LOW BISHOPLEY, FROSTERLEY, WEARDALE, COUNTY DURHAM TREE-RING ANALYSIS OF TIMBERS

 SCIENTIFIC DATING REPORT

 SCIENTIFIC DATING REPORT}

Alison Arnold and Robert Howard

LOW BISHOPLEY FROSTERLEY
 WEARDALE COUNTY DURHAM

TREE-RING DATING OF TIMBERS

Alison Arnold and Robert Howard

NGR: NZ 02493596
© English Heritage
ISSN I749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

Samples were taken from the three surviving historic ranges of this building resulting in the construction of seven site sequences, only two of which could be dated.
Site sequence, LBSASQ04, contains two samples taken from common rafters of the central hall/parlour range roof, and spans the period AD $|50|-8 \mid$; both timbers are thought to have been felled in AD I58।.
A second site sequence contains eight samples (six from roof timbers and two from ground-floor ceiling beams), all taken from the east range, and spans the period AD 140 I-| 575. Interpretation of the sapwood suggests felling of all timbers represented occurred some time between AD I576-| 588.
Dendrochronological research has demonstrated that the roof of the central hall/parlour range contains some common rafters felled in AD I58I and that the roof and floor of the east range are broadly contemporary and are constructed with timber felled in AD 157688.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank Mr and Mrs Frank Holmes, the owner of the building, for their hospitality and allowing the sampling to be undertaken. Martin Roberts, English Heritage Regional Inspector for the North-East at the time of sampling, provided the information upon which the introduction below is based and Figures 4 and II-24. His enthusiasm and knowledge of the building under investigation was, as always, of great assistance. Thanks are also given to the Scientific Dating Section at English Heritage and Cathy Tyers of the Sheffield University Dendrochronology Laboratory for their advice and assistance throughout the production of this report.

ARCHIVE LOCATION

Durham HER
Design \& Historic Environment Team
Durham County Council
The Rivergreen Centre
Aykely Heads
Durham DHI 5TS

DATE OF INVESTIGATION

2010-11

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
01159603833
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction
Central hall/parlour range 1
East range 1
West range. 1
Sampling
Analysis and Results 2
East range2
West range 3
Central hall/parlour range 3
Discussion 3
Bibliography 5
Tables 7
Figures 10
Data of Measured Samples 35
Appendix: Tree-Ring Dating 42
The Principles of Tree-Ring Dating 42
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 42
I. Inspecting the Building and Sampling the Timbers. 42
2. Measuring Ring Widths 47
3. Cross-Matching and Dating the Samples 47
4. Estimating the Felling Date 48
5. Estimating the Date of Construction 49
6. Master Chronological Sequences 50
7. Ring-Width Indices. 50
References 54

INTRODUCTION

Low Bishopley, located about 3km to the south east of the town of Stanhope (NZ 0249 3596; Figs I-3) is a long, linear Weardale farmstead, orientated roughly east-west and facing south. It is thought to have been established as a farm in the thirteenth century but may also have served as a hunting lodge for the Bishops of Durham. No obvious building evidence is seen of these early medieval origins, with the surviving, historic remains consisting of a central hall/parlour range, an extended east range, and a west range (Fig 4). The description below is based on information provided by Martin Roberts (pers comm) and Roberts (2008).

Central hall/parlour range

This is thought to be the oldest part of the building, being of possible late-sixteenth or early seventeenth-century date. Timbers from this phase survive in the first-floor structure (Fig 5) and roof space (Fig 6). The roof consists of three trusses and is of simple, collared principal rafter trusses without tiebeams (although these may have been lost rather than never existed).

East range

This range is slightly narrower than the central hall/parlour range and contains the hearth passage and low end kitchen; it continues eastwards into a barn. The roof over the whole of the east range is of upper-cruck type with double collars and principal rafters abutting the ridge purlin (Fig 7). Timbers of the ceiling also survive in this part of the building (Fig 8). This range post-dates the central hall/parlour range and is thought to date to the seventeenth century.

West range

Originally thought to be of the same date as the east range extension it is now felt likely to be a little later, perhaps dating to the last quarter of the seventeenth century. Surviving timbers consist of finely chamfered beams and joists on the ground floor (Fig 9) and the roof timbers. The roof has rather crude, collared principal rafters and tiebeam trusses, pegged at the apex (Fig IO).

SAMPLING

Tree-ring sampling and analysis was requested by Martin Roberts in order to establish with greater reliability and accuracy the probable construction date of the central hall/parlour range and elucidate the sequence of development relating to the addition of the east and west ranges. The results would also be added to the growing body of
recorded and tree-ring dated evidence for both the hearth passage plan and upper cruck roof trusses in this region in particular.

A total of 33 timbers were sampled. Each sample was given the code LBS-A (for Low Bishopley) and numbered $0 \mathrm{I}-33$. Seven of the samples were taken from the timbers of the west range (LBS-A0 I-07), II from the east range (LBS-A08-I8), and 15 from the central hall/parlour range (LBS-A I9-33). The location of samples was noted at the time of sampling and has been marked on Figures II-24. Further details relating to the samples can be found in Table I. Trusses have, for all ranges, been numbered east to west (Fig II).

