 54 83 96 85 78 |0| 95 75 67
    74 73 67 73 59 81 43 47 43 61 64 55 88 81 92 84 66 64 94 80
    63 65 59 6| 49 64 65 70 59 55 50 35 43 35 7| 5| 4| 9| 55 44
    49}4846454848708848 64 74 47 58 5| 77
EXT-D90A 72
    9| 89 |03 98 |65 |0| ||8 |2| | 39 |56 |46|49 99 84 |07 98 |05 88 86 94
    82 80 || 93 |37 |22 94 98 |09 |47 ||3 ||7 | 32||4|42 |07 |2| 94 |28 |28
    87 89 6| 97 6| 89 97 86 l03 94 83 65 80 75 93 8| l08 ||4 |2| |33
    |04 |4| ||3 |05 98 |04 78 98 96 |09 |03 ||2
EXT-D90B 72
    87 8| |00 94|58 97 ||3||6|53 |70|42 |63 99 87||0|0| |08 90 85 94
    82 80 ||9 94 |30 |20 |00 |03 99 |36 |2| |23 |28 ||4 |36 ||0 |35 9| |28 |30
    90 92 76 I00 67 78 93 90 I05 92 87 68 78 76 89 80 I03 ||9 |20 I3|
    |05 |39 |22 107 88 |00 8| 96 100 |06 |0| |||
EXT-D9।A 75
236 |7| |77 254274 3474273|3 3293|4443 35| 278 |9| 2|| 253 262 194 194 |68
||4||4 |55 |70 |84 I70 2|5 272 222 I72 206 249 266 2|| 2|5 296 278 260 256 269
```



```
34| 3254|3297336253352286342232220359199295 |27
EXT-D9IB 75
232 |75 |62 258280 36| 393 330 323 3|6438 350280 |7| 240 268276 |99 |68 |6|
||7 ||9 |55 |72 |78 |75 I84 264 202 I73 235 249 255 2| | 222 276 292 259 250 269
242290295 268226 222 |62 | 89 200 |97 | 35 |7| | 48|49 |59 |75 |89 2| | 233 394
3453293953033352763|3325340216222343207278।35
EXT-D92A 80
89 |04|| 92 104 |0| 90 123 99 | 78 88 | 36 93|4| |56|46|49 89 98 |02
|06 ||| 74 85 96 76 82 ||6 86 |43 |2| ||4 |00 98 | 30 |09 ||7 |24 |07 |45
100 127 96 I29 I2। 76 78 52 85 65 108 79 95 97 89 80 55 85 75 77
68 |25 |05 |04 | 30 ||6 | 32 || |09 |08 92 8| ||2 98||4 |07 |06 ||| 93 ||5
EXT-D92B 80
```

$831081061028910993|15| 0916697|28||4||6| 49|40| 489592 \mid 04$
 97135901331188177558770103809298938152877878 $6812 \mid 102105132118136109105105908210910011010410010993117$

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of $\mathbf{C 4 5}$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between I 506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 15 I 2 and 15 I 5 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths

The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, I973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, I65-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 198I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38।-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99I Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

