Cataractonium: Roman Catterick and its hinterland. Excavations and research, 1958–1997

CDROM

Cataractonium (Catterick): A Roman town and its hinterland. Excavations and research 1958–1997

CDROM

by P R Wilson

with major contributions by

H E M Cool, J Evans, A Thompson and J S Wacher

other contributions by:

P Abramson, L Allason-Jones, A Anderson, F W Anderson, A D H Bartlett, D Bailey, J Bayley, A Bayliss, A Bell, J Bennett, L Biek[†], T F C Blagg[†],
R J Brickstock, S A Butcher, G Campbell, M Canti, P A Cardwell, P J Casey, M Cole, N Cooper, S Cottam, R Cramp, N Davey, J A Davies, B Dickinson, W Dodds[†], S N Dudd, D Dungworth, J Ede, G Edwards, R P Evershed,
P P A Funari, B R Hartley, K F Hartley, N Hembrey, M Henderson, M Henig,
G W I Hodgson[†], A D Hooley, J P Huntley, A Issac, R M J Isserlin, R Jackson, C E E Jones, I J Lentowicz, C A Long, D MacLeod, D Mackreth, J Maddox,
S Mays, B Meddens, Q Mould, North Yorkshire County Archaeology Section, S Payne, H Pengelly, J Price, S Stallibrass, D Starley, J Summerfield, R Thorpe, R S O Tomlin, D Thubron[†], S Thubron, L Turner, R Turner, J Watson, L P Wenham[†], D F Williams, S H Willis, M E Wright

Principal Illustrator E R Lyons

CBA Research Report 128/9 Council for British Archaeology 2002 Published 2002 by the Council for British Archaeology, Bowes Morrell House, 111 Walmgate, York YO1 9WA

Copyright © 2002 Authors, English Heritage, and the Council for British Archaeology

British Library Cataloguing in Publication Data

A catalogue card for this book is available from the British Library

ISSN 0589-9036 ISBN 1 902771 23 0

Typeset by M C Bishop at The Armatura Press, Chirnside PDF generated, and CD mastered, at The Armatura Press

The CBA acknowledges with gratitude a grant from English Heritage towards the publication of this volume

The PDF file from the CDROM is available online from the Archaeology Data Service at ads.ahds.ac.uk/catalogue/resources.html?rr128

List of contents of CD

Text

Figure 146 Catterick 1972 (Site 434) – pottery from Area P	2
Figure 147 Catterick 1972 (Site 434) – pottery from Area P	3
Figure 148 Catterick 1972 (Site 434) – pottery from Area Q CD 234	4
Figure 149 Catterick 1972 (Site 434) – pottery from Area R	5
Figure 150 Catterick 1972 (Site 434) – pottery from Area R	6

Tables

Table 11 Catterick Bypass and Catterick 1972 (Sites 433 and 434) – occurrence of mortaria forms (expressed as minimum number of vessels)
Table 12 Bainesse (Site 46) – fabric proportions by phase CD 240
Table 13 Bainesse (Site 46) – incidence of forms by fabric type and phase CD 250
Table 14 Bainesse (Site 46) – incidence of form types by phase CD 258
Table 31 Catterick Bridge (Site 240) – proportions of fabric types by phase
Table 32 Catterick Bridge (Site 240) – the incidences of form types by phase and fabric
Table 33 Catterick Bridge (Site 240) – incidence of form type by phase. CD 292
Table 46 Catterick Racecourse (Site 273) – proportions of fabric types by phase CD 302
Table 47 Catterick Racecourse (Site 273) – the occurences of forms types by fabric and phase CD 307
Table 48 Catterick Racecourse (Site 273) – incidence of form types by phase
Table 70 Thornbrough Farm (Sites 452 and 482) – the occurrence of fabric types by phase CD 313
Table 71 Thornbrough Farm (Sites 452 and 482) – the incidence of form types by phase group CD 315
Table 113 Catterick Bypass (Site 433) mortars: comparison of aggregate grading patterns CD 317
Concordance of contexts of small finds, environmental remains and pottery by site, phase and context by <i>H E M Cool</i>

3.1 Geophysical surveys by the Ancient Monuments Laboratory at Bainesse (Site 46), Catterick Bridge (Site 240), Honey Pot Road (Site 251), and Catterick Racecourse (Site 273)

A D H Bartlett

3.1.1 Introduction

Magnetometer surveys were carried out by the then Ancient Monuments Laboratory between 1981 and 1984 at a series of sites in the Catterick area in support of the excavation programme then being undertaken by the CfA (Chapters 5.1–5.4). The surveys were carried out in advance of (sometimes imminent) excavation of the sites, but also with the intention where possible of providing a broader view of the archaeological context and the plan and extent of the site than excavation alone could offer.

The initial survey of the field to the north of Catterick South Junction at Bainesse (Site 46) was fully reported on at the time of the survey (Bartlett 1981), but in other cases interim notes or initial plots had to be supplied immediately to the excavators. This material is now brought together here, both as a record of the surveys themselves, and to provide a basis for more detailed comparison with the excavation findings.

3.1.2 Survey procedure

Each of the surveys was carried out using the then standard Ancient Monuments Laboratory recording technique in which continuous 30m traverses were plotted at 1m intervals using a fluxgate gradiometer (supplied by Philpot Electronics) connected to a portable chart recorder. The charts were subsequently assembled and copied at reduced scale to give the plots as reproduced here. Shading has been added to some of the stronger magnetic anomalies on the copies of the plots enclosed with this report. This is not an exhaustive interpretation, but it may serve to clarify the plan and extent of the main detected features.

The surveys were each located on a site grid of 30m squares positioned by reference to the field boundaries.

Soil samples were collected at each of the sites surveyed, and magnetic susceptibility values were measured. The readings, which are noted in the site descriptions which follow, were in some cases particularly high, and showed strong enhancement from archaeological causes. Conditions on the gravel soils at Catterick are therefore particularly favourable for magnetic surveying, and the response should be strongest where past domestic or industrial activities were most concentrated.

3.1.3 Survey results

Bainesse (Site 46) (Figs 18 and 69)

The survey here followed an initial trial excavation, and was followed by more extensive excavation by CfA (Chapter 5.1). The excavations demonstrated the presence of a dense Roman occupation and industrial site with superimposed features including cobbled floors, pits, ovens, postholes, and masonry foundations. The magnetometer results are fully consistent with a site of this nature, although not all the features present are directly detectable in a magnetic survey. Both masonry and posthole structures were excavated, but their existence can only be inferred from the survey by the presence of areas of pronounced general disturbance, which are likely to be concentrations of structural and other debris. Disturbances of this kind are most noticeable close to each side of the A1 (which here is crossed obliquely by the Roman Dere Street), which suggests that the site represents a Roman roadside settlement. The more distinct features, as identified by shading on the plot, are likely in most cases to represent pits, ditches, and possibly hearths or kilns. The site is subdivided by ditches into rectangular enclosures, which contain other magnetic anomalies in considerable numbers, but in diminishing concentration away from the road. Some of the anomalies probably represent pits, but others are more diffuse and could represent layers or deposits of magnetically enhanced material, such as the patches of charcoal and burnt clay which were noted in the excavation. Topsoil magnetic susceptibility values of 162 and 248 were obtained from the north field, and would be consistent with the presence of such material. (All susceptibility values quoted are \times 10⁻⁸ SI units/kg.)

A previous geophysical survey had been carried out in the field north of the road at Bainesse by Bradford University (as described in Heathcote unpub). This survey covered a strip of land 20m wide, which was surveyed both magnetically and by resistivity. The magnetic findings were comparable to those noted here. Resistivity is capable of a direct response to masonry foundations, but the survey produced no clearly defined anomalies recognisable as buildings. There were, however, areas of high readings which could indicate paving as found in the excavation.

Features reported in the excavation which took place subsequent to the surveys included ovens and corn driers in the field west of the A1. These could account, given the association which usually applies between magnetic enhancement and burning, for some of the stronger detected features. The excavation also confirmed that settlement activity was concentrated close to the road. 2

Catterick Bridge and Honey Pot Road (Sites 240 and 251) (Figs 19, 99, and 107)

These two sites lie a few hundred metres apart to either side of Dere Street as indicated on Figure 30, and were surveyed to test for the presence of ditches which could form part of the projected 'Bridgehead Defence' which has been postulated to lie to the north of Cataractonium (see shaded lines on Fig 61). These ditches were not in fact detected in the surveys of either site, nor were they found in the subsequent excavation.

The excavation of Catterick Bridge (Site 240) (Chapter 5.2) did produce evidence of occupation of the 3rd and 4th centuries including timber structures, stone platforms and hearths, but these lay to the north of a riverside revetment and outside the area surveyed. Nothing of significance appears to have been detected in the survey except perhaps a pipe near the south east corner (not illustrated). One small anomaly was tested with an auger and produced specks of charcoal in the topsoil, but clean subsoil. A topsoil sample here gave enhanced susceptibility (97 SI), but readings elsewhere from the site were much lower (40 and 50 SI).

The survey chart for Honey Pot Lane (Site 251) (Fig 19) shows a broad east-west undulation in the magnetic response, which is presumably the result of cultivation, but few specific features. The most substantial finding was the ditch-like anomaly at the east side of the site, which was later confirmed by excavation and shown to be a ditch some 1.8m deep. Few other features were found to be associated with the ditch, and the significance of the two isolated pit-like anomalies indicated on the plot is unclear. The very strong anomaly X was tested with an auger in case it proved to be a kiln, but it produced only clean gravelly subsoil, and so is likely to be interference from a piece of buried iron.

Catterick Racecourse (Site 273) (Figs 20, 21, and 110)

Surveys were carried out on different occasions both within the circuit of the racecourse, which adjoins Dere Street to its west, and of an area to the south where there are cropmarks of a 'native' farmstead. The cropmarks as previously recorded are shown on Figure 26. The survey successfully located an area of occupation close to Dere Street, as seen to the west of the survey plot (Fig 20) The magnetic anomalies again form rectangular subdivisions of the site as seen at Bainesse (Site 46), and the activity is bounded by a ditch to its east. Only a few anomalies which probably represent the larger pits are identifiable individually within this area, but there is again a noticeable increase in the general level of disturbance towards the western edge of the survey, which also lies nearest to the Roman road.

The presence of ditches and of occupation features and associated burnt material, together with cobbled surfaces, was confirmed by subsequent trial excavation. Some weaker ditch-like features were however not confirmed, and may therefore represent the effect of superficial ground disturbances on a magnetically highly responsive site.

Topsoil magnetic susceptibility values were high in the western part of this site (89 and 118 SI), but they diminished in the area surveyed in the eastern part of the racecourse, where relatively few features were found by the survey. (Readings here were 67 and 68 SI). The only considerable feature seen at the east side of the survey was the ditch-like anomaly as shaded (east side of Figure 20). This may be associated with the Roman marching camp which is known to extend in this direction from the field to the east of the road, but it was found to be only a simple ditch when excavated. A large circular (and perhaps modern) cropmark in the eastern part of the survey was not detected. There is also interference of modern origin across the northern corner of the plot.

The survey at the south end of Catterick Racecourse (Site 273) (Fig 21) clearly detected the main cropmark enclosure, and perhaps some outlying fragments of ditches. There are at least three circular features, perhaps representing ring ditches or roundhouses, within the large detected enclosure. Other features, except perhaps for one or two pits, are difficult to identify. Susceptibility values here compare with those seen at the Roman occupation sites, and also show significant localised enhancement. (A maximum reading of 177 SI was obtained from near the centre of the survey within the large enclosure, and values of 97 and 98 elsewhere.)

The presence of one of the roundhouses was subsequently confirmed by excavation. Another trial trench in an area lacking magnetic anomalies towards the south of the site failed to produce any features. The site has since been extensively examined in advance of gravel extraction and this work will be fully reported in a separate publication (Moloney *et al* forthcoming).

3.1.4 Conclusions

Conditions at Catterick are highly favourable for magnetic surveying, and the surveys appear to have been responsive and reliable. The survey findings, both from productive and from relatively blank areas, have in all substantial respects been confirmed by subsequent excavations. The strongest magnetic response was obtained from the Roman domestic sites at Bainesse (Site 46) and Catterick Racecourse (Site 273), but the 'native' cropmark at Catterick Racecourse (Site 273) also produced some distinct features. The comparative lack of findings from Catterick Bridge and Honey Pot Lane (Sites 240 and 251) was again consistent with the excavation evidence.

The results of these surveys do, however, perhaps demonstrate the limitations of magnetic data alone when there is a need to interpret the dense and perhaps superimposed features of substantial settlement sites. The magnetometer is very effective for determining the presence and extent of such sites, but provides only limited information concerning the character of individual features. Resistivity surveying was used here only to a limited extent in the 1980 Bradford survey, and it is not a technique which it would be practical to employ on the same scale as magnetic surveying. Some resistivity coverage of the more intensively disturbed areas of sites such as these could however have been of value, and could have indicated the extent to which surviving structural features contribute to the broader picture of archaeological disturbances provided by the magnetometer.

Date of report: 29 January 1991

3.2 Geophysical survey at Catterick Triangle (Site 425)

P Abramson, R Turner, and L Turner

3.2.1 Introduction

Prior to the first phase of excavation at Catterick Triangle (Site 425) (Chapter 5.5) a resistivity survey was undertaken in 1987 by West Yorkshire Archaeology Service at the request of Northern Aggregates.

3.2.2 The Survey

A base line was constructed along an approximate north-south axis in line with the field boundary. The survey traverses lay perpendicular to this. The survey area was gridded out into 20m by 20m squares within which readings were taken at 1m intervals. A total of sixteen complete squares were surveyed; equivalent to 0.64 hectares (Fig 115).

3.2.3 Results

Several anomalies of relatively high and low resistance readings are shown on the printout (Fig 22).

- A These form a c 20m-wide, linear, high resistance anomaly running along the length of the site.
- B A series of low resistance blocks regularly spaced along the centre of the above anomaly.
- C A narrow, linear, low resistance anomaly running along the west side of anomaly A.
- D A narrow, linear band of low resistance readings delimiting the east edge of anomaly A.

- E An area of higher than average resistance in the north-east part of the site.
- F A long narrow band of low readings 10m west of anomaly C.
- G A large area of low readings similar in magnitude to the readings that make up B.
- H A region of the survey where anomaly A becomes indistinct.

3.2.3 Interpretation

The camber and drains of the Roman road, Dere Street, were visible on the ground bisecting the survey area. On the print-out the road is represented by the readings at A. The high resistance of these readings is probably due to the metalling of the road surface with compacted gravel. Two bands of low readings at C and D accord faithfully with the linear depressions observed on the surface of the site. These are likely to overlie the lateral drains for the Roman road. Another narrow band of low readings at F may represent a small gully also associated with the road.

The regularly-spaced low readings at B probably indicate a series of c 5m-square pits. Disturbance of the turf near to one of these features suggests a recent origin for one or all of them and it is clear from the subsequent excavation that they did not penetrate below the topsoil. The area around H where the outline of the road becomes indistinct might also have been disturbed in some way. The readings at G may reflect features of similar origin and date to those at B.

The block of relatively high resistance readings at E could relate to some structural features associated with the road. However, it is also possible that these are due to the underlying geology.

8.5 Dating evidence from the coarse pottery for Catterick Bypass (Site 433)

J Evans

8.5.1 Introduction

These spot dating notes derive from brief examination of all surviving stratified coarse pottery without the benefit of knowledge of stratigraphic relationships. They are intended to give a date range for each context, basically for use as a tpq for succeeding deposits. They do not fully describe the contents of each group, but aim to give an indication of the type of material from which dating conclusions were drawn.

Fabric terminology (eg Crambeck copy greyware) can be understood from the discussion of selected pieces in Chapter 8.4.15. Occurrence of Crambeck fabrics, although they may occasionally appear earlier, is regarded as a 4th-century phenomenon; that of BB1 as Hadrianic or later; and that of Nene Valley as mid/late-Antonine or later. BB2 Gillam 225 beaded dishes are generally regarded as early-3rd-century. Fabric numbers and form types are those employed for CfA sites (Chapters 9.2.1 and 9.3). Comments in square brackets [thus] highlight apparently intrusive or mislabelled material in relation to the phasing.

8.5.2 Catalogue

Area D

433, D I 2 Phase 5-6

Material includes one Crambeck greyware flanged bowl; later-3rd- to early-4th-century BB1; gritted ware; and BB1 imitations. The date seems to be 4th-century, with some residual 3rd-century material, but most would sit happily in a group dating to cAD 300-40.

D I 3 Phase 5-6

Material includes one gritted ware lid seated jar rim which suggests a date from the mid-3rd to the mid-4th century. Absence of other later material suggests, perhaps, a mid- to late-3rd-century date.

D I 4 Phase 5-6

Material includes one Nene Valley dish base (non-beaker colour-coated forms are unusual in the north before the late-3rd century); and one jar base in Crambeck greyware. This suggests that the context is 4th-century, with a substantial residual component.

D I 10 Phase 5-6

A simple lid in a coarse orange fabric with abundant coarse sand and some limestone sand tempering. Probably 1st- or 2nd-century.

D I 12 Phase 4-6

There is little material to date this context well: a range from the later-2nd to later-3rd century is the best that can be offered.

D I 14 Phase 4-6

An everted jar rim in a hard, pale grey fabric with some coarse sand temper, undecorated. Probably 1stor 2nd-century.

D I 15 Phase 4-6

Material includes one base of a rouletted beaker in Nene Valley fabric (Howe *et al* 1980, types 32-4), later-2nd- to early-3rd-century; and BB1, greyware and oxidised dishes. There is nothing inconsistent with an Antonine to early-3rd-century date.

D I 16 Phase 3

Material includes one white slipped, oxidised flagon rim (form F3.2, 2nd- to early-3rd-century); and one flange rimmed bowl in greyware decorated with burnished intersecting arcs, late-2nd- to early-3rd-century. The date is not very clear but seems likely to be around the last two decades of the 2nd century, if not early-3rd.

D I 17 Phase 3

Most of the material from this deposit would suit a Hadrianic-Antonine date, perhaps more towards the latter. However a BB1 jar rim fragment suggests an early mid-3rd-century date is more appropriate, with the bulk of the material being residual.

D I 18 Phase 3

This contains one flange rimmed dish in greyware. The form copies Hadrianic-Antonine BB forms and must be of that date.

D I 21 Phase 1-2 or 3

Material includes a range of oxidised and whiteware forms of later-1st- to early-2nd-century date. The absence of BB1, and generally of greywares suggests a Flavian-Trajanic and military associated context (Evans 1988).

D I 22 Phase 1-2

The context contains one unusual wide splayed pedestal base, presumably of a flagon, 1st- or 2nd-century; and one rimsherd and two bodysherds from a 'Parisian ware' bowl, derived from Dr29 (cf Elsdon (1982) fabric 1, form 1). Flavian-Trajanic.

D II 2 Phase 5-6?

Material includes one proto-Huntcliff calcite gritted ware jar, perhaps c AD 340-70, and other material consistent with a 4th-century date.

D III 3 Phase 7

The Huntcliff type jar rim dates this context to the last quarter of the 4th century or later.

D III 4 Phase 7

Material includes greyware jars, probably 2nd-century.

D III 5 Phase 5-6

Material includes one burnished Crambeck parchment ware bodysherd with orange painted decoration. The latter is intrusive or the rest of the group is of redeposited material. The bulk of the material would suit a late-Antonine to early-3rd-century date, perhaps Severan.

D III 6 Phase 1-2

Material includes a small range of Flavian-Trajanic forms; and one Hadrianic-Antonine BB1 jar rim. A Hadrianic date might be appropriate.

D III 9 Phase 1-2 or 3

Material includes a range of clearly 2nd-century material, which must have continued to accumulate until Nene Valley material reached the area in the mid to late-Antonine period (Perrin pers comm). See Chapter 8.4, SS121.

NB From a different bag: one simple dish in Crambeck greyware; a number of calcite gritted bodysherds; and one incised decorated bodysherd in the sandy, occasionally calcite gritted fabric (Evans 1985a, fabric 007/168: probably late-4th-century).

The group is clearly later-4th-century. (Bag presumably mislabelled)

D III 10 Phase 3

Material includes one ring-necked flagon; and one BB1 flange rimmed dish with acute lattice decoration. Hadrianic-Antonine, perhaps Hadrianic-early-Antonine.

D III 11 Phase 3

This contains one BB1 flange rimmed dish. Hadrianic-Antonine.

D III 11 and 12 Phase 3

This contains grey and oxidised sherds; and one ?campanulate bowl rim, 1st- to 2nd-century. Possibly Flavian-Trajanic.

D IV 3 Phase 7

This contains one gritted ware everted rimmed jar; and one BB1 imitation flanged bowl. A later-3rd- to mid-4th-century range would seem appropriate, perhaps later-3rd-century.

DV3 and DV3 ext Phase 5-7

This contains one Crambeck greyware flanged bowl; and one S-bend calcite gritted jar. Earlier-4th-century.

D V 5 Phase 5

This contains one greyware flange rimmed dish; and one New Forest type 27 beaker (see Chapter 8.4, SS19). Later-3rd- to late-4th-century.

D V 7 Phase 5

This contains one BB1 jar base and bodysherd with acute lattice decoration. Not closely datable, perhaps Hadrianic-Antonine.

D V 8 Phase 3-4

This contains one greyware flange rimmed bowl. Hadrianic-Antonine. This contains one greyware constricted necked jar; and other BB1 and greyware forms which fall into a mid-2nd to mid-3rd century date range.

D V 11 Phase 5-7

This contains one Nene Valley bodysherd; and one flat rimmed greyware constricted necked jar, possibly Holme-on-Spalding Moor. A late-2nd- to 3rd-century date range may cover these.

D VI 5 Phase 5-6

This contains one flanged bowl in BB1 of early to mid-3rd-century type; and one obtuse lattice decorated bodysherd. Early to mid-3rd century.

D VIII 3 Phase 7

This contains three greyware jar bases; and one greyware small jar. Not closely datable, perhaps 1st-or 2nd-century.

D IX 3 Phase 6

This contains one proto-Huntcliff calcite gritted ware jar, perhaps c AD 340-70; and one Nene Valley colour-coated dish probably later-4th-ceentury (see Chapter 8.4, SS126).

D IX 6 Phase 6

This contains one internally ledged constricted necked jar; one greyware cavetto rimmed jar; one BB1 flange rimmed dish; and one BB1 jar. A late-2ndto early-3rd-century date range seems appropriate: probably Severan.

DX4 Phase 6b

This contains Huntcliff type jar rims. Later-4th-century.

D X 5 Phase 5-7

This contains four grey bodysherds (one with acute burnished lattice); and one colour coated bodysherd which may be Nene Valley. Not closely datable, perhaps Hadrianic to early-3rd-century.

DX7Phase7

This contains one proto-Huntcliff type calcite gritted jar, perhaps c AD 340-70.

D X 8 Phase 5-7

This contains one Huntcliff type jar. Later-4th-century.

D X 9 Phase 5-7

Two grey bodysherds. Not closely datable, perhaps 1st- to 3rd-century.

D X 12 Phase 5-7

This contains one greyware flange rimmed bowl; one BB1 jar copy; and one Mancetter mortarium. Hadrianic-Antonine.

D X 13 Phase 5-7

This contains one BB1 dish decorated with burnished intersecting arcs. Late-2nd- to mid-4th-century.

D X 14 Phase 7

This contains one Crambeck greyware flanged bowl. 4th-century.

D X 15 Phase 7

This contains one mid- to late-Antonine BB2 bowl and one BB1 cavetto rimmed jar with acute lattice. Late-Antonine.

D X 16 Phase 7

The material from this context would suggest a later-3rd- or earlier-4th-century date, and the relative quantity of BB1 tends to suggest that the later-3rd is more probable, allowing for general trends in pottery supply in the period (Evans 1985a).

D XI 3 Phase 7

The context contains one Huntcliff type calcite gritted ware jar (and is therefore later-4th-century); much residual material.

D XI 4 Phase 6b

This contains the base of one BB1 bowl; and one grey BB1 copy flange rimmed bowl. Hadrianic-Antonine.

D XI 7 Phase 4

This contains one Nene Valley bodysherd, therefore mid/late-Antonine or later.

D XI 11 Phase 5

This contains Nene Valley material and Hadrianic-Antonine BB1 and greyware copies. Perhaps mid/late-Antonine.

D XI 12 Phase 5

The bulk of the material from this context dates to the 2nd century and would fit a Hadrianic-early Antonine date. However, the Nene Valley beaker (Cf Howe *et al* 1980, type 50) is 3rd-century or later.

D XI 13 Phase 4

This contains one grey and one oxidised bodysherd. Not closely datable, perhaps 1st- or 2nd-century.

D XI 14 Phase 5-7

This contains one Nene Valley Dr38 copy with white painted decoration, 4th-century; and a group of Antonine to early-3rd-century BB1 and greyware BB1 copies. Perhaps Severan, with intrusive 4th-century material?

D XI 15 Phase 5-7

This contains one Holme-on-Spalding Moor wide-mouthed jar, with rectangular outbent rim; and one obtuse lattice-decorated BB1 bodysherd. Later-3rd- to mid-4th century, probably early mid-4th century.

D XI 16 Phase 3

This contains one Hadrianic-Antonine BB1 jar; and sherds from a local? roughcast beaker. Hadrianic-Antonine.

D XI 17 Phase 5

This contains one greyware jar. Probably 2nd century.

D XI 21 Phase 3

See Chapter 8.3.

D XI 25 Phase 5-7

This contains one small jar in Crambeck greyware, Corder and Birley 1937, a variant of type 11. 4th century.

D XI 26 Phase 7

Not closely datable.

D XI 32 Phase 3

This context contains flange rimmed dishes with acute lattice decoration; and one BB1 constricted necked jar, but no Nene Valley sherds. 2nd century, probably Hadrianic.

D XI 33 Phase 3

This contains one Hadrianic/early-Antonine BB1 jar; and one 2nd-century greyware BB1 copy. 2nd century, possibly Hadrianic/early-Antonine.

D XI 40 Phase 3

This contains one everted rimmed jar with a slight lid-seat in a gritty greyware. Probably later-2nd or 3rd century.

D XI 43 Phase 3

This contains one greyware jar base; and one small greyware jar rim. Probably 1st to earlier-2nd century.

D XI 44 Phase 3

This contains one rustic ware bodysherd; and one Dressel 20 amphora shoulder. Not closely datable, perhaps 1st or 2nd century.

D XI 47 Phase 3

This contains one flange rimmed dish in BB1, decorated with an acute burnished lattice, Hadrianic-Antonine. Presumably Hadrianic-Antonine, perhaps towards the earlier part of the range.

D XI Pit 1 Phase 3

This contains one BB2 dish, Gillam type 225. early mid-3rd century.

D XII 3 Phase 7

This contains one BB1 jar base, therefore Hadrianic or later.

D XIII 3 Phase 7

This contains one flanged bowl in Crambeck parchment ware, not painted; and one greyware flanged bowl. 4th century.

D XIII 4 Phase 7

This contains one Nene Valley beaker base; and one BB1 miniature jar with obtuse lattice decoration (see Chapter 8.4, SS31). The group is probably 3rd century, but not necessarily late.

D XIV 3 Phase 7

This contains one unusual Crambeck greyware flagon rim; and one calcite gritted ware bodysherd. 4th century, perhaps earlier 4th century.

D XIV 4 Phase 7

This contains Nene Valley bodysherds; one obtuse lattice decorated BB1 bodysherd; and one grey bowl copying Gillam type 225. An early- to mid-3rd-century date would seem appropriate with more emphasis on the latter.

D XIV 5 Phase 5-7

This contains one flange rimmed dish in BB1, Hadrianic-Antonine; and one calcite gritted jar bodysherd, unlikely to be found here before the 4th century. A 4th-century date is therefore probable for the context.

D XV 3 Phase 6b

This contains Huntcliff type jars, therefore later-4th century.

D XV PH VI 4 Phase 6

This contains one fragment of Crambeck painted parchment ware. Later-4th century.

D XV PH VII 4 Phase 6

This contains one greyware constricted-necked jar. Not very closely datable, perhaps later-2nd to early-3rd century.

D XV PH VIII 4 Phase 6

This contains one type 5 Crambeck parchment ware flanged bowl, painted. Later-4th century.

D XVI 3 Phase 5-7

This contains one Crambeck greyware flanged bowl. 4th century.

D XVI 4 Phase 5-7

This contains one BB1 imitation flanged bowl and jar rim; one Crambeck greyware flanged bowl and jar; and much residual 2nd-century material. Earlier-4th century.

D XVI 5 Phase 5-7

This contains one Nene Valley beaker base, probably from a bag beaker; and one barbotine scroll-decorated bodysherd. Perhaps late-2nd to mid-3rd century.

D XVI 6 Phase 4

This contains one handmade jar base and two greyware everted rimmed jars. Perhaps 2nd century, could be earlier.

D XVI 9 Phase 3

This contains one Crambeck greyware dish. 4th century. (Intrusive.)

D XVII 7 Phase 5-7

This contains one BB1 bodysherd, therefore Hadrianic or later.

D XVIII 4 Phase 7

This contains one BB1 jar rim. 3rd century, perhaps early mid-3rd century.

D XVIII 7 Phase 5-7

This contains one BB2 dish, Gillam type 222; and one BB1 cavetto rimmed jar. Late-2nd to early-3rd century, possibly Severan.

D XIX 8 Phase 5-6

This contains one Crambeck greyware flanged bowl, 4th century.

D XIX 10 Phase 5-6

This contains one everted rimmed jar in handmade fabric R5, perhaps 2nd or 3rd century; and the base of a dish in Nene Valley fabric. Such forms are most unusual in the North before the later-3rd century: the context is thus most likely later-3rd century+.

D XIX 11 Phase 5-6

This contains several BB2 dishes, Gillam type 225; one Nene Valley bag beaker; and one gritty everted rimmed jar. Early- to mid-3rd century, probably Severan.

D XIX 13 Phase 5-6

This contains one greyware jar. Not closely datable, perhaps 1st to 3rd century.

D XIX 14 Phase 3-4

This contains one BB1 flanged bowl of early mid-3rd-century type; two grey cavetto rimmed jars; and one flange rimmed dish. An early- to mid-3rd-century date seems suitable.

D XIX 19 Phase 1b-2 or 3-4

This contains one Nene Valley cornice rimmed beaker; one BB2 dish, Gillam type 225; and greyware BB1 jar and flange rim bowl copies. A late-2nd- to mid-3rd-century date range seems appropriate: probably Severan.

D XX 7 Phase 6

This contains one simple greyware dish rim; and one jar rim. Not closely datable, perhaps 1st to 3rd century.

D XX 8 Phase 3-4

This contains one grey and one oxidised bodysherd. Not closely datable.

D XXI 6 Phase 6

This contains Huntcliff type jars. Later-4th century.

D XXI 8 Phase 5

This contains one Cologne(?) hunt cup (see Chapter 8.4, SS109); greyware cavetto rimmed jars; common BB2 Gillam type 225s; one early- to mid-3rd-century BB1 jar; and one Nene Valley flagon (see Chapter 8.4, SS110). Early- to mid-3rd century.

D XXI 9 Phase 5

The context contains a range of greyware BB1 copies of later-2nd- and early mid-3rd-century date, together with one early- to mid-3rd-century BB1 jar and one BB2 dish (Gillam type 225). An early- to mid-3rd-century date would seem appropriate, perhaps Severan.

D XXI 13 Phase 4a

This contains one greyware constricted-necked jar (form CJ2.4). Perhaps an E Yorks or N Lincs product. Later-2nd to early-3rd century.

D XXI 15 Phase 3

This contains one slightly cordoned jar rim (form J8.3). 2nd century?

D XXI 18 Phase 1-2

This contains one bowl of the carinated, reeded rimmed type and other material consistent with a Flavian-Trajanic date.

D XXI 20 Phase 1b-2

This contains one small jar or beaker with grooved rim, similar to Gillam type 167, c AD 80-120. 1st or 2nd century.

D XXIII 3 Phase 5-6

This contains one flanged bowl in Crambeck greyware, internally decorated with a burnished wavy line. Late-4th century. This contains one small jar or beaker, perhaps imitating BB1 handled and miniature jars. Probably 2nd century.

D XXIII 7 Phase 5

This context contains BB1 jars dating to the early mid- and mid-3rd centuries. Probably mid-3rd century.

D XXIII 8 Phase 5

This contains one cornice rimmed Nene Valley beaker (Howe *et al* 1980, type 46), late-2nd century; and greyware BB1 copies of later-2nd-century date. Overall the material seems to suit a date in the last quarter of the 2nd century.

D XXIV 3 Phase 6

This contains one rim and joining bodysherds from a pentice moulded beaker (probably copying the Crambeck beaker, Corder and Birley 1937, type 12, and, therefore, 4th century); and one bodysherd from a calcite gritted jar. Probably 4th century.

D XXIV 8 Phase 5-6a

This contains two Nene Valley bodysherds with barbotine decoration (one from a vine scroll motif). These fit in a later-2nd- to mid-3rd-century context and this range would suit the small quantity of material from the context.

D XXIV 10 Phase 3-4

This contains one cornice rimmed beaker in Nene Valley fabric, cf Howe *et al* 1980, type 46, later-2nd to early-3rd century; one 'Castor box' (see Chapter 8.4, SS122); and greyware BB1 copies of later-2nd- to early-3rd-century date. Perhaps late-Antonine.

D XXIV 12 Phase 3-4

The context contains a range of greyware BB1 copies of later-2nd- to early-3rd-century date. Consistent with an Antonine or Severan date.

D XXIV 15 Phase 1b-2 or 3-4

This contains one bead-rimmed dish in BB2, Gillam type 225, early mid-3rd century; and greyware jars copying BB1 of early mid-3rd century date. The con-

text seems to date to the early mid-3rd century, perhaps closing in the mid-3rd.

D XXV 5 Phase 6

This contains one flanged dish, in a white Crambeck fabric (perhaps misfired greyware; Corder and Birley 1937 type 1a). 4th century.

D XXVII 5 Phase Pre 6

This contains one simple dish rim in Nene Valley fabric (oxidised, not parchment ware. Probably 4th century, but just possibly earlier); and one flanged bowl in a black, sandy greyware, probably an imitation of BB1 (later-3rd or early-4th century, more probably the latter). Most probably early-4th century, with much residual 2nd-century material.

D XXVII 6 Phase Pre 6

This contains BB1 and greyware forms consistent with a Hadrianic-Antonine date.

D XXVIII 3 Phase 5

The context is clearly 4th-century, as shown by the Crambeck flanged bowls, the absence of calcite gritted ware and the presence of BB1 and BB1 types suggests a date in the first half of the 4th-century.

D XXVIII 4 Phase 6

This contains Crambeck greyware pieces and one S-bend calcite gritted ware jar rim, 4th century, not necessarily later than early-4th century.

D XXVIII 5 Phase 4

This contains one bead rimmed dish in BB2, Gillam type 225, early- to mid-3rd century; and one simple rimmed dish in Nene Valley fabric. Unusually the fabric is oxidised, rather than the usual parchment ware. Judging by the date of the other material, this may be a very early example of the form, and mid-3rd century. The bulk of the material is clearly early- to mid-3rd century.

D XXVIII 8 (sherds marked D XXVIII 7) Phase 6

The latest piece is one BB1 jar, later-3rd early-4th century, but much of the other material must be residual Antonine-Severan.

Area E

E I 2 Phase 5-6

This context contains Huntcliff type jars, etc. Later-4th century.

E I 8 Phase 5–6

This contains one Huntcliff type jar rim. Later-4th century.

E I 10 Phase 4b

This contains one Nene Valley beaker. Mid-3rd to 4th century.

E I 12 Phase 4

This contains Nene Valley bodysherds. Mid/late-Antonine or later.

E I 14? Phase 3

This contains one BB1 bodysherd. Hadrianic or later.

E II 4 Phase 5-6

This contains one bodysherd of a painted parchment ware Crambeck bowl, later-4th century.

E II 7 Phase 5-6

This contains one Nene Valley bodysherd from a non-beaker form, mid/late-Antonine or later; and one proto-Huntcliff type calcite gritted ware jar, perhaps c AD 340–70.

E II 11 Phase 5–6

This contains one Huntcliff type jar. Later-4th century.

E II 12 Phase 5-6

This contains one greyware jar rim and one Nene Valley bodysherd. Second half of 2nd century, or later.

E II 13 Phase 6

This contains one painted Crambeck parchment ware type 7 bowl/mortarium. Later-4th century.

E II 15 Phase 6

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

E II 18 Phase 6a

This contains one BB2 dish, Gillam type 225; one BB1 flange rimmed dish; and one greyware jar. Early-3rd century.

E II 20 Phase 4

This contains one BB2 jar rim and one BB1 dish with intersecting arc decoration. Early mid-3rd century, possibly Severan.

E II 32 Phase 3

This contains one BB1 flange rimmed dish and one roughcast beaker bodysherd. 2nd century.

E II 44 Phase 6

This contains one Huntcliff type jar and one bead rimmed jar, Gillam type 155 etc. Later-4th century.

E II 45 Phase 6

This contains one later 3rd-century type BB1 jar rim and the flange from a flanged bowl, probably a Holme-on-Spalding Moor product. A later-3rd- to 4th-century date range is appropriate.

E III 4 Phase 6

This contains a Crambeck type 7 painted parchment ware bowl. Later-4th century.

E III 6 Phase 6

This contains a calcite gritted ware flanged bowl and one earlier-4th-century type BB1 jar rim. 4th century, perhaps earlier-4th century.

E III 8 Phase 3

This contains one Nene Valley bag beaker. Later-2nd to mid-3rd century.

This contains one scale decorated Nene Valley bodysherd; one greyware jar rim and beaded dish. Later-2nd century?

E III 21 Phase 5-6

This contains one greyware flange rim dish; one Nene Valley bodysherd; one BB2 jar of early to mid-3rd-century type; and one Dalesware type lid-seated jar. Except for this last, an early- to mid-3rd-century date would fit well, perhaps midrather than later-3rd century.

E III 22 Phase 4

This contains one oxidised segmental bowl; one BB1 flange rimmed bowl; four BB1 jars with acute lattice decoration of 2nd-century type; and one greyware double handled flagon/constricted-necked jar. Second half of the 2nd century.

E III 23 Phase 4

This contains one oxidised Dr37 copy; two greyware lids; one *tazza* rim; one black colour-coated rough-cast beaker; and one BB1 jar with wavy line decoration on the rim, Hadrianic-Antonine. Perhaps first half of the century.

E III 25 Unphased

This contains one Nene Valley bodysherd with barbotine decoration. Later-2nd to 3rd century.

E III below 10 in clay below mortar Unphased

This contains one everted oxidised jar rim. Not closely datable, perhaps 1st or 2nd century.

E IV 7 Phase 4

This contains one gritted ware lid-seated jar (fabric R5); one BB2 Gillam type 225 dish; one Nene Valley jar (see Chapter 8.4, SS107); and one later-2nd- to mid-3rd-century greyware jar. A mid- to late-3rd-century date seems appropriate for the group.

E IV 13 Phase 4

This contains one BB1 rim fragment with burnished wavy line decoration, Hadrianic-Antonine.

E IV 14 Phase 4

This contains one early mid-3rd-century BB1 jar and one BB1 beaded dish with intersecting arc decoration. Early mid-3rd century.

E IV 15 Phase 4

This contains one oxidised bowl; one greyware BB1 beaker copy; two rustic ware bodysherds; and one BB1 dish with acute burnished lattice decoration. 2nd century, probably Hadrianic to mid-2nd century.

E V 3 Phase 5-6

This contains Huntcliff type jars, etc. Later-4th century.

E V 5 Phase 5-6

This contains one face pot fragment (see Chapter 8.4, SS87). Not closely datable, perhaps 1st or 2nd century.

E V 7 Phase 6b +

This contains one Huntcliff type jar rim, later-4th century; and one Nene Valley beaker (see Chapter 8.4, SS135 and SS142).

E V 8 Phase 6

This contains one Crambeck(?) greyware flanged bowl. 4th century.

E V 9 Phase 5-6

This contains one Crambeck greyware pinched flagon rim and one calcite gritted ware bodysherd, probably from a Huntcliff type jar. 4th century, perhaps later-4th century.

E V 10 Phase 5-6

This contains one calcite gritted ware bodysherd. 3rd to 4th century, almost certainly 4th century.

E V 12 Phase 5-6

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

E V 14 Phase 5-6

This contains 'Rhenish' ware bodysherds. Later 2nd to mid-3rd century.

E V 15 Phase 3

This contains one BB1 bead rimmed jar. Hadrianic-Antonine, possibly first half of the century.

E V 19 Phase 5-6

The group contains bodysherds from a Cologne(?) hunt cup; BB1 flange rim dishes and one small jar; and one greyware constricted-necked jar. Hadrianic-Antonine, possibly Hadrianic to mid-2nd century.

E V 20 Phase 6b

This context contains one oxidised Dr37 type bowl; two greyware jars; and the base of one brown colour-coated beaker. Perhaps early- to mid-2nd century.

E V 23 Phase 3

This contains one Dressel 20 handle; one oxidised and two grey rustic ware bodysherds. 1st to 2nd century, possibly Flavian-Trajanic.

E V 24 Phase 6b

This contains one BB1 beaded dish. Hadrianic to 3rd century.

E V 25 Phase 4

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

EV27 Phase 3

This contains one BB1 bodysherd. Hadrianic or later.

E V 29 Phase 1-2

This contains one single greyware bodysherd. Not closely datable, probably 1st to 3rd century.

E V 30 Phase 1-2

This contains one BB1 flange rimmed dish; one oxidised lid rim; one greyware base; and bodysherd with barbotine dots from a ring-and-dot beaker or a poppyhead beaker. 2nd century, possibly Hadrianic.

E V 35 Phase 1-2

This contains one grooved rim dish, possibly Crambeck greyware. Perhaps 4th century. [Intrusive?]

E V 41 Phase 1-2

This contains one Nene Valley bodysherd. Mid/late-Antonine or later. (Intrusive.)

E V 45 Phase 1-2

See Chapter 8.3.

 $E\,V\,46\,Phase\,1{-}2$

See Chapter 8.3.

E V 47 Phase 1-2

See Chapter 8.3.

E V 48 Phase 1–2

This contains one stamped dish or bowl base (see Chapter 8.4, SS21); one greyware lid; two rustic ware bodysherds; and one BB1 bodysherd. 2nd century, possibly Hadrianic.

E VI 3 Phase 5-6

This contains one Huntcliff type jar rim, later-4th century.

E VI 4 Phase (5–) 6

This contains one Huntcliff type jar and one calcite gritted ware flagon (see Chapter 8.4, SS50). Later-4th century.

E VI 5 Phase 6 (-7)

This contains one Crambeck greyware jar and flanged bowl; and one imitation BB1 flanged bowl. 4th century, probably earlier 4th century. This contains one Crambeck greyware bodysherd. 4th century.

E VI 8 Phase 6

This contains Huntcliff type jar rims. Later-4th century.

E VI 9 Phase 6b

This contains one bodysherd from a Gillam type 155 jar in fabric 007/168 (Evans 1985a). Later-4th century.

E VI 11 Phase 5-6

This contains Huntcliff type jar rims. Later-4th century.

E VI 12 Phase 5-6

This contains one Huntcliff type jar rim, etc. Later-4th century.

E VI 13 Phase 5-6

This contains one gritted ware lid-seated jar. Mid-3rd to mid-4th century.

E VI 14 Phase 4

This contains one Nene Valley beaker base; one BB2 chamfered bowl base; and one BB1 flange rim bowl; and one cavetto rimmed jar. A late-2nd- to mid-3rd-century date range would suit these, perhaps Severan.

E VI 15 Phase 4

This contains BB2 Gillam type 225 dishes; BB1 flange rimmed dishes; one Nene Valley (*sic*) rough-cast beaker (see Chapter 8.4, SS118); one 2nd-century BB1 jar; and greyware jars. A late-2nd- to early-3rd-century date range is appropriate, perhaps Severan.

E VI 16 Phase 5-6

This contains one Huntcliff type jar. Later-4th century.

E VI 17 Phase 4

This contains one Nene Valley beaker rim. Later-3rd to 4th century.

E VI 18 Phase 6-7

This contains one Crambeck greyware flanged bowl. 4th century.

E VI 20 Phase 6-7

This contains one oxidised indented *tazza* rim and one greyware bodysherd with one acute lattice decoration. Probably Hadrianic-Antonine.

E VI 21 Phase 4

This contains one greyware BB1 jar copy. Later-2nd to mid-3rd century.

E VI 24 Phase 3

This contains one Crambeck greyware dish. 4th century. [Intrusive.]

E VII 2 Phase 4

This contains one Nene Valley beaker base and bodysherds with barbotine scroll decoration. Later-2nd to mid-3rd century.

E VII 3 Phase 4

This contains one BB1 jar rim. 3rd century, perhaps later-3rd century.

E VII 4 Phase 5-6

This contains Huntcliff type jar rims. Later-4th century.

E VII 5 Phase 6b

This context includes one Crambeck type 7 painted parchment ware bowl. Later-4th century.

E VII 7 Phase 4

This contains one BB1 jar with wavy line decoration on the rim; one flange rimmed dish with acute burnished lattice; one grey bead rimmed dish; one white slipped oxidised flagon handle; and one grey jar base. A Hadrianic to mid-2nd century date is applicable.

E VII 8 Phase 4

This context contains one Huntcliff type jar. Later-4th century.

E VII 17 Phase 3

This contains one whiteware base; one oxidised bodysherd; and one greyware jar rim, possibly from a rustic ware jar. Later 1st to 2nd century, possibly Flavian-Trajanic.

E VII 19 Phase 4b

This contains two Nene Valley bases. Mid/late-Antonine or later.

E VII 33 Phase 4b

This contains one 3rd-century BB1 jar rim.

E VIII 4 Phase 6+

This contains one painted Crambeck parchment ware bowl, type 7. Later-4th century.

E VIII 9 Phase 4b

This contains Huntcliff type jars. Later-4th century.

E IX 2 Phase 6-7

This contains one calcite gritted ware jar base. 3rd to 4th century, almost certainly 4th century.

E IX 4 Phase 6

This contains one BB1 jar of early mid-3rd-century type and other material consistent with this date.

EX4 Phase 5–6

This contains one Nene Valley small jar and scaled indented beaker; one oxidised Dr37 type bowl; one Hadrianic-Antonine type BB1 jar; and one dish with intersecting arc decoration; and greyware jars copying later-2nd- to early-3rd-century BB1 types. Late-Antonine to early-3rd century, perhaps Severan.

E XII 2 Phase 5-6

This contains Huntcliff type jars, later-4th century; and one Nene Valley flagon rim (see Chapter 8.4, SS114).

E XIII 2 Phase 6

This contains one Nene Valley beaker base; and one constricted-necked beaded rim jar. Mid-Antonine to Severan?

E XIII 3 Phase 6

This contains one Crambeck greyware bodysherd. 4th century.

E XIV 2 Phase 6

This contains painted Crambeck parchment ware. Later-4th century.

E XIV 4 Phase 6

This contains Huntcliff type jars. Later-4th century.

E XVII 2 Phase 6

This contains one calcite gritted ware proto-Huntcliff type jar, perhaps c AD 340–70.

E XVII 3 Phase 6

This contains one Huntcliff type jar and one Nene Valley colour-coated Dr 45 copy. Later-4th century.

E XVII 5 Phase 6

This contains one 'Rhenish' beaker, probably Central Gaulish. Later-2nd to mid-3rd century.

E XVII 6 Phase 6

This contains BB1 and greyware flange rimmed dishes; one Nene Valley cornice rimmed beaker with barbotine scroll decoration; one 'Rhenish' ware indented beaker; and greyware jars of later-2nd- to early-3rd-century BB1 form. A late-Antonine to early-3rd-century date range seems appropriate.

E XVII ext N 1 Unphased

This contains one North Gaulish colour-coated jar rim; and one BB1 dish. Hadrianic or later.

E XVIII 2 Phase 6

This contains Huntcliff type jars. Later-4th century.

E XVIII 4 Phase 6

This contains one calcite gritted ware proto-Huntcliff type jar, perhaps c AD 340–70.

E XVIII 5 Phase 6

This contains one Huntcliff type jar. Later-4th century.

E XVIII 6 Phase 6

This contains one Crambeck(?) greyware flanged bowl; and one gritted ware Dales type jar. Probably 4th century.

E XIX 2 Phase 6

This contains one Huntcliff type jar. Later-4th century.

E XIX 3 Phase 6

This contains one Huntcliff type jar rim. Later-4th century.

E XIX 4 Phase 6

This contains a range of Crambeck greyware vessels; Nene Valley beakers; one BB1 imitation flanged bowl and dish; one gritted ware lid-seated jar; one calcite gritted proto-Huntcliff type jar; and one Crambeck greyware flanged bowl with internal burnished wavy line. This last should generally give a later-4th-century date however, the rest of the group is best dated a little earlier, perhaps c AD 340–60, so this may be an early occurrence.

E XIX 5 Phase 6

This contains one Nene Valley(?) colour-coated bodysherd with white painted decoration. Mid-3rd to 4th century?

17

E XX 2 Phase 7

This contains one Crambeck greyware type 3 jar and one flanged bowl; together with another in the BB1 imitation fabric; one calcite gritted ware dish; and one local redware dish (see Chapter 8.4, SS101). An earlier-4th-century date seems appropriate.

E XX 4 Phase 6

This contains one Crambeck greyware; and one calcite gritted ware bodysherd. 4th century.

E XX 6 Phase 6

This contains one greyware jar with shoulder cordon; and one grey bodysherd. Not closely datable.

E XX 7 Phase 6

This contains one BB1 flanged bowl of early mid-3rd-century type; one BB1 cavetto rimmed jar of similar date; and one Nene Valley bodysherd decorated with white painted decoration. The group appears 3rd-century, perhaps mid-3rd-century.

E XX 8 Phase 6

This contains one greyware flanged bowl. Later-3rd to 4th century.

E XX 9 Phase 6

This contains one Nene Valley beaker of later-3rd- to 4th-century type.

E XX 10 Phase 6

This contains one S-bend calcite gritted jar rim, earlier-4th century; and one Nene Valley beaker (see Chapter 8.4, SS145).

E XX 11 Phase 5

This contains one Nene Valley bag beaker; one greyware flange rimmed dish; and one BB1 copy jar. Later-2nd to mid-3rd century.

E XX 12 Phase 5

This contains one grooved/pulley rim flagon and one grey Hadrianic-Antonine BB1 jar copy. Perhaps Antonine.

E XX 13 Phase 5

This contains one Nene Valley bodysherd with white painted decoration. Mid-3rd to 4th-century.

E XX 15 Phase 5

One cornice rimmed beaker, perhaps Colchester. 2nd century?

E XX 18 Phase 5

This contains one Nene Valley cornice rimmed beaker; several BB1 flange rimmed dishes (one with intersecting arc decoration); one BB1 and several greyware Hadrianic-Antonine jars. A mid- to late-Antonine date seems appropriate for the group.

E XX 21 Phase 4

This contains one Nene Valley cornice rimmed beaker and one BB2 dish, Gillam type 225. Early mid-3rd century.

E XX 28 Phase 3

This contains one ring-necked flagon; greyware acute lattice decorated jars; one BB1 flange rimmed bowl with acute lattice decoration and one Hadrianic-Antonine jar type, together with two Nene Valley bodysherds. This last should not appear before the mid/late-Antonine period, but as the rest of the group seems not to date so late as late-Antonine, a mid-Antonine date is probably best.

E XX 29 Phase 1b-2

This contains one roughcast beaker, probably Nene Valley; one grey BB1 beaker type copy; and one BB1 flanged dish of unusual form (see Chapter 8.4, SS30). Probably mid/late-2nd century.

E XX1 3 Phase 6

This contains one greyware jar rim and various greyware sherds. Not closely datable, 1st to 2nd century, perhaps 2nd century.

E XXI 4 Phase 6

This contains one greyware bodysherd with acute burnished lattice decoration. Hadrianic to mid-3rd century.

E XX-XXI ext 1 U/S

This contains one Crambeck greyware bodysherd. 4th century.

E XXII 2 Phase 5-7

This contains one Nene Valley and one greyware sherd. Mid/late-Antonine or later.

Area F

FI2 Phase 6

This contains Huntcliff type jars. Later-4th century.

FI8 Phase 3/4

This contains one BB2 Gillam 225; one Nene Valley cornice rimmed beaker with barbotine scrolls; and one BB1 flange rim bowl with intersecting arc decoration. Early mid-3rd century.

F VI 2 Phase 8

This contains one Anglo-Saxon jar (Wilson *et al* 1996, no 40).

F VI 5 Phase 5

This contains Huntcliff type jars and painted Crambeck parchment ware. Later-4th century.

F VI 6 Phase 5

This contains one local redware bowl with white painted decoration (see Chapter 8.4, SS58); one Crambeck greyware carinated bowl; two dishes; one flanged bowl and one flanged dish; three S-bend calcite gritted ware jars; and one Crambeck copy greyware flanged bowl and one smith pot with bossed hair (see Chapter 8.4, SS85). Perhaps mid-4th century.

F VI 8 Phase 5

This contains one Holme-on-Spalding Moor ware flagon (see Chapter 8.4, SS41); one BB1 imitation jar and flanged bowl; and one Crambeck greyware dish and flanged bowl. Earlier-4th century. This contains one Holme-on-Spalding Moor bodysherd. Later-3rd to 4th century, more likely the latter.

F VII 2 Unphased

This contains Huntcliff type jars, etc. Later-4th century.

F VII 3 Phase 6

This contains Huntcliff type jars. Later-4th century.

F VII 4 Phase 5 or 6

This contains one painted Crambeck parchment ware type 5; one Huntcliff type jar; four proto-Huntcliff type jars; and one Southern Shell-Tempered ware jar (see Chapter 8.4, SS6). Later-4th century.