ANALYSIS AND RESULTS

At this stage it was noted that one of the east range samples (LBS-Al4) had too few rings to make secure dating a possibility and so it was discarded prior to analysis. The remaining 32 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. All samples were then compared with all other samples by the Litton/Zainodin grouping procedure (see Appendix).

East range

Eight of these samples (five taken from cruck blades, one from a yoke, and two from ground-floor ceiling beams) matched each other at a value of $t=5.0$. The measurements of these samples were combined at the relevant offset positions to form LBSASQ0 I, a site sequence of 175 rings (Fig 25). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to match consistently and securely at a first-ring date of AD 140 I and a last-measured ring date of AD I575. The evidence for this dating is given in Table 2. Seven of these samples have the heartwood/sapwood boundary ring, the date of which is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1548, which allows an estimated felling date to be calculated for the seven timbers represented to the range AD 1576-88 (this allows for sample LBS-AI3 to have the lastmeasured ring date of AD 1575 with incomplete sapwood). The eighth sample (LBSAl2) does not have the heartwood/sapwood boundary ring and so an estimated felling date cannot be calculated. However, with a last-measured heartwood ring date of AD 1519, it is possible that this sample was also felled in AD 1576-88 with the rest of the timbers.

Attempts to date the remaining two east range samples by individually comparing them against the reference chronologies were unsuccessful and they remain undated.

West range

Five of these samples (four taken from principal rafters and one from a ground-floor ceiling beam) matched each other and were combined to form LBSASQ02, a site sequence of 84 rings (Fig 26). Attempts to date this site sequence by comparing it against the reference material were unsuccessful and it remains undated.

The other two west range samples (both from collars) matched each other and were combined to form LBSASQ03, a site sequence of 142 rings (Fig 27). Again, attempts to match this site sequence against the reference material were unsuccessful and it is also undated.

Central hall/parlour range

Analysis of the samples from this part of the building resulted in nine of them grouping to form four site sequences. Firstly, two samples, both taken from common rafters, matched each other and were combined to form LBSASQ04, a site sequence of 81 rings (Fig 28). This site sequence was found to span the period AD I50I-8।. Evidence to support this dating is given in Table 3. One of these samples (LBS-A32) has complete sapwood and the last-measured ring date of AD 158 I, the felling date of the timber represented. The heartwood/sapwood boundary ring date of the other sample is consistent with this sample also having been felled in AD I58।.

A further two samples (taken from ground-floor ceiling beams) were combined to form LBSASQ05, a site sequence of 123 rings (Fig 29). Three more samples (all taken from principal rafters) grouped to form LBSASQ06, a site sequence of 61 rings (Fig 30). Finally, two further principal rafter samples matched and were combined at the relative offset position to form LBSASQ07, a site sequence of 51 rings (Fig 3I). Attempts to date these three site sequences and the remaining six ungrouped samples by comparing them against the reference material were unsuccessful and all are undated.

DISCUSSION

Prior to tree-ring analysis being undertaken the oldest part of the building was thought to be the central hall/parlour range which was believed to date to the late sixteenth or earlyseventeenth century. The east range with its cruck roof was thought to date to the seventeenth century and the west range was believed to be slightly later, and date to the late-seventeenth century.

Only two of the timbers sampled within the central hall/parlour range have been successfully dated. Two common rafters are now known to have been cut from timber felled in AD I58।. Whilst this appears to agree with the late-sixteenth century date suggested on stylistic grounds it should be noted that the felling date relates to only two
common rafters and no major elements associated with the trusses. Further investigation of the structural integrity of this roof may ascertain whether the felling date identified relates to the initial construction of the central range or whether the roof was perhaps modified at about the same time as the construction of the east range (see below).

Six of the roof timbers and two of the floor beams from the east range have now been dated to AD 1576-88. This shows that the roof and floor are contemporary and most likely date to the final quarter of the sixteenth century, slightly earlier than had been suggested on stylistic grounds.

It is unfortunate that, despite the construction of two site sequences, it was not possible to date any of the timbers of the west range. However, by looking at the relative heartwood/sapwood boundary ring positions on the five samples contained within site sequence LBSASQ02, it is possible to say that the five timbers represented were probably felled at the same time. These five samples were taken from four roof timbers and a ground-floor ceiling beam, suggesting the roof and floor frame are contemporary. The two collars represented within the undated site sequence LBSASQ03 are also likely to have been felled at the same time as each other although again it is not possible to say when this might have been with dendrochronology.

BIBLIOGRAPHY

Arnold, A J, Laxton, R R, and Litton, C D, 2002 Tree-ring analysis of timbers from the Latrine Block, Aydon Castle, Corbridge, Northumberland, Centre for Archaeol Rep, 36/2002

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring analysis of timbers from Dilston Castle, Dilston Hall, Corbridge, Northumberland, Centre for Archaeol Rep, 88/2003

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-ring analysis of timbers from Fell Close, Healeyfield, near Consett, County Durham, Centre for Archaeol Rep, 35/2004

Arnold, A J, Howard, R E, and Litton, C D, 2005 Tree-ring analysis of timbers from White Hart Yard, 10-1 6 Cloth Market, Newcastle-upon-Tyne, Tyne and Wear, Centre for Archaeol Rep, 36/2005

Arnold, A J, Howard, R E, and Litton, C D, 2006a Low Harperley Farmhouse, Wolsingham, County Durham - Tree-ring analysis of timbers, EH Res Dep Rep Ser, 6/2006

Arnold, A J, Howard, R E, and Litton, C D, 2006b Middridge Grange, Shildon Road, Heighington, Durham - Tree-ring analysis of timbers, EH Res Dep Rep Ser, 9/2006

Arnold, A J and Howard, R E, 2009 Abbey Gatehouse and Number I, The Square, Blanchland, Northumberland - Tree-ring analysis of timbers, EH Res Dep Rep Ser, 47/2009

Hillam, J and Groves, C M, I99। Tree-ring analysis of oak timbers from Aydon Castle, Corbridge, Northumberland, Anc Mon Lab Rep, 42/I99।

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook R, Thornes, R, Royal Commission on the Historical Monuments of England, I992 Nottingham University Tree-Ring Dating Laboratory: truncated principal trusses project, Vernacular Architect, 23, 5I-6

Howard, R E, Laxton, R R, Litton, C D, Morrison, A, Sewell, J, and Hook, R, 1993 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological survey 1991-2, Vernacular Architect, 24, 43-4

Howard, R E, Laxton, R R, Litton, C D, Morrison, A, Sewell, J, and Hook, R, 1997 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological survey 1996-7, Vernacular Architect, 28, 128-9

Howard, R E, Laxton, R R, and Litton, C D, 200 I Tree-ring analysis of timbers from Hallgarth Manor Cottages, Hallgarth, Pittington, County Durham, Centre for Archaeol Rep, 86/200।

Roberts, M, 2008 A Preliminary Roof Typology for the North East of England c. 12001700, Vernacular Architect, 39, 27-49

LBS-A24	Ceiling beam (bedroom)	70	--	----	----	----
LBS-A25	North principal rafter, truss I	45	18	----	----	----
LBS-A26	South principal rafter, truss I	53	16	---	----	----
LBS-A27	North principal rafter, truss 2	61	18C	----	----	----
LBS-A28	North principal rafter, truss 3	48	17C	----	----	--
LBS-A29	South principal rafter, truss 3	49	13	----	----	----
LBS-A30	North common rafter 8	50	h/s	----	----	--
LBS-A31	North common rafter 13	51	--	----	----	----
LBS-A32	South common rafter 18	74	23C	1508	1558	1581
LBS-A33	South common rafter II	57	h/s	1501	1557	1557

*NM = not measured
**h/s = the heartwood/sapwood boundary is the last ring on the sample; C = complete sapwood retained on sample

Table 2: Results of the cross-matching of site sequence $L B S A S Q O$ I and relevant reference chronologies when the first-ring date is $A D / 40$ I and the last-measured ring date is AD 1575

Reference chronology	t-value	Span of chronology (AD)	Reference
Low Harperley Farmhouse, Wolsingham, County Durham	11.4	AD I356-I604	Arnold et al 2006a
Aydon Castle (kitchen), Corbridge, Northumberland	11.3	AD I424-I543	Hillam and Groves I99 I
I-2 The College, Cathedral Precinct, Durham	10.3	AD I364-I53\|	Howard et al I992
Aydon Castle (latrine block), Corbridge, Northumberland	9.5	AD I406-I545	Arnold et al 2002
White Hart Yard, Newcastle upon Tyne, Tyne and Wear	9.4	AD I39I-I529	Arnold et al 2005
Blanchland Abbey Gatehouse, Northumberland	9.2	AD I326-I532	Arnold and Howard 2009
Middridge Grange, Heighington, County Durham	9.0	AD \|427-I5I6	Arnold et al 2006b

Table 3: Results of the cross-matching of site sequence LBSASQ04 and relevant reference chronologies when the first-ring date is $A D / 40$ I and the last-measured ring date is AD 1581

Reference chronology	t-value	Span of chronology (AD)	Reference
Dilston Castle, Corbridge, Northumberland	7.7	AD I402-I6II	Arnold et al 2003
Middridge Grange, Heighington, County Durham	6.7	AD I470-1578	Arnold et al 2006b
Hallgarth Manor Cottages, Pittington, County Durham	5.9	AD I336-1624	Howard et al 200 I
Fell Close, Healeyfield, Conset, County Durham	5.8	AD I496-165 I	Arnold et al 2004
Unthank Hall, Holmesfield, Derbyshire	5.3	AD I359-I589	Howard et al I993
Low Harperley Farmhouse, Wolsingham, County Durham	5.2	AD I356-1604	Arnold et al 2006a
Crowtrees, Ripley, Derbyshire	5.2	AD I504-1616	Howard et al I997