F VII 5 Phase 5 or 6

This contains one imitation BB1 flanged bowl; one fabric R5 lid-seated jar; one Crambeck type 3 jar; five Crambeck greyware flanged bowls; four S-bend calcite gritted ware jars; and one flanged bowl with internal wavy line, not certainly Crambeck. Perhaps mid-4th century.

F VII 5A Phase 5 or 6

This contains one Crambeck greyware type 3 jar and one dish; two lid-seated jars; one S-bend and one proto-Huntcliff type calcite gritted jars; and one Crambeck parchment ware variant of type 7 (see Chapter 8.4, SS99). Mid/later-4th century, perhaps c AD 350–60.

F VII 6 Phase 5

This contains S-bend calcite gritted ware jars and Crambeck greyware flanged bowls; gritted ware jars and one local redware Dr38 and bead rimmed bowl. Mid-4th century.

F VII 7 Phase 5

This contains calcite gritted ware proto-Huntcliff type jars; Crambeck greyware flanged bowls; one colander (see Chapter 8.4, SS44) etc. Probably c AD 340–60.

F VII 10 Phase 5?

This contains one gritted ware Dales type jar and one Nene Valley white painted bodysherd. Mid-3rd to mid-4th century.

F VII 11 Phase (1 or) 2–3/4

This contains one BB1 bodysherd. Hadrianic or later.

F VII Pit 1 Phase 6

This contains five proto-Huntcliff type jars and one Huntcliff type jar, etc, mid/later-4th century, if the group is substantially complete, c AD 350–70.

F VIII 4 Phase 5 or 6

This contains one Crambeck greyware type 5 and one calcite gritted ware jar base. 4th century.

F VIII 4A Phase 6

This contains Huntcliff type jars. Later-4th century.

F XI 2 Phase 6

This contains Huntcliff jars. Later-4th century.

F XIII 5 Phase 6

This contains one painted Crambeck parchment ware bowl (see Chapter 8.4, SS100). Later-4th century.

F XIII 5A Phase 6

This contains one Nene Valley Dr38 with white painted decoration (see Chapter 8.4, SS123); one proto-Huntcliff calcite gritted jar; Crambeck greyware flanged bowls, etc. Mid-4th century.

F XIII 6 Phase 6

This contains one Crambeck greyware type 3 jar handle and one Holme-on-Spalding Moor jar. 4th century.

F XIII 8 Phase 5 or 6

This contains one painted Crambeck parchment ware type 5, later-4th century; one local redware bowl of unusual form (see Chapter 8.4, SS62); one Crambeck copy greyware lid (see Chapter 8.4, SS78); and one face pot fragment (see Chapter 8.4, SS85).

F XIII 9 Phase 5

This contains one Nene Valley beaker; and one greyware dish. 3rd to 4th century.

F XIII 10 Phase 5

This contains one Crambeck greyware dish; one S-bend calcite gritted ware jar; and two fabric R5 jars. Earlier-4th century.

F XIII 11 Phase 5

This contains one 'Rhenish' ware bodysherd. Later-2nd to mid-3rd century.

F XIII 12 Phase 5

This contains one Nene Valley white painted bodysherd. Later-3rd to 4th century.

F XIII 18 Phase 5–6

This contains two flanged bowls in Crambeck greyware; one gritted ware (R5) jar copying a BB1 jar form; and one grey gritty handmade flanged bowl. Earlier-4th century.

F XIII 20 Phase 6

This contains one Huntcliff type jar. Later-4th century.

F XIII 21 Phase 5

This contains one S-bend calcite gritted jar; and one Crambeck greyware jar rim, etc, earlier-4th century; and one Nene Valley flagon rim (see Chapter 8.4, SS115).

F XIV 4 Phase 2?

This contains one greyware BB1 jar copy. 2nd century?

FXV2 Unphased

This contains one painted Crambeck parchment ware Gillam 297. Later-4th century.

F XVI 2 Phase 6?

This contains one calcite gritted ware wide mouthed bowl; one Crambeck greyware flanged bowl and dish; and one Crambeck parchment ware bodysherd with a painted horizontal line. 4th century, perhaps mid-4th century.

F XVI 3 Unphased

This contains one Crambeck greyware flanged bowl. 4th century.

F XVI 4 Unphased

This contains one S-bend calcite gritted ware jar; two Crambeck greyware dishes; one BB1 imitation flanged bowl; and one R5 lid-seated jar. Earlier-4th century.

F XVII 2 U/S

This contains one greyware notched cordoned lid-seated constricted-necked jar rim. 2nd century or later.

FXX2U/S

This contains Huntcliff type jars. Later-4th century.

F XX 5 Unphased

This contains one greyware flanged bowl; one local redware Dr38 copy; one Crambeck greyware dish; and one R5 lid-seated jar. Earlier-4th century.

F XX 6 Phase 6

This contains one painted Crambeck parchment ware Gillam type 297, later-4th century; and one Nene Valley flanged bowl (see Chapter 8.4, SS125).

F XXI 7 Unphased

This contains one handmade, gritted ware everted rimmed jar. Perhaps 2nd to mid-4th century.

F XXIV 3 Phase 6-7

This contains one Crambeck greyware jar rim. 4th century.

F XXIV 4 Phase 6-7

This contains one painted Crambeck type 5, etc, but no Huntcliff jar rims. Assuming the latter have been discarded, later-4th century.

F XXIV 6 Phase 6-7

This contains one local redware Dr38 copy (see Chapter 8.4, SS58); one Crambeck type 3 jar; greyware flanged bowls; some Holme ones; Dales type jars in fabric R5; and one S-bend calcite gritted ware jar. Earlier-4th century.

F XXIV 8 Phase 6-7

This contains one Gillam 225 beaded dish in BB2; one BB2 jar rim; and one Nene Valley beaker base. Early mid-3rd century, perhaps Severan.

F XXIV 11 Phase 6-7

This contains three proto-Huntcliff calcite gritted ware jars; and one Crambeck type 3 jar handle. Mid-4th century.

F XXIV 13 Phase 6-7

This contains two S-bend calcite gritted ware jars and one storage jar; one Crambeck greyware dish; and one gritted ware (R5) jar. Earlier-4th century.

F XXIV 15 Phase 6-7

This contains two local Dr38 copies; one Crambeck type 3 jar and one flagon; one Holme-on-Spalding Moor jar; and one Horningsea storage jar rim (see Chapter 8.4, SS1). Earlier-4th century.

FXXV 2 U/S

This contains Huntcliff type jars and one Crambeck painted parchment ware type 5. Later-4th century.

F XXV 3 Phase 6

This contains one calcite gritted ware proto-Huntcliff type jar; one Crambeck greyware flanged bowl; and two Crambeck parchment ware bodysherds from a closed form with horizontal painted lines. Mid/later-4th century, not necessarily later-4th century. This contains one Crambeck greyware flanged bowl and dish and three R5 lid-seated jars. Earlier-4th century.

FXXV9 Phase 5?

This contains one whiteware flagon handle and one greyware bodysherd. Not closely datable, possibly 1st- or 2nd century.

F XXV 13 Phase 5?

This contains one greyware bodysherd. Not closely datable.

F XXVI 3 Unphased

This contains one local redware Dr38; everted rimmed jars and one wide-mouthed jar or bowl in fabric R5; one small Crambeck greyware jar with acute burnished lattice; and one S-bend calcite gritted ware jar. Earlier-4th century.

F XXVI 4 Unphased

This contains one sandy greyware flanged bowl; and one R5 gritted ware jar. Mid-3rd to mid-4th century.

Area G

G II 3 Phase 6-7

This contains one Huntcliff type jar. Later-4th century.

G II 4 Phase 6–7

This contains one Crambeck greyware flagon; two dishes; one flanged bowl and type 3 jar handle; one R5 jar; one Nene Valley dish; and one calcite gritted S-bend and proto-Huntcliff jar. Mid-4th century, perhaps c AD 340–60.

$G\,II\,5\,Phase\,6–7$

This contains one greyware flanged bowl and one Crambeck copy fabric jar. 4th century.

G II 6 Phase 6-7

This contains one proto-Huntcliff type jar, perhaps c AD 340–70.

G II 7 Phase 6-7

This contains three Crambeck greyware dishes; one bell-mouthed lid-seated jar; four jars in fabric R5; one Nene Valley parchment ware closed form with horizontal red painted bands; and one S-bend calcite gritted ware jar. Earlier-4th century.

G II 8 Phase 6–7

This contains one proto-Huntcliff type jar. Mid-4th century, perhaps c AD 340–70.

G II 10 Phase 6-7

This contains one late type of Southern Shell-Tempered ware jar (see Chapter 8.4, SS7); Huntcliff type jar rims, etc, later-4th century; and one segmental bowl in local redware (see Chapter 8.4, SS55).

G II ext 4 Phase 6 (-7)

This contains one Huntcliff type jar. Later-4th century.

G IV 4 Phase 6 (-7)

This contains one painted Crambeck parchment ware type 5 and one jar in fabric 007/168 (Evans 1985a). Later-4th century.

G IV 4A Phase 6 (-7)

This contains one calcite gritted bodysherd, externally burnished and the base of a flagon?, exterior brown/red colour-coated, probably Crambeck redware. 4th century, probably later-4th century.

G IV 5 Phase 6 (-7)

This contains Huntcliff type jars and painted ?local parchment ware. Later-4th century.

G IV 7 Phase 6 (-7)

This contains one calcite gritted S-bend jar; one storage jar; one Crambeck greyware flanged bowl and dish, 4th century, probably earlier-4th century; and one beaker base in Crambeck copy greyware (see Chapter 8.4, SS73).

G IV 19 Phase 6 (-7)

This contained two calcite gritted S-bend jars; one Crambeck greyware dish and flanged bowl; and one Crambeck parchment ware painted bowl/closed form bodysherd. Mid/later-4th century, probably later-4th century.

GV2 Phase 6 (-7)

This contains one bodysherd from a Huntcliff type jar and one base sherd of Crambeck parchment ware, etc. Later-4th century.

GV4 Phase ?6-7

This contains Huntcliff type jars. Later-4th century.

G V 5 Phase ?6-7

This contains one Huntcliff type jar (riveted). Later-4th century.

G V 11 Phase 6 (-7)

This contains one oxidised white slipped bodysherd; one greyware indented bodysherd and one grey BB1 copy jar. 2nd century.

G V 12 Phase 6 (-7)

This contains one greyware bodysherd with acute burnished lattice and one oxidised white slipped flagon base. Probably 2nd century.

$G\,V\,13\,Phase\;6\,(-7)$

This contains one Crambeck greyware cheese press (see Chapter 8.4, SS45), three flanged bowls and one dish; one local redware Dr38; one R5 Dales type jar; one Nene Valley dish; two calcite gritted ware S-bend jars; one proto-Huntcliff type jar; and one Huntcliff type jar in fabric 007/168 (Evans 1985a). The latter should be later-4th century but the rest of the group would suit a mid-4th-century date, perhaps c AD 350–60.

G V 15 Phase 6 (-7)

This contains Huntcliff type jars. Later-4th century.

G V 19 Phase 6 (-7)

This contains one greyware jar rim. Not closely datable.

G V 20 Phase 6 (-7)

This contains two whiteware bodysherds. Not closely datable, possibly 1st or 2nd century.

G V 23 Phase 6 (-7)

This contains one local redware Dr38. 4th century.

G V ext 3 Phase 6 (-7)

This contains Huntcliff type jars; one jar in fabric 007/168 (Evans 1985a), later-4th century; and one Crambeck copy greyware bowl (see Chapter 8.4, SS69).

G V ext 6 Phase 6 (-7)

This contains one Huntcliff type jar and one white painted redware Dr38 etc. Later-4th century.

G VI 4 Phase 6 (-7)

This contains Huntcliff type jars, etc. Later-4th century.

G VI 8 Unphased

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

G VI 10 Phase 5

This contains one Crambeck greyware jar base and one R5 jar rim. 4th century.

G VII 3 Phase 6-7

This contains two S-bend calcite gritted ware jars; one Crambeck greyware flanged dish and flanged bowl; and one R5 Dales type jar. Earlier-4th century.

G VII 4 Phase 6–7

This contains two Crambeck greyware dishes; three flanged bowls; one BB1 imitation dish; one S-bend and three proto-Huntcliff type calcite gritted ware jars; one unusual Holme ware jar (see Chapter 8.4, SS42); one Crambeck copy fabric flanged bowl and jar handle; and one Crambeck parchment ware bodysherd from a painted closed form. Mid/late-4th century, probably c AD 340–60.

G VII 6 Phase 6-7

This contains two Dales type gritted ware jars. Mid-3rd to mid-4th century.

G VII 7 Phase 6-7

This contains one Crambeck greyware carinated bowl and flagon; one R5 Dales type jar; and one Crambeck copy fabric wide-mouthed jar/bowl and necked jar (see Chapter 8.4, SS74). Earlier-4th century.

G VII 8 Phase 6-7

This contains one Crambeck greyware type 3 jar handle; one Crambeck copy fabric dish, 4th century; and one Dales type jar in Crambeck copy greyware (see Chapter 8.4, SS81).

G VII 10 Phase 5

This contains two R5 lid-seated jars; three S-bend calcite gritted jars; one Dales type jar (see Chapter 8.4, SS81), earlier-4th century; and one small Crambeck copy greyware jar (see Chapter 8.4, SS82).

G VIII 5 Phase 6

This contains one Huntcliff type jar. Later-4th century.

G VIII 13 Phase 6-7

This contains one Crambeck greyware flanged bowl; one type 3 jar base; two calcite gritted ware S-bend jars; one wide-mouthed jar/bowl; and one Crambeck copy fabric constricted necked jar (see Chapter 8.4, SS71). Probably mid-4th century.

G VIII ext 9 Phase 6-7

This contains one Crambeck greyware carinated bowl; three dishes; one flanged dish; two flanged bowls; three type 3 jars; three S-bend calcite gritted ware jars; one Crambeck copy fabric wide-mouthed jar/bowl and type 3 jar. Earlier-4th century.

G VIII ext 15 Phase 6

This contains four Crambeck flanged bowls (one with internal burnished lattice decoration: see Chapter 8.4, SS43); and one Crambeck redware type 5 with white painted decoration, etc. Later-4th century.

G IX 5 Phase 6–7

This contains one constricted-necked jar in a Crambeck copy fabric; and one Crambeck copy greyware smith pot with bossed hair (a different vessel from that in F VI 6; see Chapter 8.4, SS86). 4th century.

G IX 7 Phase 6–7

This contains one flanged bowl in Crambeck copy fabric. 4th century.

G IX 9 Phase 2-3/4

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

G IX 11 Unphased

This contains one BB1 beaker; one greyware jar base and one roughcast cornice rimmed beaker. Hadrianic-Antonine.

G XI 2 Phase 6 (-7)

This contains one Crambeck greyware dish; two flanged bowls and one flanged dish. Early-mid 4th-century, perhaps earlier-4th century.

G XI 3 Phase 2-3/4

This contains one Nene Valley beaker base. Mid/late-Antonine or later.

$G\,X\!IV\,2\,Phase\;6\,(-7)$

This contains Crambeck greyware and calcite gritted ware body-sherds. 4th century.

G XV 2 Phase 6 (-7)

This contains Huntcliff type jars and one painted Crambeck parchment ware dish. Later-4th century.

G XV 4 Phase 5

This contains one white painted Nene Valley bodysherd. Later-3rd to 4th century.

GXV5 Phase 2–3/4

This contains one Nene Valley bag beaker and one R5 everted rimmed jar. Perhaps mid-3rd to mid-4th century.

G XVI 2 Phase 6 (-7)

This contains one Huntcliff type jar. Later-4th century.

G XVI 3 Phase 5

This contains one Nene Valley beaker; and one R5 jar base. Mid-3rd to 4th century.

G XVI 4 Phase 3

This contains one Huntcliff type jar rim. Later-4th century. (Intrusive.)

G XVI 6 Phase 5-6

This contains one painted parchment ware bodysherd. Later-4th century?

G XV/XVI 2 6-7

This contains three Crambeck flanged bowls (one with internal wavy line burnish). Later-4th century.

G XVII 3 Phase 6 (-7)

This contains two Crambeck flanged bowls (one with internal wavy line) one Nene Valley Dr38 and one flat rimmed bowl (see Chapter 8.4, SS124). 4th century, probably later-4th century with the calcite gritted ware missing.

G XVII 7 Phase 6 (-7)

This contains gritted ware Dales type jars. Mid-3rd to mid-4th century.

G XVII 10 Phase 2-3/4

This contains one internally-ledged oxidised flagon rim. Mid-2nd to mid-3rd century.

25

G XVIII 2 Phase 6 (-7)

This contains one Huntcliff type jar. Later-4th century.

G XVIII 3 Phase 6 (-7)

This contains one local redware Dr38; one Crambeck? greyware dish; and one Nene Valley white painted bodysherd. 4th century.

G XVIII 4 Phase 6 (-7)

This contains one Crambeck greyware flanged bowl with internal wavy line; one type 3 jar; one Nene Valley flanged bowl and pentice moulded beaker with white painted decoration; and one gritted ware jar. Mid/later-4th century, later-4th century if calcite gritted ware has been discarded.

G XVIII 6 Phase 6 (-7)

This contains one Crambeck redware type 5 bowl; two R5 lid-seated jars; and one Crambeck greyware dish, etc. Earlier-4th century.

G XVIII 7 Phase 6 (-7)

This contains one R5 jar; one BB1 imitation dish; two local redware Dr38 bowls; and one Crambeck greyware carinated bowl. 4th century, probably earlier-4th century.

$G\,XVIII\,9\,Phase\,5$

This contains one Nene Valley cornice-rimmed beaker of baggy form. Later-2nd to mid-3rd century.

G XVIII 13 Phase 2-3/4

This contains one BB1 flange rimmed dish with basal chamfer and acute lattice decoration; two BB1 grooved rim dishes (one with basal chamfer, one with acute lattice decoration); greyware jars etc. Hadrianic to mid-Antonine.

G XVIII 14 Unphased

This contains one flange rimmed dish in BB1 with acute lattice decoration; one oxidised reeded-rimmed bowl and one cornice-rimmed beaker. Hadrianic-Antonine, perhaps Hadrianic to early-Antonine.

G XX 2 Phase 6 (-7)

This contains Huntcliff type jars. Later-4th century.

G XX 4 Phase 6 (-7)

This contains one proto-Huntcliff type calcite gritted jar; one Huntcliff type bowl; another, burnished, but lacking the internal groove; one BB1 imitation flange rimmed jar (see Chapter 8.4, SS40); one Crambeck bodysherd from a Smith pot (see Chapter 8.4, SS48); one piecrust rimmed jar with bosses (see Chapter 8.4, SS26); one Nene Valley Dr38; and a wide range of Crambeck greywares (which could all suit an earlier-4th-century date); and one Crambeck copy greyware wide-mouthed jar/bowl (see Chapter 8.4, SS83). There is no evidence that these Huntcliff type bowls are earlier than the later-4th century, however the lack of Huntcliff type jars is notable. Mid/late-4th century, presumably mid-4th century (*c* AD 340–60) if the group is substantially complete.

G XX 10 Phase 6 (-7)

This contains two Huntcliff type jar rims and one bodysherd from a white painted Crambeck redware form, etc. Later-4th century.

G XX 17 Phase 6

This contains one Crambeck greyware type 3 jar handle; six flanged bowls; one wide mouthed bowl; one greyware type 5; jars in fabric R5; and one Crambeck parchment ware closed form with horizontal red painted lines. Mid-4th century.

G XX 18 Phase 6 (-7)

This contains six Crambeck greyware flanged bowls; one jar handle and one constricted-necked jar in Crambeck copy fabric (see Chapter 8.4, SS76); four local redware Dr38 bowls; one imitation BB1 flanged bowl; and two calcite gritted S-bend jars, etc, early/mid-4th century; one flanged bowl and one wide-mouthed jar/bowl in Crambeck copy greyware; and one shouldered jar (see Chapter 8.4, SS65, SS66, and SS75).

G XX 19 Phase 2–3/4

This contains one greyware and one oxidised reeded rimmed bowl. Flavian-Trajanic.

G XX ext 6 Phase 6 (-7)

This contains Huntcliff type jars. Later-4th century.

G XX ext 7 Phase 6 (-7)

This contains Huntcliff type jars, etc. Later-4th century.

$G XX ext \ 8 \ Phase \ 6 \ (-7)$

This contains two Huntcliff type jars. Later-4th century.

G XX ext 14 Phase 6 (-7)

This contains one Crambeck greyware bell-mouthed lid-seated jar; one S-bend calcite gritted jar and two storage jars; one BB1 imitation flanged bowl; one Crambeck copy fabric flanged bowl and dish; and one Holme flanged bowl. Earlier-4th century.

G XX ext 15 Phase 6 (-7)

This contains one jar in fabric R5; one Crambeck greyware carinated bowl; one type 3 jar; one Crambeck copy fabric dish (see Chapter 8.4, SS68); and one proto-Huntcliff type jar. Probably mid-4th century.

G XX ext 16 Phase 6 (-7)

This contains fragments of two greyware face-pots (see Chapter 8.4, SS86 and SS88) and one Huntcliff type jar. Later-4th century.

G XX ext 18 Unphased

This contains two Crambeck greyware flanged bowls; one R5 lid-seated jar; and one calcite gritted ware S-bend jar. Probably earlier-4th century.

G XXI 2 Unphased

This contains Huntcliff type jars. Later-4th century.

G XXI 4 Phase 6a

This contains two proto-Huntcliff type jars, perhaps c AD 340–70.

G XXI 5 Phase 6a

This contains five Crambeck greyware flanged bowls. 4th century, possibly earlier-4th century.

G XXI 6 Phase 6a

This contains one Crambeck greyware dish and one Crambeck copy greyware flanged bowl. 4th century.

G XXII 2 Phase 6 (-7)

This contains Huntcliff type jars; and one Crambeck painted parchment ware type 5 bowl. Later-4th century.

G XXII 3 Phase 6 (-7)

This contains two S-bend calcite gritted ware jars; one proto-Huntcliff type jar; one storage jar; and one Crambeck greyware jar handle; 4th century, probably mid-4th century (possibly later); one Crambeck copy greyware wide-mouthed jar/bowl and one shouldered jar with hooked rim (see Chapter 8.4, SS70 and SS80).

G XXII 4 Phase 6 (-7)

This contains one Crambeck greyware beaker; one flanged dish; and one calcite gritted ware S-bend jar. Earlier-4th century.

G XXII 5 Phase 5

This contains one Crambeck greyware flanged bowl and dish. 4th century.

G XXII 8 Phase 5

This contains one R5 gritted ware jar; one reeded-rimmed bowl; and other early residual material. Perhaps mid-3rd to mid-4th century.

G XXII 11 Phase 1 or 2-3/4

This contains two rustic ware bodysherds; one Dressel 20 amphora; one small greyware jar; and one whiteware jar/beaker, internally ledged, of similar form to some ring-and-dot beaker rims. Flavian to 2nd century, perhaps Flavian-Trajanic.

G XXIV 2 Phase 6 (-7)

This contains two Crambeck greyware flanged bowls; one type 3 jar; one calcite gritted proto-Huntcliff type jar; and one R5 lid-seated jar. Mid-4th century, perhaps c AD 340–60.

This contains one Nene Valley dish; one Crambeck flanged bowl and type 3 jar; two S-bend calcite gritted ware jars; and one proto-Huntcliff type jar. 4th century, probably mid-4th century, perhaps c AD 340–60.

G XXV 2 Phase 6 (-7)

This contains one Crambeck copy greyware flanged bowl 4th century.

G XXV 10 Phase 3c (or later)

This contains one Nene Valley parchment ware constricted necked jar with face stamp (see Chapter 8.4, SS156). 4th century. [?Intrusive].

G XXIX 2 Phase 6 (-7)

This contains Huntcliff type jars, etc. Later-4th century.

G XXIX 5 Phase 5

This contains one greyware constricted-necked jar with rising rim; one oxidised pentice moulded beaker bodysherd; and one everted rimmed handmade jar. Probably 2nd century, perhaps later-2nd century.

G XXIX 6 Phase 5

This contains two Crambeck greyware dishes and two R5 lid-seated jars. 4th century, perhaps earlier-4th century.

G XXIX 8 (sherds marked thus, label reads G XXIX 2) Unphased

This contains two greyware flange rimmed bowls and one BB1 groove rimmed dish with acute lattice decoration. Perhaps Hadrianic to mid-Antonine.

G XXX 7 Phase 5

This contains one grey handmade jar. Not closely datable, possibly 3rd or 4th century.

G XXXI 2 Phase 6 (-7)

This contains one calcite gritted ware jar base and one Nene Valley 'Castor box'. 3rd to 4th century, most probably 4th century.

G XXXI 7 Phase 6 (-7)

This contains one BB1 jar, earlier-4th century.

G XXXI 8 Phase 2–3/4

This contains many oxidised bodysherds, including one flagon base; one reeded-rimmed bowl; several greyware jars with acute lattice decoration; and one grey bodysherd with acute lattice. Perhaps Hadrianic.

G XXXI 13 Phase 2-3/4

This contains one BB1 dish with one chamfered base and acute lattice decoration. Probably later-2nd century, perhaps early mid-Antonine.

G XXXII 2 Phase 6 (-7)

This contains Huntcliff type jars. Later-4th century.

G XXXII 13 Phase 2-3/4

This contains one grey bodysherd with acute lattice decoration; one oxidised simple incurving walled bowl; one grey sub-reeded-rimmed bowl; and one grey foot ring base from a bowl. Probably Hadrianic.

G XXXIV 2 Phase 6 (-7)

This contains Huntcliff jars, etc. Later-4th century.

G XXXIV 3 Phase 6 (-7)

This contains one Crambeck greyware flanged bowl with internal wavy line; one local redware Dr38; two calcite gritted S-bend jars; R5 lid-seated jars; and one Crambeck greyware dish. Mid/later-4th century.

Area H

HI2 Phase 4-7

This contains Huntcliff type jars and one painted parchment ware Gillam 297 dish. Later-4th century.

H I 3 Phase 6

This contains one painted Gillam type 297 dish in Crambeck parchment ware. Later-4th century.

H I 5 Phase 6

This contains two Gillam type 155 jars one in calcite gritted ware and another in fabric 007/168 (Evans 1985a). Later-4th century.

HI7 Phase 6-7

This contains one Nene Valley flagon rim (see Chapter 8.4, SS116).

H I 10 Phase 4-5

This contains one BB1 flanged bowl. Late-3rd to mid-4th century.

H II 4 Phase 4–6

This contains one oxidised internally ledged flagon; one Nene Valley cornice rim beaker; two Gillam 222–5 BB2 dishes several more in greyware; and several BB1 copy greyware jars. Later-2nd to early-3rd century, perhaps late-Antonine.

H II 5 Phase 6a

This contains one BB1 jar; one greyware BB1 beaker copy; one jar copy with acute lattice decoration; one R8 everted rim jar; one BB1 flange rimmed dish; and one greyware 1 with basal chamfer and acute lattice decoration. Mid-2nd to mid-3rd century, perhaps Severan.

H II 6 Phase 6a

This contains one BB1 flange rim dish with acute lattice decoration and three grey BB1 copy jars. Hadrianic/mid-Antonine.

H II 14 Phase 5

This contains one grey BB1 copy jar, 2nd century.

H II 21 Phase 1(-2)

This contains common oxidised bodysherds, one BB1 bodysherd; a shell-tempered storage jar rim (see Chapter 8.4, SS5); and one oxidised incurving rim dish. Hadrianic-Antonine, probably Hadrianic.

H II 23 Unphased

This contains one BB1 flange rim dish with acute lattice decoration and one grey BB1 copy jar. Hadrianic/mid-Antonine.

H III 3 Phase 6–7

This contains one Dressel 20 amphora handle; one Nene valley cornice rim roughcast beaker; and one R5 lid-seated jar. The latter suggests a mid-3rd to mid-4th century date.

H III 4 Phase 6–7

This contains one Huntcliff type jar. Later-4th century.

H III 5 Phase 6-7

This contains one grey bodysherd and one flange rim dish. Hadrianic-Antonine.

H III 6 Phase 6–7

This contains one grey flanged bowl. Later-3rd to 4th century.

H III 8 Phase 6-7

This contains one Nene Valley beaker base; one grey BB1 copy jar; and one BB1 flange rim dish. Later-2nd to early-3rd century, perhaps later-2nd century.

H III 9 Phase 6-7

This contains one grey BB1 copy jar. Probably early mid-3rd century.

H III 10 Phase 6-7

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

H III 11 Phase 5

This contains one grey lid; one orange roughcast beaker; and one horizontally combed grey bodysherd. Perhaps 1st or 2nd century.

H III 12 Phase 5

This contains one BB1 jar; one constricted necked jar with rising rim; one Nene Valley beaker base; and one large grey bead rimmed jar, possibly S Yorks. Later-2nd century.

H III 16 Phase 6-7

This contains one calcite gritted flanged bowl and one bodysherd from a Huntcliff type jar. Later-4th century.

H III 18 Phase 6-7

This contains one BB1 and one BB1 copy grey jar. Hadrianic-Antonine.

H III 19 Phase 6-7

This contains one imitation 'Rhenish' ware beaker. Probably later-2nd to mid-3rd century.

H III 20 Phase 6-7

This contains one everted rimmed jar (fabric R8) and one jar rim of Holme form and possibly Holme fabric. Perhaps mid/late-3rd century.

H III 21 Phase 6–7

This contains one BB1 jar; and one Nene Valley bodysherd. Later-2nd to early-3rd century.

H III 22 Phase 6-7

This contains one Crambeck greyware flanged bowl and residual material. 4th century.

H III 23 Phase 6–7

This contains one rustic ware jar; one grooved rim dish; and one Nene Valley beaker base. Later-2nd century.

H III 25 Phase 6–7

This contains one BB1 dish with intersecting arc decoration; one grooved rim dish with acute lattice decoration; one grey jar bodysherd with acute lattice decoration, later-2nd to mid-3rd century, perhaps later-2nd century; and one face-pot bodysherd (see Chapter 8.4, SS89). This contains three proto-Huntcliff type jars, perhaps c AD 340–60.

H III 28 Phase 6-7

This contains one Nene Valley beaker bodysherd. Mid/late-Antonine or later.

H III 31 Phase 5

This contains two Nene Valley bodysherds with white painted decoration; one BB1 dish with the Ower motif on the base; and one sandy grey jar, perhaps part of a triple jar set (see Chapter 8.4, SS37). Probably mid-3rd to 4th century.

H III 32 Phase 5

This contains one complete Nene Valley pentice beaker (see Chapter 8.4, SS138) and one face pot bodysherd (see Chapter 8.4, SS89). 4th century.

HV4 Phase 5

This contains one calcite gritted ware bodysherd. Later-3rd or far more probably 4th century.

H VI 2 Phase 4-7

This contains one grey flanged bowl; and one BB1 jar. Perhaps later-3rd century.

H VI 3 Phase 4-7

This contains one BB1 jar; and one greyware flanged bowl. Later-3rd to early-4th century, perhaps later-3rd century.

H VI 4 Phase (2-) 3/4

This contains one grey flanged bowl. Mid-3rd to 4th century.

H VI 5 Phase 4-7

This contains one grey flanged bowl. Mid-3rd to 4th century.

H VI 6 Phase (2–) 3/4

This contains one reeded-rimmed bowl. Flavian-Trajanic.

H VI 7 Phase 4–5

This contains one S-bend calcite gritted ware jar. Earlier-4th century.

H VI 8 Phase 2 (-3/4)

This contains the base of an *unguentarium*. Not closely datable, perhaps 1st or 2nd century.

H VII 2 Phase (4-) 6a-7

This contains one flange/bead rim dish. 2nd century.

H VII 3 Phase (4–) 6a–7

This contains one small whiteware jar. Perhaps 1st to early-2nd century.

H VII 4 Phase (4-) 6a-7

This contains one grey BB1 copy jar and one grooved rim dish. 2nd century.

H VII 11 Phase 4–5

This contains one Huntcliff type jar. Later-4th century. (Intrusive.)

H VII 17 Unphased

This contains three oxidised bodysherds. Possibly 1st or 2nd century.

H VII 18 Phase 4

This contains one grey BB1 beaker/jar copy. Hadrianic-Antonine.

H VIII 8 Phase 1–2

This contains one grey bodysherd and jar rim fragment. Not closely datable.

H VIII 9 Phase 3/4

This contains one grey BB1 copy jar. 2nd century.

H VIII 10 Phase 3/4

This contains one grey BB1 copy jar. 2nd century.

H VIII 16 Phase 6a–7

This contains one grey beaker/jar base. Not closely datable.

H IX 2 Phase (4-) 6a-7

This contains two flange rim dishes with acute lattice decoration; three BB1 copy grey jars; and one Nene Valley scale beaker. Mid/late-Antonine.

H IX 4 Phase (4-) 6a-7

This contains one grey BB1 copy jar. 2nd century.

H IX 5 Phase (4-) 6a-7

This contains one greyware jar. Perhaps 1st or 2nd century.

H IX 6 Phase (4-) 6a-7

This contains two grooved rim BB1 dishes; one grey flange rim dish and jar base. Hadrianic-Antonine.

H IX 7 Phase 2-3/4

This contains two greyware BB1 copy jars. Later-2nd to early-3rd century.

H IX 10 Phase 3/4

This contains one grey BB1 copy jar. Probably 2nd century.

H IX 16 Phase 2–3/4

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

H IX 19 Phase 2-3/4

This contains one small BB1 jar. Hadrianic-Antonine.

H IX 20 Phase (4-) 6a-7

This contains one calcite gritted S-bend jar. Earlier-4th century.

H IX 25 Phase 2-3/4

This contains two oxidised bodysherds. Not closely datable, perhaps 1st or 2nd century.

HX5 Phase 3

This contains one grey flange rim dish. Hadrianic-Antonine.

HX7 Phase (4-) 6a-7

This contains one Nene Valley cornice rimmed beaker; one BB2 Gillam 225; two grey BB1 copy jars; and one grey flanged bowl. 3rd century, if a contemporary group then perhaps mid-3rd century, if not then later-3rd century.

HX9 Phase 3/4

This contains one BB2 Gillam 225 dish. Early/mid-3rd century.

H XI 2 Phase 6

This contains one handle in fabric 007/168 (Evans 1985a) and a collection of residual Antonine greywares. Later-4th century.

H XI 3 Phase 2-3/4

This contains one grey BB1 copy jar. Later-2nd to early-3rd century.

H XI 4 Phase 2–3/4

see Chapter 8.2.

H XI 7 Phase 4-7

This contains one Nene Valley bead rimmed bowl (see Chapter 8.4, SS111); grey BB1 copy jars; simple dishes; two R5 lid-seated jars; and two everted rimmed R5 jars. Later-3rd century.

H XI 10 Phase 2-3/4

This contains two BB1 copy greyware jars (one with wavy line decoration on the rim); and one grey flange rim dish. Hadrianic-Antonine.

H XI 11 Phase 2-3/4

This contains one whiteware bodysherd and one grey bowl of sub-reeded rim type. 2nd century, perhaps earlier.

H XI 13 Phase 3/4

This contains one oxidised constricted-necked jar with a hooked rim and one grey BB1 copy jar. Hadrianic-Antonine.

H XI 15 Phase 3/4

This contains one small BB1 jar. Hadrianic-Antonine.

H XI 18 Phase (2-) 3/4

This contains one BB1 flange rim dish with acute lattice decoration, Hadrianic/mid-Antonine.

H XI 24 Phase 2-3/4

This contains one grey jar. Not closely datable, perhaps 1st or 2nd century.

H XII 7 Phase (4-) 6

This contains three BB2 Gillam 225 dishes; one Gillam 222–5 in greyware; one flange rim dish; one grey BB1 copy jar with square lattice decoration and one beaded rimmed constricted-necked jar. Severan.

H XII 18 Unphased

This contains one whiteware bodysherd. Not closely datable, perhaps 1st or 2nd century.

H XII 21 Phase 3/4

This contains one grey jar. Not closely datable, possibly 1st or 2nd century.

H XII 24 Phase 4-7

This contains one oxidised flagon rim. Perhaps 2nd century.

H XIV 3 Phase 3/4 (-6)

This contains one rustic jar; five BB1 copy grey jars; one Gillam 225 dish; and one jar in fabric R5. Early mid-3rd century, perhaps mid-3rd century.

H XIV 4 Phase 2-3/4

This contains two grey BB1 copy jars (one with acute burnished lattice); and one flange rim bowl with acute lattice decoration. 2nd century, probably Hadrianic/early-Antonine.

H XIV 5 Phase 2–3/4

This contains two BB1 jars (one with obtuse lattice decoration) and two grey BB1 copy jars. Early mid-3rd century.

H XV 5 Phase (4-) 6a-7

This contains one grey BB1 beaker copy. 2nd century.

HXV6 Phase 3/4

This contains one Nene Valley cornice rim bag-shaped beaker and one grooved rim grey dish. Probably later-2nd century.

H XV 7 Phase 2-3/4

This contains two rustic ware bodysherds. Flavian/mid-2nd century, perhaps Flavian-Trajanic.

H XVI 2 Phase (4–) 6a–7

This contains two BB2 Gillam 225 dishes; one oxidised cornice-rimmed beaker, one grey cavetto rim jar and one flange rim bowl. Probably Severan.

H XVI 4 Phase (4-) 6a-7

This contains one BB1 flange rim bowl; one greyware example; greyware BB1 copy jars and one grooved rim dish with intersecting arc decoration. Later-2nd century.

H XVI 5 Phase 2-3/4

This contains one BB1 flange rim dish. Hadrianic-Antonine.

H XVII 1 Unphased

This contains one Nene Valley dish and flanged bowl. 4th century.

H XVII 2 Phase 5

This contains one proto-Huntcliff type jar and residual 'Severan' material, perhaps c AD 340–70.

H XVII 3 Phase 3/4

This contains one bead rimmed wide-mouthed bowl; one R5 lid-seated jar; and one groove rimmed dish. Mid-3rd to mid-4th century.

H XVIII 2 Phase 6a

This contains one Trier 'Rhenish' ware indented beaker bodysherd. Later-2nd to mid-3rd century.

H XVIII 8 Unphased

This contains two cavetto rimmed BB1 jars; one grey BB1 copy jar and one R5 lid-seated jar. Mid/late-3rd century.

H XIX 2 Phase 4–7

This contains one grey BB1 grooved rim dish with acute lattice decoration. Hadrianic-Antonine.

H XIX 4 Phase (4–)6a–7

This contains one Nene Valley indented beaker bodysherd; two BB1 jars and one flange rim dish; and one grey BB1 copy beaker. Second half of 2nd century.

H XIX 6 Phase 4–7

This contains one whiteware flagon bodysherd; two grey jars; and one oxidised roughcast beaker. 1st to 2nd century, perhaps Flavian-Trajanic.

H XX 3 with, possibly, some 4 Phase (4–) 6a–7

This contains two internally ledged flagons; one small Nene Valley jar; two BB1 jars; one small jar and

one beaker; three grey BB1 copy jars; one South Yorks (?) wide-mouthed jar; flange rim dishes, etc. Later-2nd to early-3rd century, probably mid/late-Antonine.

H XX 4 Phase (4-) 6a-7

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

H XX 5 Phase (4-) 6a-7

This contains one Nene Valley small jar and one barbotine scroll decorated bodysherd; four grey BB1 copy jars; and one BB1 flange rim dish. Mid/late-Antonine.

HXX ~ 6~ U/S

This contains one burnt Central Gaulish? Dr31, probably Antonine; one BB1 flange rim dish with intersecting arc decoration; one grey BB1 copy jar and one grooved rim dish. Later-2nd to early-3rd century.

H XX 9 Phase (4-) 6a-7

This contains two BB1 and one greyware flange rim dishes with acute lattice decoration; one oxidised and one greyware beaker. Hadrianic to mid-Antonine.

H XX 15 Phase (4-) 6a-7

This contains one Nene Valley bag beaker base and two grey jar rims. Later-2nd to early-3rd century, possibly later 2nd.

H XXI 4 Phase 2-3/4

This contains one Huntcliff type jar, later-4th century. (Intrusive)

H XXIII 2 Phase 6

This contains one BB1 flanged bowl; one Nene Valley cornice-rimmed bag-shaped beaker; several grey flange rim dishes; one BB2? jar; and several grey BB1 copy jars. Late-2nd to early-3rd century, probably Severan.

H XXIII 3 Phase 4-6

This contains one BB1 imitation flanged bowl; one Nene Valley bowl; one proto-Huntcliff type jar; and much residual late-2nd to early-3rd century material, mid-4th century, perhaps c AD 340–60; and one Nene Valley indented beaker (see Chapter 8.4, SS143).

H XXIII 4 Phase (4-) 6a-7

This contains two BB1 jars; several grey BB1 copy jars; one whiteware grooved rim flagon; the base of one Nene Valley beaker; and one Nene Valley cornice-rimmed beaker, etc. Early mid-3rd century.

H XXIII 5 Unphased

This contains two grey BB1 copy jars. Probably later-2nd to early-3rd century.

H XXIV 4 Phase 2-3/4

This contains one oxidised bodysherd and one flagon handle. Perhaps 1st or 2nd century.

H XXIV 6 Phase 1

This contains one oxidised reeded-rim bowl. Flavian-Trajanic.

H XXIV 7 Phase 1

This contains one pulley rim oxidised flagon and one grey jar. 2nd century. (Probably intrusive)

HXXV2 Phase 2-3/4

This contains a range of 2nd-century greywares and one complete Nene Valley beaker of early mid-3rd-century date (see Chapter 8.4, SS120), suggesting an early-3rd-century date, but there is also one odd bodysherd with handle stub from a closed form with red painted decoration which may be Crambeck parchment ware, perhaps later-4th century. (The latter, if correctly identified, would seem to be intrusive).

H XXV 3 Phase 2-3/4

This contains one Nene Valley cornice rim beaker with barbotine scroll decoration and one narrow-necked Nene Valley flagon; grey BB1 copy jars; and one Gillam 225 dish. 3rd to 4th century, perhaps earlier-3rd century if the flagon is unusually early for the North.

HXXV 6 Phase 3/4

This contains two grey bodysherds. Not closely datable.

H XXV 8 Phase 1

This one beaker in white eggshell ware (see Chapter 8.4, SS10); one oxidised base; one rustic ware jar; and one greyware jar. 1st to early-2nd century, probably Flavian-Trajanic.

H XXVI 2 Phase 6-7

This contains one greyware flange rim dish. Hadrianic-Antonine.

H XXVII 2 Phase 6

This contains bodysherds from one large jar, probably Holme, perhaps 4th century; and, in another bag a fairly large collection with an early mid-3rd-century date range.

H XXVII 3 Phase (4-) 6a-7

This contains two BB1 jars with acute lattice decoration and one grey grooved rim dish with acute lattice decoration. Early mid-3rd century.

H XXVII 5 Phase (4–) 6a–7

This contains one BB1 flanged bowl. Later-3rd to mid-4th century with residual 'Severan' material.

H XXVII 6 Phase 2–3/4

This contains one BB1 jar rim with wavy line decoration; one grey BB1 copy jar rim; and one oxidised flagon handle. Hadrianic-Antonine.

H XXIX 2 Phase 6-7

This contains one grey BB1 jar and one grey bodysherd with a barbotine ring from a Flavian ring-and-dot beaker. Hadrianic-Antonine.

H XXIX 4 Phase 5

This contains one white slipped oxidised flagon base. Not closely datable, perhaps 1st or 2nd century.

H XXIX 7 Phase 7

This contains one oxidised ring-necked flagon. Late-1st to early-2nd century.

H XXX 3 Phase 2-3/4

This contains one Central Gaulish 'Rhenish' beaker with barbotine decoration and two grey grooved rim dishes. Late-2nd to early-3rd century.

H XXXI 2 Phase 6

This contains one greyware BB1 copy jar. Probably 2nd century.

H XXXIII 3 Unphased

This contains one Crambeck greyware beaker base and one Holme jar. 4th century.

H XXXV 2 Phase 6

This contains one whiteware *tettina* (see Chapter 8.4, SS20), one grey chamfered groove rim dish; and one BB1 beaker. 2nd century, perhaps later-2nd century.

Area J

J I 2 Phase 6

This contains one Nene Valley beaker base. Mid/late-Antonine or later.

J I 3 Phase 6

This contains one Huntcliff type jar, etc. Later-4th century.

J I 12 Phase 6a

This contains one parchment ware bowl base, perhaps the local fabric (see Chapter 8.4, SS92). Possibly 4th century.

J I 13 Phase 6

This contains one grey BB1 copy jar. 2nd century.

J I 14 Phase 6a

This contains one painted Crambeck parchment ware type 5 bowl. Later-4th century.

$J\,I\,15\,Phase\,5$

This contains one Nene Valley beaker base; one BB1 jar; one greyware jar; and one grey bell-mouthed lid-seated jar. Later-2nd to mid-3rd century, possibly mid/late-Antonine.

J I 16 Phase 4a

This contains one everted rimmed R5 jar; one BB2 Gillam type 225 dish; one Nene Valley cornice-rimmed beaker with barbotine decoration; one BB1 flanged bowl and one jar; and two grey BB1 copy jars. Probably mid-3rd century.

J I 17 Phase 4a

This contains one BB2 dish Gillam type 222–5; one Nene Valley scaled indented beaker; two grey BB1 copy jars and two flange rim dishes. Second half of 2nd century, probably late-Antonine.

J I 19 Phase 4

This contains three BB2 Gillam type 225 dishes; one Nene Valley bag beaker with barbotine decoration; two South Yorks wide-mouthed jar/bowls; one oxidised and one whiteware internally ledged flagon; one oxidised lid; two grey BB1 copy jars; and one grey indented beaker. Early- to mid-3rd century, probably Severan.

J I 20 Phase 3

This contains one greyware poppyhead beaker. Early-2nd century.

J I 21 Phase 3

This contains one buffware bowl. Probably Flavian-Trajanic.

J I 22 Phase 3

This contains one whiteware ring-necked flagon and one campanulate bowl; oxidised and rustic ware bodysherds. Perhaps early- to mid-2nd century.

J I 25 Phase 2

This contains one whiteware haematite smeared flagon base; one grey grooved rim bowl; and one grey bead rimmed jar. 1st to early-2nd century, probably Flavian-Trajanic.

J I 28 Phase 4b

This contains one Nene Valley cornice-rimmed beaker; one oxidised jar with a square-sectioned rim, white slipped with horizontal red painted bands (see Chapter 8.4, SS23); one BB1 jar; and one grey BB1 copy jar. Late-2nd to early-3rd century, perhaps late-Antonine.

J II 2 Phase 6

This contains painted Crambeck parchment ware, etc. Later-4th century.

J II 3 Phase 5-6a

This contains one Nene Valley barbotine decorated bodysherd; three BB1 jars; several grey BB1 copy jars, etc. Mid/late-Antonine.

J II 4 Phase 5–6a

This contains much residual material and one S-bend calcite gritted ware jar. Earlier to mid-4th century.

J II 5 Phase 4b

This contains three BB1 jars and one R5 Dales type jar. Probably later-3rd century.

J II 6 Phase 6b

This contains one proto-Huntcliff type calcite gritted jar, perhaps c AD 340–70.

J II 12 Phase 6a

This contains Huntcliff type jars, etc. Later-4th century.

J II 13 Phase 4a

This contains one Nene Valley sub-cornice-rimmed beaker. Later-2nd to 3rd century.

J II 15 Phase 5–6a

This contains Huntcliff type jars. Later-4th century.

J II 16 Phase 4a

This contains two BB1 flanged bowls and one Nene Valley bag-beaker. Early- to mid-3rd century.

J II 17 Phase 4a

This contains one oxidised flagon bodysherd and one beaded bowl rim. 1st to 2nd century.

J II 18 Phase 3

This contains one oxidised incurving walled dish and one Nene Valley rim. Mid/late-Antonine or later.

J II 19 Phase 3

This contains one mortarium bodysherd. 1st or 2nd century.

J II 20 Phase 3

This contains one BB2 Gillam type 225 dish; one grey flange rimmed dish; one Nene Valley bodysherd; and one grey bell-mouthed lid-seated jar. Early- to mid-3rd century.

J II 21 Phase 3

This contains one oxidised flagon; white slipped; one BB1 jar with wavy line on the rim; and one grey carinated jar with burnished bands (see Chapter 8.4, SS16). Probably Hadrianic.

J III 2 Phase 5–6

This contains one Huntcliff type jar. Later-4th century.

J III 4 Phase 5–6

This contains one local redware Dr38 copy. 4th century.

J III 12 Unphased

This contains one 'Rhenish ware' beaker; one grey BB1 copy jar; and two Nene Valley cornice rimmed beakers (one with barbotine lattice work decoration). Late-Antonine to early-3rd century.

J IV 2 Phase 5-6

This contains Huntcliff type jars, etc. Later-4th century.

J IV 4 Phase 5–6

This contains one R5 jar and one Nene Valley dish. Mid-3rd to 4th century, much more probably 4th century.

J IV 5 Phase 5-6

This contains Huntcliff type jars etc. Later-4th century.

J IV 7 Phase 5–6

This contains one gritty bell-mouthed lid-seated jar and one BB1 jar. Later-2nd to 3rd century.

J IV 8 Phase 4a

This contains one greyware flanged bowl. Mid-3rd to 4th century.

J IV 12 Phase 3 or 4a

This contains one Nene Valley bodysherd; one BB1 dish with intersecting arc decoration; and one BB1 jar. Later-2nd to early-3rd century.

JV5 Phase 5–6

This contains one Huntcliff type jar, etc, later-4th century; and one Nene Valley beaker (see Chapter 8.4, SS141).

J V 6 Phase 5–6

This contains one Horningsea storage jar rim (see Chapter 8.4, SS2); one BB1 dish with intersecting arc decoration; and three BB1 flanged bowls. Later-3rd century.

J VI 3 Phase 6-7

This contains one Huntcliff type jar. Later-4th century.

J VI 5 Phase 5-6

This contains Nene Valley beaker bases and one dish base and two grey jars. Not closely datable, probably later-3rd or 4th century. This contains one calcite gritted ware dish and one constricted-necked jar, perhaps in Crambeck greyware. Probably 4th century.

J VIII 6 Phase 5–6

This contains one S-bend calcite gritted ware jar. Earlier-4th century.

J VIII 7 Phase 5-6

This contains one Crambeck greyware type 3 jar. 4th century.

J IX 2 Phase 6

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

J XI 2 Unphased

This contains one BB1 imitation flanged bowl. Later-3rd to mid-4th century.

J XII 2 Unphased

This contains two BB1 flanged bowls; one grey BB1 imitation fabric jar; and one BB1 bodysherd with obtuse lattice decoration. Later-3rd century.

J XIII 7 Phase 6

This contains one oxidised *tazza*; one Nene Valley bodysherd with white painted decoration; one BB1 imitation flanged bowl; two BB1 imitation jars; and one grey BB1 copy jar. Perhaps mid/late-3rd century.

J XIII 8 Phase 5-6

This contains one BB1 flanged bowl. Later-3rd to mid-4th century.

J XIII 9 Phase 5-6

This contains two BB1 flanged bowls; one greyware wide mouthed bowl; and three BB1 jars, one with obtuse lattice decoration. Later-3rd century.

This contains three BB1 jars, two with obtuse lattice decoration. Mid- to late-3rd century.

J XIII 13 Phase 4-5

This contains one 'Rhenish ware' bodysherd. Later-2nd to mid-3rd century.

J XIII 14 Phase 4

This contains one BB1 flange rimmed dish with acute lattice decoration. Hadrianic to mid-Antonine.

J XIII 15 Phase 5-6

This contains one BB1 jar. Early- to mid-3rd century.

J XIII 16 Phase 5

This contains one greyware jar and one whiteware flagon handle. Not closely datable, possibly 1st or 2nd century.

J XIII 17 Phase 5

This contains one BB1 jar and one grey BB1 copy jar. Later-2nd to early-3rd century.

J XIII 21 Phase 3

This contains one rustic ware bodysherd; one oxidised bowl; one oxidised roughcast beaker; and one BB1 flanged bowl. Early- to mid-3rd century.

J XIII 23 Phase 4-5

This contains one oxidised reeded-rimmed bowl. Flavian-Trajanic.

J XIII 25 Phase 4–5

This contains one oxidised reeded-rimmed bowl; another oxidised bowl; and one BB1 dish with sloping parallel line burnish decoration. Probably Hadrianic.

J XIII 26 Phase 4

This contains one Nene Valley scale beaker bodysherd and one BB1 jar. Probably early-3rd century.

J XIII Pit 1 Phase 6

This contains one BB1 dish with intersecting arc decoration; one BB1 flanged bowl; two South Yorks wide-mouthed jar/bowls; two BB1 jars, one with obtuse lattice decoration; and one R5 everted rimmed jar. Mid/late-3rd century.

J XIII T.S.2 Phase 4

This contains one blistered greyware jar, probably a 'second'. 1st or 2nd century.

J XIII PH II Phase 7

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

J XIV 2 Unphased

This contains two greyware Gillam type 225 dishes; one Nene Valley indented scale beaker; one oxidised constricted-necked jar with rising rim; three grey BB1 copy jars; and one everted rimmed jar in fabric R5. Early- to mid-3rd century, perhaps more towards mid-3rd.

J XIV 3 Unphased

This contains one Nene Valley? bodysherd, perhaps mid/late-Antonine or later.

J XIV 5 Unphased

This contains one oxidised flagon; one BB1 flange rim dish with acute lattice decoration; and one Iron Age type handmade jar. Perhaps Hadrianic to early-Antonine.

J XIV 8 Unphased

This contains three BB1 flange rimmed dishes with acute lattice decoration. Hadrianic to mid-Antonine.

J XIV 9 Unphased

This contains one oxidised bowl; two ring-necked flagons and one grey reeded-rimmed bowl. Flavian-Trajanic.

'J yellow clay – bulldozer' Unphased

This contains one white slipped North-Eastern mortarium. Hadrianic to mid-Antonine.