FIGURES

Figure I: Map to show the general location of Frosterley, circled, (based on the Ordnance Survey Map with the permission of The Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 2: Map to show the location of Frosterley, circled, (based on the Ordnance Survey Map, with the permission of The Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: Map to show the location of Low Bishopley Farmhouse, arrowed (map reproduced with the permission of The Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 4：Ground－floor plan（Martin Roberts）

Figure 5: Central hall/parlour range; ceiling (photograph taken from the east)

Figure 6: Central hall/parlour range; roof (photograph taken at truss I, looking south-west)

Figure 7: East range; roof (truss 2, photograph taken from the north-east)

Figure 8：East range；ceiling beams（photograph taken from the north）

Figure 9: West range; ceiling (photograph taken from the east)

Figure 10：West range；roof（truss I，photograph taken from the south－west）

Figure II：First－floor plan，showing the approximate position of sampled trusses and location of samples LBS－A I 4－I 5 and LBS－A30－33（Martin Roberts）

Figure 12: West range; truss I (east face), showing the location of samples LBS-AOI-03 (Martin Roberts)

Figure 13: West range; truss 2 (east face), showing the location of samples LBS-A04-06 (Martin Roberts)

Figure 14: West range; showing the location of sample LBS-A07 (Martin Roberts)

Figure 15: East range; truss I (east face), showing the location of samples LBS-A08-09 (Martin Roberts)

Figure 16: East range; truss 2 (east face), showing the location of sample LBS-A IO (Martin Roberts)

Figure 17: East range; truss 3 (east face), showing the location of samples LBS-AII-I3 (Martin Roberts)

Figure 18：East range，showing the location of samples LBS－A I6－8（Martin Roberts）

Figure 20: Central hall/parlour range; showing the location of samples LBS-A19-22 (Martin Roberts)

Figure 2I: Central hall/parlour range; showing the location of samples LBS-A23 and LBS-A24 (Martin Roberts)

Figure 22: Central hall/parlour range; truss I (east face), showing the location of samples LBS-A25 and LBS-A26 (Martin Roberts)

Figure 23: Central hall/parlour range; truss 2 (east face), showing the location of sample LBSA27 (Martin Roberts)

Figure 24: Central hall/parlour range; truss 3 (east face), showing the location of samples LBS-A28 and LBS-A29 (Martin Roberts)

Figure 25: Bar diagram of samples in site sequence LBSASQOI

Figure 26：Bar diagram of samples in undated site sequence LBSASQ02

Figure 27: Bar diagram of samples in undated site sequence LBSASQ03

Offset									Total rings	Relative heartwood/sapwood boundary position
00 LBS-A33				7/s					57	57
07	LBS-A32					23 C			74	58
1	$\frac{1}{10}$	20	30	40	50	$\frac{1}{60}$	70	80	90 Ye	rs relative
1501	1510	1520	1530	1540	1550	1560	1570	1580	1590 Ca	endar years (AD)
	Heartwood rings Sapwood rings		C = complete sapwood retained on sample							

Figure 28: Bar diagram of samples in site sequence LBSASQ04

Figure 29: Bar diagram of samples in undated site sequence LBSASQ05
$\stackrel{\omega}{\omega}$

Figure 30: Bar diagram of samples in undated site sequence LBSASQ06

Figure 3 I：Bar diagram of samples in undated site sequence LBSASQ07

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
LBS-A0IA 74
    333273254243228235203247277 273278286226 247 195 I84 2। }22520425
    270 256 275 | |7 | |3 |66| |0 | 85 |7| |60 4| 32 3| 34 36 34 39 23 28 4|
    46 54 84 76 88 |3| | 39 | 53 |63 | 37 |44 | 87 |95 |79 54 8| 85 |29 |24 50
    69 |07 |28 |53 |4| || | |0 | 45 |5| |7| | 75 |45 235 |62
LBS-A0IB 74
330304247229235239200225 282286276277 233247206184 22। 234 220 255
277 246 270 |89 |99 | 68|79| |5 |62 |66 47 28 32 32 33 33 40 3| 28 38
    36 6| 79 7| 92 | 30 | 49 | 46 | 74 | 33 | 50 | 84 20| |73 67 7| 83 |26 |23 53
    82 99 ||6 |5| | 30 |06 |93 | |6 | 55 | 66 | 75 |49 233 | 65
LBS-A02A 46
    |64169 99 54 59 67 48 84 65 49 45 62 67 97 |48 |04 ||0 l73 98 |34
    |28||9 |8| | 60 |65 |33 63 75 78 |02 |2| 88 |70 |76 222 27| 209 |94 264 220
24| 2|| 200 |76 I72 200
LBS-A02B 46
    | 65 |7| |03 48 62 67 46 86 60 47 47 62 77 97 |44 |O|||5 | 68 93 |35
    |2| |22 | 74 | 68 |59 |26 76 69 76 |0| ||6 92 |70 |6| l90 282 |95 202 28| 223
243 203193|54 | 80 195
LBS-A03A 74
    229 |56 208 239 222 |52 |08 2|6 2|| 290 272 |34 | 66 |44 || | | | 207 239 24| |53
    2|| |95 |62 202 | 89 | 80 250 |64 | 28 || | | 27 204 | 25 |45 |24 || | | 39 | 53 |42 |5|
    |45 |4| |57 ||3 |03 |27 |47 |42 || |02 ||9 |04 |4| 99 96 92 86 82 76 86
    85 I05 95 95 l00 99 85 75 95 96 9| |05 |00 88
LBS-A03B 74
227 |60 20| 238 224 |54 |05 2|6 2|| 294 275 | 30 |6| |46 ||8|40 207 239 246 |49
2|2 |92 | 62 203 |9| | 80 25| | 70 |26 || | |8 |99 | 25 | 43 |22 | || | 37 |43 |43 |53
|43 |43 |5 ||3 ||2 |56 |45 |37 |24 96 ||5 |03 |37 98 |07 79 95 76 75 87
    89 |06 94 9| 103 95 83 79 97 9| 99 |02 106 106
LBS-A04A 53
208 346 196 249 3|7 307 2992764|4 298 3|3 3|| 268405 322425 359 273 3|0 280
284 244 25| 2| 3 3847 34 40 35 57 66 6| 57 77 70 ||| | 67 228 213 304
236266 3|0 284353 397362323 83 92 88 I29 |9|
LBS-A04B 53
22828822825। 305 3|| 324 25940| 289 333 316 27840। 320434 358 267 3|| 28|
2732482392054243 34 38 3258 69 55 60 80 75 |09 |7| 2l9 22| 293
235264309285358396378339 85 90 84 | 40 |47
LBS-A05A 77
256264277 227202234200275 28324426426। 238205207234183 230274269
309303297309213193252282242327 29| 352344230238192 204 | 85 | 88|92
70 5| 55 58 6| 72 70 5| 5| 74 6| 9| | 24|45|44 |6| | 53 |72 |95 |66
```