'Bulldozer black peat areas J and K' Unphased

This contains three oxidised and one whiteware ring-necked flagons; one North-Eastern mortarium; one rustic ware jar; two flange rimmed dishes with acute lattice decoration; and one grey jar. 2nd century, probably Hadrianic to early-Antonine.

Area K

KI2 Unphased

This contains one pedestalled Crambeck parchment ware painted beaker base and one Huntcliff type jar, etc. Later-4th century.

KI3 Phase 5

This contains one greyware flanged bowl and one Nene Valley bodysherd. Mid-3rd to 4th century.

KI7 Phase 5

This contains one greyware jar base; one Nene Valley bodysherd and one BB1 dish. Mid/late-Antonine or later.

K II 2 Phase 6

This contains two Crambeck greyware flanged bowls; two BB1 flanged bowls, and several R5 jars, etc. Earlier-4th century.

KV2 Phase 6-7

This contains Huntcliff type jars, etc. Later-4th century.

KV under tile floor 3 Unphased

This contains one Huntcliff type jar. Later-4th century.

K VII 2 Phase 6–7

This contains one Huntcliff type jar rim, etc. Later-4th century.

K VII 4 Phase 5

This contains one Crambeck greyware flanged bowl, 4th century; two R5 lid-seated jars; and one Nene Valley beaker base. Earlier-4th century.

This contains one Crambeck greyware flanged bowl. 4th century.

K VIII 2 Phase 6-7

This contains one Crambeck greyware jar; one calcite gritted ware dish; and one R5 jar, earlier-4th century.

K VIII 3 Phase 6

This contains one Nene Valley 'Castor box'. Mid/late-Antonine to 4th century.

K VIII 6a Phase 5

This contains one Nene Valley cornice rimmed beaker. Later-2nd to mid-3rd century.

K VIII 10 Phase 5

This contains one BB1 jar. Later-3rd to early-4th century.

K IX 2 Phase 6-7

This contains one painted Crambeck parchment ware dish (see Chapter 8.4, SS96) and one storage jar in calcite gritted ware of Huntcliff type form, etc. Later-4th century.

K IX 3 Phase 6

This contains one Crambeck greyware flanged bowl and one BB1 imitation flanged bowl. Earlier-4th century.

KIX4 Phase 5 or 6

This contains one jar in fabric R5; three BB1 jars; and one Crambeck greyware grooved rim dish. Earlier-4th century.

K IX 10 Phase 4?

This contains one Nene Valley bag beaker and one small jar/beaker and one greyware flange rimmed dish. Late-2nd to early-3rd century, perhaps late-Antonine.

K IX 16 Phase 5

This contains one grey BB1 jar copy; and one buff mica-dusted reeded-rimmed bowl. Later-2nd to mid-3rd century.

K IX 20 Phase (1b-) 2

This contains one whiteware flagon rim and one Nene Valley (?) roughcast beaker bodysherd. Perhaps late-2nd century.

KX22 Unphased

This contains one BB2 Gillam type 225 dish, with basal chamfer and acute lattice decoration. Late-Antonine to early-3rd century (?).

K XII 2 Phase 6-7

This contains one painted Crambeck parchment ware bowl. Late-4th century.

K XII 4 Phase 5

This contains one BB1 jar. Earlier-4th century.

K XII 5 Phase 5

This contains one BB1 bodysherd. Hadrianic or later.

K XIII 2 Phase 6

This contains one Crambeck greyware flanged bowl; one S-bend calcite gritted ware jar; and one most unusual handled whiteware bodysherd with painted meandering cordons (see Chapter 8.4, SS11). Earlier-4th century.

K XIII 3 Phase 6

This contains one Crambeck greyware flanged bowl and one calcite gritted ware S-bend jar. Earlier-4th century.

K XIV 2 Phase 6-7

This contains one Crambeck greyware flanged bowl. 4th century.

KXIV 3 Phase 6-7

This contains one local redware jar with white painted decoration (see Chapter 8.4, SS60); one proto-Huntcliff type jar; one R5 lid-seated jar; one Nene Valley bowl; and one BB1 imitation flanged bowl, etc. Mid- to later-4th century, perhaps mid-4th century, perhaps c AD 340–60.

K XIV 5 Phase 5

This contains two BB1 flanged bowls; three R5 lid-seated jars; and one jar in Nene Valley? parchment ware with orange painted bands. Probably later-3rd century.

K XIV 9 Phase 5

See Chapter 8.2.

K XIV 13 Phase 5

This contains one greyware jar and two oxidised flagon handles. 1st or 2nd century, perhaps 1st to early-2nd century.

K XIV 17 Phase (1b-) 2

This contains one Nene Valley bodysherd; one ring-necked oxidised flagon; one grey jar with rustic or barbotine decoration; and one grey dish with incurving wall. Flavian-Trajanic with intrusive late-2nd century (or late-2nd century or later with much residual). (Phasing suggests the Nene Valley sherd may be intrusive)

K XVI 2 Phase 5

This contains one Crambeck greyware flanged bowl; one local redware Dr38; R5 lid-seated jars; and one calcite gritted ware S-bend jar. Earlier-4th century.

K XVII 2 Phase 6-7

This contains one Nene Valley bodysherd with white painted decoration; one local redware Dr38 copy; two S-bend calcite gritted ware jars; and one Crambeck greyware flanged bowl. Earlier-4th century.

K XVIII 2 Phase 6

This contains one white painted local redware bowl (see Chapter 8.4, SS54) and one painted Crambeck parchment ware body sherd, etc. Later-4th century.

K XVIII 3 Phase 6

This contains one Crambeck greyware flanged bowl; one BB1 dish; and one Nene Valley funnel beaker. 4th century, perhaps earlier-4th century.

K XVIII 5 Phase 6

This contains one Nene Valley bodysherd. Mid/late-Antonine or later.

K XVIII 6 Phase 6

This contains one jar of BB1 form in BB1 imitation fabric. The form suggests a late-3rd century date, although it might be a little later.

K XIX 2 Phase 6-7

This contains one S-bend calcite gritted ware jar; one Crambeck imitation greyware flanged bowl; one Crambeck greyware dish, 4th century, perhaps earlier-4th century; and one Crambeck copy greyware jar (see Chapter 8.4, SS67).

K XIX 3 Phase 6b

This contains two R5 lid-seated jars; two Nene Valley white painted bodysherds; and one BB1 jar. Later-3rd century.

K XIX 4 Phase 6

This contains one local redware Dr38 copy; one Crambeck greyware flanged bowl; and one S-bend calcite gritted ware jar. Earlier-4th century.

K XIX 5 Phase 5

This contains one complete grey BB1 copy jar with acute lattice decoration, another grey BB1 copy jar; three grey flange rimmed dishes; one Nene Valley cornice rimmed beaker with barbotine decoration; and one 'Rhenish ware' beaker. Late-Antonine to early-3rd century.

K XIX 11 Phase 4-5

This contains one grey BB1 copy jar with acute lattice decoration; one Nene Valley beaker base and one scale beaker bodysherd; one Gillam type 225 dish with basal chamfer; and one Mancetter-Hartshill mortarium. Early- to mid-3rd century.

K XIX 13 Phase 6

This contains one buffware mica-dusted hemispherical bowl with rising flange; one greyware bowl rim and jar. Probably 2nd century.

K XIX 14 Phase 4

This contains one ring-necked oxidised flagon; two oxidised bowls; and one grey jar. Probably early-2nd century, perhaps Trajanic.

K XIX 22 Phase 3

This contains one oxidised roughcast beaker and flagon handle. Perhaps 1st to mid-2nd century.

K XIX 25 Phase 1b-2

This contains one whiteware ring-necked flagon. Late-1st to early-2nd century.

K XIX 31 Phase 1b-2

This contains two oxidised bodysherds. Possibly 1st or 2nd century.

KXX2 Phase 6

This contains one Crambeck greyware flanged bowl and one calcite gritted ware S-bend jar, etc. Earlier-4th century.

KXX 3 Phase 6

This contains one imitation BB1 flanged bowl; one Crambeck greyware flanged bowl, dish and jar; one local redware bowl (see Chapter 8.4, SS59); and one hooked rim calcite gritted ware jar. Early- to mid-4th century, probably c AD 340–60.

K XXII 2 Phase 6

This contains one painted Crambeck parchment ware flanged bowl.

K XXII 4 Phase 6

This contains one BB1 and one BB1 imitation flanged bowl and one Crambeck greyware bodysherd. 4th century, probably earlier-4th century.

K XXII-XXVII extensions Unphased

This contains one Huntcliff type jars, etc. Later-4th century.

K XXIII 3 Phase 6

This contains one Crambeck greyware flanged bowl and one proto-Huntcliff type jar. 4th century, probably c AD 340–60.

K XXIII 4 Phase 6

This contains one BB1 flanged bowl; one Crambeck greyware flagon and one S-bend calcite gritted ware jar. Earlier-4th century.

K XXIII 7 Phase 6

This contains two BB1 jars and one flanged bowl and one R8A lid-seated bell-mouthed jar. Later-3rd century.

K XXIII 10 Phase 6

This contains one bell-mouthed flagon; the fabric is similar to one probably originating at Binchester. Perhaps early- to mid-2nd century.

K XXIII 18 Phase 3-4

This contains one Nene Valley scale beaker bodysherd and one greyware lid. Perhaps later-2nd to mid-3rd century.

K XXIII 18B Phase 3-4

This contains one Dressel 20 S Spanish amphora. 1st to 3rd century.

K XXIII 21 Phase 3-4

This contains one sherd of Central Gaulish 'Rhenish ware' and one whiteware bodysherd with red barbotine dots arranged in blocks of four and burnished under the barbotine, probably from a ringand-dot beaker. The only known kiln site for this type with contrasting coloured slip is Cherry Hinton, Cambs (c AD 55–75 Evans 1990b). Later-2nd to mid-3rd century.

KXXV2 Phase 6

This contains one Nene Valley bodysherd with barbotine *phallus* (see Chapter 8.4, SS113); one BB1 dish; one Gillam type 225 dish; and one calcite gritted ware bodysherd. Late-3rd to 4th century, most probably 4th century.

K XXVI 1 U/S

This contains one painted Crambeck parchment ware dish, etc. Late-4th century.

Area L

L II 4 Phase 6

This contains one oxidised bodysherd. Possibly 1st or 2nd century.

L II 25 Unphased

This contains one Nene Valley bodysherd with white painted decoration. Mid-3rd to 4th century.

L III 2 Phase 6

This contains two Huntcliff type jars; one BB1 imitation wastered flanged bowl (see Chapter 8.4, SS39); one Nene Valley pentice moulded beaker; and one bead rimmed beaker (see Chapter 8.4, SS139 and SS140).

L III 3 Phase 6

This contains Huntcliff type jars. Later-4th century.

L III 4 Phase 6

This contains one greyware carinated jar; one grooved rim dish and one bodysherd with acute lattice decoration. Hadrianic-Antonine.

L III 7 Phase Pre 6

This contains one BB1 dish and jar. Early mid-3rd century.

L V 2 Phase (2-) 3/4

This contains one BB2 Gillam 225 dish of atypical fabric (see Chapter 8.4, SS33). Early mid-3rd century.

L XVI 2 Unphased

This contains one BB1 jar and two Gillam 225 BB2 dishes. Early mid-3rd century.

L XVI 5 Phase 2-3/4

See Chapter 8.3.

L XVIII 2 Phase 6

This contains two BB1 jars; one dish; and two Nene Valley beaker bases. Later-3rd century.

L XVIII 3 Phase (2-3/) 4

This contains one S-bend calcite gritted ware jar; one wastered grey BB1 copy jar (see Chapter 8.4, SS34); one BB1 flanged bowl and one Nene Valley bag beaker with barbotine scroll decoration, early mid-3rd century, one calcite gritted ware piece, intrusive or earlier-4th century. (Phasing suggests the calcite gritted ware may be intrusive)

L XVIII 5 Phase (2-) 3/4

This contains one BB2 Gillam 225; one grey constricted-necked jar with hooked rim; grey BB1 copy jars; one chamfered flange rim dish; and one roughcast beaker (Colchester or imported). Early mid-3rd century, possibly Severan.

L XIX 3 Phase 3-5

This contains one Crambeck greyware type 5 bowl and one Nene Valley bodysherd with white painted decoration. 4th century.

L XIX 23 Phase 1

See Chapter 8.3.

L XX 4 Phase 6

This contains one BB1 dish with intersecting arc decoration; one Nene Valley barbotine decorated bodysherd and one small jar/beaker; and one grey BB1 flange rimmed bowl. Late-Antonine.

L XXI 2 Phase 6a

This contains one BB1 jar; and one dish with intersecting arc decoration; one BB2 Gillam 225 dish; one Nene Valley bag beaker (see Chapter 8.4, SS131); and one grey constricted-necked jar with rising rim. Early mid-3rd century, perhaps Severan.

L XXII 3 Phase 6

This contains two grey groove rim dishes; one BB1 jar, and one Nene Valley bag beaker, later-2nd to mid-3rd century, probably late-Antonine.

L XXIII 2 Phase 6

This contains one Huntcliff type jar. Later-4th century.

L XXIII 3 Phase (2-) 3/4

This contains one BB1 jar; one Nene Valley (?) bodysherd; and one painted Dr37 type oxidised bowl. Hadrianic-Antonine, perhaps the latter.

L XXIII 4 Phase 6

This contains one grey flange rim dish. Hadrianic-Antonine.

L XXIII 5 Phase 5-6

This contains one Huntcliff type jar. Later-4th century.

L XXV 2 Phase 6

This contains one grooved rim grey dish with chamfer and acute lattice decoration and one flange rim grey dish. Hadrianic-Antonine.

L XXV 3 Phase 3

This contains one Nene Valley bag beaker; one Nene Valley small jar/beaker; grey flange rim dishes; grey BB1 copy jars, later-2nd to early-3rd century, perhaps late-Antonine; and one parchment ware segmental bowl (see Chapter 8.4, SS24).

L XXXI Unphased

This contains one Central Gaulish samian bodysherd. Hadrianic-Antonine.

L and K 'bulldozer black peat'

This contains three Crambeck greyware bodysherds; one local region mortarium; one Rhenish? mortar-

ium; one grey rustic jar; one grey jar one oxidised flagon; one haematite tempered whiteware flagon with pinched mouth; one shell-tempered jar of Midlands origin (see Chapter 8.4, SS3); and one buff ware Dr 37 copy. The 4th-century sherds would seem to be intrusive and the group dates to the early mid-2nd century and could well be pre-Hadrianic.

Area M

M II 5 Phase 2-3/4

This contains one BB1 bodysherd with acute lattice decoration. Hadrianic to mid-3rd century.

M II 6 Phase 2-3/4

This contains one oxidised lid and one grey internally grooved jar. 1st or 2nd century, perhaps pre-Hadrianic.

M II 7 Phase 2-3/4

This contains one rustic ware jar and several bodysherds; three oxidised lids; one reeded-rimmed bowl; one buff ware small jar/beaker of a similar fabric to that probably produced at Binchester; and one haematite tempered whiteware beaded bowl. Flavian-Trajanic, perhaps Flavian.

M III 2 Phase 4–7

This contains one Crambeck copy greyware flanged bowl. 4th century.

M IV 4 Phase (2-) 3/4

A complete greyware jar. Not closely datable, probably 1st or 2nd century.

MV2 Phase 4–7

This contains one Nene Valley bodysherd; one grey lid; one grey jar, slightly wastered; and one black sandy constricted-necked jar with beaded rim and internal groove. Possibly later-2nd century.

M V 3 Phase (2–) 3/4

This contains one oxidised reeded-rimmed bowl; one BB1 jar with wavy line on the rim; and one Nene Valley lid (see Chapter 8.4, SS108). Probably mid/late-Antonine.

M V 5 Phase 2-3/4

This contains two rustic ware bodysherds; one grey lid; two oxidised reeded-rimmed bowls and one grey example; and one oxidised bowl with incurving rim. Flavian-Trajanic.

M V 7 Phase 2-3/4

This contains oxidised bodysherds, not closely datable. Probably 1st to 3rd century.

M V 10 Phase 2-3/4

This contains one BB1 bodysherd with acute lattice decoration. Hadrianic/early-3rd century.

M VII 6 Phase 4-5

This contains one grey everted, slightly lid-seated jar, perhaps South Yorks; one BB2 Gillam 225 dish; two grey BB1 copy jars; one BB1 jar, and one grey grooved rim dish (possibly intrusive Crambeck). Probably early/mid-3rd century.

M VIII 2 Phase 4-7

This contains one R5 lid-seated jar; one Crambeck greyware wide-mouthed bowl, and much early-3rd century greyware. 4th century.

M VIII 3 Phase (2-) 3/4

This contains two grey flange rim bowls; one BB1 jar; and one grey BB1 copy jar. Later-2nd to early-3rd century.

M IX 3 Phase 4–7

This contains one BB2 chamfered dish with external wavy line; one Nene Valley 'Castor box'; and one grey constricted-necked jar with rising rim. Probably mid/late-Antonine.

M IX 6 Phase (2-) 3/4

This contains one grey BB1 copy jar and a collection of 1st- to 2nd-century material. 3rd century, perhaps earlier-3rd century.

M IX 7 Phase 6

This contains grey and oxidised bodysherds and BB1 sherds with acute lattice decoration. Probably Hadrianic-Antonine.

MX3 Phase 4-7

This contains one BB1 jar. Hadrianic-Antonine.

M X 5 Phase 2-3/4

This contains various oxidised bodysherds. Not closely datable, perhaps 1st or 2nd century.

M XI 2 Phase 4-7

This contains greyware flange rim dishes and bowls; one grey BB1 copy jar; and one R5 everted rim jar. Early mid-3rd century.

M XIII 3 Phase 4–7

This contains one BB1 dish with intersecting arc decoration; two BB2 Gillam 225s; one grey grooved rim dish and one flange rim bowl; one Nene Valley 'Castor box'; one scale and one bag beaker (see Chapter 8.4, SS134 and SS132); one unusual handled and all-over scaled beaker (see Chapter 8.4, SS112) and one small jar/beaker (see Chapter 8.4, SS133); one 'Rhenish' beaker; and one Nene Valley folded beaker (see Chapter 8.4, SS144), etc. Early mid-3rd century, perhaps Severan.

Area N

NI2 Phase 6

This contains one Huntcliff type jar. Later-4th century.

N I 4 Phase 3d

This contains one white wall-sided mortarium, perhaps Soller; one Nene Valley beaker base; one BB1 flange rim dish with intersecting arc decoration; three grey BB1 copy jars; and one BB1 jar. Early mid-3rd century, possibly Severan.

N I 5 Phase (3-) 4

This contains two Nene Valley cornice rim beakers one with barbotine scroll decoration; five grey BB1 copy jars; and one grey colour-coated dish with beaded rim and basal chamfer (see Chapter 8.4, SS17). Early- to mid-3rd century.

N I 7 Phase 4

This contains one BB2 Gillam type 222 dish; six grey flange rim dishes; one Nene Valley scale beaker; and six grey BB1 copy jars. Early mid-3rd century.

N I 10 Phase 4-5

This contains common grey BB1 copy jars; one Nene Valley cornice rimmed beaker; and two flanged rim dishes. Early mid-3rd century, perhaps Severan.

N I 11 Phase 3d

This contains one BB2 Gillam type 225 dish; one grey bell-mouthed lid-seated jar; one wide-mouthed jar/bowl, possibly a Holme product; six grey BB1 copy jars, one flange rim grey bowl; two Nene Valley beaker bases, early- to mid-3rd century, probably mid-3rd; and one Nene Valley figure decorated beaker (see Chapter 8.4, SS106).

N I 15 Phase 6

This contains one oxidised *tazza*; one Nene Valley bag beaker; one BB1 dish; and one grey BB1 copy jar. Perhaps late-2nd century.

N I 17 Phase 1–2

This contains one ring-necked flagon and one grey BB1 copy jar. Hadrianic-Antonine, possibly Hadrianic to early-Antonine.

N I 21 Phase 3d

This contains one Nene Valley bodysherd; one BB1 jar with obtuse lattice decoration; one bell-mouthed lid-seated greyware jar; five BB1 copy greyware jars; and one oxidised jar similar in form to later-2nd- to early-3rd-century Eboracum ware (see Chapter 8.4, SS22). Early- to mid-3rd century.

N I 27 Phase 1b

This contains one red colour-coated rouletted bodysherd. Perhaps 1st or 2nd century.

N II 2 Phase 6

This contains one Mancetter-Hartshill grooved wall-sided mortarium; one Nene Valley bodysherd; and two grey BB1 copy jars. Probably early- to mid-3rd century.

N II 3 Phase (3–) 4

This contains one Crambeck greyware flanged bowl, 4th century (and a good collection of residual late-2nd- to mid-3rd-century material). (Phasing suggests the Crambeck piece may well be intrusive.)

N III 3 Phase 6

This contains one BB1 flanged bowl; one BB2 Gillam type 225 dish; one oxidised constricted-necked jar; three BB1 copy grey jars; one BB1 jar; one BB1 flange rimmed dish; and two BB1 dishes with intersecting arc decoration. Early mid-3rd century, perhaps Severan.

N III 6 Phase 6

This contains grey bell-mouthed lid-seated jars; three Gillam type 225 dishes; a few flange rim dishes; grey BB1 copy jars; one Nene Valley cornice-rimmed beaker and another with barbotine figured decoration. 3rd century, perhaps mid-3rd century.

N III 8 Phase (3-) 4

This contains two BB2 Gillam 225 dishes. Early mid-3rd century.

N III 14 Phase 1–2

This contains one greyware jar. Not closely datable, 1st to 3rd century.

NV3 Phase 6

This contains one Nene Valley beaker base and scale and barbotine scroll decorated bodysherds; one BB1 dish with intersecting arc decoration; two cavetto rimmed BB1 copy jars; and one grey beaker/small jar with obtuse lattice decoration (see Chapter 8.4, SS36). Late-Antonine/mid-3rd century, probably Severan.

N V 7 Phase (3-) 4

This contains one Nene Valley barbotine decorated beaker base and one scale beaker bodysherd; one BB2

Gillam 225 dish; three grey flange rim bowls; and two BB1 copy jars. Early mid-3rd century, perhaps Severan.

N IX 3 Phase 6

This contains three grey BB1 copy jars; one with obtuse lattice decoration; one grey BB1 copy beaker; one Nene Valley cornice rim bag-shaped beaker and one bag-beaker; one grey flange rim dish and one BB1 flanged bowl. Early mid-3rd-century.

NX3 Phase 5

This contains one BB1 jar and one Crambeck greyware flanged bowl. 4th century.

NX4 Phase 4–5

This contains one oxidised lamp sherd (see Chapter 20.2, No 10); one grey constricted-necked jar with rising rim; and one Nene Valley bodysherd with barbotine scroll decoration. Mid/late-Antonine to early-3rd century, probably mid/late-Antonine.

N X 10 Phase 3b

This contains one BB2 chamfered bowl base and one Dressel 20 amphora. Later-2nd to early-3rd century.

N XI 3 Phase 5-6

This contains one BB1 jar; one Nene Valley pedestalled beaker base; one oxidised bowl; and one grey bell-mouthed lid-seated jar, 3rd century, probably early mid-3rd century.

N XI 13 Phase 2–3

This contains one oxidised jar base and one bodysherd. Not closely datable, perhaps 1st or 2nd century.

N XIII 2 Phase 4+

See Chapter 8.3.

N XIII 4 Phase (2–) 3/4

This contains one BB1 jar. Hadrianic-Antonine.

N XIII 6 Phase (2–) 3/4

This contains one BB1 jar with acute lattice decoration; one BB1 constricted-necked jar; one grey and one oxidised reeded-rimmed bowl; and one oxidised ring-necked flagon. Probably Hadrianic/mid-Antonine.

N XIII 10 Phase 2-3/4

This contains oxidised, grey and whiteware bodysherds; and one greyware jar rim. Not closely datable, 1st or 2nd century.

N XV 2 Phase 4–6

This contains one Central Gaulish 'Rhenish' bodysherd with barbotine dog (see Chapter 8.4, SS12); one BB1 flange rim bowl with intersecting arc decoration; three grey BB1 copy jars; and one Nene Valley bead rimmed bowl (see Chapter 8.4, SS111). Most of the group suits a Severan date, though the latter piece might fit better later in the century or in the 4th.

$J\,Maddox$

Fabric descriptions

1 E Yorks Greyware

Wheelmade fabrics with a light grey to white core and grey surfaces. Very hard with a slightly rough feel and smooth fracture. Inclusions: moderate-abundant sub-rounded quartz visible at $\times 10$ and sparse-moderate rounded red ironstone < 1mm. Sources: Crambeck, Norton and Throlam.

2 Other fine greyware

Wheelmade fabrics with a mid grey core and grey margins. Hard with a smooth to rough feel and a smooth to hackly fracture. Inclusions: sparse to abundant sub-rounded quartz <1mm and sparse, sub-rounded red ironstone visible at $\times 10$.

3 Other coarse greyware

A wheelmade fabric with a dark grey to black core and mid to dark grey surfaces. Very hard with a rough feel and a hackly fracture. Inclusions; abundant quartz <1mm and some quartz c 2–3mm and very sparse rounded red ironstone visible at ×10.

4 Black Burnished Ware Category 1

See Williams (1977). Source: Dorset.

5 Black Burnished Ware Category 2

See Williams (1977). Source: Thames estuary.

6 Calcite Gritted ware

Handmade fabrics with a grey core and dark grey to black surfaces. Hard to very hard with a rough feel and irregular fracture. Inclusions: abundant calcite <3mm and a few fossil shell inclusions <2mm, also moderate sub-rounded quartz inclusions visible at $\times 10$.

12 Coarse hard oxidised fabric

A wheelmade fabric with an orange to orangy-brown core and pinky orange to orangy brown surfaces. Very hard, with smooth surfaces and an irregular fracture. Inclusions: moderate to abundant sub-rounded quartz <1.5mm and sparse to moderate sub-rounded to sub-angular red ironstone <1mm. Flagons in this fabric are cream slipped.

13 Fine hard oxidised fabric

A wheelmade fabric with an orange to orangy-brown core and orange to light brown surfaces. Very hard with a smooth feel and a smooth fracture. Inclusions: moderate sub-rounded quartz visible at $\times 10$; sparse, sub-rounded to sub-angular red ironstone visible at $\times 10$; and sparse, sub-angular calcareous inclusions visible at $\times 10$.

14 Soft oxidised fabric

A wheelmade fabric with a buff to pink to orange core and surfaces. Soft, with a smooth feel and a smooth fracture. Inclusions: sparse, sub-rounded quartz, very fine, visible at $\times 10$; and sparse, very fine, red ironstone. Flagons in this fabric are cream slipped.

16 Fine hard white fabric

A wheelmade fabric with a white core and white to cream surfaces. Hard with a smooth feel and a smooth fracture. Inclusions: sparse to moderate fine, rounded, red ironstone.

17 Hard coarse white fabric

A wheelmade fabric with an off-white core and surfaces. Very hard, with a rough feel and an irregular fracture. Inclusions: moderate, sub-rounded quartz <1mm and sparse red ironstone visible at $\times 10$.

18 Soft white fabric

A wheelmade fabric with a white to cream core and surfaces. Soft with a smooth feel and a smooth fracture. Inclusions: moderate, fine, sub-rounded quartz <0.2mm and moderate, sub-angular, red ironstone <0.1mm.

19 Crambeck parchment ware

A wheelmade fabric with a white to off-white core and surfaces. Hard, with a smooth feel and irregular fracture. Inclusions: moderate, sub-rounded red ironstone <1mm. Many sherds have red/brown painted decoration. Source: Crambeck, E Yorks.

20 Nene Valley colour-coated ware

See Howe *et al* (1980).

21 Colour-coated oxidised fabric

A wheelmade fabric with an orange core and surfaces under a black colour coat. Hard, with a smooth feel and a smooth fracture. Inclusions: sparse, sub-rounded quartz visible at $\times 10$, moderate very fine mica and sparse rounded calcareous inclusions < 1mm. All sherds are externally black colour-coated.

22 Moselkeramik

A wheelmade orange fabric with a black colour-coat. Hard with a smooth feel and a smooth fracture. Source: the Rhineland.

Catalogue

The rim % (EVE) is given where it is possible to do so. Illustrated vessels are marked with an asterisk.

Flagons (Fig 143)

- 1 Fabric 12. Ring-neck flagon with cream slip. 100% of rim. Diam 75mm. (434, P III 39).
- 2* Fabric 12. Flagon with roll-rim. Unsmoothed surfaces. Handle broken off. Cf Gillam type 7 (AD 130–220). 40% of rim. Diam 90 mm. (P III 17).
- 3* Flagon with everted, beaded rim.
- 4* Fabric 21. Flagon characteristic of 'Hofheim' type. Traces of orange brown slip on exterior. 35% of rim. Diam 100mm. (434, P III 14).
- 5* Fabric 12. Flagon with thickened and out-turned rim. Burnished. 14% of rim. Diam 160mm. (434, P I 15a).
- 6 Fabric 12. Burnished inside rim. 30% of rim. Diam 60mm. (434, P I 7).
- Fabric 20. Flagon with dark brown colour coat.
 25% of rim. Diam 60mm. Cf Howe *et al* 1980, fig
 6, no 66, mid/late-4th century. (434, P V 4).
- 8* Fabric 1. Flagon or narrow-mouthed jar. 12.5% of rim. Diam 120mm. (434, P V 4).

Narrow-necked jars (Fig 143)

- 9* Fabric 1. Cf Corder and Sheppard 1930, no 97. 100% of rim. Diam 100mm. (434, P III 17).
- 10* Fabric 2. 19% of rim. Diam 130mm. (434, PI7).

- 11* Fabric 1. Rim undercut. Internal groove, perhaps for a lid. 37% of rim. Diam 130mm. (434, P I 7).
- 12* Fabric 1. Crambeck type with countersunk handles. 31% of rim. Diam 100mm. (434, P V 4).
- 13* Fabric 1. Crambeck type. Burnished arc decoration, finely executed. Rim sherd shows position of one handle only. 55% of rim. Diam 120mm. (434, P I 7 and 434, P I 11) (cross join)).
- 14* Fabric 1. Cf Corder and Sheppard 1930, fig 14, no 78. 14% of rim. Diam 160mm. (434, P II 4).

Beakers (Fig 143)

- 15 Fabric 20. Bodysherd of large bag-shaped beaker with bands of rouletted decoration on outer surface. Dark brown colour coat. Cf Gillam type 42 (AD 200–360). (434, P III 14).
- 16* Fabric 22. Moselkeramik. Probably from an indented beaker as Gillam type 46 (AD 220–60).
 23% of rim. Diam 60mm. (434, P I 25).
- 17* Fabric 23. North Gaul fabric 2. Bag-shaped beaker with grooved cornice rim. Cf Anderson 1980, fig 12, no 2 (c AD 80–130/5) (434, P III 17).
- 18* Fabric 20. Brown colour coat. Cf Howe *et al* 1980, fig 3, no 34, however the example here has rouletting above grooves. 7% of rim. Diam 80mm. (434, P I 7).
- 19* Fabric 20. Short everted rim. Dark orange colour coat. For form cf Howe *et al* 1980, fig 5, nos 54–6. 20% of rim. Diam 80mm. (434, P I 11).
- 20* Fabric 13. For form cf Gillam type 86 (AD 180-230) (434, P III 14).
- 21* Fabric 20. Orange colour coat, painted white decoration. Clumsily made. No rim recovered. (434, P V 6; and 434, P V 12) (cross joins).
- 22* Fabric 14. Pink coloured soft fabric. Rouletted decoration under groove. 25% of rim. Diam 60mm. (434, P III 32).
- 23* Fabric 1. For form cf Corder and Kirk 1932, fig 26, nos 77–9. (434, P I 9).
- 24 Fabric 20. Bodysherd of folded 'scale' beaker. Orange brown colour coat. Cf Howe *et al* 1980, fig 4, no 38, mid-3rd century. (434, P III 7; and P III 21) (cross joins)
- 25* Fabric 2. 20% of rim. Diam 60mm. (434, P III 18).

- 26* Fabric 2. Cf Wacher 1969, fig 64, no 288. 20% of rim. Diam 90mm. (434, P III 2).
- Small jars (Fig 143)
- 27* Fabric 2. Bodysherd of jar with barbotine decoration. Cf Gillam type 70–1 (AD 120–200). (434, P IV 8).
- 28* Fabric 2. Globular jar with linear rustication. Cf Buckland *et al* 1980, 150, fig 3, no 19 (mid-2nd century). 47% of rim. Diam 140mm. (434, P III 17).
- 29* Fabric 2. Burnished above grooves and on rim. 15% of rim. Diam 110mm. (434, P III 17; 434, P III 21; and 434, P V 14) (cross joins).
- Jars (Fig 143)
- 30* Fabric 2. Short-rimmed jar with globular body. Burnished on rim and shoulder. Burnished decoration. 25% of rim. Diam 120mm. (434, P III 39).
- 31* Fabric 2. Short-rimmed jar. 14% of rim. Diam 120mm. (434, P III 45).
- 32* Fabric 2. Grooved on underside of rim. 14% of rim. Diam 140mm. (434, P V 6).
- 33* Fabric 2. Globular jar. 20% of rim. Diam 130mm. (434, P IV 8).
- 34* Fabric 2. 40% of rim. Diam 110mm. (434, P III 14).
- 35* Fabric 2. Cf Wacher 1969, fig 58, no 101 (c AD 125).
 12.5% of rim. Diam 130mm. (434, P III 14).

Jars with everted rims

Fabrics 4 and 5 (Fig 143)

- 36* Fabric 4. Black Burnished Category 1 jar with interlocking burnished lines on neck. For form cf Gillam type 119 (AD 120–60). 9%? of rim. Diam 160mm. (434, P III 32).
- 37* Fabric 4. Black Burnished Category 1 jar with burnished wavy line on neck. Cf Gillam type 120 (AD 120–60). 25% of rim. Diam 130mm. (434, P III 30).
- 38* Fabric 4. Black Burnished Category 1 jar with burnished wavy line on neck. Cf Gillam type 125 (AD 120–80). 23% of rim. Diam 150mm. (434, P III 32).

- 39 Fabric 5. Bodysherd of jar in Black Burnished Category 2 fabric. Cf Gillam type 144 (AD 160–280) and Bidwell 1985, 188, no 48. (434, P III 21).
- 40 Fabric 4. Bodysherd of jar in Black Burnished Category 1 fabric. Obtuse lattice decoration. For form cf Gillam type 147/8, Bidwell (1985, 174–5) dates the jar to the mid-3rd century. (434, P III 21).

Other fabrics (Fig 144)

- 41* Fabric 2. (cf Congreve 1938, fig 11, no 6). 20% of rim. Diam 120mm. (434, P III 17).
- 42* Fabric 2. Jar with globular body. Cf Frere 1972, fig 113, no 466 (AD 105–30). 18% of rim. Diam 140mm. (434, P III 34).
- 43* Fabric 2. Roughly smoothed on rim and external surface. 18.5% of rim. Diam 150mm. (434, P V 6).
- 44* Fabric 2. 37.5% of rim. Diam 140mm. (434, P III 28).
- 45* Fabric 2. Copy of BB1 cf Gillam type 120 (AD 120–60). 18% of rim. Diam 120mm. (434, P III 17).
- 46* Fabric 2. Copy of BB1. 12.5% of rim. Diam 160mm. (434, P VII 1-3).
- 47* Fabric 3. Globular jar. Burnished black on rim and outer surface. Cf Wacher 1969, fig 54, no 25 (AD 70–80). 16% of rim. Diam 140mm. (434, P V 14).
- 48* Fabric 2. Cf illustration no 40 *op cit*. 22% of rim. Diam 160mm. (434, P III 17)

Jars with lid-seating in non-calcite-gritted fabric (Fig 144)

- 49* Fabric 3. Knapton type. 7% of rim. Diam 160mm. (434, P II 4).
- 50* Fabric 3. Cf Swanpool type H 14, Webster and Booth 1947. 19% of rim. Diam 180mm. (434, P I 8).
- 51* Fabric 3. 8% of rim. Diam 170mm. (434, P IV 7).

Jars with no lid-seating in calcite-gritted fabric 6 (Fig 144)

52* Jar with downturned pointed rim. 10% of rim. Diam 160mm. (434, P I 7).

- 53* Jar with flat rim and straight neck; cf Gillam type 160 (AD 300-50/5). 21% of rim. Diam 160mm. (434, P I 14).
- 54* Rim with angular profile. Cf Corder and Kirk 1932, fig 27, no 118. 10% of rim. Diam 260mm. (434, P IV 4).
- 55* 12% of rim. Diam 230mm. (434, P I 7).

Jars with lid-seating in calcite-gritted fabric 6 (Fig 144)

- 56* 25% of rim. Diam 180mm. (434, P I 8).
- 57* Cf Gillam type 163 (AD 350/5–400). 15% of rim. Diam 160mm. (434, P I 12).
- 58* Cf Gillam type 163 (AD 350/5–400). 8% of rim. Diam 240mm. (434, P I 7).
- 59* Cf Gillam type 163 (AD 350/5–400). 17% of rim. Diam 210mm. (434, P I 11).
- 60* 25% of rim. Diam 200mm. (434, P IV 4).
- 61* Rim with decoration on outer and inner surfaces. Smoothed wheel-thrown, cf Wacher 1969, fig 78, no 699, and Rutter and Duke 1958, fig 10, no 1B/1. 7% of rim. Diam 300mm. (434, P I 11)

Miniature jars (Fig 144)

- 62* Fabric 4. Black Burnished Category 1 jar. Decorated with burnished vertical lines. Cf Gillam 1976, fig 2, nos 16/17 (early late-2nd century). 7% of rim. Diam 120mm. (434, P III 24).
- 63* Fabric 6; miniature jar with soot on outer surface. Cf Rutter and Duke 1958, type 4, 'small jar of "Brigantian" type'. 11% of rim. Diam 120mm. (434, P III 30).

Wide-mouthed jars (Fig 144)

64* Fabric 2, burnished on rim and outer surface. 17% of rim. Diam 200mm. (434, P III 24).

Wide-mouthed bowls (Fig 145)

- 65* Fabric 1. Deep bowl with thick slightly downturned rim. Outer surface smoothed in bands. Cf Corder and Sheppard 1930, fig 11, no 32. 13% of rim. Diam 360mm. (434, P III 8a).
- 66* Fabric 2. Bowl with deep girth-groove. Burnished on rim. 8% of rim. Diam 180mm. (434, P III 37).

- 67* Fabric 1; bowl with smoothed surfaces. Cf Corder 1928, no 160/1, plate VI). 9.5% of rim. Diam 200mm. (434, P IV 2).
- 68* Fabric 1; Crambeck type. 8% of rim. Diam 280mm. (434, P IV 4).
- 69* Fabric 1; Crambeck type. 7% of rim. Diam 260mm. (434, P I 7).

Bowls imitating samian forms (Fig 145)

- 70* Fabric 20. Copy of Dr 37. Cf Perrin 1981, fig 27.1, no 7. 5% of rim. Diam 210mm. (434, PI 7).
- 71* Fabric 13. Copy of Dr 37. Burnt. 19.5% of rim. Diam 130mm. (434, P III 30; and 434, P III 32).
- Fabric 20. Copy of Dr 38. Cf Howe *et al* 1980, fig
 7, no 83. Late-3rd and 4th century. 15% of rim.
 Diam 180mm. (434, P III 2).
- 73* Fabric 19. Crambeck parchment ware. Copy of Dr 38 with plain incurving rim. Red paint decoration on flange. Cf Corder and Birley 1937, Crambeck type 5b (AD 350/5–400+). 6% of rim. Diam 200mm. (434, P I 17a).
- 74* Fabric 19. Crambeck parchment ware. External groove on rim. Red paint decoration on and above flange. Crambeck type 5b (AD 350/5-400+). 45% of rim. Diam 160mm. (434, P V 4; and 434, P V 5) (cross-joins).

Campanulate bowls (Fig 145)

75* Fabric 12. 15% of rim. Diam 180mm. (434, P III 3).

Carinated bowls (Fig 145)

76* Fabric 2. Carinated bowl with flat reeded rim. 84% of rim. Diam 190mm. (434, P III 17).

Bowls with flat rims imitating BB1 (Fig 145)

- 77* Fabric 2. Straight-sided bowl. Burnished surfaces. Decorated with a burnished zigzag. Cf Kenyon 1948 fig 46, no 7 (up to AD 180). 15% of rim. Diam 180mm. (434, P III 31).
- 78 Fabric 2. Straight-sided bowl with acute lattice decoration on outer surface. Burnished inside and on rim. Cf Gillam type 219 (AD 120–50). 11% of rim. Diam 220mm. (434, P III 39).

- 79* Fabric 1. Bowl with everted rim. Grooves under rim. Rim also smoothed. Cf Corder and Sheppard 1930, fig 12, no 52. 12.5% of rim. Diam 160mm. (434, P III 11).
- 80* Fabric 1, straight-sided bowl with rounded flattened rim. 15% of rim. Diam 160mm. (434, P I 25).
- 81* Fabric 13. Globular bowl with short out-turned rim. Smoothed surfaces. 7?% of rim. Diam 140mm. (434, P II 2).
- 82* Fabric 20. Orange colour coat. 6% of rim. Diam 200mm. (434, P V 5).
- 83* Fabric 19. Crambeck parchment ware (?). Bowl decorated with red brown paint; style and fabric similar to that of Crambeck but of unusual form. 8% of rim. Diam 170mm. (434, P II 4).

Flanged bowls (Fig 145)

84* Fabric 1. Straight-sided flanged bowl. Cf Wacher 1969, fig 75, no 619 (later-3rd to 4th century). 7.5% of rim. Diam 220mm. (434, P II 2).

Flanged bowls of Crambeck-type Fabric 1 (Fig 145)

- 85* Crambeck type 1a. 12.5% of rim. Diam 180mm. (434, P I 8).
- 86* Crambeck type 1 with hooked flange. 30% of rim. Diam 200mm. (434, P IV 4).
- 87* Crambeck type 1 with groove above upturned flange. 19% of rim. Diam 220mm. (434, P IV 4).
- 88* Crambeck type 1 with downturned flange. 12.5% of rim. Diam 170mm. (434, P I 7).
- 89* Crambeck type 1b with interior burnished wavy line. Later 4th century. 7% of rim. Diam 320mm. (434, P I 7).

Colour-coated flanged bowls

90 Fabric 20. Straight-sided flanged bowl with dark brown colour coat. Cf Howe *et al* 1980, fig 7, no 79. 15% of rim. Diam 190mm. (434, P III 2).

Decorated flanged bowls (Fig 145)

91* Fabric 19. Crambeck parchment ware. Sherd of bowl decorated with red brown painted stripes on flange. Cf Corder 1928, Crambeck plate III, nos 75–6. 12.5% of rim. Diam 170mm. (434, P III 4).

Bowls with bead rims or grooved under rim (Fig 145)

- 92* Fabric 2. 7% of rim. Diam 280mm. (434, P V 7).
- 93* Fabric 1. Norton? 8% of rim. Diam 210mm. (434, P V 6).

Segmental bowls (Fig 146)

- 94* Fabric 20. Orange colour coat. 17% of rim. Diam 290mm. (434, P I 8).
- 95* Fabric 12. Burnished surfaces; cf Gillam type 294 (AD 120–50). 22% of rim. Diam 200mm. (434, P III 34).

Dishes

With flat or reeded rims (Fig 146)

- 96* Fabric 4. Black Burnished Category 1. Cf Kenyon 1948, fig 50, no 3, Hadrianic-Antonine.
 8% of rim. Diam 140mm. (434, P I 25).
- 97* Fabric 4. Black Burnished Category 1. Dish with chevron decoration. Hadrianic-Antonine. 7% of rim. Diam 240mm. (434, P V 14).
- 98* Fabric 4. Black Burnished Category 1. Cf Kenyon 1948, fig 46, no 4 (AD 160-80). Hadrianic-Antonine. 10% of rim. Diam 220mm. (434, P III 30).

With triangular-shaped rims (Fig 146)

- 99* Fabric 5. Black Burnished Category 2. Cf Gillam type 310 (AD 150–210). 6% of rim. Diam 240mm. (434, P III 31).
- 100*Fabric 1. Possibly Norton. 8% of rim. Diam 200mm. (434, P V 5).

With rounded rims (Fig 146)

101* Fabric 2. Copy of BB2 dish. Cf Gillam type 313 (AD 190-240). 25% of rim. Diam 290mm. (434, P I 15A; and 434, P I 17A) (cross-joins).

In calcite-gritted fabric 6 (Fig 146)

102* Straight-sided dish. 6% of rim. Diam 250mm. (434, P II 2).

Flanged dishes (Fig 146)

- 103* Fabric 1. Crambeck type straight-sided dish. 7% of rim. Diam 220mm. (434, P IV 4).
- 104* Fabric 1. Crambeck type, Corder 1928, plate II, no 46. 6% of rim. Diam 220mm. (434, P I 7).

Dishes with grooved or bead rims (Fig 146)

- 105* Fabric 4. Black Burnished Category 1 dish with chevron decoration. 20% of rim. Diam 190mm. (434, P III 30; and 434, P III 37) (cross-joins)
- 106* Fabric 1. 8% of rim. Diam 200mm. (434, P IV 2).
- 107*Fabric 2. Copy of BB1. 10% of rim. Diam 190mm. (434, P I 21).
- 108* Fabric 1. 10% of rim. Diam 160mm. (434, PI7).
- 109* Fabric 1. 4% of rim. Diam 200mm. (434, P II 2).

110* Fabric 1. 5% of rim. Diam 220mm. (434, P IV 8).

111* Fabric 1. 16% of rim. Diam 180mm. (434, P IV 4).

Plain-rimmed dishes

112 Fabric 20. Dark brown colour coated dish. 13% of rim. Diam 220mm. (434, P I 11).

Platters (Fig 146)

- 113* Fabric 13. Platter with white painted striped decoration on rim. 10% of rim. Diam 200mm. (434, P I 2).
- 114* Fabric 20. Platter (or lid?) with rouletting decoration on inner surface. Orange colour coat. 5.5% of rim. Diam 220mm. (434, P II 2).

Lids (Fig 147)

- 115* Fabric 4. Black Burnished Category 1 lid with interlocking arc decoration on inner and outer surfaces. Cf Bidwell 1979, 206, fig 64, no 136 (c AD 80) 'A form produced in Dorset from mid-later first century...' 25% of rim. Diam 205mm. (434, P IV 8).
- 116* Fabric 2. (434, P IV 7).
- 117* Fabric 6. Lid in calcite-gritted fabric from ditch section.

Castor box

118 Fabric 20. Dark brown colour coat. Cf Gillam type 341–2 (c AD 180–320). 12.5% of rim. Diam 110mm. (434, P I 12).

8.6.2 Pottery from Catterick 1972 (Site 434), Areas Q, R, and S

N Cooper

Introduction

This is a complete catalogue of material from Areas Q, R, and S, ordered by context and within context by fabric from finer wares through to coarse. Where rims occur, diameters and EVEs are given. Where possible, dates are suggested.

Catalogue

Area Q - Q I 3Phase 4-5

Nene Valley colour-coated ware

- 1 Flat base fragment. Flagon? No internal colour-coat.
- 2 Body sherd in coarse orange Nene Valley fabric with lustrous colour-coat possibly from Howe *et al* (1980) type 79 bowl.
- 3 Body sherd from Howe *et al* (1980) type 26 hunt-cup in light orange fabric showing dog snout and tongue.
- 4 Misc body sherd. Orange colour-coat.

White painted ware

5 Base of jug? in hard, coarse orange fabric with grey core and thin white wash externally.

Mica dusted ware (Fig 148)

6* Flange from an early flanged bowl. Hard orange fabric with thick grey core and gold mica dusting on surface. Diam 24cm. 11%.

BB1 (Fig 148)

7 Three examples of flanged bowls (no bead). Gillam type 220:
(i) In hard BB1 fabric with interlocking-arc decoration (almost lattice). Flange slightly down-curving. Diam 24cm. 4%.
(ii*) Similar in slightly crumbly friable BB1 type fabric. Interlocking-arc decoration. Finely incised. Diam 22cm. 12%.
(iii*) Similar vessel and same friable hard fabric but no external decoration. Diam 20cm. 12%.

Greyware (Fig 148)

- 8* Narrow-mouthed jar with beaded rim in fine grey Crambeck light grey fabric with darker grey mottled surface. Surface is also pimply especially on interior. Diam 16cm. 23%.
- 9 Four curved rims from high-shouldered jars:

 (i) Diam 12cm. 20%. Coarse grey fabric (2 fragments)
 (ii) Diam 10cm. 18%. Inner rim burnished
 (iii) Diam 14cm. 9%. Bead squared off.
- 10 Footing base in sandy (abraded) light grey fabric with dark grey core and surfaces.

QI4 Phase 2-4

White painted ware (Fig 148)

11* Thick flanged flagon top in hard orange fabric with creamy white slip and some mica dusting. Pimply surface. Diam 7cm. 15%.

Greyware

- 12 The joining fragments of a flat lid in hard, sandy fabric. Diam 21cm. 13%.
- 13 One body sherd with rusticated decoration. Fine grey.
- 14 Body from jar with acute lattice decoration. Fine grey.

Q I 5 Phase 4 (?4B)

Nene Valley colour-coated ware

- 15 Developed (late type) cornice rim from bag-shaped beaker. Orange colour-coat. Diam 10cm? 5%.
- 16 Beaker base. Brown colour-coat.
- 17 Beaker. Black colour-coat.
- 18 Six miscellaneous bodies (thin) including Howe *et al* (1980) type 38? Scale decorated folded beaker.

BB1 (fig 148)

- 19* Flanged bowl. Unusual hooked flange. BB1 type fabric with narrow arch decoration. Diam 22cm. 6%.
- 20 Two body sherds from shoulder of BB1 jar.
- 21 Jar rim in BB1 type fabric. Diam 16cm. 6%.

Greyware

- 22 Plain rim dish with external groove in hard sandy grey fabric. Diam 18cm. 6%.
- 23 Flared rim with lid-seating edge ridge in hard coarse fabric. Hackly surface. Diam 20cm. 5%.
- 24 Two joining fragments from lid in Crambeck fabric. Light grey with dark grey surface and mica. Diam 12cm. 19%.
- 25 Fine body sherd with acute lattice decoration.
- Q I 8 Phase 4–5 (see also P I 3 same layer)

Oxidised ware (Fig 148)

- 26* Complete narrow-mouthed beaker with crude pedestal base and beaded rim in pink orange fabric with some mica.
- 27 Shoulder of cooking jar.

Greyware (Fig 148)

- 28* High-shouldered jar with curved rim in fine grey fabric. Diam 14cm. 25%.
- 29* Jar in gritty grey fabric. Diam 18cm. 10%.
- 30 Four fragments (including rim and base from curved rim jar in very fine off-white/grey fabric. Diam 10cm. 5%.
- 31 Base sherd in hard grey (silver grey) burnished surfaces.

Q I 9 Phase 4 (-5)

Other colour-coated ware

- 32 Carinated body sherd in pink/orange fabric with light pink core and dark grey/black surfaces with white mica dusting.
- 33 Base of straight-sided vessel with intersecting-arc decoration.

54

Q I 10 Phase 1-2

Nene Valley colour-coat

34 Miscellaneous plain body sherd from beaker?

Red painted ware (fig 148)

35* Unusual vessel with bead rim and external grooves in coarse orange fabric with burnished surfaces and red vertical strips on both surfaces. Diam uncertain.

Possible Oxford red colour-coated ware

36 Upstanding rim with high shoulder in orange fabric (sandy) with abraded red colour-coat with mica on surface. Diam 12cm. 5%. Too coarse to be Oxford?

BB1

- 37 Flat base thick.
- 38 Body sherd. Lattice decoration.

Greyware (Fig 148)

- 39* Curved rim jar with high shoulders. Burnished shoulder on inner rim. Similar to No 29. Hard, fine fabric. Diam 14cm. 28%.
- 40 Similar rim. Diam 13cm. 23%.
- 41 Rim from narrow-mouthed jar. Diam 10cm. 13%. Bead rim. Coarse fabric.
- 42 Six body sherds (including two with lattice decoration).
- Q I 11 Phase 2-3

Oxidised ware

- 43 Body sherd in hard orange fabric.
- 44 Body sherd in orange/brown fabric. Grey core with burnished outer surface.

Greyware

45 Two rusticated body sherds.

Q II 7 Small trench to east Phase 3

Greyware

46 Large body sherd. Micaceous grey fabric, orange core.

47 Body sherd. Granular light grey mottled fabric.

Continental colour-coated ware

48 Central Gaulish black colour-coated beaker. Body sherd. Rouletted band.

Q III 3 Trench extending from SW corner of Q I Phase 4 (?4B)

Nene Valley colour-coat

- 49 Miscellaneous body sherd with double horizontal incised line decoration. Colour-coated on outside only. Closed vessel.
- Q IV 2 Trench running south from Q I Phase U/S

Nene Valley colour-coated ware (fig 148)

- 50 Howe *et al* (1980) type 87 plain rim dish. Diam 15cm. 9%.
- 51 Plain rim beaker. Diam 8cm. 12%.
- 52 Cornice-rim beaker. Diam 12cm. 6%.
- 53 Howe *et al* (1980) type 89. Castor box lid. Diam 20cm. 5%.
- 54* Funnel-neck beaker body sherd with overslip white painted decoration. Row of dots on shoulder then row of rouletting, then main band of interlocking S and dot-painted decoration.
- 55 Two undecorated body sherds.

Whiteware or abraded colour-coat

56 Body sherd with roulette decoration in hard sandy white/cream fabric. Very abraded.

White-painted ware

57 Flagon handle junction, on neck in sandy orange fabric. Traces of white slip on inside of neck.

Crambeck greyware (Fig 148)

- 58* Beaded-and-flanged-rim bowl in light grey fabric. Thick grey core, silver/grey surface. Diam 23cm. 13%.
- 59* Plain rim bowl. External groove. Diam 18cm. 5%.

Other greyware (Fig 148)

- 60* Beaded-and-flanged-rim bowl. Two rim fragments. Diam 31cm. 10% in thick coarse grey fabric. Bead damaged.
- 61* Flanged bowl in coarse grey fabric. Diam 18cm. 12%.
- 62 Dales type lid-seated rim. Diam 17cm. 16%.
- 63 Curved jar rim. Diam 14cm. 16%. Fine fabric.
- 64 Beaded and flanged bowl. Hard fabric. Burnished surfaces. Diam 18cm. 9%.
- Q IV 3 Phase 4 (?4B)

Continental colour-coat

65 Two body sherds (joining?) in Central Gaulish black colour-coated fabric with rouletted bands.

Nene Valley colour-coated ware

- 66 Shoulder bodysherd from folded funnel-neck beaker.
- 67 Body from underslip barbotine scroll decorated beaker.
- 68 Plain body sherd.

Crambeck parchment ware (Fig 148)

- 69* Imitation samian Dr 38 in sandy white fabric with dark brown painted scroll (?) decoration on upstanding rim and upper flange surface. Diam 22cm. 6%.
- BB1 (Fig 148)
- 70* Jar rim with beaded curved rim. Damaged rim. Diam 18cm. 5%. Gillam types 146-8.
- 71 Similar rim. Diam 16cm. 5%. Very abraded.
- 72 Similar rim. Diam 12cm. 6%.
- 73 Shoulder of similar vessel.

Greyware

- 74 Straight-sided bowl with bead rim in fine grey fabric. Diam 28cm. 4%.
- 75 Jar rim. Curved. Sandy fabric. Diam 16cm. 8%.
- 76 Jar rim. Curved. Sandy fabric. Diam 14cm. 8%.
- 77 Everted jar rim. Fine fabric. Diam 10cm. 9%.

- 78 Large Dales type rim. Coarse granular fabric. Diam 18cm. 7%.
- 79 Miscellaneous body sherd from jar?

Q IV 5 Phase (3 or) 4 (?4B)

Nene Valley colour-coat

- 80 Base and joining body of bag beaker with underslip barbotine decoration. Hunt cup, Howe *et al* (1980) type 26? Late-2nd/3rd century.
- 81 Large, thick-bodied beaker base.
- 82 Large, thick-bodied beaker base.
- 83 Flat base from plain rim bowl on beaded and flanged bowl. Late 3rd-/4th-century.
- 84 Two body sherds from indented beakers.
- 85 Five plain body sherds.
- 86 One body sherd with overslip white paint decoration.
- BB1 (Fig 148)
- 87* Curved cooking jar rim with beaded edge. Two rim pieces and one body joining. Diam 18cm. 12%. Gillam type 147?

Oxidised ware

- 88 Base in coarse gritty fabric. Jar?
- 89 Body sherd in orange fabric with acute lattice decoration.

Greyware (Fig 148)

- 90* Flanged bowl (flat base) in sandy light grey fabric with darker silver/grey burnished surface. Diam 21cm. 10%.
- 91* Beaded-and-flanged-rim bowl in dark grey sandy fabric with black micaceous surface. Diam 24cm. 6%.
- 92* Plain rim dish. Sandy grey fabric with burnished surfaces. Diam 18cm. 9%.
- 93 Plain rim dish in dark grey fabric with burnished black micaceous surfaces. Diam 26cm. 7%.
- 94* Flanged bowl (two joining rims). Sandy fabric. Burnished rim. Crude lattice decoration. Diam 18cm. 14%.

- 95 Curved jar rim. Light grey burnished. Diam 15cm. 14%.
- 96 Curved jar rim. Light grey burnished. Diam 13cm. 16%.
- 97 Curved jar rim. Light grey burnished. Diam 15cm. 8%.
- 98 Flat base incised (cf BB1) in coarse fabric.
- 99 Three miscellaneous jar bodies including two with lattice decoration.
- 100 Body with handle junction.
- Calcite gritted ware (Fig 148)
- 101* Everted-rim jar with lid-seating depression. Diam 15cm. 18%.
- Q IV 6 Phase (3 or) 4 (?4B)

Nene Valley colour-coated ware

- 102 Three plain body sherds.
- 103 One body sherd with scale decoration.

Greyware

- 104 Flat base burnished, black, sandy, micaceous fabric.
- 105 Two joining bodies of bad-shaped beaker. Fine grey fabric.
- 106 Body from jar with obtuse lattice decoration.
- Q IV 8 Phase (3 or) 4 (?4B)

Nene Valley colour-coated ware

- 107 Rouletted body sherd. Howe *et al* (1980) type 89? Castor box.
- 108 Two plain body sherds.

BB1

- 109 Jar rim. Beaded edge. Diam 16cm? 4%
- Greyware (Fig 148)
- 110*High-shouldered jar with curved rim in fine grey fabric. Diam 13 cm. 21% and body from same vessel.
- 111* Plain rim dish with external groove and lattice decoration. 4%.

- 112*BB1-type rim. Buff grey, coarse fabric. Diam 13cm. 15%.
- 113 Beaded curved jar rim. Gritty fabric. Diam 14 cm. 5%.

QV2 Phase 4

Nene Valley colour-coated ware

- 114 Pedestal base from bag-shaped beaker?
- 115 Flat base from dog dish or beaded-and-flanged bowl.
- 116 Rouletted body from Howe *et al* (1980) type 89 Castor box.
- 117 Two plain undecorated body sherds.

Oxidised ware (Fig 148)

- 118* Flared mouth of flagon with two handles in fine orange fabric and grey core. Three joining rim and one bodysherd. Diam 8cm. 60%.
- BB1
- 119 BB1 jar rim. 2 joining rim sherds. Diam 16cm. 20%.
- 120 Similar rim. Diam 18cm. 7%.

Greyware (Fig 148)

- 121* Beaded and flanged rim bowl. Light grey sandy fabric. Dark grey micaceous surface. Diam 28cm. 10%.
- 122 BB1 type jar rim in soft grey/brown fabric with burnished surfaces. Diam 17cm. 13%.
- 123 Curved jar rim in hard light grey fabric with burnished surfaces. Diam 20cm. 4%.
- 124 Dales-type sprung lid-seated rim. Diam 17cm.5%. Granular hard fabric.
- 125 Plain rim bowl. Coarse fabric. Burnished. Diam 24cm? 4%.
- 126 Flared-mouth vessel. Diam 12cm. 12% in fine hard grey fabric. Burnished.
- 127 Crambeck? Beaded-and-flanged-bowl rim. Diam 22cm. 8%.
- 128 Pedestal base. Micaceous black burnished surfaces. Lighter grey core.
- 129 Miscellaneous body sherd.

QV4 Unphased

Greyware

- 130 Flat base. Fine grey fabric. Burnished surface.
- 131 Two miscellaneous bodies including one with acute lattice.

Q VI 1 East of Q IV Phase U/S

Continental colour-coated ware

132 Body sherd of black colour-coated beaker with barbotine animal decoration over rouletting.

Nene Valley colour-coated ware

- 133 Howe *et al* (1980) type 79 beaded-and-flanged bowl (small). Diam 22cm. 6%.
- 134 Beaker (bag shape?) body sherd with lattice barbotine lozenges (cf Hartley 1960, fig 4, no 3).
- 135 Plain body sherd from flagon. Lustrous coating.

BB1

- 136 Jar rim and shoulder. Diam 17cm. 20%.
- 137 Similar rim. Diam 18cm. 6%.

Oxidised ware

138 Large body sherd from shoulder of ?flagon in hard orange fabric with gold mica inclusions, and three horizontal white painted stripes evenly distributed down neck and shoulder.

Greyware jar rims

139 (i) Curved, damaged fine fabric. Diam 13cm.
12%.
(ii) Curved bead. Diam 16cm. 17%.

(iii) Curved, damaged. Diam 16cm. 5%.(iv) Straight-sided vessel flanged rim. Crambeck fabric. Diam 17cm. 10%.

140 Pedestal base from fine greyware beaker.

Q VII U/S from Trench between P IV and Dere Street

Nene Valley colour-coated ware

141 Pedestal base from beaker.

Mica-dusted ware

142 Small body sherd in hard orange fabric with specks of gold mica on outer surface.

Q VII 3 Phase 4 (?4B)

- Nene Valley colour-coated ware
- 143 Four thin body sherds including one with fine rouletting, and one from a folded beaker.
- 144 One thick body sherd from larger vessel.

BB1

- 145 Flanged bowl. Very abraded. Diam 24cm. 4%.
- 146 Shoulder of jar.

Greyware

- 147 Crambeck fabric. Two joining body sherds with impressed vertical lines.
- 148 Body sherd in fine fabric with horizontal groove and impressed (burnished) line.
- 149 Body with widely-impressed lattice.

Q VII 4 Phase 2A–4A

Coarse greyware

150 Shoulder in coarse black gritty fabric.

Q VIII 2 Phase U/S

Nene Valley colour-coated ware

- 151 Three joining base and one body sherd from Howe *et al* (1980) type 79 beaded-and-flanged bowl.
- 152 Miscellaneous beaker body sherd with rouletted zone and overslip white painted scroll decoration.

Calcite-gritted fabric

153 Four miscellaneous body sherds of heavily calcite-gritted thick fabric. Light buff outer surface and grey body.

Area R

R II Along north wall of temple/podium and north side of temple courtyard

R II 3 Phase 4B

Continental colour-coated ware

154 Body sherd of colour-coated beaker from Trier(?). Dark brown glossy colour-coated.

Nene Valley colour-coated ware

- 155 Cornice rim from bag-shaped beaker undecorated. Later type of cornice. Late-2nd, early-3rd century. Type 46. Diam 11cm. 9%.
- 156 Small pedestal base from Nene Valley bag-shaped beaker. 2nd/3rd century.
- 157 Body sherd from scale-decorated indented beaker. Howe *et al* (1980) type 38/39 or 36. Early/mid-3rd century.
- 158* Castor box lid. 'Chunky' pink/orange, coarse/sandy fabric. Howe *et al* (1980) type 89. Diam 16cm. 16%. Late-3rd/4th century.
- 159*Small beaded-and-flanged bowl. Howe *et al* (1980) type 79. Late-3rd/4th century? Diam 22cm. 4%.
- 160 Very abraded Howe *et al* (1980) type 79 rim. Diam 14cm? 5%. 4th century.
- 161 Flange from imitation samian Dr 38 (Howe *et al* (1980) type 83). Diam 18cm. 7%. Late-3rd/4th century.
- 162 Wide pedestal base of Howe *et al* (1980) type 50(?) beaker. 3rd century.
- 163 Chunky pedestal base from Howe *et al* (1980) type 55/57 'Pentice' funnel-neck beaker.
- 164 Wide flat base from Howe *et al* (1980) type 87 plain rimmed dish or 79 beaded-and-flanged bowl. Late-3rd/4th century.
- 165 Abraded base Howe *et al* (1980) type 89 Castor box??
- 166 Five unidentified body sherds.
- BB 1 (fig 149)
- 167* Beaded-and-flanged bowl interlocking-arc decoration. Gillam 314. Diam 22cm. 13%. AD 220-360.
- Plain rim dish. Dog dish with intersecting-arc decoration. Gillam 329 derivative. Diam 16cm.
 8%. Internal surface buff colour. AD 190–340.
- 169* Similar plain rim bowl/dish. Arcs more angular. Gillam 329. Diam 23cm. 10%.

170 Rim of cooking pot. Buff surface. Diam 18cm. 5%.

Huntcliff type calcite tempered cooking pots with internal rim groove

- 171 Diam 17cm. 24%. Gillam 163. AD 350/55-400.
- 172 Rim damaged. Diam 14cm. 26%. Gillam 163.
- 173 One body sherd of weathered Huntcliff jar base.

Greyware (fig 149)

- (6 sherds, 4 rims)
- 174* Wide-mouthed jar with beaded rim (not Crambeck). Dark grey sandy fabric. Diam 76cm. 11%.
- 175* Jar with everted lid-seated rim. Fine grey fabric. Mottled surface. Diam 13cm. 27%.
- 176 Abraded beaded-and-flanged bowl. Dark grey surface. Lighter core. Too coarse to be Crambeck? Diam 28cm. 6%.

177 Curved rim jar with beaded rim. Very abraded grey fabric, brown core. Sandy. Diam 16cm. 7%.

- 178 Coarse thickened jar rim. Pimply surface. Diam 14cm. 8%.
- 179 Two body sherds in moderately sandy fabric.

R II 4 Phase ?4B

Nene Valley colour-coated ware (fig 149)

(20 sherds, 4 rims)

- 180* Howe et al (1980) type 50 funnel neck beaker. Red/brown, lustrous colour-coat with white painted line decoration. 3rd century. Diam 6 cm. 25% (including non-joining rim sherd of same vessel).
- 181* Howe *et al* (1980) type 89 Castor box. (Angular lid seating, thick body, rouletted decoration). Late-3rd/4th century? Diam 16cm. 4% (possibly inaccurate).
- 182* Howe *et al* (1980) type 87 plain-rimmed bowl. Dark brown colour-coat. Diam 14cm. 15%. Late-3rd/4th century.
- 183 Rim flange of Howe *et al* (1980) type 83 imitation samian 38. Diam 22cm. 7%. Late-3rd/4th century.

- 184 Base and side (four sherds) of Howe *et al* (1980) type 79. Beaded-and-flanged bowl with lustrous mauve brown colour-coat. Joins with No 255.
- 185 Base (two joining sherds) with scored line from flagon?
- 186 Thirteen body sherds from thick-bodied Nene Valley forms (flagons?; including two with white painted grape-vine scroll decoration and rouletting, one of which cross joins with face flagon from R II 7, and three thin body sherds from indented beaker (Howe *et al* (1980) type 40-3)).

Miscellaneous colour-coat

187 Small body sherd of pink fabric with red/orange colour-coat not micaceous enough to be Oxford.

Oxidised ware (Fig 149)

188*Abraded flanged bowl. Grey core. Fine fabric. Possibly originally colour-coated but not Nene Valley.

Whiteware

- 189 Light buff sandy fabric body sherd with incised line decoration.
- BB1 (Fig 149)
- 190* Cooking jar from Gillam 147? Diam 14cm. 6%.

Huntcliff fabric (Fig 149)

- 191 Wide platter, thick-bodied. Diam 42cm. 12%. (see Chapter 8.1.4.13, No SS52).
- 192 Rim of jar Gillam 163. 5%. AD 350/5–400 and three body sherds.

Greyware (Fig 149)

193*Sandy fabric curved rim. High-shouldered jar. Diam 14cm. 10%.

R II C 4 Baulk S of R II 4 Unphased

Nene Valley colour-coat

- 194 Cornice-rim bag beaker with later type of cornice rim with rouletted band of decoration. Howe *et al* (1980) type 33. Early-3rd century. Diam 10cm. 6%.
- 195 Howe *et al* (1980) type 40/43 body from plain indented beaker. Early-3rd century?

Greyware (fig 149)

- 196* Plain rim bowl (small) with external groove in coarse very hard fabric (coarse Crambeck?). Burnished light grey surface, lighter grey body. Diam 17cm. 13%.
- 197* Larger plain rim bowl with external groove in similar fabric. Diam 18cm. 9%.
- 198*Curved rim of high-shouldered jar in similar fabric. Burnished. Diam 15cm. 17%.
- 199 Abraded rim of beaded-and-flanged bowl. Diam 24cm. 4%.

R II 5 Phase 4B

Nene Valley colour-coated ware (Fig 149)

- 200 Howe *et al* (1980) type 89 Castor box lid. Same vessel as No 158 with coarse orange fabric, rouletted rim and concentrically-grooved upper surface. Diam 16cm. 23%. Late-3rd/4th century?
- 201 Five body sherds (two joining) from Howe *et al* (1980) type 89 Castor boxes. Thin bodied. Earlier type, 3rd century?
- 202* Howe *et al* (1980) type 79 beaded-and-flanged bowl. Dark brown colour-coat. Diam 16cm. 8%. Late-3rd/4th century.
- 203 Pedestal base of Nene Valley beaker. 3rd century.
- 204 Two body sherds from (?)colour-coated flagon.

Crambeck parchment ware

205 Segmental bowl, Gillam 298, abraded, AD 350/5–400. Red-painted decoration internal and external. Diam 30cm. 7%.

Huntcliff type jar (Fig 149)

206* Curved rim jar internal groove. Gillam 163. AD 350/5–400. Diam 23cm. 15% with joining shoulder sherd.

Greyware (fig 149)

- 207* Plain rim bowl. External groove. Mid grey micaceous fabric. Diam 18cm. 14%. 2nd to 4th century?
- 208* Curved rim jar. Coarse sandy fabric. Burnished line. Diam 14cm. 5%.

- 209* Everted rim jar. Fine grey fabric. Surface pimply. Diam 12cm. 8%.
- 210 Flanged-mouth flagon top. Very abraded. With disc neck. Diam 6cm. 15%.
- 211 Base from plain rim/straight-sided bowl?
- 212 Base from a similar vessel.
- R II 6 Phase 4B

Nene Valley colour-coated ware

- 213 Howe *et al* (1980) type 66 variant flagon top with 'lid-seated' bead rim and two grooves beneath. Mid- to late-4th century. Stibbington Well. Diam 5.5cm. 32%. See Section E.1.4.19, No SS145.
- 214 Plain funnel rim probably from Howe *et al* (1980) type 43. Indented beaker. Mid- to late-3rd century. Diam 10cm. 15%.
- 215 Howe *et al* (1980) type 87 plain rim dish. 4th century. Diam 20cm. 11%.
- 216 Howe *et al* (1980) type 87 plain rim dish. 4th century. Diam 24cm? 5%. Abraded.
- 217 Base from large beaker? Lustrous purple colour-coated grooved decoration.
- 218 Base from large beaker.
- 219 Body sherd possibly from lid of Howe *et al* (1980) type 89 Castor box.
- 220 Body sherd possibly from neck of flagon.
- 221 Eight small body sherds from beakers (one indented with roulette band; one rouletted; three with underslip barbotine scroll; two with overslip white paint decoration; one plain). 3rd century.

Other colour-coated ware

222 Plain rim vessel in sandy orange fabric with thin orange slip. Possibly Oxford?, but not micaceous or fine enough; probably Hadham ware (CJ Going pers comm). Diam 18cm. 15%. See Chapter 8.1.4.1, No SS9.

Crambeck parchment

223 Hammerhead segmental bowl. Gillam 298. AD 350/5–400. Very abraded; from same vessel as No 205. Diam 30cm. 5%.

Micaceous whiteware (Fig 149)

224* High-shouldered jar with plain everted rim. Light grey/buff sandy fabric. Diam 13cm. 25%.

Oxidised ware (Fig 149)

- 225*Jar in fine, pink fabric. Micaceous. Diam 15.5cm. 20%.
- 226 Very abraded, thick rim fragment from beaded-and-flanged-rim bowl. Not measured.

BB1 (Fig 149)

- 227* Type Gillam 147 jar rim and shoulder. AD 290–370. Diam 26cm. 7%.
- 228 Very abraded. BB1 jar rim. Diam 14cm? 5%.
- 229 Small fragment. BB1.
- Huntcliff type jars (Fig 149)
- 230 Three examples of Gillam 163 jar rims with internal groove:
 (i) Diam 16cm. 8%
 (ii*) Diam 30cm. 10%
 (iii) Diam 28cm. 9%
- 231 Three other shoulder fragments.

Greyware

- 232 Straight-sided bowl with flanged rim. Diam 30cm. 7%.
- 233 Plain rim thickened with groove beneath. Crambeck fabric. Diam 20cm. 3%.
- 234 Two joining fragments of flat base.
- 235 One fine rouletted and burnished fragment.
- R II 6 B Northern extension of R II 6 Phase ?4B

Nene Valley colour-coated ware (Fig 149)

- 236^* Howe *et al* (1980) type 52 with alternating circular and slit indentations. Very crudely made; base has moulded squat shape similar to a Howe *et al* (1980) type 51. 4th century.
- 237 Plain rim from beaker. Out-turned possibly from Howe *et al* (1980) type 59. 4th century. Diam 10cm. 10%.
- 238 Two body sherds from underslip barbotine scroll beakers. Very abraded. 3rd century.

- 239 Undecorated bodysherd from base of dog bowl, Howe *et al* (1980) type 87(?).
- 240 Undecorated bodysherd.
- White parchment ware with red paint decoration
- 241 Crambeck. Flagon? bodysherd with red painted 'hook' decoration.
- 242 Similar body with light red paint decoration.
- 243 Similar body with burnished surface and dark red painted band.
- Oxidised ware (Fig 149)
- 244* Fine orange fabric. Narrow-mouthed jar with hooked bead rim. Diam 14cm. 27%. Possibly Severn Valley ware.
- BB1
- 245 Flanged straight-sided bowl with slight groove and bead. No lattice visible. Gillam 314. AD 220–360. Diam 22cm. 2%.
- 246 Shoulder of BB1 jar.
- Greyware Crambeck (Fig 149)
- 247* Gillam 232 with more prominent bead. No internal wavy line. Diam 36cm. 6%.
- 248 Flanged bowl? Diam 20cm. 14%.
- Greyware non-Crambeck (Fig 149)
- 249* Everted rim jar. Diam 12cm. 25%.
- 250*Lid-seated jar imitating Dales ware form. Gillam 157. AD 280-340.
- R II 6 C Unphased

Other colour-coated ware (Fig 149)

- 251* Imitation samian. Dr 38 in fine pink fabric with grey core and dark red abraded colour-coat. Origin? 4th century? Diam 22cm. 17%.
- 252 Flagon neck in coarse 'Swanpool'? orange/red fabric with white/cream slip.
- Crambeck greyware
- 253* Gillam 232 beaded-and-flanged bowl with interlocking wavy line internally. Diam 24cm. 8%.
 AD 350/5–400. Smooth lead grey surface with light grey body.

Huntcliff type

254 Six body sherds (four joining) from jar. AD 350/5-400.

R II 7 B Northern extension of R II 7 Phase ?4B

Rather abraded assemblage of sherds. Few joins. Within the group or without.

Nene Valley colour-coated ware

- 255 Damaged rim of small Howe *et al* (1980) type 79 beaded-and-flanged rim bowl. Diam 20cm. 8%.
 4th-century (*c* AD 350/5–400 Gillam 230).
- 256 Howe et al (1980) type 34 plain rim beaker with underslip barbotine decoration. Very abraded. Residual sherd. (Late-2nd/early-3rd century). Diam 8cm. 13%.
- 257 Fragment of base from Howe *et al* (1980) type 79/87 dish? 4th century.
- 258 Two abraded small body sherds.

Other colour-coated ware

- 259 Abraded sherd with roughcast decoration in pink/orange fabric.
- Whiteware
- 260 Three body sherds (burnt) in white fine micaceous fabric.

Oxidised ware

261 Three body sherds. Sandy orange fabric.

BB1

- 262 Curved jar rim. Diam 16cm. 9%.
- 263 Curved jar rim. Gillam 127? Diam 16cm. 5%. AD 130-70?
- Crambeck greyware
- 264 Beaded-and-flanged bowl damaged rims. No internal decoration. AD 350/5–400?

Coarse greyware

- 265 Two body sherds in coarse black sandy fabric. Pimply surface (coarser than BB1).
- 266 Coarse grey/pink body sherd.

R II C 7 Baulk to South of R II 7 Unphased

Nene Valley colour-coated ware

Very broken group. Few joins. Abraded/residual.

- 267 Howe *et al* (1980) type 46 plain bag-shaped beaker with late-style cornice rim. Diam 6cm?
 2%. Late-2nd/early-3rd century.
- 268 Howe *et al* (1980) type 50 funnel-neck beaker rim. 3rd century. Diam 7cm. 25%.
- 269 Base from Howe *et al* (1980) type 79 (?) beaded-and-flanged bowl. 4th century.
- 270 Base from Howe *et al* (1980) type 87 plain rim bowl? 4th century.
- 271 Eight miscellaneous bodies mainly with rouletted decoration (one joins with Howe *et al* (1980) type 70 jar from R II 8; one with white paint over rouletted decoration).

Other colour-coated ware

- 272 Rim from Type 83. Imitation samian Dr 38 in pink fabric with brick red thin colour-coat. Joins with same vessel as No 251. Diam 20cm. 8%.
- 273 Grooved-bead rim of Type 70 narrow-mouth jar. From same vessel as in R II 7. Diam 12cm. 8%.

Whiteware

- 274 Body sherd in fine micaceous fabric.
- 275 Body sherd in very hard fabric with smooth surfaces and redpaint decoration (Crambeck?).

Crambeck greyware

276 Gillam 231 beaded-and-flanged bowl, internal wavy line. AD 350/5–400. Diam 28cm. 4%.

Coarse greyware

277 Incised decoration. Quartz tempered fabric. Similar fabric to R II 7B.

Huntcliff type

278 Base sherd from large calcite gritted jar.

R II 10 Adjacent to R II 7? Phase ?4B

Small amount of material. Very broken/abraded.

Nene Valley colour-coated ware

- 279 Four small thin body sherds, one with rouletted decoration. Residual.
- Oxidised ware (Fig 149)
- 280* Grooved rim of bowl or narrow mouthed jar with rouletted decoration. Diam 20cm. 5%.
- 281 One rouletted body in similar fabric.
- White painted ware
- 282 Base in hard sandy oxidised fabric with white painted coating.

Greyware (Fig 149)

- 283^* Straight-sided bowl with bead rim. Diam 22cm. 5%.
- 284 Curved-rim of jar in hard coarse grey fabric. Diam 34cm. 7%.
- 285* Small narrow-mouthed jar in fine grey fabric. Burnished outer surface. Diam 9cm. 22%.
- 286 Curved jar rim. Diam 15cm. 5%.
- 287 Very fine greyware. Burnished outer surface. Carinated vessel with flange. (cf Dr 38).
- 288 Miscellaneous sandy body sherd.
- R II D 2 Baulk E of R II 7 Unphased

Nene Valley colour-coat

- 289 Howe *et al* (1980) type 83, imitation samian 38. Damaged rim. 25%.
- 290 Howe *et al* (1980) type 50 funnel-neck broken rim. Diam 9cm. 10%.
- 291 Base, possibly from Howe *et al* (1980) type 82.
- 292 Three miscellaneous undecorated bodysherds.

Oxidised ware (Fig 149)

- 293* Beaded-and-flanged-rim bowl in coarse orange fabric/grey core. Diam 24cm. 7%.
- 294* Plain-rim bowl. Light-buff sandy fabric. External groove. Diam 20cm. 8%.
- 295 Body sherd from shoulder of flagon in orange pink sandy fabric.

- 296 Beaded-and-flanged-rim bowl. Gillam 231. (AD 350/5–400). Diam 32cm. 5%.
- 297 Plain rim bowl. Diam 14cm. 8%.
- 298 Base from similar vessel.
- Other greyware
- 299 Plain bowl in fine grey fabric. Diam 26cm. 7%.

R III 2 Phase 5

Nene Valley colour-coated ware (Fig 149)

- 300* Howe *et al* (1980) type 87. Reconstructed plain rim dish. Rim and base fragments. Diam 19cm. 20%. Three separate rim fragments (cross join with No 215 and sherd from R III 3). 4th century.
- 301 Howe *et al* (1980) type 82. Imitation samian Dr
 37 with bead rim and external groove. Diam
 18cm. 8%. Late 3rd-/first half of 4th century. See
 Chapter 8.1.4.19, No SS149.
- 302* Howe *et al* (1980) type 39. Indented beaker, scale decoration and long funnel. Mid/late-3rd century. Diam 9cm. 20%.
- 303 Rim from plain rim beaker. Howe *et al* (1980) type 34? Diam 7cm. 10%. Late-2nd/3rd century.
- 304 Beaker with Howe *et al* (1980) type 27 rim and faint rouletted decoration. Diam 6cm. 7%.
- 305 Base from (?) Howe *et al* (1980) type 79 beaded-and-flanged bowl. Joins with illustrated bowl from R II 7.
- 306 Base of Howe *et al* (1980) type 64/65 pinch-neck flagon/jug.
- 307 Beaker base.
- 308 Thirteen sherds (including three undecorated; four rouletted; one grooved; four with barbotine animal scenes; one with barbotine raised diagonal stripes).

Continental colour-coated ware (Fig 149)

309*Type 27 rim. From Central Gaulish (Lezoux) beaker.

Other colour-coated ware (Fig 149)

310* Type 50 funnel-neck beaker in grey fabric. Speckled white inclusion. Diam 5cm. 9%. Oxidised ware (Fig 149)

- 311* Bead rim vessel (imitation samian Dr 37) with rouletted decoration in hard sandy fabric. Diam 14cm. 7%. Slightly-burnished surface.
- White painted ware
- 312 Flared-flagon mouth. Diam 7.5cm. 30%. In coarse orange fabric.
- BB1 (Fig 149)
- 313 Plain rim bowls. Three examples with interlocking-arc decoration. Gillam 329. AD 190–340:
 (i*) Diam 26cm. 12%.
 (ii) Diam 24cm. 7%
 (iii) Diam 24cm? 4%
- 314 Bead and flange rimmed bowl. Diam 32cm. 7%. Gillam 227? (AD 200–320) or Gillam 314 (AD 220–360).
- 315 Four cooking pot rims (three damaged). Gillam 147. AD 290–370:
 (i) Diam 16cm. 13%
 (ii) Diam 16cm. 4%
 (iii–iv) Too small to measure
- 316 One base.
- 317 Three body sherds.
- Huntcliff type
- 318 Gillam 163 rim. Diam 16cm. 15%.
- Greyware (Fig 149)
- 319 Beaded-and-flanged-rim bowls
 (i*) Diam 30cm. 11%. Heavy vessel in coarse grey fabric. Burnished internally.
 (ii) Fine light grey fabric. Diam 20cm. 10%.
- 320 Plain rim bowl, external groove. Fine grey, micaceous fabric. Diam 20cm? 4%.
- 321 Flanged bowl. Diam 32cm. 5%. Fine micaceous fabric.
- 322*Wide-mouthed bowl. Diam 14cm. 7%. Sandy fabric.
- 323 Jars. Curved rim (BB1 type). Six examples:
 (i) Fine grey fabric. Diam 15cm. 15%
 (ii) Fine grey fabric. Diam 15cm. 12%
 (iii) Slightly coarser. Diam 16cm. 10%
 (iv) Coarser fabric (inclusions protruding from surface). Diam 12cm. 12%
 (v) Very coarse greyware curved jar rim. Thick body. Diam 16cm. 10%

- 324 Bases. (Two flat bases; one pedestal base (beaker; one flat with raised centre). All in slightly sandy grey fabric.
- 325 Bodies. Four body sherds.

R III 2b (N Extension of R III 2) Phase 5

Nene Valley colour-coated ware

326 Miscellaneous body sherds, including one rouletted.

Huntcliff types

327 Two jar rims, Gillam type 163.
(i) Diam 16cm. 10%
(ii) Diam 22cm. 10%

Crambeck greyware

328 Beaded-and-flanged-bowl rim. Gillam 231. Diam 24cm. 5%.

Other greyware

329 One jar shoulder body sherd.

R III 3 Phase 5

Nene Valley colour-coated ware

- 330 Howe *et al* (1980) type 50 funnel rim with bead. 3rd-century. Diam 8cm. 11%.
- 331 Plain rim beaker rouletting. Diam 6cm. 12%.
- 332 Seven body sherds from beakers/flagons.

Amphora

333 Dressel 20. Disc rim. Diam 17cm. 23%.

Huntcliff types

334 Three jar rims. Gillam type 163

 (i) Diam 16cm. 8%
 (ii) Diam 16cm. 10%
 (iii) Diam 24cm. 10%

BB1

- 335 Base from ?plain rim bowl.
- 336 Two body sherds one with obtuse lattice decoration.

337 Beaded-and-flanged-bowl rim with interlocking-arc decoration. Gillam 314. AD 220–360. Diam 28cm. 7%.

Fine greyware

- 338 Curved/everted jar rim. Fine grey fabric. Diam 14cm. 17%.
- 339 Very fine roulette-decorated body sherd from beaker-type vessel.
- 340 Two miscellaneous bodies.
- 341 Face flagon top. Top left-hand portion in similar fabric to Crambeck but coarser. Mid grey surface with lighter core. Found with inhumation buried in NE corner of trench. See Section E.1.4.15, No SS89.

Coarse greyware (Fig 149)

- 342 Jar rim, similar to 'Dales type' in a very gritty fabric. Diam 18cm. 12%.
- 343 Two coarse body sherds.
- 344* Reconstructed beaded-and-flanged-rim bowl, SF 47 found in conjunction with SF 45 and SF 46. It is in coarse gritty fabric with white/calcite inclusions.

R III B Baulk S of R III Unphased

Nene Valley colour-coated ware (Fig 149)

- 345 Howe *et al* (1980) type 79 beaded-and-flanged-rim bowl. 4th century. Three examples, all rather abraded: (i*) Diam 16cm. 27%.
 - (i*) Diam 16cm. 27%
 (ii) Diam 16cm. 6%.
 - (iii) Diam 28cm. 5%. Very worn.
- 346* Howe *et al* (1980) type 74, narrow-mouthed jar. Very similar to one in R II 8. Diam 13cm. 30%. 4th century.
- 347 Howe et al (1980) type 81, imitation samian Dr
 36 with perforations in base: used as a strainer/sieve? Diam 21cm. 17%. Late 3rd- to mid- 4th century. See Section E.1.4.19, No SS150.
- 348 Base from thick-bodied open ?vessel (Howe *et al* (1980) type 82?).
- 349 Base. Flat form. Plain rim dish?
- 350 Two rouletted body sherds.

- 351 Plain rim bowl. Gillam 329 with intersecting arcs. AD 190–340. Diam 18cm. 8%.
- Greyware (Fig 150)
- 352* Curved rim of high-shouldered jar in fine grey fabric. Diam 12cm. 25%.
- 353 Foot ring base in similar fabric. Burnished surface.
- Crambeck greyware
- 354 Flat base. Crambeck fabric.
- R III 5 (Location ? under R III 2) Phase 3
- BB1
- 355 Gillam 329. Plain rim dish. Intersecting-arc decoration. Diam 24cm. 10%. AD 190–340.
- 356 Beaded-and-flanged-rim bowl. Diam 20cm. 8%.
- Greyware (Fig 150)
- 357* High-shouldered jar. Curved rim. Diam 16cm. 13%.
- 358 Three miscellaneous body sherds.
- R IV 1 Phase U/S

Crambeck parchment ware (Fig 150)

- 359* Hammerheaded vessel with external grooves. Red paint decoration on upper edge of rim and interlocking S decoration on inside. Diam 34cm.
 5%. Decoration related to Gillam 298; rim like Gillam 297. AD 350/5-400. Corder Type 9. Hull's Type 8. See Hildyard 1957, fig 12, no 61.
- R IV 2 U/S

Nene Valley colour-coated ware

- 360 Miscellaneous body sherd.
- BB1 (Fig 150)
- 361*Three rim sherds (two joining). Beaded-andflanged bowl (shallow groove) Gillam type 227 with intersecting-arc decoration. Diam 22cm. 12%. AD 210-320.
- 362 Plain rim bowl. Intersecting-arc decoration. Gillam 329. AD 190–340. Diam 28cm. 5%.

363 Cooking pot/jar. Two rim sherds. Gillam 146. 280–350. Diam 17cm. 25%.

Greyware

364 Light grey burnished fabric, quartz inclusion. High-shouldered jar with curved rim. Diam 14cm. 15%.

R IV 2b U/S

Nene Valley colour-coated ware

- 365 Howe *et al* (1980) type 50? funnel-neck beaker rim. Diam 7cm. 8%. Abraded.
- 366 Miscellaneous beaker body sherd.

Whiteware

367 Miscellaneous body in light pink buff fabric.

Crambeck ? greyware

- 368 Light body with matt micaceous dark grey surface.
- 369 Beaded-and-flanged-rim bowl. Diam 27cm. 12%.
- 370 Similar vessel/fabric. Diam 29cm. 11%.

R IV 3 Phase 4B

Continental colour-coated ware (Central Gaulish)

371 Body sherd from Central Gaulish black colour-coated beaker with rouletted decoration. Joins with other bodysherds nos 154, 309 and from R II 8.

Nene Valley colour-coat

- 372 Howe *et al* (1980) type 57/56 'pentice moulded' funnel beaker. 4th century. Diam 7cm. 15%.
- 373 Plain rim beaker. Diam 8cm. 13%.
- 374 Base from beaker.
- 375 Base from Howe *et al* (1980) type 79 beaded-and-flanged bowl.
- 376 Ten bodysherds (many abraded, one with barbotine decoration, one rouletted. Rest plain).

Other colour-coated ware

377 Plain right/straight-sided vessel/bowl in micaceous soapy fabric (*not* Oxford). See No 222 for similar vessel. Diam 18cm. 7%.

378 Imitation samian Dr 38 in pink fabric/grey core. Very abraded. Brick red colour-coat. Possibly the same vessel(?) as No 251.

Huntcliff types

- 379 Three curved jar rims, Gillam type 163:
 (i) Diam 18cm. 18%
 (ii) Diam 18cm. 12%
 (iii) Diam 26cm. 9%
- BB1
- 380 Gillam 329? Plain rim bowl. Intersecting-arc decoration. Diam 24cm? 4%. AD 190–340
- 381 Beaded and flanged rim bowl Gillam 227? Intersecting arc.
- 382 Flat base from straight-sided vessel.
- 383 Body sherd from shoulder of jar.
- Crambeck greyware (Fig 150)
- 384* Beaded-and-flanged-rim bowl in micaceous fabric, light body, dark grey 'powdery' surface with internal wavy line. Gillam 231. AD 350/5–400. Diam 31cm. 11%.

385 Similar vessel/fabric. Flange more pointed and smaller. Diam 20cm. 8%.

Fine greyware

- 386 Curved jar rim. Fine grey fabric. Diam 14cm. 15%.
- 387 Curved jar rim. Same vessel. Diam 10cm. 15%.
- 388 Curved jar rim burnished. Diam 16cm? 4%.
- 389 Two fine body sherds (one rouletted).

Coarse greyware

- 390 Rim imitating Derbyshire ware. Lid-seated. Micaceous but not hard enough, though surface is grey and pimply. Diam 19cm. 8%.
- 391* High-shouldered jar in similar but harder fabric. Diam 14cm. 7%.
- 392 Jar rim. Curved. Diam 17cm. 11%.
- 393 Everted rim. Very coarse, not measurable.
- 394 Two miscellaneous body sherds.

R IV 4 Phase 4B

Nene Valley colour-coated ware

395 Body sherds (four thin-bodied, including two rouletted, one of these from lid of Howe *et al* (1980) type 89 Castor box and one thick abraded sherd from base).

Continental colour-coated ware

396 Central Gaulish black colour-coated bead rim funnel-neck beaker. Diam 8.5cm. 10%.

BB1

- 397 Three examples of beaded and flanged bowls:
 (i) Beaded-and-flanged bowl. Prominent bead. Interlocking-arc decoration. Gillam 228? AD 290-370. Diam 24cm. 5%.
 (ii) Similar bowl. Diam 22cm. Very damaged rim. Two joining pieces. 7%. No external decoration.
 (iii) Beaded-and-flanged bowl with incipient bead intersecting-arc decoration. Gillam 227? Two rims from same vessel. Diam 15cm. 15%.
- 398 Plain rim bowl. Intersecting-arc decoration. Gillam 329. AD 190–340. Diam 20cm? 5%.
- 399 Cooking pot:
 (i) Rim. Diam 18cm. 6%. Curved with beaded edge
 (ii) Rim. Diam 16cm. 5%
 (iii) Rim. Diam 18cm. 5%
- 400 Huntcliff type jar Gillam type 163. Diam 18cm. 8%.

Crambeck greyware

401 Bowl (Dr 38 derivative) with incipient body flange. Burnished. Internal wavy line.

Other greyware (Fig 150)

- 402* Bowl? Diam 17cm. 11%. Fine fabric. Burnished zigzag decoration.
- 403 Curved jar rim. Diam 16cm. 18%.
- 404 Curved jar rim. Diam 16cm. 4%.

R IV 5 Phase 4B

Whiteware

- 405 Base. White/buff micaceous fabric.
- 406 Body sherd in similar fabric.

BB1

407 Flanged bowl (no bead). Arc decoration? Diam 26cm. 5%.

Calcite gritted ware

- 408 Plain rim bowl. Diam 22cm. 7%.
- 409 Shoulder from Huntcliff type jar. Gillam type 163.

Greyware

- 410 Jar. Fine fabric. Everted rim. Diam 12cm. 10%.
- 411 Curved rim from similar jar. Similar fabric. Diam 12cm. 9%.

R IV 6 Phase 4B

Nene Valley colour-coated ware

412 Howe *et al* (1980) type 79 beaded-and-flanged bowl. Rim damaged. Diam 19cm. 5%.

White painted ware

413 Oxidised sandy body sherd with white/creamy slip.

Other colour-coated ware (Fig 150)

- 414* Imitation samian Dr 38 in sandy orange fabric with dark red/orange slip abraded. See other example. Diam 28cm. 10%.
- Oxidised ware
- 415 Abraded base.

Calcite gritted ware

416 Jar. Diam 30cm. 5%.

BB1

417 Fragment of flat base.

Greyware

- 418 Plain rim bowl in light grey fabric (possibly Crambeck). Diam 16cm. 9%.
- 419 Dales-type lid-seated spring rim in coarse gritty fabric. Diam 18cm. 8%.
- 420 Three bodysherds (one with rusticated decoration).

R V 1 Phase U/S

Continental colour-coated ware

- 421 Shoulder bodysherd with rouletted decorated form. Central Gaulish black colour-coated. Funnel neck.
- Nene Valley colour-coat
- 422 Howe *et al* (1980) type 79 beaded-and-flanged bowl. Bead damaged. Diam 24cm. 6%.
- 423 Plain rim beaker? Coarse orange/buff fabric. Nene Valley? Diam 12cm. 7%.
- 424 Four body sherds.
- BB1
- 425~ Jar rim. 5% (too small to measure).

Greyware

- 426 Beaded-and-flanged bowl. Diam 22cm. 10%.
- 427 Curved jar rim. Coarse fabric. Burnished surface. Diam 14cm. 9%.

R V2 Phase 4B

- Nene Valley colour-coat
- 428 Howe *et al* (1980) type 79. Beaded-and-flanged bowl. Beat damaged. Diam 24cm? 3%?
- 429 Howe *et al* (1980) type 87 plain rim bowl. Very abraded.

Huntcliff type (Fig 00)

- 430*Very large jar: curved rim but no internal groove. Diam 25cm. 15%.
- 431 Jar rim with internal groove. Diam 20cm. 16%.
- 432 Plain rim bowl. Diam 20cm. 5%.
- 433 Large decorated body with incised straight and wavy line decoration.
- 434 Smaller sherd with rim decoration.

R V 3 Phase 4B

Calcite gritted ware

435 Two jar rims
(i) Gillam type 163. Diam 16cm. 8%.
(ii) Without groove. Diam 18cm. 5%.

R V4 Phase 6

- Nene Valley colour-coated ware (Fig 150)
- 436* Howe *et al* (1980) type 87 Castor box. Thick bodied. Rounded profiles, lustrous colour-coat. 4th century. Diam 14cm. 11%.
- 437 Base. Heavy, from flagon? 4th century.
- 438 Three bodysherds:
 (i) Folded beaker scale decoration
 (ii) Folded beaker plain
 (iii) Plain body
- Huntcliff types (Fig 150)
- 439*Very large jar rim, Gillam type 163, internal groove. Diam 36cm. 11%.
- 440 Large base from similar jar.
- Coarse greyware
- 441 Body sherd, granular fabric. Incised cordon.

R V 5 Phase 4B

Nene Valley colour-coated ware

- 442 Howe *et al* (1980) type 83 imitation samian Dr 38. Down-curved body flange. Wall rim. Damaged. Diam 21cm. 11%. Late-3rd to mid-4th century.
- 443 Howe *et al* (1980) type 87 plain rim dish. Diam 20cm? 3%. Late-3rd to 4th century.
- 444 Pedestal base.
- 445 Nine thick body sherds (two rouletted; one with roulette and white paint).
- 446 Eleven thin bodies, three barbotine:
 (i) Howe *et al* (1980) type 29 scroll
 (ii) Howe *et al* (1980) type 26 animal
 (iii) Howe *et al* (1980) type 38 scale
 (iv) three rouletted, one rouletted and white paints, one white paint, two plain.
- Other colour-coat
- 447 Imitation samian Dr 38. Pink fabric, greyware. Orange/red slip. As before. Diam 18cm. 10%.
- Crambeck (?) parchment ware
- 448 Fine pink fabric. Beaded-and-flanged-segmental (?) bowl with red/orange line decoration on upper flange. Diam 24cm. 7%.

BB1

- 449 Type Gillam 329 plain rim bowl. Diam 22cm. 7%. AD 190–340.
- 450 Gillam 329 zigzag and interlocking arc. Diam 18cm. 10%.
- 451 Beaded-and-flanged-rim bowl. Gillam Type 227. AD 210–320. Diam 24cm. 5%.
- 452 Jar rim. Diam 16cm. 10%.

Huntcliff type

- 453 Jar rim (no groove). Diam 20cm? 5%.
- 454 Miscellaneous body from jar.

Greyware

- 455 Curved/everted jar rim. Diam 16cm. 12%. Sandy fabric.
- 456 Curved jar rim. Diam 15cm. 8%.
- 457 Plain rim dish. Rim too small to measure.
- 458 Bead everted rim. Diam 16cm. 7%.

R V 6 Phase 4B

Nene Valley colour-coated ware

- 459 Flared-mouth flagon (reconstructed). Howe *et al* (1980) type 68 variant with neck cordon, single handle? See Hartley 1960 or Wild 1974, Kiln W, fig 8(e). Rim separate to neck and shoulder. Late-4th century? With white paint decoration. Diam 8cm. 35%. See Chapter 8.4.19, No SS152.
- 460 Howe *et al* (1980) type 71 lid for narrow-mouth jar. (Type 70) but without steam hole. Knob and rim separate pieces. 4th century. Diam 6cm. 24%. See Chapter 8.4.19, No SS153.
- 461 Howe *et al* (1980) type 87 plain rim dish. Diam 16cm. 5%. Lustrous colour-coat. 4th century.
- 462 Pedestal base from late-2nd/early-3rd-century beaker.
- 463 Flat base? from plain rim dish.
- 464 Three bodysherds (two thick plain, one thin with overslip white barbotine painted scroll decoration).

Huntcliff type

465 Four miscellaneous bodysherds.

Greyware

- 466 Three miscellaneous bodysherds.
- R VI 1 Phase U/S
- Continental colour-coated ware
- 467 Body sherd of Gaulish indented beaker with rouletted bead.

Nene Valley colour-coated ware

- 468 Three fragments from an abraded Howe *et al* (1980) type 87 plain rim bowl. Diam 16cm. 8%.
- 469 Pedestal base.
- 470 Five body sherds:
 (i) Rouletted from Howe *et al* (1980) type 55 beaker
 (ii) Howe *et al* (1980) type 38 scale decoration
 (iii) Two plain
 - (iv) One rouletted

BB1

- 471 Jar rim. Diam 16cm? 5%.
- 472 Five jar body fragments (all from one vessel?; one with obtuse lattice decorative band). Gillam 148/147 = AD 290-370.
- 473 Plain rim dish. Gillam 329 jar with zigzag. Diam 34cm. 5%.

Huntcliff type

474 One jar rim with internal groove and shoulder cordon groove; three separate rim fragments and one body sherd, all joining. Diam 15cm. 33%.

Fine greyware (Fig 150)

- 475* Beaded-and-flanged-rim bowl in hard grey fabric with burnished rim and internal. External curved incise semi arcs. Diam 24cm. 5%.
- 476* High-shouldered jar with curved rim. Similar fabric/finish and burnished. Diam 24cm. 7%.
- 477* Jar rim in coarser fabric with lid-seat groove and heavy curved bead. Diam 17cm. 12%.

R VI 2 Phase 4B

Nene Valley colour-coated ware

- 478 Abraded Howe *et al* (1980) type 79. Diam 16cm.9%. Beaded-and-flanged-rim bowl.
- 479 Howe *et al* (1980) type 67 rim of flagon (distorted). Diam 3cm. 30%. See Section E.1.4.19, No SS153.
- 480 Two joining fragments from Castor box body with rouletted decoration. Thick body. 4th century.
- 481 Seven body sherds:
 (i) Howe *et al* (1980) type 38? Scale decoration
 (ii) Plain folded
 (iii) Rouletted and painted scroll
 (iv) Four plain.
- Oxidised ware
- 482 Two bodies from folded beaker in fine orange buff fabric.

Crambeck greyware (Fig 150)

483* Two joining rims from Dr 38 with internal burnished wavy line. Diam 21cm. 10%.

Calcite gritted ware (Fig 150)

- 484 Two jar rims:
 (i*) Diam 28cm. 17%. Large jar.
 (ii) Diam 21cm. 5%.
- 485 One miscellaneous jar bodysherd (shoulder).
- BB1
- 486 Flaring jar rim. Diam 22cm. 7%.

R VI 3 Phase 4B

Other colour-coated ware

- 487 Imitation samian Dr 38. Pink fabric, grey core. Orange red colour-coat as before. Very abraded.
- Calcite gritted ware
- 488 Shoulder body sherd.

Fine greyware

489 Curving jar rim. Too small to measure.

Coarse greyware

- 490 Everted/lid-seated jar rim in sandy grey micaceous fabric. Diam 14cm. 8%.
- R VII 2 Phase 4B
- Nene Valley colour-coated ware (Fig 150)
- 491* Large Howe *et al* (1980) type 79 beaded-and-flanged-rim bowl. Two rim and one body sherd, all joining. Diam 25cm. 22%.
- 492 Howe *et al* (1980) type 66 variant bead rim. One(?) handle. Diam 4.5cm. 50%. See Section E.1.4.19, No SS154.
- 493* Howe *et al* (1980) type 83. Five joining body and flange fragments from imitation samian Dr 38. Flange diam 24cm. 15%.
- 494 Flat base fragment.
- 495 Three thick body sherds (including one rouletted).
- 496 Nine thick body sherds (three rouletted; one underslip barbotine scroll; one indented; four plain).
- Other colour-coated ware
- 497 Imitation samian Dr 38 very hard, coarse orange fabric with grey core. Dark orange/red colour-coat. Diam 18cm. 8%.
- White painted ware
- 498 Handle, in fine orange fabric. White slip coating (abraded).
- Whiteware
- 499 Parchment ware dish. Reeded wall rim (Corder's Type 9). (Hildyard 1957, fig 12, no 61.) Traces of red paint decoration.
- 500 Body sherd with dark red painted band.
- Micaceous whiteware
- 501 Plain rim vessel external groove and carinated. Diam 20cm. 7%.
- 502 Body sherd.
- BB1
- 503 Plain rim bowl. Gillam 329 with intersection arc. Diam 20cm. 9%.

- 504 Beaded-and-flanged-rim bowl. Diam 24cm. 4%.
- 505 Cooking pot. Three joining sherds (two rim, one shoulder). Diam 14cm. 29%.
- (Fine) Crambeck greyware (Fig 150)
- 506 Three examples of beaded-and-flanged-rim bowl:
 (i) Diam 25cm. 5%
 (ii) Diam 18cm. 5%
 (iii) Diam 18cm. 12%
- 507 Plain rim bowl:
 (i) Diam 22cm. 5%. Rim/base profile
 (ii*) Diam 24cm. 6%. External groove. Micaceous.
- 508 Handle junction. Micaceous.
- 509 Handle junction.
- 510 Curved jar rim. Diam 13cm. 12%.
- 511 Miscellaneous body.

Coarse greyware (Fig 150)

512* Lid-seated jar in sandy fabric. Dark grey with orange core. Diam 19cm. 18%.

Calcite gritted ware (Fig 150)

- 513 Six jar rims:
 (i*) Diam 18cm. 20%. No internal groove.
 (ii) Diam 18cm. 19%. No groove.
 (iii) Diam 20cm. 13%. Grooved.
 (iv) Diam 22cm. 8%. Grooved.
 (v) Diam 20cm. 5%. Grooved.
 (vi) Diam 22cm. 6%.
- 514 Three large base sherds.
- 515 Nineteen body sherds (including one decorated with incised wavy lines).
- R VII 3 Phase modern

Continental colour-coated ware

516 Central Gaulish black colour-coated undecorated body sherd from beaker. Very lustrous coating.

Nene Valley colour-coated ware (Fig 150)

- 517* Howe *et al* (1980) type 34 plain-rim bag beaker with barbotine dots. Diam 10cm. 12%.
- 518 Miscellaneous body with horizontal groove and white paint scroll decoration.

BB1

519 Four jar rims:
(i) Diam 17cm. 20%. (two joining pieces)
(ii) Diam 16cm. 5%
(iii) Too damaged to measure
(iv) Diam 20cm. 6%

Greyware

- 520 Jar rim beaded curve. Diam 15cm. 18%.
- 521 Curved rim of jar. Diam 16cm. 5%.
- 522 Lid. Diam 16cm. 7%.
- 523 Burnished base.
- 524 Shoulder body sherd, coarse fabric.
- 525 Flat base, pink/orange. Wheelmade. Possibly BB2?

Calcite gritted ware

526 Large storage jar rim (with groove). Too small to measure. Diam possibly 36cm. 3%.

R VIII 3 Phase 6

Nene Valley colour-coated ware

- 527 Very abraded bodysherd with flange of Howe et al (1980) type 83 imitation samian Dr 38.
- 528 Three miscellaneous body sherds (one with painted scroll decoration).