```
LBS-A05B 77
286 280 273 224 |88 227 204273 282 25। 268 26। 232207 207 237 |8। 230 275 274
309303296 3|0 209 |97 257284237 350300 35| 344224 239 20| |99|88 |79|83
    6448 60 54 64 7| 68 54 49 7| 63 89|38|36|40|62 |53 |76 |92 |67
|77 226 247 228 76 66 65 |06 ||2 98 |62 |93 |63 |65 |53 |82 |95
LBS-A06A 142
    22 18 23 2| 45 43 53 73 78 66 83 68 73 7| 69 78 74 79 56 57
```

6234383140292719201625243857535548448770
$53585037203245|40| 52|75| 46|45| 42|30| 34|70| 76|33| 06 \mid 29$ $135|47| 8|85897685107| 15|86| 53|24| 64|1| 9|1| 71078976 \mid 12$ 113951331099311010610712213317412911811413410275917867 $\begin{array}{lllllllllllllllll}71 & 56 & 74 & 60 & 81 & 82 & 69 & 67 & 59 & 49 & 61 & 51 & 44 & 73 & 58 & 55 & 74 \\ 58 & 53 & 57\end{array}$
 7266
LBS-A06B 142

 $133147179849|7586102125195152126| 341069 \mid 106107838496$ 107105 |2| |26 93 || $2107|||126| 39| 42| 26||7| 35| 248973807463$

 8588
LBS-A07A 68
136 |70 ا $8019519422420718024717919226316818516919422923 \mid 244199$ |59 | 89 | 63 |4| | 53 |99 | $8228422|2262| 72|72| 2|6| 2283203873 \mid 8399383$ | 59 |69 | 30 | $6 \mid 189309377326239239$ | $7022525|174| 44|42| 50|75| 85 \mid 44$ 164 | 62 | 52 | 62 | 78165260287
LBS-A07B 68

 | 70 | 58 |47 160164165267276
LBS-A08A 127
40741839922930626732633433233131242837742629926426730030628 I 296344266197250277296268251347250316253361299249215235274222 242273 27। 289357302203246300227208202237265234204239199217210 $1852 \mid 9226205$ | 85 |68|4| |48|63|52 $7690|33| 9||77| 49| 99|63| 0 \mid 92$ $14522324|206| 42|28| 79|79| 92|80| 40|44| 3||50| 27| 53|90| 8||88| 23$
 178 | 57 |65 | 19 | 55 |09 72
LBS-A08B 127
362409419208300278323328335328310438375415313277254291356266 296345269198262271304262248347257318247348307255240230262230 $23628927429537128221225130822621918524826024 \mid 207239178231206$ $201225218201196163|5| 152166|5863103137| 84177 \mid 5319716296107$ $13523|23019816314318018419216| 152152138|62126153196179166| 50$ $7282103|27| 30|56| 6597|03737990| 29|5||33| 32|4| 236|88| 3 \mid$ | 56 I75 | 6714614712466
LBS-A09A 100
32। 313258287213270260248335222243175253198157176164135159155 196138167233200137194193175148160198227245216252188207194 | 61 $16319723236|247238257299239| 39|38| 40|78| 59|5720| 232|33| 64 \mid 62$ $188178204122121|56179164185160144150148| 56160183160159193133$ $164106|18| 101331231061049|107| 15|37| 49146 \mid 98192269257175247$ LBS-A09B 100
30| $30323329721424026025333223726|175236197| 5817|168| 40156169$ 192|45 ا72 223205 | 54 |99 | 89 | 68 | $56|65| 94236252208252|88| 87|85| 64$ $17320222036025521926 \mid 293234$ | 33 | 38 | $4|190| 60|68| 9822||42| 67| 54$

|6| ||2 |22 |02 |30|27|0| |06 90 |08||9 |35 |43|5||89|92 $272250 \mid 75259$ LBS-AIOA 88
35। $3263823|932543940930| 32243937 \mid 320253348260227$ |। 6 |76 26627 | $21648|29729644| 313309298330510266206221 \mid 3093108155223435257$ 203266 |78 | $7|2||16| 253242|6| 149|6526025| 264|59| 64200224242 \mid 59$ 26035227831518588153224214220174194150230135156215246406256 $22238350 \mid 279$ | 75 | 4 | 14972
LBS-AIOB 88
357326394346336414400304329443375324254346267228104190277257 22047930328944728532229832451329521321012794 ।। 10147230428267
 $260367277309184961622|82202281781891452441291542| 424 \mid 40725$ | 226379505294192 |42 | 4693
LBS-AIIA 105
265303385327303386330266258262289250263381304335189273238179 164 | 72 | 76 20| $2292452322503283|||7| 2052982| 3196| 6626535428 \mid 262$ $32727|23523529029526226437| 353313330297280200223296351269225$ 243258165201191218284214214329388270247268217206220194189211 215 |86 $2302|6| 2419523820||89| 78| 77|62| 36|24| 39|46| 65|67| 76 \mid 68$ 258257184 | 48164
LBS-AIIB 105
312320377336317375330261273246317248256385315325185243255175 160173198200214244214260302286175186272217188175250349288257 $31827 \mid 246222301292260273361347307330293274198231290354267220$ $25525015019918623827221522736437727325026822919 \mid 222185190217$ 215187258182126203240202190180170178127139128166173174144 | 70 24। 254 178 15। 163