Huntcliff type

529 Three jar rims. Gillam 163. AD 370-400:
(i) Diam 20cm. 12%
(ii) Diam 16cm. 7%
(iii) Groove. Diam 16cm. 10%

BB1

530 Gillam 329. Plain-rim dish with intersecting-arc decoration. Diam 32cm. 5%.

Fine greyware

- 531 Straight-sided vessel with bead rim and sandy hard mid grey fabric with burnished surfaces. Diam 22cm. 7%.
- 532 Narrow-mouthed jar. Diam 14cm. 13%. Fine fabric. Burnished zones on inside of rim.

Coarse greyware

533 Everted lid-seated jar rim in hard granular fabric. Fracture. Mottled grey surfaces. Grey core with very light grey margins. Similar to Derbyshire ware. Diam 20cm. 9%.

R VIII 6 Phase 6

Nene Valley colour-coated ware

- 534 Howe *et al* (1980) type 89 Castor box lid rim (burnt). Diam 14cm. 12%.
- 535 Body sherd. Possibly from same vessel (lid).
- 536 Body sherd from indented beaker (Howe *et al* (1980) type 42)? with rouletted bands.
- 537 Two miscellaneous body sherds (one with white paint decoration).

Micaceous whiteware

538 Straight-sided vessel with everted bead rim. Hard fabric, outer surface burnished and inner rim. Diam 18cm. 7%. Traces of red paint on outside?

Oxidised ware

539 Body sherd in hard orange fabric.

Huntcliff type

540 Jar rim. Internal groove. Gillam type 163. Diam 24cm. 5%.

Greyware

- 541 Jar. Hard granular fabric with everted lid-seated rim. Diam 12cm. 17%.
- 542 Miscellaneous rim. Sandy fabric. 2%.
- 543 Flat base. Hard grey fabric. (Crambeck?)

R VIII 7 Phase 4

Continental colour-coated ware

544 Body sherd. Central Gaulish black colour-coated beaker with rouletted band. Pink/orange inclusion-free fabric with very lustrous colour-coat. Nene Valley colour-coated ware

- 545 Fine simple (early type) cornice rim from Howe *et al* (1980) type 26? bag-shaped beaker. Diam 7cm. 11%.
- 546 Heavier cornice rim from bag-shaped beaker. 3%.
- 547 Twelve miscellaneous bodysherds (including four decorated, including Howe *et al* (1980) type 38/9 scale-decorated beaker, and Howe *et al* (1980) type 53 slit-folded beaker).

Oxidised ware

548 Body sherd in hard orange fabric.

BB1

- 549 Damaged jar rim.
- 550 Shoulder from rim vessel.
- 551 Base from similar vessel?
- Greyware (fine)
- 552 High-shouldered jar (BB1 style) curved rim. Acute lattice decoration. A total of 26 body sherds (many joining); two rim sherds (not joining). Diam 14cm. 40%.
- 553 Curved jar rim. Diam 12cm. 10%.
- 554 Curved/beaded jar rim. Diam 13cm. 16%.
- 555 Plain rim dish. Diam 26cm. 7%. Gritty fabric.
- 556 Plain rim dish. Crambeck fabric? Diam 20cm. 5%.
- 557 Plain rim dish. Diam 21cm. 7%.
- 558 Cordoned body sherd.

R IX 1 Phase U/S

Nene Valley colour-coated ware

559 Small pedestal base from bag-shaped beaker.

Greyware

560 Curved rim from high-shouldered jar in slightly sandy mid grey fabric with burnished upper surfaces. Diam 20cm. 8%. R X 2 Phase ?4B

Greyware (Fig 150)

- 561* Plain rim bowl with external groove and burnished surface in coarse grey fabric. Diam 15cm. 8%.
- 562 Body sherd with acute lattice decoration from imitation BB1 jar. Fine fabric. Dark grey core. White inclusions.

Area S - SI2 Unphased

Nene Valley colour-coated ware

- 563 Flat base from Howe *et al* (1980) type 87 or 79 bowl.
- 564 Three body sherds (including one rouletted, and one with scale decoration).
- Oxidised ware
- 565 Six body sherds in fine fabric.
- Crambeck greyware
- 566 Beaded-and-flanged bowl. Light body, dark grey micaceous surface. Diam 22cm. 10%.
- 567 Base in same fabric.
- Other greyware
- 568 Bead-rim bowl. Coarse fabric. Darker grey surface. Too small to measure.
- 569 Seven miscellaneous bodysherds (including 2 with rusticated decoration).

S I 4 Unphased

Oxidised ware

570 Shallow segmental bowl. Dr 31 imitation samian. Diam 20cm. 5%. Hard orange fabric, grey core.

White painted ware

- 571 Miscellaneous bodysherd. Sandy fabric.
- 572 Miscellaneous bodysherd. Fine orange fabric, cream/white slip.
- 573 Two bodysherds. Gritty fabric, cream slip.

BB1

574 Flanged bowl. Diam 24cm. 5%.

Coarse greyware

575 Body sherd from jar with shoulder groove and incised line decoration.

$S \ II \ 2 \ Unphased$

Oxidised ware

576 Strap handle with central groove in sandy orange fabric.

S III 4 Unphased

Oxidised ware

577 Base of beaker. Sandy orange fabric with buff surfaces.

9.2.2 Extended fabric descriptions

A Bell, with contributions by D F Williams

Introduction

The major labour of quantifying the material and preparing the archive was undertaken by A Bell. The fabric descriptions were based on the examination of surface and fresh breaks, both in the hand and with $\times 20$ magnification, a magnet being used to assist in the identification of iron, and dilute hydrochloric acid for calcareous inclusions. The fabric descriptions record the characteristics of manufacture (colour, hardness, feel, texture, inclusions, slip and other surface treatment); the method of manufacture is stated only if the vessel is not wheel thrown.

Characteristics of manufacture

Colour

Munsell colour numbers are used throughout and also Munsell colour names, unless they are considered misleading, when a free verbal description is given. The colours of cores, margins and surfaces are all given if they differ.

Hardness

This is defined as soft (can be scratched with fingernail); hard (cannot be scratched with fingernail); and very hard (cannot be scratched with knife).

Feel

The terms used for this are: smooth (no irregularities can be felt); rough (irregularities can be felt); and harsh (irregularities feel abrasive). Soapy and powdery refer to surfaces.

Texture

Terms used to describe the freshly broken sections are: smooth (no visible irregularities); finely irregular (small irregularities); irregular (larger irregularities); and hackly (large and generally angular irregularities).

Inclusions

The identification of inclusions is based on the system devised by Peacock (1977b). Colour is described where necessary, clear is used to describe transparent inclusions.

The frequency of inclusions is described as sparse, moderate or abundant. The size of inclusions is described as either very fine (<0.1mm); fine (0.1–0.25mm); medium (0.25–0.5mm); or coarse (0.5–1mm). Coarser inclusions are described to the nearest mm. Sorting indicates the homogeneity in the size of the inclusions, well-sorted grains being about the same size, whilst ill-sorted grains are not. Terms used to describe rounding are: angular, (with noticeably sharp corners); sub-angular (rounded to near sharp corners); sub-rounded (rounded to near round corners); rounded (no corners); and flat (nearly two-dimensional).

Slip

A description is only given for large areas of slip as a fabric characteristic.

Surface treatment

Terms used are all fairly standard, eg burnished.

Fabrics

1 White wares

W2: Coarse white fabric; a grouping, rather than the product of one centre. The colour is usually pale yellow (2.5 Y 8/4) to pink (5 YR 8/3) throughout, but occasionally incomplete oxidisation produces a grey core, interior margin and interior surface (10 YR 5/6 yellowish brown). Well-preserved sherds are hard, with a rough feel and finely irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite in moderate or abundant quantities, the grains being ill-sorted, of medium size and sub-angular or sub-rounded in shape.
- 2 Sparse quantities of haematite, ill-sorted, of medium size and sub-angular or sub-rounded in shape.

The exteriors of many sherds display what may be a self coloured slip or slurry technique, which produces a burnished finish and gives the exterior surfaces a slightly smoother feel.

W3: Coarse harsh white fabric; the colour is normally white (2.5 Y 8/2) to pale yellow (2.5 Y 8/4). Occasionally sherds have a light grey core (2.5 Y 7/1) or, rarely, a reddish yellow (7.5 YR 7/8) inner margin. The sherds are hard with a harsh feel, except where burnished on the exterior, and have a hackly fracture. The inclusions are as follows:

- 1 Quartz or quartzite, abundant in quantity, with ill-sorted grains of medium size and sub-angular or sub-rounded shape.
- 2 Haematite in sparse quantities as ill-sorted, medium sized and sub-angular shaped particles.

Exterior surfaces are a very pale brown (10 YR 6/4 to 7/4) colour and burnished or wiped to give a slipped appearance and a slightly smoother feel than the interiors. W3 may be a slightly coarser tempered variety of W2, but is differentiated by the distinctly slipped exteriors, a noticeably harsher feel, and the grains of quartz visible on the surfaces.

W4: Fine white fabric; a fine tempered group, sub-divided into unburnished W4 and burnished W4A. The colour varies from white (2.5 Y 8/2) to pinkish white (5 YR 8/2) throughout, although occasional incompletely oxidised sherds have grey interior margins and surfaces (5 YR 5/1 grey to 4/1 dark grey). Well-preserved sherds are soft and smooth, others soft and powdery. Fractures are usually smooth although rarely they are finely irregular. The inclusions are as follows:

- 1 Quartz or quartzite, usually as moderate quantities of well sorted, fine sub-angular or sub-rounded grains. In occasional examples the grains approach medium size, which give the sherd a finely irregular fracture.
- 2 Haematite as sparse quantities of ill-sorted medium sub-angular to sub-rounded grains. Often this haematite is visible as reddish pink dots on the surface.

Sub-fabric W4A varies in having a burnished exterior which gives this surface a smoother feel. W4A sherds tend to be harder than those of W4, especially the burnished surface.

W5: White micaceous fabric; group covers a variety of similar white firing micaceous clays. Only sub-fabric W5A forms a discrete group in terms of inclusions and appearance. The colour ranges from white (5 YR 8/1) to light grey (5 YR 7/1) throughout although occasional incompletely oxidised examples have darker grey interior margins and surfaces (5 YR 6/1). Sherds vary from hard with a smooth feel, especially where burnished, to soft with a soapy feel. All the sherds have finely irregular fractures. The inclusions are as follows:

- 1 Quartz in moderate quantities of ill-sorted, sub-angular or sub-rounded grains in the medium size range.
- 2 Haematite or oxidised iron in sparse to moderate quantities of ill-sorted, sub-angular or sub-rounded particles, also of medium size.
- 3 Sparse to moderate quantities of very fine sub-angular or flat grains of silver mica, visible mainly on the surface.

The hard examples usually have burnished or possibly slipped and burnished exterior surfaces, often with a very pale brown colour (10 YR 8/3 to 8/4). Although the inclusions of W5 fabrics fall within the same ranges there is a noticeable difference between extreme examples in the group. Due to the small numbers of sherds, it has not been possible to sub-divide the group. Generally the hard, dense and burnished examples have more evenly distributed grains of quartz and haematite both of similar size. The soft, soapy unburnished examples tend to have less evenly distributed grains, often of varying sizes within the medium range.

W5A: Coarse white micaceous fabric; similar to W2 in terms of colour, feel, fracture and inclusions. It varies in having an obviously burnished smooth exterior surface and moderate quantities of well-sorted, fine grains of silver mica which are visible mainly on the surface.

W6: Coarse, harsh white fabric; group similar to W2 in terms of inclusions and feel. It is characterised by being unburnished and in usually having visible grains of both quartz and haematite protruding from its surfaces. These give a harsher feel to these sherds in comparison with those of W2, and often approach coarse in size. Although macroscopically distinct from W2, the small numbers of examples in this group makes further sub-division impossible.

W7: Crambeck Fine Parchment Ware; a fine variant of Crambeck parchment ware, commonly with painted decoration. The colour is usually white throughout (5 Y 8/1 or lighter). Examples are fairly hard, smooth or powdery, with an irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite in moderate quantities of well sorted sub-angular or sub-rounded grains of fine size.
- 2 Haematite in sparse quantities of well sorted, fine/medium sub-angular or sub-rounded grains.

W8: Crambeck Coarse Parchment Ware; varies from W7 in colour, feel and inclusions. The core is often pink (5 YR 8/4) and the margin and surfaces cream rather than white (10 YR 8/4 very pale brown). The feel is invariably smooth and the quartz is abundant in quantity.

W9: Crambeck Fine Parchment Ware; similar to W7. It varies in having sparse quantities of silver mica, buff coloration (10 YR 8/4 very pale brown to 5 YR 7/3 pink) and a smooth feel, possibly the result of burnishing.

W26: as MB26 for non-mortaria forms (see main text p 000).

2 Oxidised wares

O1: Fine white slipped oxidised fabric; sub-divided into the higher fired and noticeably denser O1A sub-fabric. Examples are sometimes completely oxidised, giving a reddish yellow (5 YR 7/6 occasionally 5 YR 6/6) colour throughout. Usually sherds have a core or incompletely oxidised interior margins and surfaces of a grey colour (5 YR 6/1 to 5/1). Sherds of O1 are hard and powdery with a smooth fracture. Sherds of sub-fabric O1A differ in being denser, slightly harder and having a smooth feel. The inclusions are as follows:

- 1 Quartz or quartzite in moderate quantities of ill-sorted medium sized sub-angular or sub-rounded grains.
- 2 Haematite in sparse quantities of red, ill-sorted medium sized, sub-angular or sub-rounded particles.

Characterised by the white slip (approximately 2.5 Y 8/2) which is applied to exterior surfaces. This often only survives as patches, the fabric showing through in places although well-preserved sherds of O1A are completely and fairly thickly covered. Occurs only in flagons.

O2: Coarse white slipped oxidised fabric; coarser tempered than O1. It is sub-divided into a less frequent sub-fabric O2A. O2A is a softer and more powdery, possibly as the results of differing firing conditions or depositional environment. Usually completely oxidised to a light red (2.5 YR 6/6 to 6/8) colour throughout, although occasional examples have incompletely oxidised cores or interior margins and surfaces of grey or pinkish grey (5 YR 6/1 to 6/2). Sherds of O2 are hard to very hard with a rough feel and finely irregular fractures, those of sub-fabric O2A vary in being softer with an almost powdery feel. The inclusions are as follows:

- 1 Quartz or quartzite in moderate quantities of ill- sorted, sub-angular or sub-rounded grains of medium size, although occasional grains approach coarse in size.
- 2 Iron as haematite or magnetite in sparse quantities of ill-sorted, sub-angular or sub-rounded and medium size parties.

Exterior surfaces of vessels slipped white (approximately 2.5 Y 7/4 to 8/4 pale yellow). As with O1 the slip often survives in a very patchy condition, particularly on O2 sherds where the dense high fired fabric has temper visible on the surface. As with O1, O2 seems to have been used exclusively for flagon forms. Both are similar in terms of inclusions, but sherds of O2 are instantly recognisable in the hand due to their coarser feel and often by the distinctive appearance of the patchy slip.

O3: Haematite tempered oxidised fabric; group characterised by the amount and relative coarseness of the red iron oxide inclusions. The group grades from O3A, which has the haematite visible on its surfaces and is often reddish in colour, to O3C which still retains the pinkish red coloration and coarse haematite but in greatly reduced quantities, and has larger amounts of quartz of coarser size.

The O3A sub-group ranges from reddish yellow (5 YR 7/8 to 6/8) to red (10 R 6/8 light red to 5/8 red). The sub groups O3B and O3C are noticeably less red, tending more to buff (5 YR 7/6 reddish yellow). A few sherds have incompletely oxidised cores or, more rarely interior margins and surfaces of a pinkish grey colour (approximately 5 YR 7/2). O3A tends to be hard and rough, O3B approaches harsh in feel but is

similar in hardness. O3C is distinctively soft and rough in feel although badly preserved sherds of both O3C and O3A are powdery. All the sub-fabrics have finely irregular fractures, although O3A and O3B tend towards hackly. O3A represents the mean in terms of inclusions:

- 1 Quartz or quartzite in moderate or occasionally abundant quantities. The sub-angular grains are ill-sorted in the medium range.
- 2 Visible on the surfaces are moderate amounts of red haematite as sub-angular particles ill-sorted and medium to coarse in size.

Sub-fabric O3B varies in having greater amounts of quartz of coarse size and only moderate amounts of medium sized particles of haematite. It is a noticeably harsher sub-fabric and less brightly coloured as a result. Sub-fabric O3C has haematite in the same quantity and of the same size as O3B, tending to be similar in colour. It varies in having noticeably smaller grains of quartz than sub-fabric O3A, resulting in a generally softer and more powdery fabric. The haematite in this sub-fabric only occurs in sparse rather than moderate proportions.

Sub-fabric O3A represents the major part of the O3 group, characterised by visible haematite on the surfaces and a distinctly pinkish colour. Sub-fabrics O3B and O3C have lesser amounts of haematite which is rarely visible on the surfaces. O3B is a coarse quartz variation with a harsh feel, O3C is a fine quartz sub-fabric tending to be softer and more powdery. Both O3B and O3C have a pinkish buff coloration.

O4: Fine oxidised fabric; a fine oxidised group, sub-divided into O4A, O4B and O4C. O4A is the main sub-group, O4B is a burnished variation and O4C a coarser version of O4B. O4A may contain burnished examples where surfaces are too abraded for the sherd to be firmly placed in the O4B sub-group. O4A sherds are usually completely oxidised to a reddish yellow colour throughout (5 YR 7/6) although some sherds are incompletely oxidised and have grey cores (5 YR 6/1). O4B and O4C vary in being darker in colour, ranging between bright red and red (2.5 YR 6/8 to 2.5 YR 5/6), with cores of a slightly darker grey (2.5 YR N/6 to 2.5 N16 to 2.5 YR N/5).

All 04 sub-groups are hard, rough and with a finely irregular fracture. O4B and O4C vary in being smooth where burnished and in verging on very hard in some examples. O4A contains quartz or quartzite in moderate quantities. The sub-angular or sub-rounded grains are ill-sorted in the medium range. Red haematite is present in sparse quantities of ill-sorted medium to coarse particles.

O4B varies in having fairly well sorted fine grains of quartz and very rarely the same haematite found in O4A. O4C typically contains moderate proportions of quartz, but well sorted and in near abundant quantities. Haematite occurs in the same proportion and size as in O4A. O4B and O4C are characterised by their burnished smooth exterior surfaces. Occasionally sherds, presumably of open forms, also have burnished interior surfaces.

This group represents a gradation of fabrics, ranging from the rougher feeling unburnished O4A through the increasingly dense fired burnished O4B and O4C. There is little in feel or appearance to enable these sub-fabrics to be divided in terms of inclusions. The main differences are to be found in the firing of the sherds and the resultant variation in degree of hardness and the increasing density from O4B to O4C. These firing differences overshadow the minor variations in the inclusions although a correlation between fine or well sorted quartz and hardness is apparent. Beyond this it is difficult to say whether the temper was chosen for the production of high fired vessels or whether such vessels are the result of kiln variations without any deliberate design.

O5: General burnished oxidised fabrics; a group created to encompass a range similar to the O4B and O4C sub-fabrics but cannot be firmly ascribed to either of them. It was found impossible to further sub-divide the sherds in this group without recourse to petrological analysis.

O6: 'Haematite smeared' oxidised fabric; usually completely oxidised and reddish yellow throughout (5 YR 7/6 to 6/8). Occasional sherds have incompletely oxidised interior margins and surfaces of a distinctive light brownish grey colour (approximately 2.5 YR 6/2).

Examples are invariably hard with a smooth feel when well preserved, occasionally powdery when not. Fractures are usually smooth when not displaying the prominent haematite fragments characteristic of this fabric. The inclusions are as follows:

- 1 Quartz or quartzite occurs in sparse quantities of ill-sorted medium sized grains of sub-angular or sub-rounded shape.
- 2 The distinctive inclusion of fabric O6 is the red haematite which is often visible on the surfaces as well as in the fractures. It is present in moderate quantities of ill-sorted sub-angular particles of medium to coarse size, occasionally reaching 3mm in length.

Exterior surfaces are invariably burnished, interior surfaces, presumably on open forms, occasionally. This usually produces characteristic red streaks on such surfaces where the haematite has been smeared during burnishing. Very rarely this burnishing is in obvious lines, leaving unburnished areas in between, rather than the usual overall technique. The inclusions are so distinctive as to suggest that O17 (below) with a similar range may be a colour coated variation.

O8: limestone tempered oxidised fabric; similar to O6 in terms of the haematite inclusions, but only rarely displays the distinctive streaky surfaces which characterise O6. Easily distinguished in the hand as the interior surfaces display moderate quantities of well sorted sub-angular fragments of medium sized limestone/chalk sand, obvious as white dots. This calcareous material is less visible in the fractures and on the exterior surfaces.

The exterior surfaces are usually reddish yellow in colour (7.5 YR 8/6 to 7.5 YR 7/8) with darker margins and interior surfaces (2.5 YR 3/8 red). The cores are often incompletely oxidised and grey in colour (approximately 7.5 YR N5). Sherds are hard with a finely irregular fracture. Well-preserved sherds have a smooth feel, abraded sherds tend to be powdery. The inclusions are as follows:

- 1 Quartz or quartzite in greater proportions than O6. The quartz is of the same ill-sorted sub-angular grains but in moderate to abundant quantities and larger grains of medium to coarse size.
- 2 Haematite occurs as in O6 but better sorted in the medium to coarse size range without the very large grains typical of O6. The haematite is obvious as red sub-angular particles in moderate proportions.
- 3 Calcareous inclusions of medium size occur in very sparse proportions in the fractures but are obviously on on the interior surfaces. There they are present as well sorted sub-angular fragments of medium size and in moderate proportions.

The interiors of sherds do not survive unabraded and it is difficult to determine whether they have been burnished occasionally the interiors vary in colour from the main fabric, suggesting that a slip has been applied and worked with a cloth or by hand. The interior colour is usually approximately reddish yellow (5 YR 6/6). Seems restricted to bowls and may represent a variant of O6.

O10: Coarse oxidised fabric; the main O10A is distinctive in several respects. Noticeably the quartz inclusions are medium to coarse in size and the sherds are higher fired than those of O10. This results in a very dense and hard fabric and 'pimples' or quartz are visible on the surfaces. The exteriors are invariably burnished and of a darker red colour (2.5 YR 5/6 to 2.5 YR 5/8). Sub-fabric O10A is relatively rare. Although similar to O10 the haematite is not so apparent.

O11: Oxidised micaceous fabric; quartz laden micaceous fabrics group. All the examples are very similar but probably represent vessels from more than one source. Completely oxidised sherds are pink to reddish yellow throughout (5 YR 8/4 pink to 6/6 reddish yellow). More usually there is an incompletely oxidised core of light grey to grey (7.5 YR N7/ to 7.5 YR N5). The majority of sherds are hard with a finely irregular feature and are smooth especially the burnished exterior surfaces. Unburnished sherds usually have larger quartz grain inclusions and a slightly rough feel. Although varying in detail the inclusions in examples of O11 fall into the following range:

- 1 Quartz or quartzite in moderate quantities of ill-sorted sub-angular grains, ranging in size from fine to medium.
- 2 Silver mica in sparse quantities as well sorted, sub-angular or flat grains of fine size. The mica is usually visible mainly on the surfaces.

In some examples the quartz is distinctively multi-coloured rather than the usual white or opaque. The majority of the hard sherds have burnished exterior surfaces, although this is often difficult to detect.

O12: Rough oxidised beaker fabric; sub-divided into unburnished (O12) and burnished (O12A). The latter tend also to be both denser and harder. Examples of O12 are invariably completely oxidised. They are reddish yellow in colour (7.5 YR 7/6 to 7.5 YR 6/6), fairly hard with a finely irregular fracture and a rough feel.

Sherds of sub-fabric O12A tend to be a darker reddish yellow (5 YR 7/6 to 6/6) occasionally with a light red core (2.5 YR 6/8). They are noticeably harder than those of O12 and smooth where burnished. Unburnished surfaces are rough and the fractures are finely irregular as with O12. Both O12 and sub-fabric O12A have inclusions as follows:

- 1 Quartz or quartzite in moderate quantities of ill-sorted near rounded or sub-rounded grains of medium size. Occasional grains approach coarse size.
- 2 Red haematite in sparse quantities of ill-sorted, medium sized particles of sub-angular shape.

Sub-fabric O12A is characterised by burnishing on the exterior surface which extends onto the interior surface of the rim. This burnishing is often noticeably linear, resulting in alternate unburnished and burnished lines in extreme cases. O12 is relatively rare and restricted to beaker forms.

O19: Fine oxidised fabric; characterised by the fine size of the inclusions and the distinctive soapy feel. Well-preserved sherds invariably have reddish yellow margins and surfaces (5 YR 7/6 to 7/8). Some are incompletely oxidised with a light grey (5 YR 7/1 to 6/1) core. Occasional sherds seem to have been burnt, resulting in a patchy vessel with light red areas (2.5 YR 6/8), which in very small sherds may be the predominant coloration.

Different degrees of preservation result in soft to fairly hard examples, although well-preserved sherds tend to be the latter. All the sherds have a smooth feature and a soapy feel. The inclusions are as follows:

- 1 Quartz or quartzite as sparse, well sorted, very fine in size and sub-angular grains.
- 2 Red iron oxide or haematite as sparse, ill-sorted particles in the fine to very fine size range. Particles are sub-angular or sub-rounded in shape.
- 3 Many examples have sparse quantities of very fine, flat silver mica, on their surfaces under the microscope. Such sherds are not distinctive in any other way. This suggests either that O19 as

derived from a micaceous clay, with mica in evidence in only a proportion of the surviving sherds, or that O19 may include a micaceous fabric that is macroscopically indistinguishable.

O23: Harsh beaker fabric; only three sherds from a single beaker were recovered. Distinctive in terms of colour and feel but similar to the coarse oxidised beaker fabric O12, although the multi-coloured quartz inclusions are peculiar to O23. The sherds are margins and surfaces of a reddish yellow colour (7.5 YR 7/6) with a light red core (approximately 2.5 YR 6/8). The abundant quartz inclusions give a distinctively rough to harsh feel and an irregular fracture. The surfaces are visibly rough and 'pimply'. All the sherds are hard. The inclusions are as follows:

1 The quartz or quartzite which are distinctively multi-coloured pink, white and opaque rather than the usual opaque and white. It is present in abundant quantities of ill-sorted sub-rounded or near round grains of medium size range. These grains are obvious on the surfaces and give the sherds their very rough to harsh feel.

O24: Dense 'pimply' waster; only two sherds were recovered. The very dense and pimply characteristics result from overfiring. The overfiring of these sherds has given the vessel a dark grey exterior surface (2.5 Y N4/ dark grey to 2.5 YR 4/2 weak red), a reddish brown interior surface (2.5 YR N5/ grey to 2.5 YR 4/2 weak red) and grey core and margins (2.5 YR N4/ dark grey). The vessel is also distinctively very hard with a harsh feel. The fracture is hackly. Vitrification makes identification of the inclusions difficult. The inclusions are as follows:

- 1 Quartz or quartzite in moderate proportions. The sub-angular grains are very ill-sorted and range from fine to coarse in size.
- 2 Iron as magnetite in sparse quantities of ill-sorted, sub-angular and medium size particles.

The exterior surface seems to have been burnished.

3 Reduced fabrics

R1: General Coarse Reduced Fabric; a group of quartz tempered fabrics, probably from several centres, but which cannot be macroscopically differentiated. The R1 group is sub-divided as follows:

R1 sherds are burnished, closed forms on the exterior and over the rim, open forms usually overall. Jar exteriors are either burnished overall, or to leave a matt zone for a burnished lattice decoration. Bowls and dishes are rarely decorated in such a way. Sherds with no visible burnishing and unburnished vessels are called R1A in the archive.

R1B examples are rarely burnished but are characterised by their dark grey or black surfaces. Well-preserved sherds show this to have been achieved by the application of a slip or by deliberate smudging during firing. R1C is a noticeably coarser tempered sub-fabric; sherds are rarely burnished and have a rough feel.

R1D sherds are dense and hard. This sub-fabric represents a high fired variation of R1, its sherds usually being burnished and decorated as described under R1.

The descriptions of sub-fabrics R1 (R1A) R1B and R1D fall within the following range. The colour of these sub-fabrics varies from light grey or steely grey to near black (approximately 7.5 YR N/6 grey to N/4 dark grey), often with a core of a different shade and occasionally with oxidised reddish yellow margins (5 YR 6/6). The surfaces of R1B sherds range from dark grey to black (approximately 2.5 Y N/4 to N/2) but are always darker than the fabric.

Examples of R1 (R1A) and R1B are hard when well preserved and have a slightly rough feel. Burnished surfaces tend to be harder and smoother. R1D is distinctively very hard with a very rough feel, even where burnished. The quartz inclusions are often visible on the surfaces of all sub-fabrics but particularly in R1D examples. The fractures of all sub-fabrics vary from finely irregular to hackly. The inclusions are as follows:

- 1 Quartz or quartzite in moderate to abundant quantities. The grains are sub-rounded to near round in shape, ill-sorted and of medium size.
- 2 Although often difficult to see, some sherds have a sparse iron content in the form of black magnetite. The particles are sub-angular in shape, ill-sorted and medium to coarse in size.

Sherds of R1B are deliberately darkened by the application of a distinct slip, or, more usually, by a smudging technique. The dark surfaces are often very abraded and patchy in appearance making it difficult to determine whether small sherds are merely burnt. Sub-fabric R1C varies in the following respects: several sherds are very patchy in colour, varying from the greys of the other sub-fabrics to dark grey or black (2.5 Y N/4 dark grey to N/3 very dark grey) and often have a black core (5 Y 2.5/1black). All sherds have a very rough feel and a hackly fracture. The quartz or quartzite inclusions are usually abundant rather than moderate, the grains sub-angular or sub-rounded and very ill-sorted, ranging from medium to coarse in size. The quartz grains are often visible on the surfaces.

Within the R1 fabrics are a small number of sherds from large or storage jar forms with a distinctive appearance and rough feel. The quartz is better sorted in the medium size range with the occasional larger grains. The sherds often have a line burnished exteriors and horizontal grooves. They appear to represent a storage jar fabric, and may be a coarse, unslipped variety of R7, but too few sherds were recovered to ascribe the fabric with any degree of certainty. For that reason it has been left in the general R1 fabric group.

R2: Fine 'London Ware' type fabric; a fine fabric with a thickly slipped surface and a smooth feel. The range of forms is restricted to table wares and, very rarely, jars. It has an appearance very similar to that of 'London Ware'. Slipped surfaces are dark grey to black (7.5 YR N4/ dark grey to N3/ very dark grey). Unslipped surfaces and the breaks are grey (10 YR 5/1) throughout or with lighter margins (10 YR 6/1 to 7/1 light grey). Hard with a finely irregular fracture. Slipped surfaces are always smooth when well preserved, slightly rough when less so or unslipped. The inclusions are as follows:

- 1 Quartz or quartzite varies from moderate to abundant in quantity from vessel to vessel. The grains are sub-rounded and ill-sorted, varying from fine to medium in size. Some vessels have better sorted and finer quartz than others whilst appearing macroscopically identical.
- 2 Iron as black magnetite or red haematite is present in sparse to moderate quantities. The particles are usually sub-angular and ill-sorted in the medium size range.
- 3 With the majority of vessels, sparse to occasionally moderate amounts of silver mica is visible as very fine flat grains, mainly on the surfaces. Rarely, sherds can be found without this mica if the vessel fabric was only slightly micaceous.

Surfaces of open vessels are invariably thickly slipped with a dark fired clay (7.5 YR N4/ dark grey to N3/ very dark grey). Beakers often have both surfaces slipped but occasional examples and all of the jar forms, have it restricted to their exterior surfaces and extending onto the inside of the rims. Bowls and beakers predominate. The jars are assigned with a lesser degree of certainty.

R3: Fine micaceous reduced fabric; a fine quartz tempered micaceous fabric, sub-divided into the dark surfaced R3B. Both sub-fabrics are light grey in colour (10 YR 7/1 light grey to 6/1 grey) often with a lighter grey core and margins (7.5 YR N7/ light grey). R3B varies in having a darker exterior and sometimes also interior surfaces (approximately 2.5 Y N5/ grey to N4/ dark grey). R3 and R3B are both fairly hard with finely irregular fractures. They are usually powdery in feel, with the exception of some R3B sherds whose burnished surfaces tend to be smooth to powdery. Both sub-fabrics have the same range and proportions of inclusions:

- 1 Quartz or quartzite in moderate quantities of generally well sorted, fine sub-angular or sub-rounded grains, although occasional grains approach a medium size.
- 2 Iron as black or dark grey magnetite is very sparse. The particles are ill-sorted, sub-angular and of medium size.
- 3 Visible mainly on the surfaces are the characteristic moderate amounts of silver mica. Very rarely the mica seems also to be golden in colour. Both varieties of mica have well sorted grains of very fine size and flat or sub-angular shape.

The darker surfaces of R3B are the result of smudging during firing, possibly of a clay slurry ap-

plied to the surface with a burnishing technique. Most dark surfaces of R3B sherds are also burnished whereas R3 examples rarely are.

R4: Calcite gritted ware; predominantly calcite tempered, but vessels vary in the amounts of quartz also present. Some sherds have been leached and are vesicular, especially those with a high quartz content. All of the vessels have hand made bodies with most having rims finished on a turntable.

Sherds are normally black surfaced (7.5 YR N4/ dark grey to N3/ very dark grey). The cores, margins and untreated surfaces are grey (approximately 7.5 YR N5/ grey to N4/ dark grey). Occasionally margins and interior surfaces remain oxidised and are light brown or reddish yellow in colour (7.5 YR 6/4 to 6/6). Most examples are fairly hard when well preserved, soft when not. Burnished surfaces are smooth, unburnished interiors or vesicular sherds rough. Fractures are irregular. The inclusions are as follows:

- 1 All sherds have varying amounts of calcite inclusions. Quantities vary from moderate to abundant. The pieces are ill-sorted and medium to coarse in size.
- 2 The proportions of quartz or quartzite seems to increase as that of the calcite decreases but overall quantities rarely exceed sparse. The grains are ill-sorted, moderate to coarse and sub-angular or noticeably round.

Jars make up the majority of forms, although dish and bowl forms occur. Some jars have the cordoned shoulders, wavy line decoration, or the grooved rim interiors of true 'Huntcliff type', the remainder are precursors of that tradition.

R4A: Dalesware fabric; covers true Dalesware only and is handmade, shell-tempered with the rim finished on a tournette or slow-wheel. The fabric is well known and has been fully described by Loughlin (1977) and will not be described further here.

R5: General hand made; group covers sherds coming from handmade vessels, sometimes with slow-wheel finished rims. All tend to be heavily quartz tempered, which gives unburnished surfaces a very rough feel. Sherds tend to be patchy in colour due to the differential firing of individual vessels. The predominant colour is grey to very dark grey (10 YR 5/1 to 3/1), but sherds often have oxidised patches or surfaces of brownish yellow (10 YR 6/6 to 6/8) or reddish yellow (7.5 YR 6/6 to 6/8) colour sherds are usually hard, rough and have a hackly fracture. The inclusions are as follows:

1 Quartz or quartzite, generally in abundant quantities. The grains tend to be ill-sorted, medium to coarse in size and sub-angular in shape. The inclusions tend to vary across the size range, even within the same vessel.

The Site 240 material includes sub-fabric R5A, which differs in having quartz of predominantly coarse to very coarse size, which gives a noticeably rougher feel and a hackly fracture.

R6: 'E Yorks Type' reduced fabric; associated with typical E Yorks/N Lincs decoration of burnished wavy lines or loops and horizontal grooves. It is divided into the finer R6 and the more coarse R6A.

Both R6 and sub-fabric R6A tend to have surfaces of a light grey to grey colour (10 YR 7/1 to 5/1). The cores and margins are usually a lighter grey (2.5 YR N6 to N5/ grey) although occasionally the cores are a similar colour to the surfaces and the margins lighter. Sherds are invariably hard. Those of R6 have a smooth feel and fracture, those of R6A tend to have a rough feel and finely irregular features. The inclusions are as follows:

- 1 In R6 quartz is present in moderate quantities of well sorted, fine sub-rounded grains.
- 2 Magnetite occurs in sparse quantities. The particles are ill-sorted, medium to coarse in size, and sub-angular in shape.

Sherds of R6A vary in containing less well sorted grains of quartz which tend to be medium in size.

Vessels in both R6 and R6A often have burnished upper and lower exterior surfaces, with the burnished loops or lines on a matt zone. The matt zone is usually located on the shoulder or just above the girth of the vessel and is often demarcated by incised or burnished horizontal lines. R6 and R6A are restricted to jar to handled jar forms. R6 is probably chiefly made up of Holme-on-Spalding Moor products.

R7: Black surfaced reduced fabric; a similar appearance and feel, to the 'storage jar fabric' described under R1. It may represent a dark surfaced variety of the 'storage jar fabric'. Being easily recognisable in the hand, this is distinguished from the general R1. Sherds of R7 are invariably black surfaced (approximately 10 YR 3/1 very dark grey to 2/1 black) with a grey core (7.5 YR N71 to N5/). The margins and interiors are oxidised to a reddish yellow or brown colour (7.5 YR 6/6 to 5/4) giving the fractures a distinctive appearance. R7 is rough and hard when well-preserved otherwise powdery and softer. The fractures are finely irregular. The inclusions give the sherds an appearance similar to BB1, and are as follows:

- 1 Quartz in abundant quantities as ill-sorted grains, mostly in the medium size range with the odd coarse grain. The quartz varies from sub-angular to near round in shape but macroscopically resembles that found in BB1, especially with the white or opaque coloration. These white grains are often visible on abraded surfaces.
- 2 Iron as black magnetite or, where oxidised as red haematite occurs only in sparse quantities. The particles are sub-angular, ill-sorted and medium to coarse in size.

The black surfaces of sherds always result from a slip, usually applied to the exterior surfaces and extending to just inside the rims. The slip is thick when well preserved but becomes patchy when sherds are abraded. Few forms are recognisable, but most sherds seem to come from closed forms, mainly jars. R8: Coarse reduced fabric; has a distinctly rough feel and 'pimply' appearance caused by the quartz which protrudes from the surfaces.

Well-preserved sherds are light grey to grey throughout (5 Y 6/1 to 5/1 grey or 10 YR 5/1 grey to 4/1 dark grey). Occasional sherds have a darker or lighter core within the ranges given or are incompletely reduced with patchy reddish yellow surfaces and margins (5 YR 7/6 to 6/6). The inclusions are as follows:

1 Quartz or quartzite is the only visible inclusion in most sherds due to their high fired nature. It is present in moderate to abundant proportions. The grains are ill-sorted in the medium to coarse size range and sub-angular in shape.

Some sherds show signs of exterior burnishing which extends onto the interior of rims. This is often difficult to detect with certainty due to the high fired nature of many of the sherds but is probably the norm. The only forms recovered in R8 are jars with lid seated or near lid seated rims. Such jars are similar to Dales ware types.

R8A: a variant of R8. It has a fairly rough feel. It is mainly distinguished from R8 by having less quartz tempering and, therefore, appearing more like a coarse greyware. The colour is light grey to grey throughout (5 Y 6/1 to 5/1 grey or 10 YR 5/1 grey to 4/1 dark grey). Examples are hard to very hard and usually dense. The fractures are finely irregular to hackly. The inclusions are as follows:

1 Quartz or quartzite is the only visible inclusion in most sherds due to their high fired nature. It is present in moderate proportions. The grains are ill-sorted in the medium to coarse size range and sub-angular in shape.

The only forms recovered in R8A, like R8, are jars with lid seated or near lid seated rims; similar to Dales ware types.

R12: Fine reduced fabric; group probably represents fine reduced fabrics that cannot be divided further by macroscopic means. The R12 group has four sub-divisions, R12 represents the main type and R12B a slightly coarser tempered variety. R12A is a dark surfaced version of R12. R12C is a very dense, hard high fired sub-fabric but with the same inclusions as the sub-fabric R12. Sub-fabrics R12, R12A and R12B are light grey or grey in colour (approximately 10 YR 7/1 light grey to 6/1 grey) and occasionally have a darker core (10 YR 6/1 to 5/1 grey). The higher fired R12C tends to be darker grey in colour (approximately 10 YR 6/1 to 5/1 grey), often with the darker core. All sub-fabrics are hard with a smooth feel when well preserved, otherwise slightly powdery. R12C varies in being very hard and dense with sherds in this sub-fabric invariably surviving well due to their high firing. The inclusions vary little between sub-fabrics:

1 Quartz or quartzite in moderate quantities. The grains are ill-sorted, sub-angular or sub-rounded in shape and generally in the fine size range. Sub-fabric R12B varies in having larger quartz grains and a slightly rougher feel as a result.

2 Iron as magnetite in sparse quantities. The particles are ill-sorted, medium in size and sub-angular in shape.

The exterior surfaces of R12A sherds are always slipped, and have a darker colour than the body (approximately 7.5 YR N5/ grey). The slip rarely occurs on the interiors of sherds. It usually survives in a very patchy condition with the contrasting fabric colour visible in place. The R12 group may encompass fabrics from more than one source, although no further divisions could be made either in the hand or by selective use of the microscope.

R13: Crambeck grey ware; Crambeck reduced fabric has been well described elsewhere (Corder 1928, Corder and Birley 1937, Evans forthcoming, 10–19). It is characterised by its pale grey to white fabric (2.5 Y N8/ to 5 Y 8/1 white) and gunmetal to dark grey surfaces (7.5 YR N5/ grey to 5 Y 7/1 light grey). Examples are hard, smooth and have an irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite in abundant to very abundant quantities as well sorted fine-medium sub-angular or sub-rounded grains.
- 2 Some examples contain iron particles in sparse quantities of ill-sorted medium size, usually as magnetite, but occasionally as haematite.

BB1: Black Burnished Category 1 Fabric; represents the quartz tempered dark surfaced fabric used to produce hand made vessels. The category was first described in 1960 (Gillam 1960) and has been dealt with at length in subsequent articles (Gillam 1970; Farrar 1973; Williams 1977). As the type is well established by these works it is not described here.

Some of the published examples were made at Rossington Bridge. Where possible drawn vessels have been ascribed to that production centre. The Rossington Bridge fabric varies from that of Dorset in being harder, greyish rather than black and in having less quartz temper (J Samuels pers comm).

BB2: Black Burnished Category 2 Fabric; covers the wheel thrown vessels of the black burnished vessel types. Described fully in the articles cited under BB1, so only the major characteristics are noted here. The fabric is dark grey (2.5 YR N4/) or black in colour (2.5 YR N3/ very dark grey to N2.5/ black). Often vessels have a red oxidised core (2.5 YR 4/6 to 4/8). Examples are hard smooth where burnished otherwise slightly rough and with a finely irregular fracture. The inclusions are as follows:

- 1 Quartz in moderate quantities of ill-sorted sub-angular and rounded grains, varying from fine to medium in size.
- 2 Iron as magnetite, or haematite where the core is oxidised, is present in sparse quantities. The fragments are ill-sorted sub-angular and of medium size.

Vessels have slipped or slurried surfaces. On closed forms the exterior surface is usually burnished to just inside the rim, with a matt zone being reserved for the decoration. Open forms have both exterior and interior surfaces burnished.

4a Finewares - colour-coated

C: Cologne (Lower Rhineland) colour-coated fabric; the fine white fabric of the Lower Rhineland, usually referred to as Cologne ware (= Anderson's Lower Rhineland Fabric 1: Anderson, 1980). The fabric is normally well preserved and white in colour (approximately 5 Y 3/1). Examples are hard, smooth and have a smooth fracture. The inclusions are barely visible, even under the microscope but are as follows:

- 1 Quartz or quartzite in sparse quantities of very fine sub-angular grains. The grains are well sorted.
- 2 Iron as haematite in very sparse quantities. The particles are well sorted, fine and sub-angular.

Exterior surfaces are invariably, and interiors usually, thickly slipped over all. This colour-coat is usually dark grey to black (2.5 Y N4/ dark grey to N3/ very dark grey) or partially oxidised to a reddish yellow (10 YR 7/6 yellow to 7.5 YR 6/6 to 6/8 reddish yellow). The colour coat usually covers well but occasionally is blotchy or patchy due to the uneven distribution or differential firing. It varies from slightly glossy to matt. All the examples came from beaker forms.

CG: 'Rhenish' colour coated fabric; covers fine ware products of both Central Gaul and Trier, unless the latter could be identified with certainty, when the code Tr is used. A very small % could be identified with confidence. The fabric is usually light red in colour (2.5 YR 6/8) although Trier sherds often have incompletely oxidised cores of grey (2.5 YR N6/ to N5/). Examples are usually hard, smooth and with a smooth fracture. The inclusions are as follows:

- 1 Quartz or quartzite is barely visible even under the microscope. It occurs in sparse quantities of very fine sub-angular grains, which are well sorted.
- 2 The majority of sherds from Bainesse Farm display moderate quantities of limestone under the microscope. This consists of ill-sorted, sub-rounded or rounded particles of medium size. There is no macroscopic difference between sherds with, or sherds without the limestone inclusions. The former may represent 'Black Samian' products from samian clays (Greene 1978, 19). Both exterior and interior surfaces are fairly thickly slipped overall. The colour is usually very dark brown to black (5 YR 3/1 to 2.5/1). Occasionally, differential firing results in interior surfaces or patches having a colour (7.5 YR 4/4 brown to 4/6 strong brown).

CLC: Colchester colour coated fabric; only one beaker was recovered in this fabric. The range is described by Anderson (Anderson 1980, 35). This example is light red in colour (2.5 YR 6/8), hard with a slightly rough feel. The inclusions are as follows:

1 Quartz in sparse to moderate quantities as well sorted, sub-angular grains of fine size.

Both exterior and interior surfaces are colour coated overall. The colour coat is slightly glossy on the exterior and predominantly grey green (2.5 Y N4/dark grey to N3/very dark grey) with reddish yellow patches (5 YR 6/6).

CRH: 'North Gaulish' colour coated fabric; (= Anderson's North Gaulish fabrics 1 and 2: Anderson 1980). Most of the sherds recovered would appear to be of Anderson fabric 2 but some examples fall in the overlap area between the two fabrics and may be in fabric 1. For sources see Symonds (1990).

NV: Nene Valley colour coated ware; an oxidised or parchment ware fabric with fine grog temper and orange, brown, or black colour-coat (Howe et al 1980).

NVW: Nene Valley(?) Waster; one heavily overfired sherd probably from a Nene Valley jar form was recovered. The core is grey (7.5 YR N7/ light grey to N6/grey), the surfaces are mottled grey to brown (7.5 YR N5/ grey to 5/6 strong brown and 6/6 reddish yellow). The sherd is very dense and hard, nearly a stoneware and has a fairly smooth feel and is clearly a 'second'.

XA: Xanten? (Lower Rhineland) colour-coated fabric; only one fine ware beaker was recovered, a brittle overfired example of Anderson Lower Rhineland fabric 2 (Anderson, 1980). Xanten is the probable kiln source, based upon the form. The exterior margin through to the inner margin is incompletely oxidised in places with a grey colour (10 YR 5/1). The inner margins and in places the entire section is oxidised to reddish yellow (5 YR 6/8). The vessel is hard with a slightly rough feel and finely irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite in moderate quantities of ill-sorted, fine to medium sub-angular or sub-rounded grains.
- 2 Iron as magnetite or haematite in very sparse quantities. The particles are ill-sorted, medium in size and sub-angular in shape.

Both surfaces are slipped overall. The colour-coat is overfired and patchy, varying from very dark grey to reddish yellow (5 YR 3/1 or 6/6 reddish yellow) and matt. The vessel (Form J20.13) is a very distinctive globular shaped beaker with diagonal barbotine lines from shoulder to nearly the base.

OX: Oxford oxidised red colour coated fabric; only one hemispherical bowl form occurs (Form B4.1). The fabric is defined by Young (Young 1977, 123). The example is hard, smooth, with a finely irregular fracture and is reddish in colour (5 YR 6/8). The inclusions are as follows:

- 1 Moderate quantities of quartz or quartzite present as ill-sorted, sub-angular grains of medium to coarse size.
- 2 Chalk in moderate quantities of ill-sorted, rounded fragments of fine to medium size.
- 3 Although not mentioned by Young, sparse fragments of haematite seem to occur as ill-sorted, sub-angular pieces of medium to coarse size.

Both interior and exterior surfaces bear the traces of a red colour coat (2.5 YR 5/6 to 5/8) and the flange has a white painted decoration scheme (10 YR 8/4 very pale brown).

O17: Fine colour coated oxidised fabric; has the same distinctive haematite inclusions as O6. As with O6, often displays haematite on the surfaces, sometimes smeared when the colour coat appears to have been applied by a slurry technique. Only a few small sherds survive and being relatively rare may include examples from more than one source.

The colour is basically reddish yellow but varies slightly from sherd to sherd (7.5 YR 8/4 pink to 7.5 YR 7/6 reddish yellow). It is invariably completely oxidised. Most examples are hard and smooth when well preserved, soapy when less so. Fractures are finely irregular or occasionally smooth. The range of inclusions is as for O6 although the quartz is well sorted and fine, the haematite usually medium rather than coarse in size. In occasional sherds the haematite is hardly present and the quartz is more frequent but the small nature of such sherds preclude the definition of a possible further fabric on this basis. Both interior and exterior surfaces are colour coated a reddish yellow colour (5 YR 7/8 to 5 YR 6/6). This invariably survives in a very patchy condition. All the surviving examples are thin-walled and probably come from a range of beaker forms.

O20: Later Roman red slipped fabric; orange with a red colour-coat, sometimes with a grey core. It has some moderate sand temper c 0.3mm and some translucent quartz c 0.5–1mm and occasional lime-stone sand c 0.3–1mm. Most vessels are bowls, generally Dr38 copies, some have white painted decoration.

O20A: Coarse colour-coated oxidised fabric; similar to O10 although the haematite is sparse rather than moderate in frequency, and it tends to have 'pimply' surfaces. Similar to those of sub-fabric O10A. Only a few sherds were recovered. They are all characterised by having a red (2.5 YR 5/6 to 2.5 YR 5/8) colour coat or painted decoration. One sherd comes from a beaker with the colour coat on the exterior surface and the interior of the rim. Other colour coated sherds are probably from beakers but have surviving colour coat only on their interior surfaces only. The only painted example is a beaker rim and has painted lines on the rim.

O21: Later Roman red-slipped ware; a grey core, orange margins and orange-brown surfaces. It has some moderate limestone sand temper c 0.3mm and some brown ironstone c 0.2–0.5mm and also has some silver mica. It has a thin red-brown colour-coat. Most forms are bowls, generally Dr38 copies and wall-sided bowls, some are decorated with white paint.

O21A: Red slipped oxidised fabric; appears to be similar to O8, perhaps a finer variety. Quartz is present in moderate proportions of medium sized grains, haematite in sparse proportions of medium particles, without much sign of being smeared. O21A lacks the calcareous inclusions of O8 and is characterised by being red slipped on both interior and exterior surfaces, although this often survives in a very patchy state. O21A has a similar colour range to O8 but surviving examples tend to be slightly softer and powdery. The characteristic red slip varies from the reddish vellow colour found on the interior surfaces of O8 sherds to a distinctly red colour (10 R 5/8). As with O8, O21A seems to be restricted to bowl forms and may represent the creation of a finer version of O8 to be used with red slipped bowls without the addition of calcareous fragments as occurs with O8 vessels.

O25: Fine colour-coated oxidised fabric; examples are reddish yellow in colour (7.5 YR 7/6) occasionally with a grey unoxidised core (7.5 YR N8/ white). The colour coat is applied to the exterior surfaces and varies from brown to reddish brown (5 YR 6/6 reddish yellow to 5 YR 5/3 reddish brown where it has been applied more thickly). The inclusions are as follows:

- 1 Quartz, which occurs in moderate quantities of well sorted sub-rounded grains of fine size.
- 2 Haematite, silver mica and limestone occur in sparse quantities. The haematite is ill-sorted and medium sized, the mica well sorted very fine and flat in shape, the limestone well sorted and fine in size.

O26: a red colour-coated fabric restricted to a single hemispherical flanged bowl (B4.3). It has a light grey core and pale orange margins and surfaces. The salmon pink colour-coat has been rather poorly burnished. The inclusions are as follows:

- 1 Common white, translucent and grey angular quartzite c 0.5–1mm.
- 2 Common grey sandstone(?) inclusions c 1-4mm.
- 3 Occasional red-brown haematite inclusions c 0.5–4mm.

O27: Crambeck(?) redware; soft, rather laminar, orange fabric with thin red colour coat, almost the same colour as the body, generally burnished. The surfaces show occasional fine silver mica flakes. The inclusions are as follows;

- 1 Occasional moderate sand temper c 0.3mm.
- 2 Common red-brown haematite inclusions c 0.5–3mm.

A variant has some very fine sand which is reflective, or mica, and is more like an oxidised version of the Crambeck greyware (Fabric R13).

O27A: Crambeck redware(?); pale orange-brown fabric with burnished surfaces, a single vessel of form B4.1 with white painted decoration is represented. It is suggested as a Crambeck product on the grounds of its form and decoration, the fabric being atypical. The inclusions are as follows:

- 1 Common moderate white, grey and black sand temper c 0.3mm.
- 2 Occasional limestone sand c 0.5mm

FW5: red colour-coated fabric with a dark grey core and orange margins and surfaces. A single vessel (BE3.10) is represented. The inclusions are as follows:

- 1 Some red haematite c 0.5–2mm.
- 2 Common moderate sand temper c 0.3mm.

FW8: an orange-brown colour-coated fabric with an orange core, margins and surfaces with no visible tempering. The fabric is hard, but the fracture is not 'crisp'. The chocolate brown of part of the colour-coat is reminiscent of Colchester products but it is unlikely to come from that source. It is rather similar in its texture to Much Hadham redware.

031: a softish orange-brown fabric with common brown haematite inclusions c 0.5-2mm with an orange colour-coat which is well burnished.