LBS-AI2A 106
249290231302346267375418443497475503214238293380360330380383 478446358394328290356380388303346282224306264323274238317216

 |30 | 21189109173200
LBS-AI2B 106
267292223308348267383412456493480499224235302365358334389380 4734523654 |। $34330|36639636| 30834929321031226 \mid 318275238318209$

 | 37 | 32 | 52 | | | | 84205
LBS-AI3A 96
$20417818119619219217527823622426|2| 1213102142176218198175196$ |9| | | | | $23|452| 4|69| 9||39| 5||52| 78|9||56| 26|24| 25|36| 38|58| 88$ |53 |54 | $3866||6| 00| 38|18||4| 3488|037586||2| 22|39| 4|||0| 32$
 4653636348564735456198105 |27 |l4 |26 87
LBS-A I3B 96
277 ।99 । 86 187 193 । 85178258220226290216225102142182238190162229 184 |07||4|38 $21020|187| 42|40| 63|82| 89|55||6| 3||24| 42| 29|55| 79$
 |68 | 34 | 25 | 59 | 63 | 72 |37 |5| 524846595940335342474244 4555635960494927535793105 |23 |l| $12 \mid 100$
$223255195266200205|56| 44|66| 32|4||78| 39|8||80| 38||4| 36| 65 \mid 32$ 140 |06 | 58 | 52 | 38 | 87 | 68 | $82|57| 44|24| 24|29||0| 36||7| 4|||||||\mid 33$

 $160 \mid 55174$
LBS-AI5B 83
$208267|752692| 0207|48| 29193|53| 36|73| 40|97| 85|64| 24|48| 7|\mid 23$

 $123 \mid 45$ | 62 | $44|35||5| 37|29| 3||60| 32| 06|03| 36|24| 42|32| 46|24| 66$ 144165194
LBS-AI6A 100
333459271316210334264268273297302279289378253287330260400395 341308305218226260335253294253263409405335274325420230243239 251275203220316301220218238300201300215261253296245298250262
 |33 63 || | | $3|143| 20|2||08| 40223|58||0||9| 36|35| 34|03| 33|08| 40$ LBS-AI 6B 100
374472254312210347250262269297294272331373262270335258403396 336307292210216260328251257248272392407332277302402202244240 242278185231319310204219240297202307175254264286233296262245 $212|84185163193217| 622|2205178| 62|5| 16||8|| 55|77| 86|79| 5|\mid 49$ |28 74 |04 | 30 | 46 | 32 |0| | $20|422|||749|||8| 4||3|| 34|00| 39|09| 37$ LBS-A I7A 79
$36|293336309303223220| 8|209| 50|53| 62205|73| 8|265250| 4253103$ 16917715618923821415679110132129139133103178202133168176178
 |24 | 56 | 25 |4| $2022 \mid 5$ |99 |62 297279 | $86|43| 80207208250|84| 57 \mid 72$ LBS-AI7B 79
$35829833531729822522018622014314916521317518225226 \mid 1426093$
$173|73| 53|892452|||5778|| 0|29| 32|36| 36|02| 8||96| 36| 62|75| 90$
|72 |47|47|45 |26 $206234|90| 56|29| 56|53| 50|33| 84|75253| 97206 \mid 82$
|42 |60|23|4| $2032|3| 99|6| 29|299| 82|44| 6020|209263| 89|442| 4$ LBS-AI8A 150
$2832282872852602852342743082|52| 8|88| 4 \mid 156204234243199$ | 53 | 91
$17||46| 72| 55|55|||||2|||| 48|22| 62|74||4| 33|48| 4||30|| 4|05| 3 \mid$
$138|45157| 67|39|||176| 53| 77|48| 68|86| 4||62| 25| 64|67| 55|34| 28$
$1321|8105139118100136135106| 19137138991028597156122127102$
$11911316313212412217915|122108| 249197|1| 12412911795102110$ $1001128713710689122133|46| 39|46| 129990|0| 84851028593$
696752609410111891104937766736893937668110101
85739786959679747792
LBS-AI 8B 150
282 23| 284273277270252240314214 |97|69 |6| | $4920723 \mid 249203157187$
| 82 | $4|173| 54|54| 24|19||7| 5||25| 5||6||27| 37|37| 34|32||3||3| 25$

$132120107|43| 1710213213|100| 19136|429310386| 04|47| 18|2| 102$
 $1031128514510982122140 \mid 47137147109999310096791027990$ $746651659110211010410 \mid 93776378649294836011589$ 9273 91 88959183797893
LBS-AI9A 92
$29933642735022225720322426|196| 742042232903432572382 \mid 4196$ | 67
| 32 | $802342||206| 8220520| 18723625|28| 247|94| 6||63239| 98| 35 \mid 45$
$150|46| 25|832062053| 5|92| 87|48| 53|87| 79|55| 73|52| 35256|79| 58$
 | 49 | 35 || 3 |07 |20 234304 | 75 | 54 | 50 | 62 | 33
LBS-A I9B 92
312435373355243257222245250198167202216296344263229219190169 $13317923521320618221521318224027328 \mid 250201164183226192129$ |40 | 56 | 44 | 28 | 86207209299 | 82 | 84 | $37|5| 186|78| 52|79| 52|40255| 70 \mid 55$
 | 57 | 35 |00 || 4 || 3227304 | 74 | 53 | 40 | 59 | 30
LBS-A20A 106
255257275220286261244253195246231223239264259232260202207250 230158157253256213180161190187196225201215277242292284229210

 $108|12| 47|37| 36||4| 17| 50|42| 53|3||53| 95|3898| 0666||||27| 62$ | | | 120 | 39 |। 210086
LBS-A20B 106
253260280222290255244251198238232234232268265227265203192246
 $27422417|152| 48206|56| 751962422341632|7200| 89245163143158194$

 10813513910211278
LBS-A2IA 104
276280191225262273232265272212233221165189230231264163165203 217195256245359274303215228325285253277237266231235272228149 $9310982607410398|12135142| 13|57| 39202202183|52| 6|152| 53$

 163140127139
LBS-A2IB 104
273265169217250277241276264213240213167174232233257164164204 $21419725324636227530521|23332| 265274286235270222239274227$ |56 $90|0| 886|64||||10||||36| 33||||56| 4| 202| 98| 84|57| 57|52| 57$

$159|82| 48176|4| 90172183160170254182203193159164166 \mid 47134154$ 169 | 38 | $32 \mid 30$
LBS-A22A 63
$19217416822|256236| 2054|1315817825327226226615429419417| 174$
|48 | 83 | 74160200193 | $36|5| 130206|67208| 3623326|266220| 822552 \mid 6$ 240230203197210186222118504649514470100958610812146
747587
LBS-A22B 63
$1691831772||25022710244| 24| 5|17826| 29428|292| 75278 \mid 69170184$
$186|76| 741692021871431541362|4| 7|20614223| 258256210 \mid 89244224$
2562222011962221882281216538485047758685969611851
787191
LBS-A23A 74
200284230294226320308337345246286331328273303258288326284305 426365288226235277308203204 | 86219258 |92 | $8126 \mid 357354333393465$ 286253 ||4|42 $20920025033042|4| 73|224426| 220194$ | 44 |26 | 39230398

354 |75 |4| 208225 | 59 | $462|8| 75$ |90 228278 | 34 | 89
LBS-A23B 74
$18727223128022231429131935024 \mid 27732232627929526628831229031$ । 422343294220238269324201203187242260192182262355359340400463 283260112142213216255292420420306248263204163139104150205388 $34017713021421415515520817 \mid 196242275$ | 40 | 82
LBS-A24A 70
279458556486503 39| $36430|2572| 5220|79| 63|23| 0||26| 7||34| 59 \mid 56$ 170195295290258308336390268245295318328335335391314364293218 $2||2| 2| 67|62| 8|237246| 87233|562292| 0237|43| 34|29| 5||3|| 30|3|$ | 36 | 32 | 27 |54 6285 |06||5 ||| | 36
LBS-A24B 70
$28042753|49| 4873733652972552142|9198164132100130176| 3015|\mid 59$ 172196298279250306336373264245311324337359388369312376271197 $235214170165173235242193225169216195219|4| 15|139| 481 \mid 5134$ | 48 | 32 | $37|30| 506482|0|||5| 10| 29$ LBS-A25A 45
314183260373283360345323372266333303229233249253251302229229 $217264|18687| 64867682877597102|3| 15085122|25| 44 \mid 83$ 219242217174226
LBS-A25B 45
304182275355273354339321378264343302228233256242257296248229
$212267120746367886983837893|03| 3|15| 83|25| 2 \mid 139186$
227257216171235
LBS-A26A 53
$192|8521| 19|208| 9|1821942321862241362232| 82 \mid 6234200197185192$
21317816318517817016719219218220021512464456266645771
59699688100759289 ।।। 162222217209
LBS-A26B 53
$200|87206| 77|82| 9|183| 962391842|3| 452|82| 5223236222197190192$
 $667297969375899910714923|22| 203$
LBS-A27A 61
9076999590160163205209346323310286355336377237403304325
43656651256546448841930933635633942045150747643649946212087 $97|3| 13|146| 33|50| 72|87259247| 3|144| 521051432|82352372| 7193$ 249
LBS-A27B 61
7779919792134 |7| $20921|34332332829635| 33638224 \mid 398304320$ 43754950355245847142431233835033842045251847646648845812480
 228
LBS-A28A 48
412485382333405406251318394457455446353430413329329347320352
$30430|2743343364| 72942641041024 \mid 495869$ ||4|40|56|5| ||2|39
167|78|8725025725।167|83
LBS-A28B 48
44050538333239940424132839346244745735143041333033134431 | 368
 160 180 190240266238170176
LBS-A29A 49
359337395395472423367419407340417484514459506409444415328322 3503083553683953783463723863623401228742575570 I। 4135 | 64