4b Finewares – other finewares

O9: Oxidised mica dusted fabric; completely oxidised throughout to a bright red colour (2.5 Y 6/6 to 12.5 YR 6/8). The few surviving examples are hard with a smooth feel and finely irregular to hackly fractures. The inclusions are as follows:

- 1 White and opaque grains of medium sized quartz or quartzite. These are ill-sorted, sub-angular or near round in shape and in moderate to abundant proportions.
- 2 Haematite in sparse quantities of ill-sorted, sub-angular or sub-rounded particles of medium size.
- 3 The interior surfaces of sherds have the remains of an overall application of fine grains of golden coloured mica. This mica is not apparent in the sections and must have been dusted onto the vessels.

Seems restricted to dish forms at Site 46 (Form D1.6).

O30: represented by a single indented, roughcast beaker bodysherd; pale grey core with pale grey-brown margins. The roughcast is formed by the use of large angular grey grog(?) fragments c 1–4mm, coated with a pale brown slip. The inclusions are as follows:

1 Some finish sand temper c 0.2mm.

5 Amphorae

A1: Dressel 20 Amphora fabric 1; only S Spanish globular amphorae Dressel 20 forms occur in A1. When well preserved, buff throughout (7.5 YR 7/4 pink to 6/4 light brown but occasionally as dark as 10 YR 7/4 very pale brown). The exterior surfaces are often whitish (7.5 YR 8/4 pink to 10 YR 8/4 very pale brown). Examples are usually hard rough and have an irregular fracture. The inclusions are as follows:

- 1 Quartz and quartzite as a heavy temper. This consists of moderate to abundant quantities of sub-angular grains which are ill-sorted in the medium to coarse size range.
- 2 Grey brown and black rock fragments in moderate quantities of sub-angular, ill-sorted pieces in the coarse size range.
- 3 Silver mica and limestone and often present in sparse quantities. The mica consists of flat grains of fine to medium size, the limestone as ill-sorted sub-angular fragments in the fine to medium size range.

The surface coloration sometimes seem to be produced by the application of a thin slip. One of two Dressel 20 amphora fabrics (the other is A2).

A2: Dressel 20 Amphora fabric 2; only S Spanish globular amphorae forms occur in A2. It is usually well preserved and pink (5 YR 7/4) to reddish brown (10 R 6/8 light red). Vessels often have an incompletely oxidised core of a buff (5 YR 7/4 pink) or grey (approximately 7.5 YR N6/) colour. The exterior surface is invariably a contrasting creamy (10 YR 8/3 very pale brown) or creamy orange colour (5 YR 7/6 to 7/8 reddish yellow) where the pink fabric shows through. Examples are hard, rough and have an irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite as a heavy temper, with quantities varying between vessels from moderate to abundant. Grains are ill-sorted, both sub-angular and rounded and vary in size from medium to coarse.
- 2 Limestone in moderate quantities of ill-sorted rounded and sub-angular fragments of medium size range.
- 3 Iron as haematite and silver mica in sparse quantities. The haematite consists of ill-sorted sub-angular fragments of medium size. The mica is present as well sorted flat grains of fine size.

The surface coloration often seems to result from the application of a thin slip to the exterior of vessels. One of two Dressel 20 amphorae fabrics (the other is A1).

A3: Pelichet 47 (Dressel 30) Amphora fabric; exclusive to S Spanish or Central Gaulish wine amphorae of Pelichet 47 form. The fabric is usually a buff colour (7.5 YR 8/4 pink) throughout or with a light red core (2.5 YR 6/6 to 6/8). Occasional examples are reddish buff in colour (2.5 YR 6/4 light reddish brown to 6/6 light red). The exterior surfaces are invariably a creamy buff colour (5 YR 8/2 pinkish white to 8/4

pink). When well-preserved examples are hard and smooth to slightly rough when not they tend to be soft and powdery. The fracture is invariably finely irregular. The inclusions are as follows:

- 1 Vessels are relatively fine tempered with quartz or quartzite, which is normally present in moderate quantities. The grains vary in colour from white to pinky red or clear. They are ill-sorted, in the fine to coarse size ranges and tend to be both sub-angular and rounded in shape.
- 2 Iron as haematite in sparse to moderate quantities consisting of ill-sorted sub-angular fragments of medium size.
- 3 Common white rounded and sub-angular grog (not limestone) c 1–5mm.
- 4 Mica in sparse quantities of ill-sorted sub-angular and flat grains of fine size (some vessels only).

A3A: Pelichet 47 (Dressel 30) Amphora sub-fabric; a minor but distinctive variant of A3. Only one sherd was recovered, distinctively light red in colour throughout (2.5 YR 6/8) with a buff slipped exterior surface (approximately 5 YR 8/4 pink to 7/6 reddish yellow). The sherd is hard soapy in feel and has a finely irregular fracture. Quartz, haematite limestone and mica are all present. These inclusions vary from those described for A3 in being very sparse in quantity and fine in size.

A4: Unidentified Amphora fabric; one amphora sherd of unidentifiable form was recovered. The sherd has buff margins and surfaces (5 YR 8/4 pink to 7/6 reddish yellow) and a buff pink core (approx. 5 YR 7/8 reddish yellow). It is fairly soft with a powdery feel and has a finely irregular fracture. The inclusions are as follows:

- 1 Quartz or quartzite as a temper, consisting of moderate quantities of red, white and clear grains. The grains are ill-sorted sub-angular and of medium size.
- 2 Iron as haematite in moderate quantities as ill-sorted sub-angular fragments in the medium to coarse size range.
- 3 Limestone occurs in sparse, golden mica in very sparse quantities. The limestone consists of ill-sorted sub-angular fragments of medium size, the mica of well sorted sub-angular and flat grains in the fine size range.

A5: Unidentified Amphora fabric; only two handle sherds were recovered. The fabric has a pink core and margins (5 YR 7/6 to 7/8 reddish yellow) and buff surfaces (7.5 YR 8/6 reddish yellow). The inclusions are as follows:

1 The examples are heavily tempered with abundant quantities of red, white and clear quartz or quartzite grains. These are ill-sorted, both round and sub-angular and of medium size. 2 Iron as haematite in only sparse to moderate quantities. It consists of ill-sorted, sub-angular fragments in the medium size range.

The exterior surfaces may have been slipped, resulting in the buff coloration but the poor state of preservation makes this difficult to determine with certainty.

A6: Unidentified Amphora fabric; only one body sherd was recovered. The sherd has light red buff margins and interior surface (2.5 YR 6/8 light red to 5 YR 7/8 reddish yellow) with an incompletely oxidised grey core (5 YR 7/1 light grey). The exterior surface is of a slightly redder colour (2.5 YR 6/6 to 6/8 light red). The sherd is hard with a slightly powdery but fairly smooth feel and an irregular fracture. The inclusions are as follows:

- 1 Heavily tempered with abundant quantities of red, white and clear quartz or quartzite grains. These are ill-sorted, sub-angular and of medium size.
- 2 Iron as haematite in moderate quantities of ill-sorted sub-angular fragments of medium size.
- 3 Silver mica in sparse quantities. The grains are ill-sorted, both sub-angular and flat, in the fine size range.

The exterior surface of the sherd is possibly slipped or more likely burnished giving it a darker colour than the interior.

A7: Unidentified Amphora fabric; only six sherds including one handle were recovered. The fabric is buff in colour (7.5 YR 8/4 pink) but the exterior surfaces of the sherds are light red where the slip remains (2.5 YR 6/8 to 5 YR 7/8 reddish yellow). The inclusions are as follows:

- 1 Heavily tempered with very abundant quantities of white and clear quartz or quartzite. These grains are ill-sorted, mainly rounded but including some of sub-angular shape and medium in size.
- 2 Iron as haematite in moderate quantities of ill-sorted sub-angular fragments of medium to coarse size range.

The exterior surfaces of the sherds are thinly slipped a light red colour.

A8: Campanian Amphora fabric; exclusive to Dressel 2–4 Amphorae from the Campanian region of S Italy. Usually pink in colour (2.5 YR 6/8 light red), sometimes with light grey margins (5 YR 6/2 pinkish gray) although a variant occurs with a light pink colour (5 YR 8/3–8/4 pink) with a white slipped exterior surface (2.5 YR 8/2). Hard, with a rough feel. It is characterised by the abundant quantities of coarse black augite present, both in the matrix and seemingly applied to the exterior surface, perhaps to facilitate a better grip on the vessel. (cf. Peacock 1971). David Williams suggests the abundance of Augite in the recovered examples points to a Bay of Naples (Pompeii

or Herculaneum) origin. (Peacock and Williams 1986). He writes:

Dressel 2-4 wine amphorae had a long life from the second half of the 1st century BC to the mid 2nd century AD, although quantitative trends suggest that it was in decline by the later 1st century AD. [The rim sherd from Catterick bridge is similar to rims from] the probable kilns at Masseria Starza and Masseria Dragone in the Ager Falernus, illustrated as a possible new type by Arthur (1982, fig 4, nos 3 and 4 and fig 5, nos 7 and 8). Reliable dating is difficult ... those from Masseria Dragone may have been produced sometime between the later 1st to the mid 5th or early 6th centuries AD. A similar rim and handle come from Claydon Pike, Gloucs but close dating is not yet available. However, similar forms seem to have been produced in northern Campania possibly during the 2nd or 3rd centuries AD (Arthur 1982).

A9: Gauloise 4 Amphora fabric; five sherds were recovered, all probably belonging to a Gauloise 4 flat-bot-

tomed amphora. The fabric is buff in colour (10YR 8/8 yellow), with cream surfaces (10Yr 8/6 yellow). The sherds are hard with a powdery feel and a fine texture. The inclusions are as follows:

1 Sparse quantities of medium sized grains of quartz and limestone. David Williams writes of the type:

Predominantly made in southern France, more particularly around the mouth of the Rhone in Languedoc, where a growing number of kilns have been discovered in recent years (Laubenheimer 1985). This type had a relatively long life from about the middle of the 1st century to at least the early 4th century AD (Panella 1973; Laubenheimer 1985). In Britain, Gauloise 4 does not appear to be present in pre-Boudiccan levels (Peacock 1978).

Mortaria

See Chapter 9.2.1

9.7 Appendix 1 – fabric descriptions

Apart from the mortaria which are coded on the same fabric series as the other Catterick vessels the fabric codes used here are part of a common northern type series which encompasses Beadlam villa (Evans 1996b), the Market Weighton Bypass, N Humberside (Evans, in Creighton 1998), Shiptonthorpe (Evans in prep) and Binchester (Evans and Ratkai in prep), *inter alia*.

Amphorae

- A2 Dressel 20 Baetican olive oil amphorae, an oxidised fabric with orange core, yellowish orange margins and orange brown surfaces; common sand temper c 0.3–0.4mm and common gold and silver mica.
- A3 Dressel 20 Baetican olive oil amphorae, an oxidised fabric with orange core and orange-brown margins and surfaces, exterior usually white-slipped; common calcareous sand temper c 0.1-0.2mm. Surfaces show occasional large gold mica inclusions.
- A11 Gauloise 4 Gallic wine amphorae, an oxidised amphora fabric with buff-orange core, margins and surfaces; some rounded calcareous inclusions c 0.2–0.5mm and some large silver and gold mica. Gauloise 4 wine amphorae, DF Williams.
- A31 An amphora fabric with orange core, margins and surfaces; common fine silver mica >0.1mm. DF Williams suggests the fabric is 'possibly from a Dressel 2–4 amphora, but it is difficult to be certain'.

Black Burnished wares

- B01 Dorset BB1 (Williams 1977)
- B02 A local BB1 imitation, a reduced fabric, with dark grey core, often with brown margins, and with dark grey surfaces, usually hand-burnished; common fairly coarse sand *c* 0.3–0.5mm. See Busby *et al* 1996 for the kiln site at Bainesse.
- B10 BB2 (Williams 1977; Monaghan 1997)
- B11 A reduced fabric with dark grey core, sometimes with brown margins, and with dark grey surfaces, it has a rather 'soapy' texture; occasional coarse sand temper c 0.4mm.

Colour-coated and other finewares

Colour-coated wares

- F10 'Rhenish' ware; hard fabric with orange core, margins and surfaces and brown or black colour-coat; common very fine calcareous sand temper less than 0.1mm. Most pieces seem likely to be from Trier.
- F11 Nene Valley colour-coated ware.
- F19 An oxidised red colour-coated fabric with pale orange core and margins and a bright orange thin marbled colour-coat; common sub-rounded orange-brown grog c 0.3–1mm and some white grog inclusions c 0.3–2mm.
- F20 Oxfordshire red colour-coated ware (Young 1977).

Polished greywares

F30 A Parisian type ware, generally with a slate grey core, lighter margins and slate grey surfaces, finely burnished; no visible temper.

Roughcast and barbotine decorated

F41 An oxidised roughcast fabric with a dark grey core, orange margins and orange-brown surfaces with clay pellet roughcasting; some sand temper c 0.3mm and some brown sub-angular ironstone c 0.4mm.

Oxidised, unslipped

F53 An oxidised colour-coated fabric with orange core, margins and surfaces with a thin orange colour-coat; no visible tempering, possibly some sand >0.1mm.

Crambeck redware and copies

F61 Crambeck copy redware(?); an oxidised fabric with an orange core, margins and surfaces; some-common moderate-coarse sand temper c 0.3–0.4mm, occasional red ironstone inclusions c 0.5–2mm and occasional white calcareous sand inclusions c 0.3mm.

Parchment wares

F70 Crambeck parchment ware (Evans 1989).

- F71 Nene Valley parchment ware with a white core, margins and surfaces; some fine pink and orange grog inclusions >0.1mm.
- F72 A whiteware fabric with a pale grey core, yellowish buff margins and surfaces; some rounded ironstone inclusions c 0.3–2mm and occasional calcareous sand c 0.3mm. Certainly not a Crambeck product, probably a local imitation, but not as W26.

Mica dusted fabrics

F81 An oxidised fabric with a grey core, thin orange margins and interior surfaces, exterior brown and heavily dusted with fine gold mica; possibly some fine sand temper > 0.1mm.

Gritted reduced wares

Calcite and other calcareous

- G01 E Yorks calcite gritted ware, a reduced handmade fabric with black core, margins and surfaces; abundant calcite tempering c 1–3mm and some ironstone.
- G05 A reduced handmade fabric with a black core, margins and surfaces (Evans 1985a, fabric 007/168); some calcite temper c 1–3mm and common fairly fine sand temper c 0.2mm.
- G08 A handmade reduced fabric with a dark-grey to black core, margins and surfaces; common sand temper c 0.3–0.4mm and common sub-rounded calcareous sand inclusions c 0.5–1mm. The distribution of this fabric suggests an origin in the Brough to Shiptonthorpe area.
- G098 A reduced handmade fabric with black core and margins and dark grey surfaces; common sub-rounded calcareous inclusions c 0.1–0.4mm and very occasional rounded white ?quartzite c 1mm.
- G099 A handmade reduced fabric with a blue grey core, light grey margins and dark grey surfaces; common moderate sand temper c 0.3mm and some calcareous sand c 0.4mm.

Shell

- G10 Dales ware (Loughlin 1977).
- G105 A reduced fabric with grey core, margins and surfaces with slightly pimply surfaces; common coarse sand temper c 0.3–0.5mm and occasional calcareous sand c 0.3mm. Cf G72.

Quartz and stone

- G20 A handmade, hard dark grey fabric; common-abundant translucent quartz inclusions c 1mm.
- G296 A reduced handmade rather laminar fabric with black core, margins and brown surfaces; common red-brown sub-angular ironstone inclusions c 1mm and angular grey-black stone inclusions c 1–2mm.

Flint

G51 A handmade, hard dark grey fabric; common grey flint inclusions c 3mm and angular calcareous inclusions c 0.5–3mm and some quartz c 0.5–1mm. Probably a southern E Yorks fabric.

Quartz, wheelmade

- G102 A reduced fabric, apparently wheelmade, with dark grey core, margins and surfaces; common moderate-coarse sand c 0.3–0.4mm and some rounded white and grey quartz inclusions c 1–2mm and rounded grey stone up to 4mm.
- G105 A reduced fabric with grey core, margins and surfaces with slightly pimply surfaces; common coarse sand temper c 0.3–0.5mm and occasional calcareous sand c 0.3mm.
- G106 A reduced gritted ware with dark grey core, buff margins and dark grey surfaces; common black, grey and translucent sub-rounded ?quartzite inclusions c 0.4–1mm.
- G107 A reduced gritted ware with blue-grey core and dark grey margins and surfaces; common sub-angular grey quartz inclusions c 1–3mm and some moderate sand temper c 0.3mm.

Mortaria

See Section 8.2.1 for full fabric descriptions

- MB1 Oxfordshire parchment ware mortaria (Young 1977).
- MB4 Mancetter-Hartshill whiteware mortaria.
- MB6 Nene Valley whiteware mortaria.
- MB9 Crambeck fine parchment ware mortaria.
- MB10 Cantley/Rossington Bridge oxidised white-slipped mortaria.

- MB12 Catterick-Piercebridge area oxidised white-slipped mortaria with blag slag trituration grits.
- MB16 Catterick region mortaria with white-slipped oxidised fabric and white quartz trituration grits.
- MB17 Catterick region mortaria with white-slipped oxidised fabric and white quartz trituration grits.
- MC8 Continental mortarium, possibly Rhenish, with a cream fabric.
- MC9 Continental mortarium, probably Pas-de-Calais, with soft cream-buff fabric and flint trituration grits.
- MC12 An oxidised mortarium fabric with pinkish buff core margins and surfaces, interior scored; some fine sand temper >0.2mm and common fine silver mica >0.1mm. Probably a continental import.

Oxidised wares

'Clean'

- O01 A buff orange oxidised fabric with orange core and buff margins and surfaces; no visible tempering.
- O03 An oxidised fabric with an orange core, margins and surfaces which have a 'soapy' texture; occasional calcareous sand temper c 0.1–0.3mm.
- O04 An oxidised fabric with orange core, margins and surfaces; some moderate sand temper c 0.3mm.
- O061 An oxidised fabric often with grey to pale grey core, buff-pale orange margins and surfaces with a 'soapy' texture; probably some very fine mica, very occasional sand c 0.3mm, occasional rounded red ironstone and rounded calcareous inclusions c 0.4mm.
- O07 An oxidised fabric with buff core and brownish-orange margins and surfaces, some fine sand temper c 0.1mm.

Quartz

O11 An oxidised flagon fabric with an orange core, margins and surfaces; common fine sand temper c 0.2mm and some rounded red ironstone c 0.5–2mm.

- O13 An oxidised fabric with brownish orange core, margins and surfaces; common moderate sand temper c 0.3mm.
- O181 An oxidised fabric with orange core, margins and surfaces, with a 'crisp' fracture; common translucent and white sub-rounded quartz inclusions c 0.5–2mm and occasional red ironstone inclusions up to 3mm.
- O182 An orange-buff fabric with an orange core and interior, exterior orange-buff; common angular translucent white and grey quartz inclusions c 0.5–2mm and occasional red ironstone inclusions up to 2mm.
- O19 An orange oxidised fabric with common fine sand temper c < 0.1 mm which gives a micaceous appearance to the surfaces.
- O191 An oxidised fabric with yellowish core and margins and yellow-brown surfaces; occasional black and translucent sand c 0.4mm.
- O192 An oxidised fabric with brownish-orange core, margins and surfaces; common fairly fine sand temper c 0.2mm and abundant fine silver and gold mica, possibly an import?

Severn Valley type wares

- O31 Severn Valley type ware, an oxidised fabric sometimes with a brownish orange core, with orange margins and surfaces; occasional dark brown ironstone inclusions c 0.3–1mm and occasional vegetable tempering voids up to c 2mm in length.
- O32 Severn Valley type ware, an oxidised fabric with a grey core, orange-brown margins and surfaces; some organic temper voids c 0.5–3mm in length and occasional sub-rounded brown ironstone c 2mm.

Ironstone

O41 An oxidised fabric with a grey core and orange margins and surfaces, with a 'soapy' texture; common rounded brown ironstone inclusions c 0.5–2mm and perhaps some fine sand >0.1mm as surfaces appear finely micaceous.

Class Q, white-slipped flagon fabrics

Q01 A white-slipped oxidised fabric, sometimes with a grey core, with orange margins and surfaces; common-abundant fine sand temper c 0.2mm.

- Q011 An oxidised fabric, often with reduced core and oxidised margins, exterior coated with a thick white slip; common moderate sand temper c 0.3mm.
- Q03 An oxidised fabric with yellow-brown core and brownish-orange margins and surfaces, exterior white slipped; some coarse sand temper c 0.3–0.6mm.
- Q04 A white-slipped oxidised fabric with a thin grey core and orange margins and surfaces; occasional sub-rounded white clay/grog inclusions c 0.4–2mm.
- Q05 An oxidised white-slipped fabric with brick orange core, margins and surfaces; common moderate sand temper c 0.3mm and occasional white angular quartz inclusions c 1–2mm.
- Q06 An oxidised fabric with orange core, amrgins and surfaces with a white-slipped exterior with horizontal red painted lines on exterior, with some sand c 0.3mm and some moderate rounded ironstone c 0.3-1mm, and very occasional angular quartz c 1mm.

Reduced wares

Quartz and 'clean'

- R06 A reduced fabric with grey core, margins and surfaces; some fine sand temper c 0.1mm.
- R061 A reduced fabric with very pale grey core, grey margins and dark grey exteriors; little visible tempering.
- R062 A reduced fabric with a grey core, sometimes orange margins, and black surfaces; common fine sand temper c 0.1mm giving the surfaces a finely micaceous appearance.
- R07 Holme-on-Spalding Moor greywares, a hard reduced fabric with little visible sand temper.
- R08 A reduced fabric with pale grey core and thin dark grey margins and surfaces; possibly occasional fine $\operatorname{grog} c \ 0.2$?
- R09 Crambeck greyware (Evans 1989).
- R10 A reduced fabric, usually with grey core, margins and surfaces with a 'crisp' fracture; some fairly fine-moderate sand temper c 0.2–0.3mm.
- R11 A reduced fabric usually with a grey core, margins and surfaces; common moderate sand temper c 0.3mm and some rounded brown ironstone.

- R13 A reduced fabric with a mid grey core, margins and surfaces; abundant fairly coarse sand temper c 0.4mm.
- R131 A reduced fabric with pale blue-grey core and mid grey margins and surfaces with a 'crisp' fracture; common coarse translucent sub-rounded sand temper c 0.3–0.5mm.
- R16 A hard, darkish grey fabric; common whiteish coarse sand temper c 0.4–0.5mm. Probably more than one source. E Yorks and Binchester examples probably from different sources.
- R19 A reduced fabric with dark grey core, thin pale grey margins and mid grey surfaces; some rounded black ironstone inclusions c 0.3–1mm and probably some fine sand >0.1mm.
- R196 A reduced fabric with bluish grey core, margins and surfaces, which appear slightly pimply; some coarse sand temper c 0.3–0.4mm.
- R197 A reduced fabric with a buff-brown core and margins and dark grey surfaces; common coarse grey and brown sub-angular sand c 0.4–0.5mm and fine silver mica >0.1mm.
- R198 A reduced fabric with blue grey core and beige margins and surfaces; occasional fine sand c 0.2mm and occasional brown ironstone c 0.2mm.
- R199 A reduced fabric with a grey core, margins and surfaces, with a 'crisp' fracture; occasional moderate sand temper c 0.3mm and some angular white quartz and black stone or grog inclusions c 0.5–1.5mm.

Fine grey burnished

R24 A reduced fabric with a blue grey core, buff margins and dark grey surfaces, often well burnished; little visible sand temper. Probably an E Yorks source.

Calcareous

- R37 A reduced fabric with a grey core, margins and dark grey surfaces; common sub-angular calcareous inclusions c 0.4–2mm and occasional moderate sand temper c 0.3mm.
- R39 A reduced fabric, sometimes with an oxidised core, with grey margins and surfaces and a 'crisp' fracture; common fine sand temper c 0.2mm and common rounded calcareous sand inclusions c 0.2mm.

- R391 A reduced fabric with blue-grey core, brown margins and brownish grey surfaces with a 'crisp' fracture; some moderate sand temper c 0.3mm and some angular white calcareous inclusions c 0.5–2mm.
- R392 A reduced fabric with a dark grey core, thin pale grey margins and dark grey surfaces; occasional sand temper c 0.2mm and occasional black ironstone c 0.2mm and occasional sub-angular calcareous inclusions c 0.4mm.

Handmade with quartz

R43 A reduced fabric with a grey core, margins and surfaces with a 'crisp' fracture; some moderate sand tenmper c 0.3mm and occasional grey clay pellets/grog c 1–2mm.

Mica

R71 A reduced fabric with brown core and black margins and surfaces; perhaps some fine sand temper >0.1mm and abundant fine silver mica c 0.1–0.2mm.

Organics

R81 A reduced fabric with a pale grey core and thin mid grey margins and surfaces; common black rounded ?organic inclusions c 0.3mm.

Whitewares

Quartz

- W01 A whiteware with pale orange core and buff-white margins and surfaces; common-abundant sand temper *c* 0.2mm.
- W03 A whiteware with white core, margins and surfaces; some very fine orange grog/ironstone inclusions >0.1mm.

Grog and clay pellets

W22 A buff-white fabric with brownish buff core and interior and grey-white exterior; some translucent and black sand c 0.2mm and some rounded white grog inclusions c 0.5–2mm.

Appendix 12.1 Catterick tile fabrics

R M J Isserlin

This covers all fabrics referred to apart from Site 46 material (described by Evans, Chapter 12.2.1) or items mentioned in RIB (not accessible when this text was written). Three basic fabrics have been distinguished with the naked eye (TF1–3; variants distinguished as a, b, c). Any statement of quantity or of which forms occur in which particular fabrics is misleading given the quantities involved. As variations masquerading as individual fabrics may sometimes be concealed within a single brick, assignation must be regarded as rather tentative.

Sandy Fabric TF1

Fabric TF1 Very hard, sandy, reddish yellow (5YR 6/8) throughout. Sparse quartzite (0.3–1.5mm), grog (3.0mm) and limestone (1mm). Site 433. Possibly a York sandy fabric.

Fabric TF1a Very hard, sandy reddish yellow (5YR 6/8) throughout. Sparse quartzite, some sign of grass tempering. Crisp fracture. Site 433. Possibly a York sandy fabric.

Fabric TF1b Medium hard grey (5YR 5/1) at core to reddish yellow (5YR 6/8) at exterior surface. Smooth feel, crisp fracture. Sparse grog (under 3mm). Sites 433, 425. Site 482(?). Possibly a York sandy fabric.

Fabric TF1c Soft sandy reddish yellow (5YR 7/6) throughout. Common grog (0.5–4mm), sparse quartzite (0.3mm). Possibly a York sandy fabric. Site 433.

Calcite Fabrics TF2 and TF3

Fabric TF2 Hard, sandy, reddish yellow (7.5YR 6/8) throughout. Sparse white mica (0.3mm), sparse calcite (1-1.5mm). Site 425. Site 482.

Fabric TF2a Soft reddish yellow (5YR 6/6) throughout. Sparse grog (0.5-5mm) and very sparse mica (under 0.3mm). White streaks of calcareous clay. Site 425. Site 482.

Fabric TF3 Hard reddish yellow (7.5YR 7/6) at exterior surface to grey (5YR 7/1) at core. Common calcite (0.5–1mm) and abundant quartzite (0.5–1mm). Possibly a variant of Site 46 fabric T2 (Evans and Bell, Chapter 12.2.1) or of the local calcite gritted ware CG599 (Busby *et al* 1996, 288), and therefore local. Site 425.

13.2.2 Catalogue of the coins from the Catterick Bypass and Catterick 1972 excavations (Sites 433 and 434)

P J Casey and R J Brickstock

Abbreviations

The following abbreviations are used throughout this catalogue:

Mints (followed, where appropriate, by *officina* letter, eg P,I,a denoting Primo, 1st or Alpha.)

AL	Alexandria	HE	Heraclea
AM	Amiens	\mathbf{LG}	Lyons
AN	Antioch	LN	London
$\mathbf{A}\mathbf{Q}$	Aquileia	\mathbf{ME}	Milan
AR	Arles	Κ	Nicomedia
KA	Carthage	OS	Ostia
\mathbf{CL}	Cologne	$\mathbf{R}\mathbf{M}$	Rome
CO	Colchester	\mathbf{SR}	Sirmium
CN	Constantinople	\mathbf{SS}	Siscia
CY	Cyzicus	TA	Tarraco
$\mathbf{E}\mathbf{M}$	Emesa	\mathbf{TC}	Ticinum
GA	Gallic mint	TE	Thessalonica
\mathbf{TR}	Trier		

Denominations (denom:)

ANT	Antoninianus	MIL	
	Miliarensia		
AS	As	SEST	Sestertius
AUR	Aureus	SEM	Semis
AUREL	Aurelianus	SILIQ	Siliqua
DEN	Denarius $(pl = plated)$	SOL	Solidus
DP	Dupondius	QUAD	Quadrans
FOLL	'Follis'	QUIN	Quinarius

Catalogue (cat:) (Numbers refer to RIC unless otherwise stated.)

RIC The Roman Imperial Coinage, volumes 1-9, ed H Mattingly, E A Syndenham, C

13.2.2.1 Catterick Bypass (Site 433) - catalogue of coins

1 Context: F XIV 4	Phase: 2?	Small find No. 104	
VESPASIAN	denom: AS	Obv -	
date: 69-79 mint:	cat: -	Rev - SC	
diam: 25.0 mm wt:	5.3 g wear: VW/EW		
2 Context: D XI 17	Phase: 5	Small find No. 57	
VESPASIAN	denom: DP	Obv -	
date: 69-79 mint:	cat: -	Rev -	
diam: 27.5 mm wt:	6.4 g wear: EW/C		
3 Context: F I 8 Phase: 3-4		Small find No. 48	
VESPASIAN denom: DEN		Obv [IMP CAESAR VESPAS]IAN[VS AVG]	
date: 70 mint: RM cat: 20		Rev [PON MAX TRP] COS [II]	
diam: 17.0 mm wt:	2.0 g wear: SW/UW		
4 Context: G XXV ext U/S Phase: U/S		Small find No. 246	
VESPASIAN	denom: DEN	Obv [IMP CAE[S VESP[]	

	H V Sutherland, R A G Carson
	(1926-1981)
BMC	Coins of the Roman Empire in the Brit-
	ish Museum, by H Mattingly, volumes
	1-6, 1965-68.
С	Description Historique des Monnaies
	Frappées sous l'Empire Romain, by H
	Cohen (2nd edition), Paris, 1880-1892.
CK	Late Roman Bronze Coinage, Part II, by
	R A G Carson and J P C Kent, 1960
\mathbf{CR}	Roman Republican Coinage, by M
	Crawford, 1974.
CUNETIO	The Cunetio Treasure, Roman Coinage
	of the Third Century AD, by E Besly and
	R Bland, 1983.
E	Die Münzprägung der Gallischen Kaiser
	in Köln, Trier und Mailand, by G Elmer,
	1941.
HK	Late Roman Bronze Coinage, Part I, by P

HK Late Roman Bronze Coinage, Part I, by P V Hill and J P C Kent, 1960.

A copy or counterfeit of a particular ruler/issuer is denoted by single quotation marks, eg 'CLAUDIUS II' and by the use of a lower case 'c' in the catalogue reference, eg c. of 261 = a copy of RIC 261. The use of the word 'of' indicates that a precise catalogue reference has been obtained; 'as' is used, for both official issues and copies, to denote an incompletely catalogued coin.

Where recorded, the *condition* (wear:) of both the obverse and reverse is denoted by the following abbreviations:

UW	Unworn	\mathbf{EW}	Extremely worn
SW	Slightly worn	С	Corroded
W	Worn	NSU	Not struck up
VW	Very worn		-

Where recorded, the flan diameter (diam:) is given in millimetres (mm) and the weight (wt:) in grams (g).

Additional, archaeological, abbreviations in site references: Ext for extension; P for Pit.

Rev date: 70-79 mint: cat: as 33 diam: 18.0 mm wt: 2.6 g wear: W/VW 5 Context: J I 25 Small find No. 92 Phase: 2 VESPASIAN denom: AS Obv IMP CAESAR VESPASIAN AVG C[OS III] date: 71 mint: RM cat: 487 Rev FOR[TVNAE REDVCI] SC diam: 28.0 mm wt: 9.5 g wear: VW/VW 6 Context: G XXV 5 Phase: 6(-7) Small find No. 209 VESPASTAN denom: DEN Obv IMP CAESAR [VESP]ASIANVS AVG date: 79 mint: RM cat: 118 Rev TR POT X COS VIIII diam: 19.5 mm wt: 2.0 g wear: W/W Phase: 1 7 Context: L XIX 23 Small find No. 57 date: 77-78 mint: LG cat. Word diam: 29 0 TITUS under VESPASIAN Obv T CAES INP AVG F TRP COS VI CENSOR cat: Vespasian 777b Rev PAX AVG SC diam: 29.0 mm wt: 9.8 g wear: W/W 8 Context: K XIV 17 Phase: 1b-2 Small find No. 175 DOMITIAN denom: AS Obv date: 81-96 mint: cat: -Rev diam: 27.5 mm wt: 7.8 g wear: SW/C Phase: 1 9 Context: L XIX 23 Small find No. -DOMITIAN denom: AS Obv IMP CAES DOMIT AVG GERM COS X[1...CENS...PP] cat: as 301a date: 85-96 mint: RM Rev M[ONETA AVGVST(A)] SC diam: 29.5 mm wt: 8.0 g wear: SW/SW Phase: Unphased Small find No. 14 10 Context: C II 8 DOMTTTAN Obv IMP CAES DOMIT AVG GERM PM TRP... denom: DEN date: 89-91 mint: RM cat: as 145 Rev IMP XXI [COS....] CENS PPP diam: 18.0 mm wt: 1.3 g wear: UW/UW 11 Context: U/S Phase: U/S Small find No. -DOMITIAN? denom: DP Obv date: Clst mint: cat: -Rev diam: 27.5 mm wt: 9.0 g wear: EW/EW 12 Context: K XXIII 3 Phase: 6 Small find No. 129 FLAVIAN denom: AS Obv date: 69-96 mint: cat: -Rev diam: 24.5 mm wt: 5.0 g wear: EW/EW Phase: U/S 13 Context: U/S Small find No. -NERVA denom: SEST Obv [IMP NERVA CAES] AVG [PM TRP..COS...PP] date: 96-98 mint: RM cat: as 60 Rev [FORTVNA AVGVST] SC diam: 32.5 mm wt: 17.2 g wear: SW/SW 14 Context: F XVII 2 Phase: U/S Small find No. 18 TRAJAN denom: SEST Obv IMP CAES NERVA TRAIAN AVG GER[M PM] cat: as 383 date: 98-102 mint: RM Rev diam: 32.5 mm wt: 24.5 g wear: VW/EW 15 Context: E XX 28 Phase: 3 Small find No. 223 TRAJAN denom: SEST Obv date: 98-117 mint: cat: -Rev diam: 34.0 mm wt: 22.1 g wear: C/C 16 Context: E U/S Small find No. 126 Phase: U/S TRAJAN fragment denom: DEN Obv [IMP...TRAIANO AVG GER] DAC PM[TRP...] date: 103-17 mint: cat: as 91 Rev diam: 10.0 mm wt: 0.3 g wear: W/C 17 Context: G XXIII 1 Phase: U/S Small find No. 148 TRAJAN denom: DP Obv [IMP CAES NERVA]E TRAIANO AVG [GER DAC PM TRP COS VIPP] date: 112-14 mint: RM cat: 626 Rev [FELICITAS AVGVST] SC diam: 25.5 mm wt: 11.0 g wear: VW/VW 18 Context: A U/S Phase: U/S Small find No. -HADRIAN denom: AS Obv date: 117-38 mint: cat: -Rev diam: 24.0 mm wt: 7.4 g wear: C/C 19 Context: G XVII 10 Phase: 2-3/4 Small find No. 206 denom: SEST HADRTAN Obv date: 119-22 mint: RM cat: as 583a Rev [?LIBERTAS PVBLICA SC] diam: 32.0 mm wt: 23.1 g wear: VW/EW

20 Context: H XVII 2 Phase: 5 Small find No. 106 HADRIAN hybriddenom: DENObv HADRIAN-VS AVGVSTVSdate: 125+mint:cat: obv.as 146,rev.46Rev PM [TRP COS II] in exergue: SALVS AVG diam: 18.0 mm wt: 2.8 g wear: UW/SW 21 Context: D XI 12 Phase: 5 Small find No. 51 denom: DEN Obv [HADRIANVS] AVGVSTVS date: 125-28 mint: RM cat: 153 Rev COS [III] diam: 19.0 mm wt: 2.3 g wear: UW/UW Phase: 6a Small find No. 29 denom: DEN Obv [HADRIANVS AVGVSTVS] cat: 215 date: 132-34 mint: RM Rev [IVS]TITIA [AVG PP] in ex. [COS] III diam: 18.5 mm wt: 2.5 g wear: UW/UW 23 Context: G XXIX 7 Phase: 2(-3/4) Small find No. 213 denom: SEST Obv [L AE]LIVS [CAESAR] date: 137-38 mint: RM cat: Hadrian 1057 Rev [TR POT COS II SC in ex. CONCORD] diam: 31.5 mm wt: 26.4 g wear: W/VW 24 Context: D VIII 2 Phase: U/S Small find No. 36 denom: DEN Obv IMP T AEL CAES HADR ANTONINVS date: 139 mint: RM cat: 34 Rev AVG PIVS PM TRP COS II PP diam: 18.5 mm wt: 2.3 g wear: W/SW 25 Context: G XXVI 2 Phase: 6(-7) Small find No. 272 denom: DP Obv ANTONINVS AVG PI-VS [PP TRP] COS III date: 140-44 mint: RM Rev SAL[VS AVG] SC cat: 668 diam: 26.0 mm wt: 10.9 g wear: SW/SW 26 Context: L XVIII 6 Phase: 2-3/4 Small find No. 59 ANTONINUS PIUS denom: DEN Obv [ANTONINVS AVG PIVS PP IMP II] cat: 276 date: 157-58 mint: RM Rev [TR POT XXI COS] IIII diam: 18.0 mm wt: 2.5 g wear: UW/UW 2.5 y Phase: 6/7 27 Context: H XXVI 2 Small find No. 150 FAUSTINA I, POSTH. denom: AS Obv [DI]VA [FAVSTINA] date: 141-61 mint: cat: A.Pius 1174 Rev [AVG]VS[TA] SC diam: 25.5 mm wt: 12.0 g wear: SW/SW 28 Context: L XIX 6 Phase: 3-5 Small find No. 48 denom: SEST Obv IMP CAES M AUREL ANTONINVS AVG PM date: 162-63 mint: cat: 843 Rev SALVTI AVGVSTOR TRP XVII COS III SC diam: 33.5 mm wt: 28.3 g wear: UW/UW 29 Context: E XXII 2Phase: 5-7Small find No. 199 Obv [LVCILLAE AVG ANTONINI AVGF] denom: SEST date: c164-69 mint: cat: M.Aurelius 1747 Rev [IVNONI LVCINAE] diam: 31.0 mm wt: 22.5 g wear: VW/VW Phase: 5 Small find No. 162 Obv LVCILLAE AVG ANTONINI AVGF denom: DEN LUCILLA [M.AURELIUS] cat: M.Aurelius 791 Rev VOTA PVBLICA Phase: 2-3/4 Small find No. 56 denom: DEN Obv COMMODO CAES AVG FIL GERM SARM

date: c164-69 mint: diam: 17.5 mm wt: 2.4 g wear: UW/SW 31 Context: G XV 5 COMMODUS CAES cat: Aurelius 611 var Rev HIL-A-RITAS date: 175-76 mint: diam: 20.0 mm wt: 2.6 g wear: UW/UW 32 Context: L U/S Phase: U/S Small find No. -COMMODUS denom: DEN Obv [(M)COMM ANT..AVG..] date: 186-89 mint: cat: as 122 Rev [TRPXI..IMP...COS]V [PP] diam: 17.5 mm wt: 2.2 g wear: W/W 33 Context: G XX ext 2 Phase: 6(-7) Small find No. 143 'SEPTIMIUS SEVERUS' denom: DENpl Obv date: '193-211 mint: cat: c.as -Rev diam: 19.5 mm wt: 1.8 g wear: C/C 34 Context: G XXV 7 Small find No. 202 Phase: 3c denom: DEN Obv [IVLIA] AVGVSTA JULIA DOMNA date: 196-211 mint: RM Rev [VESTAE] SANCTAE cat: Severus 587 diam: 16.0 mm wt: 3.5 g wear: W/W

HADRIAN hybrid

HADRIAN

HADRIAN

22 Context: H II 8

AELIUS CAESAR

ANTONINUS PIUS

ANTONINUS PIUS

M.AURELIUS

30 Context: K XIX 5

LUCILLA

Phase: 5-6 Small find No. 105 35 Context: E VI 16 'CARACALLA' fragment denom: DENpl Obv [ANTON]INVS AV[GVSTVS..]

date: '199-217' mint: cat: c.as 31 Rev diam: 9.5 mm wt: 0.3 g wear: UW/C 36 Context: E VI 16 Small find No. 103 Phase: 5-6 MACRINUS(?) denom: DEN Obv [IMPCM OPEL SEV MACRINVS AVG] date: 217-18 mint: cat: 53 Rev A[EQVITAS AV]G diam: 16.0 mm wt: 0.8 g wear: SW/SW Phase: 6b Small find No. 99 37 Context: E V 13 'ELAGABALUS' denom: DENpl Obv [IMP ANTONINVS PIVS AVG] date: '218-22' mint: cat: c.of 131 Rev SACERD [DEI SOLIS ELAGAB] diam: 19.0 mm wt: 2.7 g wear: C/W? 38 Context: D XIX 11 Phase: 5-6 Small find No. 145 denom: DEN SEVERUS ALEXANDER Obv IMP CM AVR [SEV AL]EXAND AVG date: 223 mint: cat: 19 Rev PM TRP II COS PP diam: 19.0 mm wt: 2.0 g wear: SW/SW 39 Context: G XXV 10 Phase: 2-3/4 Small find No. 239 denom: DEN SEVERUS ALEXANDER Obv IMP CM AVR SEV ALEXAND AVG date: 226-35 mint: cat: as 53 Rev [PM TRP...]COS I[..P]P diam: 19.5 mm wt: 2.3 g wear: SW/SW 40 Context: F XXV 9 Phase: 5? Small find No. 220 SEVERUS ALEXANDER denom: DEN Obv [IMP] SEV [ALEX]AND AVG date: 228-31 mint: cat: 224 Rev [VIRTV]S AVG diam: 18.0 mm wt: 2.3 g wear: UW/UW Phase: 6 Small find No. 135 41 Context: K XXII 4 ORBTANA denom: DEN Obv [SAL]L BARBIA ORB[IANA AVG] date: 225 mint: cat: Sev.Alex.319 Rev [CONCORDI]A AVGG diam: 18.5 mm wt: 2.1 g wear: SW/SW 42 Context: K I 3 Phase: 5 Small find No. 184 JULIA MAMAEA denom: DEN Obv IVLIA MAMAEA AVG date: 226-35 mint: cat: Sev.Alex.343 Rev IVNO CONSERVATRIX diam: 21.0 mm wt: 2.6 g wear: UW/UW Phase: 5-7 43 Context: E XXII 2 Small find No. 200 GALLIENUS, JOINT REIGN denom: ANT Obv IMP GALLIENVS [PIVS AVG] date: 257 mint: LG cat: 46 Rev VICT GE[RMANI]CA diam: 21.0 mm wt: 3.1 g wear: UW/UW Phase: 6 44 Context: K XVIII 2 Small find No. 92 SALONINUS denom: ANT Obv SAL VALERIAN[VS SC] date: 256 mint: RM cat: 10 Rev PRIN[C IVVE]NT diam: 21.0 mm wt: 2.7 g wear: W/W Phase: U/S 45 Context: J VI 1 Small find No. 28 denom: ANT SALONINA [JOINT REIGN] Obv SALONINA AVG date: 256-57 mint: RM cat: 35 Rev [PIETAS] AVGG diam: 20.0 mm wt: 2.4 g wear: UW/UW Phase: 5 Small find No. 25 46 Context: F VI 4 GALLIENUS denom: ANT Obv [GALLIE]NVS AVG date: 258-68 mint: cat: as 177 Rev [DIA]NAE CON[S AVG] diam: 20.0 mm wt: 2.1 g wear: VW/VW 47 Context: F VI 5 Phase: 5 Small find No. 62 GALLIENUS denom: ANT Obv date: 258-68 mint: cat: -Rev diam: 19.5 mm wt: 2.6 g wear: SW/C 48 Context: F VI 6 Phase: 5 Small find No. 130 GALLIENUS(?) Obv denom: ANT date: 258-68 mint: Rev cat: diam: 18.0 mm wt: 1.5 g wear: W/C 49 Context: F XXIV 4 Phase: 6-7 Small find No. 204 GALLIENUS denom: ANT Obv date: 258-68 mint: cat: -Rev diam: 20.0 mm wt: 4.2 g wear: UW/C 50 Context: G XVII 2 Phase: 6(-7) Small find No. 175 denom: ANT Obv [GALLIE]NVS AVG GALLIENUS date: 258-68 mint: RM cat: 227 Rev [LIB A]VG diam: 19.0 mm wt: 1.7 g wear: UW/UW

51 Context: D XXIV 1 Phase: U/S Small find No. 112 GALLIENUS denom: ANT date: 258-68 mint: RM cat: 160 diam: 19.5 mm wt: 2.6 g wear: SW/SW 52 Context: G XXV 1 Phase: U/S GALLIENUS denom: ANT date: 258-68 mint: RM H cat: 280 diam: 16.5 mm wt: 1.6 g wear: UW/UW 53 Context: K XII 2 Phase: 6-7 GALLIENUS denom: ANT date: 258-68 mint: RM E cat: 176/7 diam: 20.5 mm wt: 2.0 g wear: C/SW 54 Context: K XXVII 2 Phase: 4+ GALLTENUS denom: ANT date: 258-68 mint: cat: 226 diam: 17.0 mm wt: 1.8 g wear: SW/SW 55 Context: L III 2 Phase: 6 GALLIENUS denom: ANT date: 258-68 mint: RM H cat: 164 diam: 18.5 mm wt: 2.5 g wear: W/SW 56 Context: E VI 4 Phase: 5-6 denom: ANT GALLTENUS date: 258-68 mint: RM cat: 208/210 diam: 16.5 mm wt: 1.8 g wear: UW/UW 57 Context: F XVI 4 Phase: Unphased Small find No. 108 SALONINA denom: ANT date: 258-68 mint: cat: 5a diam: 18.5 mm wt: 1.6 g wear: W/SW 58 Context: E VI 4 Phase: 5-6 CLAUDIUS II denom: ANT date: 268-70 mint: RM cat: 98/99 diam: 20.0 mm wt: 2.6 g wear: W/W 59 Context: F XI 2 Phase: 6 CLAUDIUS II denom: ANT date: 268-70 mint: RM cat: 54 diam: 19.0 mm wt: 1.7 g wear: UW/UW Phase: 5 60 Context: F VI 6 CLAUDIUS II denom: ANT date: 268-70 mint: RM cat: 79 diam: 18.5 mm wt: 2.1 g wear: UW/UW 61 Context: F VII 5 Phase: 5-6 denom: ANT CLAUDIUS II date: 268-70 mint: RM XII cat: 56 diam: 17.5 mm wt: 1.8 g wear: SW/W 62 Context: F VII 6 Phase: 5 CLAUDIUS II denom: ANT date: 268-70 mint: cat: diam: 18.5 mm wt: 1.4 g wear: SW/C 63 Context: F VI 6 Phase: 5 CLAUDIUS II denom: ANT date: 268-70 mint: cat: 104 diam: 19.5 mm wt: 2.3 g wear: SW/UW 64 Context: F XIII U/S Phase: U/S CLAUDIUS II denom: ANT date: 268-70 mint: RM X cat: 101 diam: 16.0 mm wt: 2.1 g wear: UW/UW 65 Context: G VIII 6 Phase: 3 CLAUDIUS II denom: ANT date: 268-70 mint: cat: as 34 diam: 20.0 mm wt: 2.7 g wear: SW/SW 66 Context: F XXIV 2 Phase: U/S Small find No. 191 CLAUDIUS II denom: ANT

Obv [GALL]IENV[S AVG] Rev [AETER]NITA[S AVG] Small find No. 200 Obv [GALLI]ENVS AVG Rev [SECVRIT P]ERPET Small find No. 45 Obv [(IMP) GALLIENVS AVG] Rev DIAN[AE CONS AVG] Small find No. 139 Obv GALL[IENVS AVG] Rev [LAETITIA AVG] Small find No. 27 Obv GALLIENVS AVG Rev APOLLINI CONS AVG Small find No. 38 Obv [GAL]LIENVS [AVG] Rev [I]OVI CONS[ERVA(T)] N in field r. Obv C[OR SALONINA AV]G Rev [FEV]VNDITA[S AVG] Small find No. 36 Obv [IMP(C)CLAVDIVS] AVG Rev [SALVS A]VG Small find No. 12 Obv IMPC CLAVDIVS AVG Rev IOVI VI[CTO]RI Small find No. 47 Obv IMPC CLAVDIVS AVG Rev PAX AVG Small find No. 88 Obv [IMP CLAVDIVS] AVG Rev LAETITIA AVG Small find No. 100 Obv IMPC C[LAVDIVS..AVG] Rev -Small find No. 115 Obv IMP[C CLAVDIVS] AVG Rev [VICTO]RIA AVG Small find No. 177 Obv [IMPC CLAVDIVS AVG] Rev SECVR[IT AVG] Small find No. 118 Obv [IMP..CL]AVDIVS [AVG] Rev FIDES [EXERCI] Obv [IMP CLAVDIVS AVG]

date: 268-70 mint: cat: 181 diam: 16.5 mm wt: 2.4 g wear: SW/W 67 Context: F U/S Phase: U/S Small find No. -CLAUDIUS II denom: ANT date: 268-70 mint: cat: as 104 diam: 18.0 mm wt: 1.9 g wear: UW/SW 68 Context: E XI 2 Phase: U/S CLAUDTUS II denom: ANT date: 268-70 mint: RM cat: 109 diam: 20.0 mm wt: 2.6 g wear: SW/W 69 Context: E XIV 5 Phase: 5-6 CLAUDTUS TT denom: ANT date: 268-70 mint: cat: 104/5 diam: 16.5 mm wt: 1.4 g wear: UW/UW 70 Context: J I 2 Phase: 6 denom: ANT CLAUDIUS II date: 268-70 mint: cat: 79/80 diam: 18.5 mm wt: 3.3 g wear: SW/UW 71 Context: J III 4 Phase: 5-6 CLAUDIUS II denom: ANT date: 268-70 mint: cat: 24 diam: 14.0 mm wt: 1.9 g wear: SW/SW 72 Context: G XXX 4 Phase: 6-7 CLAUDTUS IT denom: ANT date: 268-70 mint: cat: as 87 diam: 17.5 mm wt: 2.2 g wear: SW/SW 73 Context: J IV 5 Phase: 5-6 CLAUDIUS II denom: ANT date: 268-70 mint: cat: diam: 16.5 mm wt: 1.5 g wear: SW/C Phase: U/S 74 Context: K XII 1 denom: ANT CLAUDTUS TT date: 268-70 mint: cat: as 14 diam: 19.0 mm wt: 1.5 g wear: UW/C 75 Context: F XXVI 2 Phase: U/S CLAUDIUS II denom: ANT date: 268-70 mint: cat: diam: 20.0 mm wt: 2.4 g wear: C/C 76 Context: F XXVI 2 Phase: U/S CLAUDIUS II denom: ANT date: 268-70 mint: cat: diam: 17.0 mm wt: 1.3 g wear: UW/C 77 Context: K XVIII 2 Phase: 6 CLAUDIUS II denom: ANT date: 268-70 mint: RM cat: 16 diam: 19.5 mm wt: 1.7 g wear: SW/SW 78 Context: K XXII 4 Phase: 6 CLAUDIUS II denom: ANT date: 268-70 mint: cat: 48 diam: 19.0 mm wt: 2.3 g wear: UW/SW 79 Context: G U/S Phase: U/S CLAUDIUS II denom: ANT date: 268-70 mint: cat: 79/80 diam: 19.0 mm wt: 2.5 g wear: UW/SW 80 Context: L VII 1 Phase: U/S CLAUDIUS II denom: ANT date: 268-70 mint: cat: as 109 diam: 19.5 mm wt: 2.4 g wear: SW/UW 81 Context: N III 1 Phase: U/S denom: ANT CLAUDIUS II date: 268-70 mint: E cat: 109/10 diam: 17.5 mm wt: 2.2 g wear: UW/UW

Rev [LAETITIA AVG] Obv [IMPC CLAVDIVS AVG] Rev [VICTORIA AVG] Small find No. 170 Obv IMPC CLAVDIVS AVG Rev VIRTVS AVG Small find No. 183 Obv [IMP(C) CLAVDIVS AVG] Rev [VICTORIA AVG] Small find No. 8 Obv [IMP..CLAVD]IVS AVG Rev PAX AVG Small find No. 12 Obv [IMP CLAVDIVS AVG] Rev C[ERES AVG] Small find No. 236 Obv IMPC[..LAVDIVS AVG] Rev [PROVID AV]G Small find No. 33 Obv -Rev -Small find No. 52 Obv IM[P(C) CLAVDIVS AVG] Rev [AEQVITAS AVG] Small find No. 253 Obv [IMP..CLAVDIVS..AVG] Rev -Small find No. 260 Obv -Rev -Small find No. 85 Obv IMP CLAVDIVS AVG Rev AETERNIT AVG Small find No. 134 Obv IMPC CLAVDIVS AVG Rev [GENIVS] EXERCI Z in field r. Small find No. 268 Obv [IMP(C) CLAVDIVS AVG] Rev PAX [AVG] Small find No. 10 Obv [IMP..CLAVD]IVS [AVG] Rev [VIR]TV[S AVG] Small find No. 4 Obv [IMP(C) CLAVDIVS AVG] Rev [VIRTVS A]V[G]