```
    |46 |28 |5| | 82 |72 |98 284 3|6 3|9
LBS-A29B 49
    359 34| 396400466422 37| 395 4I7 3454074885084675094084394|5 330 324
    356303 360 365406 380 348 384 390 37| 340 |26 90 5| 43 54 65 ||7 |36 |66
    | 55 |28 |53 |76 |62 207 286 3|| 312
LBS-A30A 50
207 |84 30| 3|9 |9| 279|89 245 300 258233 330 2|6 | 89 2|7 |97 |67 | |2 | 84 |97
```



```
|73 |25 2| 8 346 |75 | 37 |2| | 38 |98 2||
LBS-A30B 50
203 |94 3|2 306 |92 280 I90 24| 305 262 229 327 2|2 |90 222 |93 |70 | 62 | 80 200
```



```
|73 |22 23| 34| |76 |28 | 35 |20 |9| |98
LBS-A3IA 5।
454402 39| 289 5|| 36| 376293|98303 333225235229304242 180 3|0356 277
254 202 |6| | 49 | 27 |28 |34 99 95 |27 |08 96 ||0 |4| | 65 | 40 | 47 | |7 ||4 ||6
|34|45 |06 |0| 84||4|09 |35 95 |50 |87
LBS-A3IB 5।
4|| 404 394 289507 372379289202304 35| 235 237225308 24| | 68 326 373 276
```



```
|26 |39 |05 ||3 76 ||6 |22 |2| 96 |4| |93
LBS-A32A 54
    |24 |32 |4| |03 87 76 79 |02 ||0 98 |0| |3| |33 ||2 |20 |06 ||4 |22 |53 |45
    |43||5 92 |27 |25 97 |2| |59 |23 ||| 99 |48 ||5 |2| |44 |73 | 87 |22 |02 67
    59 |34 |37 |35 86 62 42 4| 39 28 26 40 36 4|
LBS-A32B 57
```



```
    |84 | 36 |76 |27 8| 87 |0| 106 |28 |05 9| | 36 | |0 |2| ||7||9||3 ||2 |67 |60
    |64 |00 |08 | 38 |2| 99 | 33 | 63 |2| |28 |07 |62 | 38 | 23 |46 | |2 |78
LBS-A33A 57
```



```
    |30 |33 97 |4| |34 |78 222 |6| ||8 |07 74 53 67 7| 77 92 82 90 97 |32
    |33 ||4 |22 |47 ||2 || | | |24 |32 || | 53 |25 |44 |3| |78 225 |28
LBS-A33B 57
    |83 |69 |37 2|0 24| | 44 | 66 |46 2| | | 52 |7| | 52 |77 |57 |60 | 34 |08 |30 |27 77
    |47 |29 |06 |3| | 38 |99 230 |6| |23 |04 69 60 67 75 8| 90 88 77 95 |33
    |23 ||0 | 30 | 43 ||4 || | | ||9 | 42 ||0 | 38 |29 | 46 | 32 | |4 2| | | |4
```


APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of $\mathbf{C 4 5}$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between I 506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 15 I 2 and 15 I 5 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 198।. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

1	10	1	1	1	1	1	1	1	10	10	10

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width
(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, I973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, I65-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 198I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38।-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