82 Context: K VIII 4 CLAUDIUS II denom: ANT date: 268-70 mint: cat: diam: 18.0 mm wt: 1.7 g wear: UW/C 83 Context: G VII 2 Phase: U/S 'CLAUDIUS II' denom: ANT date: '268-70' mint: cat: c.as 34 diam: 18.5 mm wt: 1.9 g wear: SW/UW 84 Context: G IX 2 Phase: U/S denom: ANT CLAUDIUS II, POSTH. date: 270 mint: cat: 261 diam: 19.5 mm wt: 3.3 g wear: W/SW 85 Context: F XIII 8 Phase: 5-6 CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 17.5 mm wt: 2.7 g wear: UW/UW 86 Context: F VII 6 Phase: 5 denom: ANT CLAUDIUS II, POSTH. date: 270 mint: cat: 266 diam: 16.5 mm wt: 1.1 g wear: SW/SW 87 Context: F VII 7 Phase: 5 denom: ANT CLAUDIUS II, POSTH. cat: 261 date: 270 mint: diam: 18.5 mm wt: 1.8 g wear: C/UW 88 Context: F XIII 18 Phase: 5-6 CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 259 diam: 16.5 mm wt: 1.7 g wear: SW/W 89 Context: F XXIV 4 Phase: 6-7 CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 18.0 mm wt: 1.8 g wear: SW/SW 90 Context: G XVII 1 Phase: U/S CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 266 diam: 17.5 mm wt: 1.8 g wear: W/SW 91 Context: H III 27 Phase: 6-7 CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 16.5 mm wt: 1.6 g wear: UW/UW 92 Context: E XIX 1 Phase: U/S denom: ANT CLAUDIUS II, POSTH. cat: 266 date: 270 mint: diam: 14.0 mm wt: 1.2 g wear: SW/UW 93 Context: J II 2 Phase: 6 CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 16.0 mm wt: 1.4 g wear: C/W 94 Context: F XXVI 2 Phase: U/S CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 16.5 mm wt: 1.8 g wear: W/W 95 Context: F XXVI 2 Phase: U/S CLAUDIUS II, POSTH. denom: ANT date: 270 mint: cat: 261 diam: 15.5 mm wt: 1.2 g wear: W/W 96 Context: K XX 3 Phase: 6 denom: ANT CLAUDIUS II, POSTH. date: 270 mint: cat: 261 diam: 19.0 mm wt: 1.7 g wear: SW/SW Phase: U/S 97 Context: G U/S CLAUDIUS II, POSTH. denom: ANT

Phase: 5 Small find No. 185 Obv IMP CL[AVDIVS..AVG] Rev -Small find No. 79 Obv [IMP..CLAVDIVS AVG] Rev [FIDES EX]ER[C]I Small find No. 26 Obv DIVO [CLA]VDIO Rev CONSEC[RATIO] Altar Small find No. 74 Obv [DIV]O CLAVD]IO Rev CONSECRA[TIO] Altar Small find No. 102 Obv [DIVO CLAVDIO] Rev [CON]SECRA[TIO] Eagle Small find No. 135 Obv [DIVO CLAVDIO] Rev C[ONSEC]RATIO Altar Small find No. 170 Obv IMP CLAVDIVS AVG Rev [CONSEC]RATIO Altar Small find No. 200 Obv [DIVO CLA]VDIO Rev [CONSECRATIO] Altar Small find No. 174 Obv [DIV]O CL[AVDIO] Rev [CONSEC]RAT[IO] Eagle Small find No. 53 Obv [DIVO CLAVDIO] Rev CONSECRATIO Altar Small find No. 184 Obv [DIVO CLAVDIO] Rev [CONSECRATIO] Eagle Small find No. 4 Obv [DIVO CLAVDIO] Rev [CONSECRATIO] Altar Small find No. 265 Obv [DIV]O CLAVDIO Rev CONSEC[RATIO] Altar Small find No. 266 Obv DIVO CLAVDIO Rev CONSECRATIO Altar Small find No. 98 Obv DIVO CLAVDIO Rev CONSECRATIO Altar Small find No. 264 Obv DIVO CLAVDIO

date: 270 mint: Rev CONSECRATIO Eagle cat: 266 diam: 16.5 mm wt: 1.7 g wear: UW/UW 98 Context: K IV 1 Phase: U/S Small find No. 110 denom: ANT CLAUDIUS II, POSTH. Obv [DIVO CLAVDIO] date: 270 mint: cat: 261 Rev CONSEC[RATIO] Altar diam: 18.0 mm wt: 1.3 g wear: C/SW 99 Context: M U/S Phase: U/S Small find No. 1 CLAUDIUS II, POSTH. denom: ANT Obv [DIVO CLAVDIO] date: 270 mint: cat: 266 Rev [CONSECRATI]O Eagle diam: 18.0 mm wt: 1.3 g wear: UW/SW 100 Context: N III 1 Phase: U/S Small find No. 3 CLAUDIUS II, POSTH. denom: ANT Obv [DIVO [CLAVDIO] date: 270 mint: Rev [CONSECRATIO] Altar cat: 261 diam: 15.5 mm wt: 1.9 g wear: W/SW 101 Context: K XVII 1 Phase: U/S Small find No. 56 'CLAUDIUS II, POSTH.' denom: ANT Obv [DIVO CLAVDIO] date: '270' mint: cat: c.of 261 Rev [CONSECRATIO] Altar diam: 11.5 mm wt: 0.9 g wear: ?UW/UW 102 Context: N XIII 1 Phase: U/S Small find No. 16 'CLAUDIUS II, POSTH.' denom: ANT Obv [DTVO CLAVDIO] date: '270' mint: Rev [CONSECRATIO] Altar cat: c.as 261 diam: 13.5 mm wt: 1.2 g wear: ?SW/SW 103 Context: K VII 1 Phase: U/S Small find No. 25 QUINTILLUS denom: ANT Obv IMP QVINTILLVS AVG date: 270 mint: ME cat: 58 Rev [M]AR[T]I [PAC...] diam: 19.0 mm wt: 2.9 g wear: UW/SW 104 Context: L XXVII 1 Phase: U/S Small find No. 36 OUINTILLUS denom: ANT Obv IMP CM AVR [CL QVINTILLVS AVG] date: 270 mint: RM XII cat: 22 Rev [LAETITI]A AVG diam: 17.5 mm wt: 1.0 g wear: W/SW Phase: 5 105 Context: F VI 6 Small find No. 64 POSTUMUS denom: ANT Obv date: 259-68 mint: Rev cat: diam: 21.5 mm wt: 1.8 g wear: SW/C Phase: 6-7 Small find No. 199 106 Context: F XXIV 4 POSTUMUS denom: ANT Obv IMPC POSTVMVS PFAVG date: 259-61 mint: cat: 53-55, as E288 Rev PM TRP C[OS..PP] diam: 21.0 mm wt: 3.6 g wear: SW/SW Phase: 5 Small find No. 173 107 Context: F VI 8 POSTUMUS denom: ANT Obv IMPC POSTVMVS PFAVG cat: 59/380 date: 260-68 mint: Rev FIDES MILTTVM diam: 19.5 mm wt: 1.6 g wear: W/W Phase: 5 Small find No. 71 108 Context: F VI 5 POSTUMUS denom: ANT Obv [IM]PC PO[STVMVS PFAVG] date: 261 mint: cat: 67,E299 Rev [HERC PACIFERO] diam: 19.5 mm wt: 2.8 g wear: SW/SW 109 Context: M U/S Phase: U/S Small find No. -POSTUMUS denom: ANT Obv IMPC POSTVMVS PFAVG date: 268 mint: CL cat: 289,E597 Rev IMP X COS V diam: 21.5 mm wt: 3.1 g wear: SW/W 110 Context: L U/S Phase: U/S Small find No. 41 'POSTUMUS' denom: ANT Obv [IMPC POSTVMVS PFAVG] date: '259-68' mint: cat: c.as E394a Rev [?VBERTAS] AVG diam: 19.0 mm wt: 1.8 g wear: SW/SW Small find No. 180 111 Context: G V ext 4 Phase: 6-7? VICTORINUS? denom: ANT Obv date: 258-73 mint: cat: -Rev diam: 23.0 mm wt: 1.9 g wear: SW/C 112 Context: F VII 6 Phase: 5 Small find No. 89 denom: ANT VICTORINUS Obv [IMP..VICTORI]NVS [PFAVG] cat: date: 268-70 mint: Rev diam: 17.5 mm wt: 1.0 g wear: UW/C

113 Context: G - 15Phase: U/SSmall find No. 60 VICTORINUS denom: ANT Obv [IMPC VICTORI]NVS [PFAVG] date: 268-70 mint: cat: 57,E741 Rev [PIETAS AVG] diam: 18.0 mm wt: 1.5 g wear: UW/UW 114 Context: F VI 6 Phase: 5 Small find No. 164 VICTORINUS denom: ANT Obv IMPC VICTORINVS PF[AVG] date: 268-70 mint: cat: 67,E732 Rev S[ALVS] AVG diam: 21.0 mm wt: 1.7 g wear: SW/SW 115 Context: F XXV 8 Phase: 5? Small find No. 202 denom: ANT Obv [IMPC VICTORINVS PFAVG] VICTORINUS date: 268-70 mint: cat: 71,E697var Rev [SALVS AVG] diam: 20.0 mm wt: 1.8 g wear: UW/SW 116 Context: F XXV 8 Phase: 5? Small find No. 197 denom: ANT VICTORINUS Obv [IMPC VICT]ORINV[S PFAVG] cat: date: 268-70 mint: Rev diam: 20.0 mm wt: 3.2 g wear: SW/C rmase: 5 Small find No. 166
denom: ANT 117 Context: G XXII 5 VICTORINUS Obv [IMPC VICTO]RINVS [PFAVG] date: 268-70 mint: cat: 47,E741 Rev [PIE]TAS [AVG] diam: 17.0 mm wt: 0.4 g wear: UW/UW 118 Context: J I 14 Phase: 6a Small find No. 76 denom: ANT VICTORINUS Obv [IMP]C VICTORIN[VS PFAVG] date: 268-70 mint: cat: -Rev diam: 19.0 mm wt: 1.1 g wear: UW/C 119 Context: K XXIX 1 Phase: U/S Small find No. 146 VICTORINUS denom: ANT Obv [IMPC VICT]ORINVS PFAVG date: 268-70 mint: cat: -Rev diam: 20.5 mm wt: 2.7 g wear: SW/C Phase: 5-6 Small find No. 11 120 Context: J III 4 denom: ANT VICTORINUS Obv IMPC VICTORINVS PFAVG date: 269 mint: cat: 114,E683 Rev [INVICTVS] diam: 20.0 mm wt: 1.7 g wear: UW/C Phase: 5 denom: ANT 121 Context: F VII 12 Small find No. 229 VICTORINUS Obv [IMPC VICTORI]NVS [PFAVG] date: 269-70 mint: cat: 61,E743 Rev [PROVIDENTIA AVG] diam: 19.5 mm wt: 1.5 g wear: SW/SW 122 Context: G XXX 2 Phase: U/S? Small find No. 224 VICTORINUS denom: ANT Obv [IMPC VICTORI]NVS P[F AVG] date: 269-70 mint: cat: 61,E743 Rev [PROV]ID[ENTIA AVG] diam: 20.0 mm wt: 1.7 g wear: SW/SW Phase: U/S Small find No. 31 123 Context: K XII 1 Obv IMPC VICTORINVS PFAVG VICTORINUS denom: ANT cat: 61,E743 Rev PROVIDENTIA AVG date: 269-70 mint: diam: 19.0 mm wt: 1.3 g wear: UW/UW 124 Context: K XVIII 2 Phase: 6 Small find No. 150 VICTORINUS denom: ANT Obv IMPC VICTORINVS PFAVG date: 269-70 mint: cat: 61,E743 Rev PRO[VIDENTIA AVG] diam: 21.5 mm wt: 1.7 g wear: SW/W 125 Context: E VI 16 Phase: 5-6 Small find No. 95 VICTORINUS denom: ANT Obv [IMPC VICTORINUS PFAVG] date: 270 mint: cat: 78,E699 Rev [VIRTVS] AVG diam: 20.5 mm wt: 1.8 g wear: UW/UW Small find No. 111 126 Context: G II 8 Phase: 6-7 VICTORINUS Obv [IMPC VIC]TORINVS PFAVG denom: ANT mint: date: 270 cat: 114,E683 Rev INVIC[TVS] diam: 20.5 mm wt: 3.3 g wear: W/SW 127 Context: E XX 5 Phase: 6-7 Small find No. 202 VICTORINUS denom: ANT Obv IMPC VICTOR[INVS PFAVG] date: 270 mint: cat: 114,E683 Rev [INVI]CTVS diam: 18.5 mm wt: 2.2 g wear: SW/SW 128 Context: J XII 2 Phase: Unphased Small find No. 68 VICTORINUS denom: ANT Obv [IMPC V]ICTORIN[VS PFAVG]

102

```
date: 270 mint: cat: 71,E697 Rev [SA]LV[S] AVG
   diam: 18.0 mm wt: 1.7 g wear: UW/W
129 Context: L U/S
                         Phase: U/S Small find No. 5
  VICTORINUS
                                         Obv IMPC VICTORINVS PFAVG
                         denom: ANT
                          cat: 78,E699
   date: 270 mint:
                                               Rev VIRTVS AVG
   diam: 17.0 mm wt: 1.7 g wear: SW/C
130 Context: K XVII 1
                                       Small find No. 41
                          Phase: U/S
                         denom: ANT
   'VICTORINUS'
                                               Obv -
   date: '268-70' mint:
                           cat: c.as 78,E699
                                                Rev [VIRTVS AVG]
   diam: 14.5 mm wt: 1.5 g wear: UW/SW
131 Context: F XXVI 3
                         Phase: Unphased Small find No. 276
   'VICTORINUS'
                         denom: ANT
                                              Obv ..]ACTONIC AVG (sic)
   date: '268-70' mint:
                           cat: c.of 78,E699
                                                Rev [VIRTV]S A[VG]
   diam: 12.5 mm wt: 0.9 g wear: SW/UW
132 Context: K XXII 5
                     Phase: U/S
                                       Small find No. 136
  VICTORINUS/TETRICUS I denom: ANT
date: 268-70 mint: cat: -
                                                Obv -
   date: 268-70 mint:
                           cat: -
                                                Rev -
   diam: 13.5 mm wt: 0.7 g wear: UW/UW
133 Context: G V 16
                        Phase: 6(-7) Small find No. 45
  VICTORINUS/TETRICUS I denom: ANT
                                                Oby -
   date: 268-73 mint:
                           cat: -
                                                Rev -
   diam: 19.0 mm wt: 2.3 g wear: SW/C
                      Phase: 5-6 Small find No. 76
134 Context: F XIII 8
  VICTORINUS/TETRICUS I
                         denom: ANT
                                               Obv -
   date: 268-73 mint:
                          cat: -
                                                Rev -
   diam: 18.5 mm wt: 2.1 g wear: SW/C
                       denom: ANT
135 Context: F VI 6
                      Phase: 5 Small find No. 112
  VICTORINUS/TETRICUS I
                                                Obv -
   date: 268-73 mint:
                                                Rev -
   diam: 16.5 mm wt: 1.3 g wear: C/C
136 Context: F VII 6
                     Phase: 5 Small find No. 120
                         denom: ANT
  VICTORINUS/TETRICUS I
                                        Obv -
   date: 268-73 mint:
                           cat: -
                                                Rev -
                     Phase: 5 Small find No. 136
denom: ANT Obv -
cat: as moth 105
   diam: 17.0 mm wt: 1.7 g wear: SW/C
137 Context: F VII 7
  VICTORINUS/TETRICUS I
   date: 268-73 mint:
                           cat: as Tet. 100,E771 Rev PAX [AVG] trans. sceptre
   diam: 19.5 mm wt: 1.5 g wear: C/SW
                                     Small find No. 176
                      Phase: 5-6
138 Context: F XIII 8
                         denom: ANT
                                                Obv [IMP.....PFAVG]
  VICTORINUS/TETRICUS I
   date: 268-73 mint:
                           cat: -
                                                Rev -
   diam: 17.0 mm wt: 2.7 g wear: SW/C
139 Context: G XXV ex 1 Phase: U/S Small find No. 250
  VICTORINUS/TETRICUS I
                         denom: ANT
                                                Obv -
   date: 268-73 mint:
                           cat: -
                                                Rev -
   diam: 20.0 mm wt: 2.7 g wear: UW/C
                         Phase: 5-6 Small find No. 98
140 Context: F VII 5
  TETRICUS I
                         denom: ANT
                                        Obv IMP TETRICVS [AVG]
   date: 270-71 mint:
                           cat: 71,E783
                                                Rev FIDES MILITVM
   diam: 21.5 mm wt: 2.2 g wear: W/W
141 Context: K XII 1
                         Phase: U/S
                                       Small find No. 48
                                         Obv IMP TETRICVS AVG
  TETRICUS I
                         denom: ANT
   date: 270-71 mint:
                          cat: 71,E783
                                                Rev FIDES MILITVM
   diam: 20.5 mm wt: 1.5 g wear: UW/SW
                                       Small find No. 96
142 Context: K XX 3
                         Phase: 6
                         denom: ANT
  TETRICUS I
                                         Obv [IMP..TETRIC]VS AVG
   date: 270-71 mint:
                         cat: 71,E782/3
                                                Rev FID[ES MILITVM]
   diam: 19.0 mm wt: 2.0 g wear: SW/SW
                          Phase: 6-7 Small find No. 14
143 Context: H I 7
                        denom: ANT
  TETRICUS I
                                         Obv IMPC TETRIC[VS PFAVG]
                      cat: 136,E764
                                               Rev SPES PVBLICA
   date: 270-72 mint:
   diam: 18.5 mm wt: 1.6 g wear: W/W
```

144 Context: G VII 6Phase: 6-7Small find No. 95 Obv [IMPC TETRI]CVS PFAVG] TETRICUS I denom: ANT cat: 141,E765 Rev VICTOR[IA AVG] date: 270-72 mint: diam: 17.5 mm wt: 1.6 g wear: SW/SW 145 Context: L II 2 Phase: 6 Small find No. 12 TETRICUS I denom: ANT Obv IMPC TETR[ICVS PFAVG] date: 270-72 mint: cat: 141,E765 Rev [VICTORIA] AVG diam: 16.5 mm wt: 2.3 g wear: SW/W 146 Context: F XXI 2 Phase: U/S Small find No. 23 TETRICUS I denom: ANT Obv IMP TETRICVS PFAVG date: 270-73 mint: cat: 123 Rev SALVS AVG diam: 18.0 mm wt: 1.6 g wear: SW/W Phase: 6(-7) Small find No. 42 147 Context: G IV 19 TETRICUS I denom: ANT Obv [IMP..TETRI]CVS [PFAVG] date: 270-73 mint: cat: -Rev diam: 19.5 mm wt: 1.5 g wear: ?SW/C 148 Context: F XXIV 3 Phase: 6-7 Small find No. 193 TETRICUS I denom: ANT Obv [IMPC] TETRICVS [PFAVG] date: 270-73 mint: cat: -Rev diam: 19.5 mm wt: 1.8 g wear: SW/C Phase: 5-6 149 Context: J IV 2 Small find No. 24 TETRICUS I denom: ANT Obv [IM]P TET[RICVS..AVG] date: 270-73 mint: cat: -Rev diam: 16.5 mm wt: 1.8 g wear: UW/C 150 Context: E XX 2 Phase: 7 Small find No. 197 denom: ANT TETRICUS I Obv [IMP TETRICVS] AVG cat: 147,Edate: 270-73 mint: Rev [VIRTVS AVG] diam: 17.0 mm wt: 1.6 g wear: SW/UW 151 Context: E XVII ext 2 Phase: 6 Small find No. 208 TETRICUS I denom: ANT Obv IMP TETRICVS P[FAVG] date: 270-73 mint: cat: -Rev diam: 17.5 mm wt: 2.6 g wear: SW/C g wear Phase: 6-7 152 Context: K XII 2 Small find No. 50 TETRICUS I denom: ANT Obv date: 270-73 mint: cat: 135/6,as E767 Rev [SPES] P[VBLICA] diam: 20.0 mm wt: 2.5 g wear: C/W Small find No. 263 153 Context: F XXVI 2 Phase: U/S Obv IMPC TETR[ICVS PFAVG] TETRICUS I denom: ANT date: 270-73 mint: cat: as 117 Rev [PROVID AVG] diam: 18.5 mm wt: 2.5 g wear: SW/C 154 Context: K XXIII 2 Phase: 6 Small find No. 124 denom: ANT Obv [IMP]C TETRICVS P[FAVG] TETRICUS I date: 270-73 mint: cat: 130,E-Rev [SPE]S AVG diam: 19.0 mm wt: 2.5 g wear: UW/UW 155 Context: K I 4 Phase: 6 Small find No. 177 TETRICUS I denom: ANT Obv IMP TETRI[CVS PFAVG] date: 270-73 mint: cat: 133,E-Rev [S]PES [AVGG] diam: 19.5 mm wt: 1.6 g wear: W/SW 156 Context: F XVI 4 Phase: Unphased Small find No. 32 TETRICUS I denom: ANT Obv [IMPC TET]RICVS PF[AVG] date: 273 mint: cat: 126,E779 Rev SALVS [AVGG] diam: 19.5 mm wt: 2.2 g wear: C/W 157 Context: F VII 5 Phase: 5-6 Small find No. 93 TETRICUS I denom: ANT Obv [IMPC TETRICVS PFAVG] mint: date: 273 cat: 100,E771/5 Rev [PAX AVG] diam: 17.5 mm wt: 1.5 g wear: UW/UW 158 Context: G II 9 Phase: 6-7 Small find No. 116 denom: ANT TETRICUS I Obv IMPC TE[TRICVS PFAVG] date: 273 mint: cat: 121,E772 Rev [SALV]S AVG diam: 18.0 mm wt: 1.6 g wear: SW/SW 159 Context: G U/S Phase: U/S Small find No. 120 TETRICUS I denom: ANT Obv [IMPC TETRI]CVS PFAVG

104

date: 273 mint: cat: 56,E774 Rev [COMES] AVG diam: 17.5 mm wt: 2.1 g wear: SW/SW 160 Context: F XIII 21 Phase: 5 Small find No. 192 denom: ANT Obv IMP C T[ETRICVS PFAVG] TETRICUS I date: 273 mint: cat: 100,E771/5 Rev P[AX AVG] diam: 17.5 mm wt: 1.9 g wear: SW/SW Phase: 6 Small find No. 140 denom: ANT Obv [IMP 5 161 Context: E XIV 2 TETRICUS I Obv [IMP TETRICVS PFAVG] date: 273 mint: cat: 88,E787 Rev [LAETITIA] AVGG diam: 17.0 mm wt: 1.4 g wear: UW/UW 162 Context: G XXVII 1 Phase: U/S Small find No. 201 TETRICUS I denom: ANT Obv [IMP..]TETRICVS[..AVG] date: 273 mint: cat: 100 etc,E771/5 Rev [PA]X [AVG] diam: 16.5 mm wt: 2.3 g wear: SW/SW 163 Context: G XXX 5 Phase: 6-7 Small find No. 245 denom: ANT Obv [IMPC TETRICVS PFAVG] TETRICUS I date: 273 mint: cat: 126,E779 Rev [SALVS AV]GG diam: 18.5 mm wt: 2.3 g wear: C/SW 164 Context: J U/S Phase: U/S Small find No. 45 Obv [IMP..TETRICVS PFAVG] TETRICUS I denom: ANT date: 273 mint: cat: as 87,E786/7 Rev [LAETITI]A A[VG..] diam: 15.0 mm wt: 1.5 g wear: SW/SW 165 Context: F XXVI 2 Phase: U/S Small find No. 258 TETRICUS I Obv [IMP TETRI]CVS PFAVG denom: ANT date: 273 mint: cat: 88,E787 Rev [LAETITIA] AVGG diam: 16.0 mm wt: 2.7 g wear: W/W Phase: U/S denom: ANT 166 Context: F XXVI 2 Small find No. 264 TETRICUS I Obv IMP TETRICVS PFAVG date: 273 mint: cat: 100,E775 Rev PAX AVG diam: 20.5 mm wt: 3.9 g wear: SW/SW Phase: 6 Small find No. 105 denom: ANT Obv [IMPC 167 Context: K XVII 2 TETRICUS I Obv [IMPC TETRICVS PFAVG] date: 273 mint: cat: E775 Rev [PAX AVG] diam: 15.5 mm wt: 1.4 g wear: SW/W Phase: U/S Small find No. -168 Context: M U/S TETRICUS I denom: ANT Obv [IMPC TETRICVS PFAVG] date: 273 mint: cat: 100,E771/5 Rev [PAX AVG] diam: 18.5 mm wt: 2.3 g wear: SW/SW 169 Context: J I 16 Phase: 4b Small find No. 78 Obv [IMPC TETRICVS PFAVG] TETRICUS I denom: ANT date: 273 mint: cat: 79,E790 Rev HI[LARITAS AVGG] diam: 18.0 mm wt: 0.6 g wear: C/UW 170 Context: G II 4 Phase: 6-7 Small find No. 90 TETRICVS I? denom: ANT Obv [...]TETR?[ICVS...] date: 270-73 mint: cat: -Rev diam: 20.0 mm wt: 2.5 g wear: SW/NSU 171 Context: G XIII U/S Phase: U/S Small find No. 94 TETRICUS I(?) denom: ANT Obv [IMP..TETRICVS PFAVG] date: 270-73 mint: cat: as 71,E783 Rev [FIDES MILITVM] diam: 17.5 mm wt: 2.2 g wear: C/C Prase: 5 Small find No. 174 denom: ANT 172 Context: F VI 8 'TETRICUS I' Obv [IMPC T]L[T]RIC[VS PFAVG] (sic) date: '270-73' mint: cat: c.as 141,E765 Rev [VICTORIA AVG] diam: 17.5 mm wt: 1.2 g wear: UW/SW 173 Context: F XIII 8 Phase: 5-6 Small find No. 155 denom: ANT 'TETRICUS I' Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 148,E780 Rev [VIRTVS AVGG] diam: 16.5 mm wt: 1.0 g wear: SW/SW 174 Context: E VI 1 Phase: U/S Small find No. 16 'TETRICUS I' denom: ANT date: '270-73' mint: cat: c.as -'TETRICUS I' Obv [...TETRI]CVS[..AVG] Rev diam: 15.5 mm wt: 1.2 g wear: SW/C

175 Context: F XI 2Phase: 6Small find No. 15 TETRICUS T' denom: ANT Obv date: '270-73' mint: cat: c.as -Rev diam: 15.5 mm wt: 0.6 g wear: UW/C 176 Context: F VI 6 Phase: 5 Small find No. 86 'TETRICUS I' denom: ANT Obv [IMP..TE]TRICVS [PFAVG] date: '270-73' mint: cat: c.of 56,E774 Rev [COMES] AVG diam: 20.0 mm wt: 2.5 g wear: SW/SW 177 Context: F XIII 8 Phase: 5-6 Small find No. 80 denom: ANT 'TETRICUS I' Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.of 100,E771 Rev [PAX AVG] diam: 16.5 mm wt: 2.5 g wear: W/W Small find No. 75 178 Context: F XIII 8 Phase: 5-6 'TETRICUS I' denom: ANT Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 141,E765 Rev [VICTORIA AVG] diam: 16.5 mm wt: 1.7 g wear: C/C 179 Context: G VIII 5 Phase: 6 Small find No. 66 'TETRICUS I' denom: ANT Obv [IMP] TETRICVS AVG date: '270-73' mint: cat: c.of 75,E-Rev [HILARI]TAS diam: 19.5 mm wt: 2.7 g wear: UW/SW 180 Context: F VII 8 Phase: 5 Small find No. 138 TETRICUS I' denom: ANT Obv date: '270-73' mint: cat: c.of 110 Rev [PIETAS AVG] diam: 12.0 mm wt: 0.7 g wear: UW/UW 181 Context: M U/S Phase: U/S Small find No. -'TETRICUS I' denom: ANT Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.of 94,E794 Rev [MARS VICTOR] diam: 11.0 mm wt: 0.7 g wear: SW/UW 182 Context: G XXII 1 Phase: U/S Small find No. 145 'TETRICUS I' denom: ANT Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 100,E771/5 Rev [PAX AVG] diam: 16.0 mm wt: 1.6 g wear: UW/SW Phase: 6-7 Small find No. 194 183 Context: F XXIV 3 'TETRICUS I' denom: ANT Obv [IMP TE]TRICVS P[FAVG] date: '270-73' mint: cat: c.as 125,E-Rev [SALV]S [AVG] diam: 15.0 mm wt: 0.8 g wear: SW/UW Phase: 6(-7) Small find No. 132 184 Context: G V ext 2 'TETRICUS I' Obv IM[PC TETRICV]S P[FAVG] denom: ANT cat: c.as 136,E767 date: '270-73' mint: Rev [SPES PVBL]I[CA] diam: 16.5 mm wt: 1.8 g wear: SW/UW 185 Context: G XX 19 Phase: 2-3/4 Small find No. 195 denom: ANT 'TETRICUS I' Obv date: '270-73' mint: cat: c.as -Rev diam: 16.5 mm wt: 1.5 g wear: SW/C 186 Context: G XXX 4 Phase: 6-7 Small find No. 243 'TETRICUS I' denom: ANT Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 148,E780 Rev [VIRTVS] AVGG diam: 15.5 mm wt: 1.7 g wear: C/UW 187 Context: K XVII 2 Phase: 6 Small find No. 54 'TETRICUS I' denom: ANT Obv [IMP..TETRI]CVS[..AVG] date: '270-73' mint: cat: c.as 71,E783 Rev [FIDES MILITVM] diam: 12.5 mm wt: 0.8 g wear: UW/UW Phase: 6 Small find No. 57 denom: ANT Obv [IMP 188 Context: K XVII 2 'TETRICUS I' Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 117 Rev [PROVID AVG] diam: 16.5 mm wt: 1.3 g wear: SW/SW 189 Context: K XVII 2 Phase: 6 Small find No. 58 'TETRICUS I' denom: ANT Obv date: '270-73' mint: cat: c.as 100,E771 Rev [PAX AVG] diam: 11.0 mm wt: 1.1 g wear: UW/UW 190 Context: G XXIX 1 Phase: U/S Small find No. 260 'TETRICUS I' denom: ANT Obv -

106

date: '270-73' mint: cat: c.as -Rev diam: 16.5 mm wt: 1.6 g wear: SW/C 191 Context: K XVIII 2 Phase: 6 Small find No. 89 'TETRICUS I' denom: ANT Obv [IMP..TETRICVS..AVG] date: '270-73' mint: cat: c.as 79,E790 Rev [HILARITAS...] diam: 15.0 mm wt: 1.0 g wear: UW/UW 192 Context: K XVIII 2 Small find No. 94 Phase: 6 'TETRICUS I' denom: ANT Obv [IMP..TETRICVS..AVG] date: '270-73' mint: cat: c.as 87,E786 Rev [LAETITIA...] diam: 10.0 mm wt: 0.5 g wear: UW/UW 193 Context: K XVIII 6 Phase: 6 denom: ANT Small find No. 104 'TETRICUS I' Obv date: '270-73' mint: cat: c.as 110 Rev [PIETAS...] diam: 8.5 mm wt: 0.4 g wear: UW/UW 194 Context: K V U/S Phase: U/S Small find No. 118 'TETRICUS I' denom: ANT Obv [...TETRI]CVS... date: '270-73' mint: cat: c.as -Rev diam: 16.5 mm wt: 1.7 g wear: UW/NSU 195 Context: G U/S Phase: U/S Small find No. 267 'TETRICUS I' denom: ANT Obv [IMP TETRICVS PFAVG] date: '270-73' mint: cat: c.as 90,E786 Rev [?LAETITIA AVGN] diam: 18.5 mm wt: 1.9 g wear: UW/UW 196 Context: K XXV 1 Phase: U/S Small find No. 145 'TETRICUS I' denom: ANT Obv [IMPC TETRICVS PFAVG] date: '270-73' mint: cat: c.as 136,E767 Rev [SPES PVBLICA] diam: 16.5 mm wt: 1.7 g wear: SW/UW 197 Context: K V 2 Phase: 6-7 Small find No. 149 'TETRICUS I' denom: ANT Obv [...TET]RICV[S....] date: '270-73' mint: cat: c.as 100,E771 Rev [PA]X [AVG] diam: 16.5 mm wt: 1.4 g wear: UW/C Phase: 6 198 Context: K XIX 4 Small find No. 153 denom: ANT 'TETRICUS I' Obv [...TETRI]CVS... cat: c.as date: '270-73' mint: Rev diam: 16.5 mm wt: 1.0 g wear: SW/NSU Phase: U/S 199 Context: E II 1 Small find No. 46 TETRICUS II denom: ANT Obv CPIV TETRICVS CAES (sic) date: 270-73 mint: cat: 238 Rev [LAETITIA] AVG diam: 18.5 mm wt: 2.5 g wear: W/W Phase: 5 Small find No. 70 200 Context: K XVI 2 TETRICUS II denom: ANT Obv cat: date: 270-73 mint: Rev diam: 17.5 mm wt: 1.0 g wear: ?W/C 201 Context: K XVIII 2 Phase: 6 Small find No. 90 TETRICUS II denom: ANT Obv CPIV ESV TE[TRICVS CAES] date: 270-73 mint: cat: 244 Rev NOBILIT[AS AVGG] diam: 17.0 mm wt: 1.7 g wear: SW/SW 202 Context: G XXX 2 Phase: U/S Small find No. 226 TETRICUS II denom: ANT Obv CPIV ESV [TETRICVS CAES] date: 272-73 mint: cat: 272,E769 Rev SPES P[VBLICA] diam: 17.5 mm wt: 1.5 g wear: UW/C 203 Context: E XVII ext 1 Phase: U/S Small find No. 206 TETRICUS II denom: ANT Obv [CPIV ESV TET]RICVS CAES date: 272-73 mint: cat: 272,E769 Rev [SPES] PVBL[ICA] diam: 18.5 mm wt: 2.8 g wear: UW/SW Small find No. 261 204 Context: F XXVI 2 Phase: U/S TETRICUS II denom: ANT Obv [CPIV ESV] TETRICVS CAES date: 272-73 mint: cat: 272,E.769 Rev SPES [PVBLICA] diam: 16.0 mm wt: 1.6 g wear: W/W 205 Context: K XXIII 2 Small find No. 119 Phase: 6 denom: ANT Obv [CPIV ESV TETRIC]VS CAES TETRICUS II cat: 272,E769 date: 272-73 mint: Rev SPES [PVBLICA] diam: 16.5 mm wt: 1.4 g wear: W/W

206 Context: G XXX 2 Phase: U/S Small find No. 217 TETRICUS II denom: ANT Obv [CPIV E]SV TETRICVS CAES cat: 270,E791/796 date: 273 mint: Rev [SPES] AVGG diam: 19.0 mm wt: 1.4 g wear: W/W Phase: U/S 207 Context: K I 1 Small find No. 117 TETRICUS II denom: ANT Obv [CP..E..TETRICVS CAES] cat: 258/9,E773 etc. Rev [PIETAS AV]GVST[OR] date: 273 mint: diam: 18.0 mm wt: 1.9 g wear: C/UW 208 Context: G XV 2 Phase: 6(-7) Small find No. 32 'TETRICUS II' denom: ANT Obv [...TET]RICVS [CAES] cat: c.as 254 date: '270-73' mint: Rev [PIETAS AVG]G diam: 16.5 mm wt: 1.5 g wear: UW/UW 209 Context: F VI 6 Small find No. 117 Phase: 5 denom: ANT 'TETRICUS II' Obv [C PIV ESV TE]TRICVS CAES date: '270-73' mint: cat: c.of 264,E-Rev [SALVS AVG] diam: 17.5 mm wt: 1.8 g wear: UW/UW Phase: 6-7 Small find No. 139 210 Context: G II 9 denom: ANT 'TETRICUS II' Obv CP[E TETRICV]SOCVA (sic) date: '270-73' mint: cat: c.of 278 Rev [VICTORIA AVG] diam: 20.0 mm wt: 2.2 g wear: UW/UW 211 Context: K XVII 2 Phase: 6 Small find No. 53 denom: ANT TETRICUS II' Obv [CP...TETRIC]VS CA[ES] date: '270-73' mint: cat: c.as 272,E769 Rev [SPES...] diam: 13.5 mm wt: 1.3 g wear: SW/SW 212 Context: M U/S Phase: U/S Small find No. -'TETRICUS II' denom: ANT Obv [CPIV ESV TETRICVS CAES] date: '270-73' mint: cat: c.of 267 Rev [SALVS AVG] diam: 15.5 mm wt: 1.7 g wear: UW/SW 213 Context: G XX 22 Phase: 2-3/4 Small find No. 199 'TETRICUS II'? denom: ANT Obv date: '270-73' mint: cat: c.as -Rev diam: 16.0 mm wt: 1.4 g wear: C/C 214 Context: D XXIII 1 Phase: U/S Small find No. 114 RADIATE Oby denom: ANT date: 215-58 mint: cat: -Rev diam: 19.0 mm wt: 1.7 g wear: SW/C 215 Context: G V 16 Phase: 6(-7) Small find No. 45 RADIATE denom: ANT Obv date: 258-73 mint: cat: -Rev diam: 20.5 mm wt: 1.8 g wear: C/C 216 Context: G VIII 15 Small find No. 59 Phase: 6 Obv -RADTATE denom: ANT date: 258-73 mint: cat: -Rev diam: 21.0 mm wt: 2.3 g wear: C/C 217 Context: F VI 5 Phase: 5 Small find No. 56 RADIATE denom: ANT Obv date: 258-73 mint: cat: -Rev diam: 20.0 mm wt: 2.3 g wear: UW/C 218 Context: F VII 5 Phase: 5-6 Small find No. 72 RADIATE(?) denom: ANT Oby date: 258-73 mint: cat: -Rev diam: 20.5 mm wt: 2.7 g wear: C/C 219 Context: F VI 6 Small find No. 114 Phase: 5 RADIATE denom: ANT Obv date: 258-73 mint: cat: -Rev diam: 20.5 mm wt: 1.3 g wear: C/C 220 Context: F VI 6 Phase: 5 Small find No. 128 RADIATE denom: ANT Obv date: 258-73 mint: cat: -Rev diam: 22.0 mm wt: 2.5 g wear: C/C 221 Context: F VI 6 Phase: 5 Small find No. 163 RADIATE denom: ANT Obv -

date: 258-73 mint: cat: diam: 19.0 mm wt: 1.9 g wear: C/C 222 Context: E U/S Phase: U/S RADIATE denom: ANT date: 258-73 mint: cat: diam: 20.5 mm wt: 3.1 g wear: SW/C 223 Context: G XXX 4 Phase: 6-7 RADTATE denom: ANT date: 258-73 mint: cat: diam: 19.5 mm wt: 0.8 g wear: C/C 224 Context: G XXX 4 Phase: 6-7 RADTATE denom: ANT date: 258-73 mint: cat: diam: 19.0 mm wt: 1.6 g wear: C/C 225 Context: F XXVI 2 Phase: U/S RADIATE denom: ANT date: 258-73 mint: cat: diam: 21.0 mm wt: 2.6 g wear: C/C 226 Context: K XVIII 2 Phase: 6 RADIATE denom: ANT date: 258-73 mint: cat: diam: 20.0 mm wt: 1.5 g wear: C/C 227 Context: B/D U/S Phase: U/S RADTATE denom: ANT date: 258-73 mint: cat: diam: 18.5 mm wt: 1.7 g wear: UW/C 228 Context: F XIII 8 Phase: 5-6 RADIATE denom: ANT date: 258-73+ mint: cat: diam: 19.0 mm wt: 1.3 g wear: W/C 229 Context: F XXV 3 Phase: 6 RADTATE denom: ANT date: 258-73+ mint: cat: diam: 17.5 mm wt: 1.7 g wear: C/C 230 Context: G V ext 6 Phase: 6-7 RADIATE denom: ANT date: 258-73+ mint: cat: diam: 16.5 mm wt: 1.1 g wear: C/C 231 Context: F XXVI 2 Phase: U/S RADIATE denom: ANT date: 258-73+ mint: cat: diam: 17.0 mm wt: 1.4 g wear: C/C 232 Context: D IV U/S Phase: U/S RADTATE denom: ANT date: 258-73+ mint: cat: diam: 16.5 mm wt: 1.3 g wear: UW/C 233 Context: K XXII 4 Phase: 6 RADIATE denom: ANT date: 258-73+ mint: cat: diam: 19.0 mm wt: 2.1 g wear: C/C 234 Context: K VII U/S Phase: U/S RADIATE denom: ANT date: 258-73+ mint: cat: diam: 17.5 mm wt: 1.4 g wear: C/C 235 Context: G U/S Phase: U/S RADIATE denom: ANT date: 258-96 mint: cat: diam: 20.5 mm wt: 1.4 g wear: C/C 236 Context: F U/S Phase: U/S denom: ANT RADIATE cat: date: 258-96 mint: diam: 20.5 mm wt: 2.6 g wear: UW/UW

Rev -Small find No. 109 Obv -Rev -Small find No. 238 Oby -Rev -Small find No. 244 Oby -Rev -Small find No. 246 Obv -Rev -Small find No. 74 Obv -Rev -Small find No. -Obv -Rev -Small find No. 142 Obv -Rev -Small find No. 196 Obv -Rev -Small find No. 182 Obv -Rev -Small find No. 248 Obv -Rev -Small find No. 126 Obv -Rev -Small find No. 130 Obv -Rev -Small find No. 181 Obv -Rev -Small find No. 263 Obv -Rev -Small find No. 280 Obv -Rev -

```
237 Context: F VI 6
                            Phase: 5
                                        Small find No. 113B
   RADTATE
                            denom: ANT
                                                    Obv [.....]AVG
    date: 258-73+ mint:
                              cat: -
                                                     Rev -
    diam: 19.0 mm wt: 2.1 g wear: C/C
238 Context: G VII 4
                            Phase: 6-7
                                           Small find No. 92
                                                    Obv -
                            denom: ANT
   RADIATE(?)
    date: 258-73 mint:
                              cat: -
                                                     Rev -
    diam: 19.5 mm wt: 2.0 g wear: C/C
239 Context: F XXIV 2
                            Phase: U/S
                                            Small find No. 230
   RADIATE
                           denom: ANT
                                                    Obv -
    date: 258-73+ mint:
                              cat: -
                                                     Rev -
    diam: 20.5 mm wt: 1.2 g wear: W/C
240 Context: G XXIV 2
                            Phase: 6(-7)
                                            Small find No. 188
  RADTATE?
                            denom: ANT
                                                    Oby -
    date: 258-73? mint:
                              cat: -
                                                     Rev -
    diam: 21.0 mm wt: 0.9 g wear: C/C
241 Context: G XXX 2
                            Phase: U/S
                                            Small find No. 232
   RADIATE?
                            denom: ANT
                                                    Obv -
    date: 258-96 mint:
                              cat: -
                                                     Rev -
    diam: 21.5 mm wt: 3.0 g wear: C/C
242 Context: F XXVI 2
                                            Small find No. 267
                            Phase: U/S
  RADTATE?
                            denom: ANT
                                                    Obv -
   date: 258-96 mint:
                              cat: -
                                                     Rev -
    diam: 21.0 mm wt: 1.4 g wear: C/C
243 Context: E XIV 2
                            Phase: 6
                                            Small find No. 161
   RADIATE(?)
                            denom: ANT
                                                    Obv -
   date: C3rd? mint:
                              cat: -
                                                    Rev [...]T[.]A[...]
    diam: 15.5 mm wt: 0.7 g wear: C/SW
244 Context: G VIII 2
                            Phase: U/S
                                            Small find No. 31
   RADIATE ?COPY
                            denom: ANT
                                                    Obv -
   date: '260-73' mint:
                              cat: -
                                                    Rev -
    diam: 16.5 mm wt: 1.1 g wear: SW/C
245 Context: E V 9
                           Phase: 5-6
                                            Small find No. 68
   RADIATE COPY
                            denom: ANT
                                                    Obv -
   date: '260-73' mint:
                             cat: c.as -
                                                     Rev -
   diam: 16.0 mm wt: 1.0 g wear: C/C
246 Context: E V 9
                            Phase: 5-6
                                           Small find No. 70
   RADIATE COPY
                            denom: ANT
                                                    Obv -
    date: '260-73' mint:
                              cat: c.as -
                                                     Rev -
    diam: 11.0 mm wt: 0.3 g wear: C/C
                                           Small find No. 63
247 Context: F VI 5
                            Phase: 5
   RADIATE COPY
                            denom: ANT
                                                    Obv -
    date: '260-73' mint:
                             cat: c.as -
                                                     Rev -
    diam: 13.5 mm wt: 0.5 g wear: SW/C
248 Context: G XI 3
                             Phase: 2-3/4 Small find No. 100
   RADIATE COPY
                            denom: ANT
                                                    Obv -
    date: '260-73' mint:
                              cat: -
                                                    Rev -
    diam: 12.5 mm wt: 0.4 g wear: C/C
249 Context: G XXIX 1
                             Phase: U/S
                                           Small find No. 212
   RADIATE COPY
                            denom: ANT
                                                    Oby -
    date: '260-73' mint:
                                                     Rev -
                              cat: c.as -
    diam: 15.0 mm wt: 1.1 g wear: C/SW
250 Context: J IV 2
                            Phase: 5-6
                                            Small find No. 36
   RADIATE COPY
                            denom: ANT
                                                    Obv -
    date: '260-73' mint:
                             cat: c.as -
                                                     Rev -
    diam: 9.5 mm wt: 0.3 g wear: UW/UW
                             Phase: U/S
251 Context: G XXV ext U/S
                                            Small find No. 247
   RADIATE COPY
                            denom: ANT
                                                    Obv -
    date: '260-73' mint:
                              cat: c.as -
                                                     Rev -
    diam: 15.0 mm wt: 1.5 g wear: C/C
                                           Small find No. 57
252 Context: K XVII 2
                             Phase: 6 or 7
   RADIATE COPY
                             denom: ANT
                                                     Obv -
```

date: '260-73' mint: cat: c.as diam: 12.0 mm wt: 0.7 g wear: UW/C 253 Context: K XVIII 2 Phase: 6 RADIATE COPY denom: ANT date: '260-73' mint: cat: c.as diam: 11.5 mm wt: 0.8 g wear: UW/C 254 Context: K XVIII 2 Phase: 6 RADIATE COPY denom: ANT date: '260-73' mint: cat: c.as diam: 16.5 mm wt: 1.5 g wear: UW/C 255 Context: K XXIII 2 Phase: 6 denom: ANT RADIATE COPY date: '260-73' mint: cat: c.as diam: 15.5 mm wt: 1.1 g wear: C/C 256 Context: N III 6 Phase: 6 RADIATE COPY denom: ANT date: '260-73' mint: cat: c.as diam: 14.0 mm wt: 1.5 g wear: C/C 257 Context: K XIX 14 Phase: 4 RADIATE COPY? denom: ANT date: '260-73' mint: cat: c.as diam: 4.5 mm wt: 0.0 g wear: C/C 258 Context: E U/S Phase: U/S CARAUSTUS? denom: AUREL date: 270-96 mint: cat: as 33 diam: 14.0 mm wt: 0.3 g wear: UW/UW 259 Context: F XIII 5A Phase: 6 denom: AUREL CARAUSIUS date: 286-90 mint: cat: as 28 diam: 21.0 mm wt: 4.3 g wear: SW/SW 260 Context: G XV 2 Phase: 6(-7) CARAUSTUS denom: AUREL date: 286-90 mint: cat: as 101 diam: 24.5 mm wt: 3.8 g wear: SW/C Phase: 6(-7) 261 Context: G IV 19 CARAUSIUS denom: AUREL date: 286-90 mint: LN cat: as 106 diam: 25.5 mm wt: 4.3 g wear: UW/UW 262 Context: F VII 5 Phase: 5 or 6 denom: AUREL CARAUSIUS cat: 414 date: 286-90 mint: diam: 23.0 mm wt: 2.4 g wear: SW/C 263 Context: F XIII 8 CARAUSIUS denom: AUREL date: 286-90 mint: cat: as 880 diam: 21.5 mm wt: 2.9 g wear: SW/SW 264 Context: F VI 5 Phase: 5 CARAUSIUS denom: AUREL date: 286-90 mint: cat: 835 diam: 18.0 mm wt: 2.4 g wear: UW/UW 265 Context: F VI 5 Phase: 5 CARAUSIUS denom: AUREL date: 286-90 mint: LN cat: 101 diam: 20.5 mm wt: 3.3 g wear: UW/UW 266 Context: F VII 6 Phase: 5 CARAUSIUS denom: AUREL date: 286-90 mint: cat: diam: 19.0 mm wt: 1.8 g wear: SW/C 267 Context: F XIII 8 Phase: 5 or 6 denom: AUREL CARAUSIUS date: 286-90 mint: LN cat: 101 diam: 23.5 mm wt: 3.5 g wear: UW/SW

Rev -Small find No. 84 Obv -Rev -Small find No. 93 ObvIIIIVI...(sic) Rev -Small find No. 121 Obv -Rev -Small find No. 22 Obv -Rev -Small find No. 179 Oby -Rev -Small find No. 1264 Obv [.....AV]G Rev [FIDES] MILIT[(VM)] Small find No. 40 Obv IMP [CAR]AVSISVS PFAVG Rev CONCORDIA MILITVM Small find No. 39 Obv IMP CARAV[SIVS PFAVG] Rev [PAX AVG] Small find No. 51 Obv IMP CARAVSIVS[..AVG] Rev [PA]X [AVG] Small find No. 87 Obv IMP CAR[AVSIVS..AVG] Rev ?S[PE]S [PVBLICA] Phase: 5 or 6 Small find No. 77 Obv IMP CARAVSIVS[..AVG] Rev PAX AVG Small find No. 61 Obv IMP CARAV[SIVS PFAVG] Rev [LIT]IT AVG Small find No. 60 Obv IMP CARAVSIVS PFAVG Rev PAX AVG Small find No. 101 Obv -Rev -Small find No. 147 Obv IMP CARAVSI[VS PFAVG] Rev PAX AVG

268 Context: G II 5 CARAUSIUS denom: AUREL cat: 880 date: 286-90 mint: diam: 19.5 mm wt: 3.4 g wear: UW/UW 269 Context: E U/S CARAUSIUS denom: AUREL date: 286-90 mint: LN cat: 101 diam: 19.5 mm wt: 1.2 g wear: C/UW 270 Context: F XXIV U/S Phase: U/S CARAUSIUS denom: AUREL cat: 750 date: 286-90 mint: diam: 21.5 mm wt: 4.9 g wear: SW/UW 271 Context: G XXVII 1 Phase: U/S denom: AUREL CARAUSTUS date: 286-90 mint: cat: 880 diam: 22.5 mm wt: 2.2 g wear: UW/UW 272 Context: K VII 1 Phase: U/S CARAUSIUS denom: AUREL date: 286-90 mint: LN cat: 101 diam: 25.0 mm wt: 4.5 g wear: SW/UW 273 Context: K XVII 1 Phase: U/S denom: AUREL CARAUSTUS cat: 823 date: 286-90 mint: diam: 24.5 mm wt: 3.3 g wear: SW/SW 274 Context: K XII 1 CARAUSIUS denom: AUREL date: 286-90 mint: cat: 952 diam: 22.5 mm wt: 4.4 g wear: SW/SW 275 Context: K XVIII 2 Phase: 6 Small find No. 80 CARAUSIUS denom: AUREL date: 286-90 mint: cat: 871 var. diam: 20.0 mm wt: 3.5 g wear: UW/UW Phase: 6 Small find No. 81 denom: AUREL Obv IMP 276 Context: K XVIII 2 CARAUSIUS date: 286-90 mint: cat: 983 diam: 23.5 mm wt: 4.0 g wear: SW/SW Phase: U/S Small find No. 13 277 Context: L X 1 CARAUSIUS denom: AUREL date: 286-90 mint: LN cat: 101 diam: 23.5 mm wt: 3.8 g wear: ?W/W 278 Context: K IX 4 CARAUSIUS denom: AUREL date: 286-90 mint: cat: as 419 diam: 24.0 mm wt: 3.3 g wear: UW/UW 279 Context: U/S Phase: U/S Small find No. -CARAUSIUS denom: AUREL date: 286-90 mint: cat: 790 diam: 24.5 mm wt: 4.3 g wear: W/W 280 Context: G V 2 Phase: 6(-7) Small find No. 9 CARAUSIUS denom: AUREL date: 286-93 mint: cat: as 893 diam: 22.5 mm wt: 2.9 g wear: SW/SW 281 Context: F VI 5 Phase: 5 CARAUSIUS denom: AUREL date: 286-93 mint: cat: as 161 diam: 25.0 mm wt: 3.5 g wear: C/C 282 Context: G V 16 CARAUSIUS denom: AUREL date: 286-93 mint: cat: diam: 23.5 mm wt: 3.4 g wear: C/C 283 Context: G V 16 Phase: 6(-7) Small find No. 44 CARAUSIUS denom: AUREL

Phase: 6-7 Small find No. 101 Obv IMP CARAVSIVS [PFAVG] Rev [PAX] A[VG] Phase: U/S Small find No. 126 Obv IMP CAR[AVSIVS PFAVG] Rev [PAX [AVG] Small find No. 207 Obv IMP CARAVSIVS PFAVG Rev COM[ES AVG] Small find No. 210 Obv IMP C[ARA]VS[IVS PFAVG] Rev [PAX AVG] Small find No. 20 Obv IMP CARAVSIVS PFAVG Rev PAX AVG Small find No. 39 Obv IMP CARAVS[IVS PFAVG] Rev [L]AETI[TIA AVG] Phase: U/S Small find No. 55 Obv IMP CARAVSIVS PFAVG Rev [PROVID AVG] Obv [IMP] CARAVSIVS P AVG [var. for PF] Rev ORIENS A[VG] Obv IMP CARAVSIVS PFAVG Rev SALVS [AVG] Obv IMP CARAVSIVS PFAVG Rev PAX AVG Phase: 5 or 6 Small find No. 170 Obv IMP CARAVSIVS PFAVG Rev [?TEMPORVM FEL] overstruck on PAX] AV[G] Obv IMP [CAR]AVSIVS PFAVG Rev FORT[VNA A]VG Obv [IMP..C]ARAVS[IVS..AVG] Rev P[AX] AVG Small find No. 38 Obv -Rev -Phase: 6(-7) Small find No. 44 Obv [IMP..CARAVSIVS..AVG] Rev -

Obv [IMP..CARAVSIVS..AVG]

cat: as 98 date: 286-93 mint: diam: 25.0 mm wt: 5.3 g wear: SW/SW 284 Context: F XIII 5A CARAUSIUS denom: AUREL date: 286-93 mint: cat: diam: 23.5 mm wt: 2.1 g wear: SW/C 285 Context: F VI 6 CARAUSTUS denom: AUREL date: 286-93 mint: cat: as 830 diam: 21.5 mm wt: 2.4 g wear: SW/C 286 Context: F VI 6 Phase: 5 denom: AUREL CARAUSTUS date: 286-93 mint: cat: as 98 diam: 23.0 mm wt: 4.0 g wear: W/C 287 Context: F VI 5 Phase: 5 CARAUSIUS denom: AUREL date: 286-93 mint: cat: diam: 23.5 mm wt: 3.5 g wear: C/C 288 Context: F VI 5 Phase: 5 CARAUSIUS? denom: AUREL date: 286-93 mint: cat: diam: 22.0 mm wt: 2.0 g wear: C/C 289 Context: F VI 6 Phase: 5 CARAUSTUS denom: AUREL date: 286-93 mint: cat: as 98 diam: 25.0 mm wt: 3.8 g wear: SW/C 290 Context: F VII 6 Phase: 5 CARAUSIUS denom: AUREL date: 286-93 mint: cat: as 118 diam: 21.5 mm wt: 2.4 g wear: SW/SW 291 Context: F XIII 8 Phase: 5-6 CARAUSTUS denom: AUREL date: 286-93 mint: cat: diam: 21.5 mm wt: 3.7 g wear: UW/C 292 Context: F VI 6 Phase: 5 CARAUSIUS denom: AUREL date: 286-93 mint: cat: diam: 22.0 mm wt: 2.3 g wear: SW/C 293 Context: G XX 10 Phase: 6(-7) CARAUSIUS denom: AUREL cat: as 878 date: 286-93 mint: diam: 23.5 mm wt: 3.4 g wear: C/SW 294 Context: G XVIII U/S CARAUSIUS(?) denom: AUREL date: 286-93 mint: cat: diam: 26.0 mm wt: 3.3 g wear: UW/C 295 Context: G XXIV 4 CARAUSIUS denom: AUREL date: 286-93 mint: cat: as 878 diam: 19.5 mm wt: 3.0 g wear: SW/C 296 Context: G XXX 2 Phase: U/S CARAUSIUS denom: AUREL date: 286-93 mint: LN cat: as 98 diam: 20.5 mm wt: 2.4 g wear: SW/SW 297 Context: D XIX 1 Phase: U/S CARAUSIUS denom: AUREL date: 286-93 mint: cat: diam: 21.0 mm wt: 3.6 g wear: UW/C 298 Context: K IX 3 Phase: 6 denom: AUREL CARAUSIUS cat: 880 date: 286-93 mint: diam: 21.5 mm wt: 2.4 g wear: SW/SW

Rev [PAX AVG] Phase: 6 Small find No. 44 Obv [IMP..CARAVSIVS..AVG] Rev -Phase: 5 Small find No. 53 Obv [...]CARAVSIVS[...] Rev [.....] AVG Small find No. 65 Obv [IMP..CARAVSIVS] PFAVG Rev [PAX A]VG Small find No. 59 Obv -Rev -Small find No. 51 Obv -Rev -Small find No. 116 Obv [IMP..CAR]AVS[IVS..AVG] Rev ?[PAX AVG] Small find No. 121 Obv IM[P..CARAVSIV]S PFAVG Rev [PA]X AVG Small find No. 154 Obv [IMP..]CA[RAV]S[IVS..AVG] Rev -Small find No. 165 Obv [IMP(C) CARAVSIVS PFAVG] Rev -Small find No. 187 Obv -Rev PA[X AVG] Phase: U/S Small find No. 189 Obv -Rev -Phase: 6(-7) Small find No. 196 Obv [IMP..CARAVSIVS..AVG] Rev [PAX AVG] Small find No. 235 Obv [IMP..CARA]VSIVS PFAVG Rev [PAX] AVG Small find No. 134 Obv -Rev -Small find No. -Obv [IMP..CARAV]SIVS PFAVG Rev PAX [AVG]

```
299 Context: F XIII 8
                           Phase: 5 or 6 Small find No. 143
   CARAUSIUS?
                           denom: AUREL
                                                   Obv -
   date: 286-93? mint:
                            cat: -
                                                   Rev -
   diam: 24.0 mm wt: 4.3 g wear: C/C
300 Context: F XIII 8
                           Phase: 5-6
                                         Small find No. 146
   CARAUSIUS?
                           denom: AUREL
                                                  Oby -
   date: 286-93? mint:
                             cat: -
                                                   Rev -
   diam: 24.5 mm wt: 3.0 g wear: C/C
301 Context: F XIII 8
                           Phase: 5-6
                                         Small find No. 153
   CARAUSIUS?
                          denom: AUREL
                                                   Obv -
   date: 286-93? mint:
                             cat: -
                                                   Rev -
   diam: 22.0 mm wt: 1.2 g wear: C/C
302 Context: G V ext 4
                           Phase: 6-7?
                                         Small find No. 178
   CARAUSTUS?
                           denom: AUREL
                                                  Obv -
   date: 286-93? mint:
                             cat: -
                                                   Rev -
   diam: 22.0 mm wt: 2.4 g wear: C/C
303 Context: G XV 2
                           Phase: 6(-7) Small find No. 40
   CARAUSIUS?
                           denom: AUREL
                                                   Obv -
   date: 286-93? mint:
                             cat: -
                                                   Rev -
   diam: 24.0 mm wt: 3.2 g wear: C/C
304 Context: F XI 5A
                           Phase: Unphased Small find No. 17
   CARAUSTUS
                           denom: AUREL
                                                  Obv IMP[C CAR]AVSIVS PAVG
                            cat: as 285
   date: 290-93 mint:
                                                   Rev [MONE]TA AVG
   diam: 21.5 mm wt: 3.7 g wear: SW/SW
305 Context: H I 1
                           Phase: U/S Small find No. 16
   CARAUSIUS
                           denom: AUREL
                                                  Obv [IMPC CARAVSI]VS PFAVG
   date: 290-93 mint:
                             cat: 319
                                                   Rev PAX [AV]G
   diam: 21.0 mm wt: 1.6 g wear: UW/UW
306 Context: F XIII 8
                           Phase: 5-6
                                         Small find No. 79
   CARAUSIUS
                           denom: AUREL
                                                  Obv IMPC CARAVSIVS AVG
   date: 290-93 mint:
                             cat: as 100
                                                   Rev PAX AVG
   diam: 23.0 mm wt: 4.2 g wear: UW/UW
                          Phase: 5
denom: AUREL
307 Context: F VII 7
                                          Small find No. 134
   CARAUSIUS
                                                  Obv IMPC CARAVSIVS[...]
   date: 290-93 mint:
                             cat: as 893
                                                   Rev [PAX AVG]
   diam: 22.0 mm wt: 4.0 g wear: C/C
                           Phase: U/S? Small find No. 12
308 Context: C II 5
   CARAUSIUS
                           denom: AUREL
                                                   Obv IMPC CAR[AVSIVS PF]AVG
   date: 290-93 mint:
                             cat: 475
                                                   Rev P[AX] AVG
   diam: 22.5 mm wt: 3.4 g wear: UW/UW
309 Context: F XXVI 2
                            Phase: U/S Small find No. 259
   CARAUSIUS
                           denom: AUREL
                                                 Obv IMPC [CAR]AVSIVS PFAVG
                             cat: 98
   date: 290-93 mint: LN
                                                   Rev PAX AVG
   diam: 26.0 mm wt: 4.7 g wear: SW/SW
310 Context: G U/S
                           Phase: U/S
                                          Small find No. -
   CARAUSIUS
                           denom: AUREL
                                                   Obv IMPC CARAVSIVS PFAVG
   date: 290-93 mint: CO
                            cat: 345
                                                   Rev [PROVID AVG]
   diam: 23.0 mm wt: 3.8 g wear: SW/SW
311 Context: E XVII ext N - Phase: U/S
                                          Small find No. 210
   CARAUSIUS
                          denom: AUREL
                                                  Obv IMPC CARAVSIVS AVG
   date: 290-93 mint: CO
                             cat: 336
                                                   Rev PAX AVGGG
   diam: 21.5 mm wt: 3.3 g wear: UW/UW
312 Context: J III 1
                                           Small find No. 64
                           Phase: U/S
   CARAUSIUS
                                                  Obv IMPC CARAVSIVS PFAVG
                           denom: AUREL
   date: 290-93 mint: LN
                            cat: 98
                                                   Rev PAX AVG
   diam: 22.5 mm wt: 4.4 g wear: ?W/SW
313 Context: H VII U/S
                            Phase: U/S
                                           Small find No. 149
   CARAUSIUS
                           denom: AUREL
                                                   Obv IMPC [CAR]AVSIVS PFAVG
   date: 290-93 mint:
                             cat: 1037
                                                   Rev [VIRTVS] AVG
   diam: 24.5 mm wt: 4.1 g wear: SW/SW
314 Context: F VII 6
                          Phase: 5
                                          Small find No. 122
   CARAUSIUS/ALLECTUS
                            denom: AUREL
                                                    Obv -
```

cat: date: 286-96 mint: diam: 24.0 mm wt: 4.4 g wear: C/C 315 Context: E VI 12 denom: AUREL 'CARAUSIUS' cat: c.as 758 date: '286-93' mint: diam: 18.5 mm wt: 1.8 g wear: SW/SW 316 Context: H XVII 1 denom: AUREL 'CARAUSTUS' date: '286-93' mint: cat: c.as 982 diam: 18.0 mm wt: 3.2 g wear: SW/SW 317 Context: G V 3 denom: AUREL ALLECTUS cat: 33 date: 293-96 mint: LN diam: 21.5 mm wt: 4.0 g wear: SW/SW 318 Context: F VII 7 Phase: 5 ALLECTUS denom: AUREL date: 293-96 mint: CO cat: 86 ALLECTUS diam: 24.5 mm wt: 4.1 g wear: UW/SW 319 Context: G II 4 Phase: 6-7 ALLECTUS denom: AUREL date: 293-96 mint: LN cat: 28 diam: 23.5 mm wt: 3.8 g wear: UW/UW 320 Context: F XIII 18 Phase: 5-6 ALLECTUS denom: AUREL date: 293-96 mint: LN cat: 33 diam: 22.5 mm wt: 5.0 g wear: SW/SW 321 Context: F XXIV U/S Phase: U/S Small find No. 208 ALLECTUS denom: AUREL date: 293-96 mint: CO cat: 69 diam: 22.5 mm wt: 4.3 g wear: UW/UW 322 Context: U/S ALLECTUS denom: AUREL date: 293-96 mint: cat: diam: 22.5 mm wt: 3.5 g wear: UW/C 323 Context: F VII 5 ALLECTUS denom: AUREL date: 293-96 mint: LN cat: 28 diam: 24.0 mm wt: 2.9 g wear: SW/SW 324 Context: J VIII 2 ALLECTUS denom: AUREL date: 293-96 mint: LN cat: 33 diam: 25.5 mm wt: 3.8 g wear: ?SW/SW 325 Context: K XVIII 4 ALLECTUS denom: AUREL date: 293-96 mint: CO cat: 69 diam: 24.5 mm wt: 2.3 g wear: UW/UW 326 Context: J III 4 ALLECTUS(?) denom: AUREL date: 293-96 mint: cat: as 79 diam: 20.0 mm wt: 2.3 g wear: C/SW 327 Context: K XX 1 Phase: U/S ALLECTUS denom: QUIN date: 293-96 mint: LN cat: 55 diam: 20.5 mm wt: 2.1 g wear: UW/UW 328 Context: F XXV 1 MAXIMIANUS denom: FOLL date: 305-07 mint: LN cat: 6LN42 diam: 28.5 mm wt: 7.9 g wear: UW/UW 329 Context: G XXI 4 Phase: 6a denom: FOLL MAXIMINUS date: 310-13 mint: TR P cat: 6TR844a diam: 23.0 mm wt: 3.8 g wear: UW/SW

Phase: 5-6 Small find No. 58 Obv [IMP..CARAVSIVS..AVG] Rev [CONCORDIA MILITVM] Phase: Unphased Small find No. 90 Obv [IMP..CARAVSIVS..AVG] Rev SAL[VS AVG] Phase: 6(-7) Small find No. 19 Obv IMPC ALLECTVS [PFAVG] Rev PAX AVG Small find No. 133 Obv [IMPC A]LLECTVS PFAVG Rev PAX AVG Small find No. 93 Obv IMPC ALLECTVS [PFA]VG Rev PAX AVG Small find No. 171 Obv IMPC ALLECTVS PFAVG Rev PAX AVG Obv IMPC ALLECTVS PFAVG Rev FIDES MILITVM Phase: U/S Small find No. -Obv [IM]PC A[LLECTVS..AVG] Rev -Phase: 5-6 Small find No. 237 Obv IMPC ALLECTVS [PFAVG] Rev [PA]X [AVG] Phase: 5-6 Small find No. 44 Obv IMPC ALLECTVS PFAVG Rev PAX AVG Phase: 6 Small find No. 102 Obv IMPC ALLECTVS PFAVG Rev [FIDE]S MILIT[V] Phase: 5-6 Small find No. 91 Obv [IMPC ALLECTVS PFAVG] Rev [LAETIT]IA AVG Small find No. 75 Obv [IMPC] ALLECTVS PFAVG Rev [VIRTVS AVG] Phase: U/S Small find No. 186 Obv IMPC MAXIMIANVS PFAVG Rev GENIO POPV-LI ROMANI Small find No. 162 Obv IMP MAXIMINVS PFAVG Rev GENIO POP ROM

Rev -

330 Context: D V 11 Phase: 5-7 Small find No. 49 Obv IMP LICINIVS PFAVG LICINIUS I denom: FOLL date: 316 mint: TR cat: 7TR121 Rev GENIO POP ROM diam: 21.0 mm wt: 3.5 g wear: UW/SW 331 Context: E II 7 Phase: 5-6 Small find No. 85 CONSTANTINE I Obv CONSTANTINVS PFAVG denom: date: 310-12 mint: LN P cat: 6LN153 Rev COMITI-AVGG NN diam: 22.5 mm wt: 3.9 g wear: UW/UW 332 Context: D XIX 2 Phase: 5-6 Small find No. 119 denom: FOLL CONSTANTINE I Obv IMP [CONSTANTINVS] PFAVG date: 313-18 mint: cat: as 7LN6 Rev [?SOLI INVICTO COMITI] diam: 21.0 mm wt: 2.2 g wear: UW/C Phase: 6(-7) Small find No. 14 333 Context: G XV 2 CONSTANTINE I denom: Obv [IMP CONSTANTINVS..]AVG date: 313-20 mint: cat: as 7TR97 Rev diam: 16.5 mm wt: 0.9 g wear: SW/C 334 Context: G XXII 6 Phase: 6(-7) Small find No. 184 CONSTANTINE I denom: Obv date: 318-20 mint: cat: as 7LN157 Rev [VICTORIAE LAETAE PRINC PERP] diam: 18.0 mm wt: 1.8 g wear: C/C Phase: U/S 335 Context: N V 1 Small find No. 18 CONSTANTINE I denom: Obv CONSTA-[NTINVS AVG] date: 318-30 mint: cat: as 7TR249 Rev diam: 19.5 mm wt: 3.3 g wear: SW/C Phase: U/S 336 Context: N III 1 Small find No. 8 CONSTANTINE I denom: Obv CONSTAN-TINVS AVG date: 321 mint: TR P cat: 7TR303 Rev BEATA TRAN-OVILLITAS VOT/IS/XX diam: 20.5 mm wt: 2.8 g wear: UW/SW 337 Context: K XXII 2 Phase: 6 Small find No. 122 CONSTANTINE I denom: Obv CONSTAN-TINVS AVG date: 321-22 mint: LN P cat: 7LN221 Rev BEATA TRAN-QVILLITAS VOT/IS/XX diam: 19.5 mm wt: 2.3 g wear: UW/UW Phase: 6a 338 Context: G XXI 5 Small find No. 169 CONSTANTINE I denom: Obv CONS[TAN-TINVS AVG] date: 323-24 mint: TR cat: 7TR430 Rev CAESARVM NOSTRORVM VOT/X diam: 21.5 mm wt: 2.6 g wear: SW/SW Phase: U/S Small find No. 43 339 Context: E XI 1 Obv CONSTAN-TINVS AVG] CONSTANTINE I denom: date: 324-25 mint: TR P cat: 7TR449 Rev PROVIDEN-TIAE AVGG diam: 20.0 mm wt: 2.9 g wear: UW/UW 340 Context: E VI 12 Phase: 5-6 Small find No. 59 CONSTANTINE I denom: Obv [VRBS ROMA] Rev Wolf and Twins date: 330-31 mint: TR S cat: 7TR529,HK58 diam: 17.0 mm wt: 1.2 g wear: C/SW 341 Context: G XXIV 1 Phase: U/S Small find No. 170 CONSTANTINE I denom: Obv [VRBS ROMA] date: 330-31 mint: TR S cat: 7TR522 Rev Wolf and Twins diam: 15.5 mm wt: 0.8 g wear: SW/SW 342 Context: D XV 4 Phase: 6 Small find No. 108 CONSTANTINE I denom: Obv [VRBS ROMA] date: 330-31 mint: LG P cat: 7LG242,HK184 Rev Wolf and Twins diam: 17.0 mm wt: 1.9 g wear: UW/UW 343 Context: K XXI 1 Phase: U/S Small find No. 73 CONSTANTINE I denom: Obv VRBS ROMA date: 330-31 mint: LG P cat: 7LG242,HK184 Rev Wolf and Twins diam: 18.5 mm wt: 1.7 g wear: SW/W 344 Context: E XIV 2 Small find No. 141 Phase: 6 denom: CONSTANTINE I Obv [VRBS] ROMA cat: as 7TR522,HK51 Rev Wolf and Twins date: 330-35 mint: diam: 17.5 mm wt: 1.6 g wear: SW/SW 345 Context: D XIX 1 Phase: U/S Small find No. 105 CONSTANTINE I denom: Obv [VRBS ROMA]

date: 330-35 mint: cat: as 7TR522,HK51 Rev Wolf and Twins diam: 16.5 mm wt: 1.7 g wear: SW/SW Phase: U/S Small find No. 14 346 Context: L U/S CONSTANTINE I fragment date: 330-35 mint: denom: Obv [VRBS ROMA] cat: as 7TR522,HK51 Rev Wolf and Twins diam: 14.0 mm wt: 0.6 g wear: C/SW? 347 Context: U/S Phase: U/S Small find No. -Obv VRBS ROMA CONSTANTINE T denom: date: 333-34 mint: TR P cat: 7TR553,HK76 Rev Wolf and Twins diam: 17.5 mm wt: 2.0 g wear: W/SW Phase: U/S Small find No. 211 348 Context: E XXI 1 denom: CONSTANTINE I Obv CONSTAN-TINOPOLIS date: 330 mint: AR P cat: 7AR344,HK351c Rev Victory on prow diam: 17.5 mm wt: 1.4 g wear: UW/UW Phase: 7 349 Context: E XX 2 Small find No. 191 denom: CONSTANTINE I Obv CONSTANTINOPOLIS date: 330-31 mint: TR P cat: 7TR530 Rev Victory on prow diam: 17.5 mm wt: 1.7 g wear: W/W Phase: U/S 350 Context: F VII 2 Small find No. 19 CONSTANTINE I denom: Obv CONSTAN-TINOPOLIS date: 330-35 mint: cat: as 7TR523,HK52 Rev Victory on prow diam: 16.0 mm wt: 1.9 g wear: UW/SW 351 Context: E VI 12 Phase: 5-6 Small find No. 61 CONSTANTINE I denom: Obv [CONSTANTINOPOLIS] date: 330-35 mint: cat: as 7TR523,HK52 Rev Victory on prow diam: 15.0 mm wt: 1.3 g wear: SW/SW 352 Context: C IV 2 Phase: U/S? Small find No. 23 CONSTANTINE I denom: Obv CONSTAN-TINOPOLIS date: 330-35 mint: cat: as 7TR523 Rev Victory on prow diam: 18.0 mm wt: 2.4 g wear: UW/SW 353 Context: K XXIV 2 Phase: U/S Small find No. 125 CONSTANTINE T denom: Obv CONSTAN-[TINOPOLIS] date: 330-35 mint: cat: as 7TR523,HK52 Rev Victory on prow diam: 18.0 mm wt: 2.1 g wear: UW/UW 354 Context: E V 9 Phase: 5-6 Small find No. 69 CONSTANTINE I denom: Obv CONSTAN-TINOPOLIS date: 332-33 mint: TR S cat: 7TR548, HK51 Rev Victory on prow diam: 17.5 mm wt: 1.1 g wear: SW/SW Phase: U/S Small find No. 65 355 Context: K XX 1 denom: Obv [CONSTA]N[TINVS MAX A]VG CONSTANTINE I cat: as 7TR590 date: 335-37? mint: Rev ?[GLORIA EXERCITVS] 1 std diam: 16.5 mm wt: 1.6 g wear: SW/C 356 Context: E VI 12 Phase: 5-6 Small find No. 60 'CONSTANTINE I' denom: Obv [VRBS ROMA] date: 330+ mint: cat: c.as 7TR522,HK51 Rev Wolf and Twins diam: 16.0 mm wt: 0.7 g wear: C/UW 357 Context: J VII 1 Phase: U/S Small find No. 34 'CONSTANTINE I' denom: Obv VRBS [ROMA] date: 330+ mint: cat: c.as 7TR522 Rev Wolf and Twins diam: 13.5 mm wt: 1.2 g wear: SW/SW 358 Context: K XVII 1 Phase: U/S Small find No. 30 'CONSTANTINE I' denom: Obv VRBS ROMA date: 330+ mint: cat: c.of 7LG242,HK184 Rev Wolf and Twins mm:PLG diam: 11.5 mm wt: 0.7 g wear: UW/UW 359 Context: D XIX 1 Phase: U/S Small find No. 131 'CONSTANTINE I' denom: Obv [CONSTANTINOPOLIS]

date: 330+ mint:

CONSTANTINE I, POSTH.

date: 337-40 mint: TR P

360 Context: K XI 1

diam: 13.0 mm wt: 0.7 g wear: SW/C

diam: 14.5 mm wt: 1.2 g wear: UW/UW

Phase: U/S

denom: AUREL

cat: c.as 7TR523,HK52 Rev Victory on prow

cat: 8TR68,HK114 Rev Quadriga

Small find No. 17

Obv DIV CONSTANTI-NVS PT AVGG

116

Phase: U/S Small find No. -361 Context: E U/S 'CONSTANTINE II/I' hybrid denom: Obv [CONSTANTINVS IVN] NOBC cat: obv.as 7TR520 Rev Victory on prow as 7TR523 date: 330+ mint: diam: 16.0 mm wt: 1.4 g wear: UW/C Phase: U/S 362 Context: L U/S Small find No. 2 CRISPUS CAESAR Obv C[RISPVS NOB CAE]S denom: date: 320 mint: TR cat: 7TR261 Rev [VIRTVS EXERCIT] diam: 18.5 mm wt: 2.9 g wear: SW/SW 363 Context: F XXI 2 Phase: U/S Small find No. 94 CRISPUS Obv IVL CRIS-PVS NOBC denom: date: 321-24 mint: SS E cat: 7SS172 Rev CAESARVM NOSTRORVM VOT/X diam: 19.0 mm wt: 3.0 g wear: UW/UW Small find No. 138 364 Context: D XXV 2 Phase: 6 CRISPUS denom: Obv [IV]L CRIS-[PVS NOBC] date: 323-24 mint: cat: as 7LG215 Rev [CAESARV]M NOSTRORVM diam: 17.0 mm wt: 1.1 g wear: SW/SW 365 Context: D XXVI 1 Phase: Unphased Small find No. 120 CRISPUS CAESAR denom: Obv FL IVL [CRISPVS NOB] CAES date: 324-25 mint: cat: as 7TR451 Rev PROVIDENTIAE CAESS diam: 19.5 mm wt: 2.5 g wear: SW/SW Phase: U/S Small find No. 9 366 Context: K X 1 HELENA [CONSTANTINE I] denom: date: 324-28 mint: cat: as Obv [FL HELENA]-AVGVSTA cat: as 7TR458 Rev [SECVRITAS REIPVBLICE] diam: 20.5 mm wt: 2.6 g wear: UW/C 367 Context: G XXI 4Phase: 6aSmall find No. 163CONSTANTINE II, CAESARdenom:Obv CONST Obv CONSTANTINVS IVN NC date: 317 mint: LN P cat: 7LN118 Rev SOLI INVIC-TO COMITI diam: 19.5 mm wt: 2.8 g wear: UW/UW 368 Context: K XXIII 5 Phase: 6 Small find No. 140 CONSTANTINE II CAESAR denom: CONSTANTINE II, CAESAR denom: Obv [CONSTAN]TINVS IVN NOBC date: 323-24 mint: cat: as 7LN292 Rev [CAESARVM NOSTRORVM VOT/X] diam: 21.5 mm wt: 2.7 g wear: UW/C
 Context: L U/S
 Phase: U/S
 Small find No. 4

 CONSTANTINE II, CAESAR
 denom:
 369 Context: L U/S CONSTANTINE II, CAESARdenom:date: 323-24mint: LNcat: 7LN287 Obv CONSTANTI-NVS IVN NC Rev BEAT TRA-NQLITAS VOT/IS/XX context: B/D U/S Phase: U/S Small find No. -CONSTANTINE II, CAESAR denom: diam: 19.5 mm wt: 1.8 g wear: SW/SW 370 Context: B/D U/S date: 325-28 mint: TR P cat: 27 diam: 19 5 ---Obv CONSTANTINV[S IVN NOBC] cat: as 7TR463,HK33 Rev PROVIDEN-TIAE [CAESS] diam: 19.5 mm wt: 2.2 g wear: UW/UW 371 Context: E IX 2 Phase: 6-7 Small find No. 165 CONSTANTINE II, CAESAR denom: date: 330-35 mint: cat: Obv [CONSTANTIN]VS IVN NOBC date: 330-35 mint: cat: as 7TR520 Rev [GLORIA EXERCITVS] 2 stds diam: 18.0 mm wt: 1.9 g wear: UW/UW 372 Context: G V ext 2 Phase: 6(-7) Small find No. 142 CONSTANTINE II, CAESAR denom: Obv [CONSTA]-NTI-NVS IVN NC date: 335-37 mint: cat: as 7TR586 Rev GLOR-IA EXER[C-ITVS] 1 std diam: 15.0 mm wt: 1.2 g wear: SW/SW 373 Context: U/S Phase: U/S Small find No. -CONSTANTINE II, CAESAR denom: Obv [CONSTANTI]NVS IVN NC date: 335-37 mint: cat: as 7TR586 Rev [GLORIA E]XER[CITVS] 1 std diam: 16.0 mm wt: 0.8 g wear: UW/UW Phase: 6 Small find No. 168 374 Context: E XIV 4 CONSTANTINE II, CAESAR Obv CONSTANT[I-NV]S IVN NC denom: date: 335-37 mint: TR S? cat: 7TR586 Rev GLOR-IA EXERC-ITVS 1 std diam: 14.5 mm wt: 1.1 g wear: SW/UW 375 Context: J I 14 Phase: 6a Small find No. 72 CONSTANTINE II, CAESAR denom: date: 335-37 mint: cat: Obv CONSTANTINVS IVN NOBC cat: as 7LG276 date: 335-37 mint: Rev GLOR-[IA EXERC-ITVS] 1 std. diam: 15.0 mm wt: 1.5 g wear: UW/SW 376 Context: H U/S Phase: U/S Small find No. denom: CONSTANTINE II, CAESAR Obv CONSTANTI-[NVS IVN NC]

118

date: 337 mint: AR cat: 7AR412,HK411 Rev [GLOR]-IA EXERC-ITVS 1 std diam: 15.0 mm wt: 1.1 g wear: UW/UW Phase: 6 Small find No. 174 377 Context: K XXII 2 CONSTANTINE II, CAESAR denom: date: 330-37? mint: cat: -Obv CONSTANTI-[NVS IV]N N[OBC] cuir. bust r. cat: -Rev diam: 16.5 mm wt: 0.9 g wear: UW/C CONTEXT: D V 12 Phase: 3-4 CONSTANTIUS II,CAESAR denom: Small find No. 56 378 Context: D V 12 date: 330-31 mint: TR cat. Obv FL IVL [CONSTANTIVS N]OBC cat: 7TR521,HK50 Rev GLOR-IA EXERC-ITVS 2 stds CONTEXT: L VII 1 Phase: U/S Small find No. 8 CONSTANTIUS II, CAESAR denom: diam: 17.0 mm wt: 2.2 g wear: UW/UW 379 Context: L VII 1 date: 330-33 mint: TE cat: diam: 19.0 mm Obv FL IVL CONSTANTIVS NOBC cat: 7TE185,HK837a Rev GLOR-IA EXERC-ITVS 2 stds diam: 19.0 mm wt: 2.5 g wear: W/SW Phase: 5-6 380 Context: E III 9 Small find No. 116 CONSTANTIUS II, CAESARdenom:date: 332mint: LG Pcat: CONSTANTIUS II, CAESAR Obv FL IVL CONSTANTIVS NOBC cat: 7LG255,HK199 Rev GLOR-[IA EXERC-]ITVS 2 stds diam: 16.0 mm wt: 2.1 g wear: UW/UW 381 Context: D XV 3 Phase: 6b Small find No. 95 'CONSTANTIUS II, CAESAR' denom: date: 335+ mint: cat: c.: Oby FL IVI.... cat: c.as 7LG287,HK234 Rev GLO[RIA EXERCITVS] 1 std mm:]PL[G] (sic) diam: 13.5 mm wt: 0.9 g wear: UW/UW 382 Context: F U/S Phase: U/S Small find No. 209 HELENA denom: Obv FLIVL HE-LENAE AVG date: 337-40 mint: TR P cat: 8TR55, HK-Rev PA-X PV-[PLICA] diam: 14.5 mm wt: 1.8 g wear: UW/SW Phase: U/S Small find No. -383 Context: U/S THEODORA denom: Obv FL MAX[THEO-DORAE AVG] date: 337-41 mint: cat: as 8TR65 Rev [PIETAS] ROMANA diam: 13.0 mm wt: 1.4 g wear: UW/UW Phase: U/S Small find No. -384 Context: U/S CONSTANTINE II denom: Obv CONSTANTI-NVS MAX AVG date: 337-40 mint: LG cat: 8LG6,HK241 Rev GLOR-[IA EXERC-ITVS] 1 std diam: 16.0 mm wt: 1.3 g wear: SW/SW 385 Context: D XVIII 2 Phase: 5-6 Small find No. 93 CONSTANTINE II denom: Obv [CONSTAN-TINVS AVG] date: 337-40 mint: TR S cat: 8TR57 Rev GLOR-IA EXERC-ITVS 1 std diam: 15.0 mm wt: 1.2 g wear: SW/SW Phase: U/S Small find No. 29 386 Context: K XIII 1 CONSTANTINE II denom: Obv CONSTANTI-NVS MAX AVG date: 337-40 mint: LG P cat: 8LG6,HK241 Rev GLOR-[IA EXERC]-ITVS 1 std diam: 14.0 mm wt: 1.3 g wear: W/SW 387 Context: E VI 5 Phase: 6 (7) Small find No. 39 CONSTANS denom: Obv [CONSTAN-]S PFAVG date: 346-48 mint: TR cat: 8TR206 Rev [VICTORIAEDDAVGGQNN] diam: 17.0 mm wt: 1.2 g wear: SW/UW 388 Context: G XV-XVI 2 Phase: 6-7 Small find No. 54 CONSTANS denom: Obv CONST[AN]-S PFAVG date: 346-48 mint: TR S cat: 8TR185, HK140 Rev VICTORIAE DDAVGGQNN diam: 16.5 mm wt: 1.0 g wear: SW/SW 389 Context: G XVII 3 Phase: 6(-7) Small find No. 128 denom: CONSTANS Obv CONSTAN-S PFAVG date: 346-48 mint: TR cat: 8TR185,HK140 Rev VICTORIAE DDAVGGQNN diam: 16.0 mm wt: 1.3 g wear: SW/SW 390 Context: G V ext 1 Phase: U/S Small find No. 146 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: TR P cat: 8TR210, HK164 Rev VICTORIAE DDAVGGONN diam: 14.5 mm wt: 1.4 g wear: SW/SW 391 Context: D X 18 Phase: 5-7 Small find No. 90 denom: CONSTANS Obv CONSTAN-S PFAVG cat: as 8TR185,HK140 Rev [VICT]ORIAE DDAVGGQNN date: 346-48 mint: diam: 15.0 mm wt: 1.1 g wear: UW/UW

Phase: U/S Small find No. 111 Obv CONSTAN-S PFAVG Rev VICTORIAE DDAVGGONN Small find No. 115 Obv CONSTAIN-S PFAVG1 cat: 8TR185,HK140 Rev VICTORIAE DDAVGGQNN Small find No. 141 Obv CONSTAN-S PFAVG date: 346-48 mint: TR P cat: 8TR182, HK138 Rev VICTOR[IAE DDAVGGQNN] Phase: 6(-7) Small find No. 11 Obv FL IVL [CONSTANT]IVS AVG Rev GLORI-A EXER-CITVS 1 std Phase: 6-7 Small find No. 12 Obv IMP CONST-ANTIVS [AVG] Rev GLOR-[IA EXERC]-ITVS 1 std Obv CONSTANTI-VS PFAVG Rev [VICTORIAE DDAV]GGQNN Obv DN CONSTAN-T[IVS PF]AVG Rev FEL TEMP RE-PARATIO FH3

```
396 Context: H I 7
                          denom:
  CONSTANTIUS II
   date: 337-40 mint: AR T
                            cat: 8AR5
   diam: 16.0 mm wt: 1.6 g wear: UW/UW
397 Context: H I 7
                         Phase: 6-7
                                        Small find No. 11
                         denom:
  CONSTANTIUS II
   date: 346-48 mint: LG P cat: 8LG66
   diam: 16.5 mm wt: 1.3 g wear: SW/SW
398 Context: J III 1
                          Phase: U/S Small find No. 63
  CONSTANTIUS II
                         denom:
   date: 348-51 mint: CN B cat: 8CN82,CK2026
   diam: 23.5 mm wt: 3.4 g wear: UW/UW
399 Context: J I 12
                         Phase: 5-6a Small find No. 57
  CONSTANTIUS II
                         denom:
                                                Obv DN CONSTAN-TIVS PFAVG behind bust : B
   date: 352-54 mint: RM cat: 8RM256,CK662
                                                 Rev [FEL TEMP RE-PARATIO] FH4
   diam: 20.0 mm wt: 3.5 g wear: UW/UW
                        Phase: 5-6
400 Context: F VIII 5
                                        Small find No. 82
  CONSTANTIUS II
                                                Obv DN CONSTAN-TIVS PFAVG A behind bust
                          denom:
   date: 353 mint: AM cat: 8AM48,CK25
                                                 Rev FEL TEMP RE-PARATIO FH3
   diam: 18.5 mm wt: 2.1 g wear: UW/UW
                    Phase: 6+ Small find No. 63
401 Context: E VIII 4
   CONSTANTIUS II
                          denom:
                                                Obv DN CONSTAN-TIVS PFAVG
   date: 353-55 mint: LG P cat: 8LG189,CK253
                                                 Rev FEL TEMP-REPARATIO FH3
   diam: 18.0 mm wt: 0.9 g wear: SW/SW
402 Context: F XI 2
                         Phase: 6 Small find No. 14
                         denom:
                                                Obv DN CONST[ANTIVS PFAVG]
  CONSTANTIUS II
                           cat: as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   date: 353-58 mint:
   diam: 18.5 mm wt: 3.7 g wear: ?W/W
403 Context: J VII 1
                          Phase: U/S Small find No. 38
  CONSTANTIUS II
                         denom:
                                              Obv [DN CONST]AN-TIVS [PF]AVG
                           cat: as 8TR359
                                                Rev [FEL TEMP REPARATIO] FH3
   date: 353-58 mint:
   diam: 18.0 mm wt: 2.2 g wear: SW/C
                         Phase: U/S Small find No. 6
404 Context: N V 1
  CONSTANTIUS II
                         denom:
                                                Obv [DN CONSTAN-TIVS PFAVG]
   date: 353-58 mint:
                            cat: as 8TR359,CK76
                                                 Rev [FEL TEMP REPARATIO] FH3
   diam: 18.0 mm wt: 1.4 g wear: UW/UW
                         Phase: U/S Small find No. 27
405 Context: J U/S
                                               Obv DN CONSTAN-[TIVS PFAVG]
  CONSTANTIUS II
                          denom:
   date: 355-58 mint: LG S
                                                 Rev FEL TEMP [REPARATIO] FH3
                           cat: 8LG189
   diam: 17.5 mm wt: 1.8 g wear: SW/SW
406 Context: D X ext 2
                      Phase: U/S Small find No. 27
                       _ nase:
denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   date: 353+ mint:
   diam: 14.5 mm wt: 1.3 g wear: C/SW
407 Context: E IX 1
                         Phase: U/S Small find No. 47
   'CONSTANTIUS II'
                           denom:
                                                 Obv [DN CONSTANTIVS PFAVG]
```

392 Context: D XX 1

date: 346-48 mint: TR P

393 Context: D XXIV 1

denom:

denom:

denom:

denom:

Phase: U/S

Phase: U/S

cat: as 8TR82

date: 346-48 mint: TR cat: 8TR199

diam: 16.5 mm wt: 1.0 g wear: SW/SW

diam: 15.0 mm wt: 1.2 g wear: UW/UW

diam: 16.5 mm wt: 1.5 g wear: SW/W

diam: 13.0 mm wt: 1.4 g wear: SW/SW

CONSTANS

CONSTANS

CONSTANS

394 Context: K V 1

395 Context: G XV 2 CONSTANTIUS II

date: 337-40 mint:

120

```
date: 353+ mint:
                       cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 9.0 mm wt: 0.4 g wear: UW/UW
                         Phase: U/S Small find No. 2
408 Context: N I 1
                         denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                          cat: c.as 8TR359,CK76 Rev OTCI (sic) = [FEL TEMP REPARATIO] FH3
   diam: 15.0 mm wt: 1.1 g wear: UW/UW
409 Context: E V 7
                         Phase: 6+
                                       Small find No. 48
   date: 353+ mint: cat.
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 12.5 mm wt: 0.8 g wear: UW/UW
                         Phase: U/S
410 Context: H I 1
                                        Small find No. 6
   'CONSTANTIUS II'
                         denom:
                                                Obv [DN CONSTAN-TIVS PFAVG]
   date: 353+ mint:
                           cat: c.as 8TR359
                                                 Rev [FEL TEMP REPARATIO] FH3
   diam: 12.5 mm wt: 0.6 g wear: SW/SW
411 Context: E VII 5
                          Phase: 6b
                                        Small find No. 64
                                                Obv [DN CONSTANTIVS PFAVG]
   'CONSTANTIUS II'
                         denom:
   date: 353+ mint:
                            cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 11.5 mm wt: 0.7 g wear: SW/SW
412 Context: E II 4
                         Phase: 5-6 Small find No. 92
   'CONSTANTIUS II'
                         denom:
                                                Obv [DN CONSTANTIVS PFAVG]
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   date: 353+ mint:
   diam: 12.0 mm wt: 0.7 g wear: UW/UW
413 Context: G XII 2
                         Phase: U/S Small find No. 87
   'CONSTANTIUS II'
                         denom:
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                          cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 11.5 mm wt: 0.6 g wear: UW/UW
                         Phase: U/S Small find No. -
denom: Obv [DN
414 Context: H U/S
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTINVS PFAVG]
   date: 353+ mint:
                          cat: c.as 8TR359
                                                 Rev [FEL TEMP REPARATIO] FH3
   diam: 15.0 mm wt: 0.8 g wear: C/SW
                      Phase: 5-6 Small find No. 117
denom: Obv [DN CONSTANTIVS PFAVG]
415 Context: E II 7
   'CONSTANTIUS II'
   date: 353+ mint:
                          cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 7.0 mm wt: 0.4 g wear: UW/UW
                     Phase: U/S Small find No. 127
416 Context: G XVII 1
'CONSTANTIUS II'
                           denom:
                                         Obv [DN CONSTANTIVS PFAVG]
                          cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   date: 353+ mint:
   diam: 12.0 mm wt: 0.5 g wear: UW/UW
417 Context: D XV 3
                      Phase: 6b Small find No. 104
                         denom:
   'CONSTANTIUS II'
                                                 Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                           cat: c.as 8LG186,CK252 Rev [FEL TEMP REPARATIO] FH3 mm: PLG (sic)
   diam: 12.5 mm wt: 1.5 g wear: UW/UW
418 Context: E XIV 2
                      Phase: 6 Small find No. 157
                         denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 12.5 mm wt: 0.7 g wear: UW/UW
                      Phase: 6 Small find No. 177
419 Context: E XIV 4
                         denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                            cat: c.as 8AR215,CK455 Rev [FEL TEMP REPARATIO] FH3 mm: CON? (sic)
   diam: 14.0 mm wt: 0.7 g wear: W/SW
420 Context: E XIV 4
                       Phase: 6 Small find No. 186
                                                Obv [DN CONSTANTIVS PFAVG]
   'CONSTANTIUS II'
                         denom:
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   date: 353+ mint:
   diam: 12.5 mm wt: 0.7 g wear: UW/UW
                         Phase: U/S Small find No. 54
421 Context: H IV 1
                         denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint:
                           cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 10.5 mm wt: 0.5 g wear: UW/UW
422 Context: G XXV 1
                         Phase: U/S Small find No. 205
                         denom:
   'CONSTANTIUS II'
                                                Obv [DN CONSTANTIVS PFAVG]
   date: 353+ mint: cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3
   diam: 16.0 mm wt: 1.5 g wear: C/?W
```

423 Context: G XXX 2 Phase: U/S Small find No. 218 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] denom: date: 353+ mint: Rev [FEL TEMP REPARATIO] FH3 cat: c.as 8TR359 diam: 10.5 mm wt: 1.0 g wear: C/UW Phase: 5-6 424 Context: J IV 2 Small find No. 25 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] denom: date: 353+ mint: cat: c.of 8AR215,CK455 Rev [FEL TEMP REPARATIO] FH3 [PC])N [sic] diam: 17.0 mm wt: 1.4 g wear: UW/UW 425 Context: G XXX 4 Phase: 6-7 Small find No. 237 'CONSTANTIUS II' denom: Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 11.5 mm wt: 0.4 g wear: UW/UW 426 Context: J IV 4 Phase: 5-6 Small find No. 32 denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359 Rev [FEL TEMP REPARATIO] FH3 diam: 11.0 mm wt: 0.7 g wear: C/?SW 427 Context: H VI U/S Phase: U/S Small find No. denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359 Rev [FEL TEMP REPARATIO] FH3 diam: 17.0 mm wt: 2.6 g wear: SW/SW 428 Context: H XVII 2 Phase: 5 Small find No. 105 denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359 Rev [FEL TEMP REPARATIO] FH3 diam: 20.5 mm wt: 2.1 g wear: SW/SW 429 Context: L XXIII 3 Phase: 2-3/4 Small find No. 42 'CONSTANTIUS II' denom: Obv [DN CONSTANTIVS PFAVG] cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3 date: 353+ mint: diam: 14.0 mm wt: 1.3 g wear: UW/UW 430 Context: E VI on wall 3 Phase: 5-6 Small find No. 37 'CONSTANTIUS II' denom: Obv [DN CONSTANTIVS PFAVG] cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3 date: 353+ mint: diam: 9.5 mm wt: 0.5 g wear: UW/UW Phase: U/S Small find No. 197 431 Context: G XVII 1 'CONSTANTIUS II' denom: Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 12.0 mm wt: 0.5 g wear: C/UW Phase: 5-6a Small find No. 56 432 Context: J I 12 denom: 'CONSTANTIUS II'? Obv [DN CONSTANTIVS PFAVG] date: 353+? mint: cat: c.as 8TR359,CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 12.0 mm wt: 0.5 g wear: C/C Phase: 6-7 Small find No. 63 433 Context: G II 5 date: 353-54 mint: TR cat: 8 diam: 19.5 mm Obv [DN CONSTANTI-]VS NOB CAES CONSTANTIUS GALLUS cat: 8TR354,CK74a Rev [FEL TEMP RE-]PARATIO FH3 diam: 19.5 mm wt: 2.9 g wear: SW/SW 434 Context: G XXX 2 Phase: U/S Small find No. 216 HOUSE OF CONSTANTINE denom: Obv date: 321-22 mint: LN P cat: as 7LN220 var. Rev BEATA TRA-NQVILLITAS VOT/IS/XX [var. for N-Q] diam: 20.5 mm wt: 2.8 g wear: C/SW 435 Context: D XXI 2 Phase: 6 Small find No. 143 HOUSE OF CONSTANTINE denom: Oby cat: date: 330-35 mint: Rev [GLORIA EXERCITVS] 2 stds diam: 15.0 mm wt: 0.9 g wear: C/SW Phase: 5 Small find No. 97 436 Context: F VII 6 HOUSE OF CONSTANTINE denom: Obv date: 335-41 mint: cat: as 7TR586 Rev [GLORIA EXERCITVS] 1 std diam: 17.0 mm wt: 0.8 g wear: C/SW 437 Context: D XXV 2 Phase: 6 Small find No. 133 HOUSE OF CONSTANTINE denom: 0bv Rev [GLORIA EXERCITVS] 1 std date: 335-41 mint: cat: diam: 15.0 mm wt: 1.3 g wear: C/SW 438 Context: B/D U/S Phase: U/S Small find No. -HOUSE OF CONSTANTINE denom: Obv -

122

```
date: 335-41 mint: cat: -
                                               Rev [GLORIA EXERCITVS] 1 std.
   diam: 15.0 mm wt: 1.0 g wear: EW/EW
439 Context: F XI 2 Phase: 6 Small find No. 13
HOUSE OF CONSTANTINE denom: Obv -
   date: 337-40 mint: TR S cat: as 8TR69
                                                Rev [GLORIA EXERCITVS] 1 std
   diam: 16.0 mm wt: 0.8 g wear: C/SW
440 Context: H I 7
                         Phase: 6-7 Small find No. 13
   'HOUSE OF CONSTANTINE' denom:
date: 318+ mint: cat: c
                                                 Oby -
                           cat: c.as 7LG74
                                                Rev [VICTORIAE LAETAE PRINC PERP]
   diam: 15.5 mm wt: 1.8 g wear: SW/SW
441 Context: M U/S
                         Phase: U/S Small find No. -
  MAGNENTTUS
                         denom:
                                              Obv IM CAE MAGN-ENTIVS AVG
   date: 350-51 mint: TR
                          cat: 8TR264-7,CK50/51 Rev FELICITAS-REIPVBLICE
   diam: 23.0 mm wt: 3.4 g wear: UW/UW
442 Context: J I 2
                         Phase: 6
                                        Small find No. 19
  MAGNENTIUS
                         denom:
                                               Obv [DN MA]GNEN-TIVS PFAVG
   date: 351 mint: TR P cat: 8TR306/7,CK56
                                                Rev [VICTORIAE DDNN AVGETCAE(S)]
   diam: 22.0 mm wt: 3.1 g wear: UW/UW
                   Phase: 5-6 Small find No. 86
443 Context: E II 7
                         denom:
  MAGNENTIUS
                                              Obv DN MA[GNEN-]TIVS PFAVG
   date: 351-53 mint: AM cat: 8AM20
                                                 Rev VICTORIAE DDNN AVGETCAE VOT/V/MVLT/X
   diam: 22.0 mm wt: 4.1 g wear: UW/UW
444 Context: J II 2
                      Phase: 6 Small find No. 3
  MAGNENTIUS
                                        Obv DN MAGNEN-[TIVS PFAVG] A behind head
                         denom:
   date: 352 mint: TR P cat: 8TR312,HK58
                                               Rev VICTOR[IAE DDNN]AVGETCAES VOT/V/MVLT/X
   diam: 20.5 mm wt: 2.1 g wear: UW/UW
445 Context: H II 1 Phase: U/S Small find No. 28
  MAGNENTIUS
                         denom:
                                        Obv [DN MAGNEN]-TIVS PFAVG
   date: 353 mint: cat: as 8AM39
                                               Rev SALVS DDNNAVGETCAES
   diam: 24.5 mm wt: 3.5 g wear: SW/SW
                      Phase: 6a Small find No. 158
denom: Obv [DN MAGNEN-TIVS PFAVG]
446 Context: G XXI 4
'MAGNENTIUS'
   date: 351+ mint:
                          cat: c.as 8TR309,CK- Rev [VICTORIAE DDNN AVGETCAES] mm: )I (sic)
   diam: 19.5 mm wt: 3.3 g wear: UW/UW
447 Context: G U/S
'MAGNENTIUS'
                      Phase: U/S Small find No. -
                          denom:
                                               Obv DN MA[GN]E[N]-TIVS PFAVG
   date: 351+ mint:
                          cat: c.as 8TR310
                                                Rev [VICTORIAE DDNN AVGETCAE]
   diam: 15.5 mm wt: 1.1 g wear: UW/UW
448 Context: K X 1
                        Phase: U/S Small find No. 10
                         denom:
   'MAGNENTIUS'
                                                Obv [DN MAGNEN-TIVS PFAVG]
                           cat: c.as 8TR307,CK56 Rev [VICTORIAE DDNN AVGETCAE(S)]
   date: 351+ mint:
   diam: 15.0 mm wt: 1.1 g wear: SW/UW
449 Context: E XIV 2 Phase: 6 Small find No. 159
                                          Obv DN VALENTIN[I-ANVS PFAVG]
  VALENTINIAN I
                         denom:
   date: 364-75 mint:
                          cat: as CK525
                                                Rev GLORIA RO-MANORVM
   diam: 19.0 mm wt: 2.5 g wear: SW/SW
450 Context: E XIV 4
                         Phase: 6 Small find No. 169
  VALENTINIAN I
                         denom:
                                            Obv DN VALENTINI-ANVS PFAVG
   date: 364-75 mint: AR
                           cat: as CK484
                                                Rev GLORIA RO-MANORVM
   diam: 18.0 mm wt: 2.5 g wear: SW/SW
451 Context: J VI 1
                        Phase: U/S Small find No. 23
                                          Obv DN VALENT[INIAN]VS PFAVG
  VALENTINIAN I
                         denom:
   date: 364-75 mint:
                                                Rev GLORIA RO-MANORVM
                           cat: as CK525
   diam: 18.0 mm wt: 2.0 g wear: SW/SW
                        Phase: U/S Small find No. 281
452 Context: F U/S
  VALENTINIAN I
                         denom:
                                              Obv [DN VALENTINI]ANV[S PFAVG]
   date: 364-75 mint:
                          cat: as CK92
                                                Rev [GLORIA RO]MANOR[VM]
   diam: 18.0 mm wt: 2.0 g wear: SW/SW
453 Context: G II 4
                         Phase: 6-7 Small find No. 91
                                             Obv DN VALENTINI-ANVS PFAVG
                         denom:
  VALENTINIAN I
   date: 375 mint: AR S cat: CK526
                                              Rev GLORIA RO-MANORVM
   diam: 18.5 mm wt: 2.1 g wear: W/W
```

454 Context: U/S Phase: U/S Small find No. -VALENTINIAN I denom: Obv DN VAL[ENTINIA[NVS PFAVG Rev SECVRITAS-REIPVBLICAE date: 364-75 mint: cat: as CK96 diam: 19.0 mm wt: 2.0 g wear: SW/W 455 Context: N XIII 1 Phase: U/S Small find No. 24 VALENTINIAN I denom: Obv DN VALENTINI-ANVS PFAVG date: 367-75 mint: AQ S cat: CK1035 Rev SECVRITAS-REIPVBLICAE diam: 18.0 mm wt: 1.9 g wear: UW/UW 456 Context: E XIV 4 Phase: 6 Small find No. 172 VALENS denom: Obv DN VALEN-S PFAVG date: 364-75 mint: AR II cat: CK480/520 Rev GLORIA RO-MANORVM diam: 17.0 mm wt: 1.8 g wear: SW/W 457 Context: G XXX 2 Phase: U/S Small find No. 225 VALENS denom: Obv DN VALEN-[S PFAVG] date: 364-78 mint: cat: as CK93 Rev [GLOR]IA RO-[MANORVM] diam: 17.0 mm wt: 2.5 g wear: SW/SW 458 Context: D XV 3 Phase: 6b Small find No. 96 VALENS denom: Obv DN VALEN-S PFAVG date: 367-75 mint: AQ cat: CK1012 Rev GLORIA RO-MANORVM diam: 18.0 mm wt: 2.3 g wear: W/W 459 Context: E IV 1 Phase: U/S Small find No. 21 VALENS? denom: Obv [DN VALEN-S PFAVG] date: 364-78 mint: cat: as CK97 Rev [SECVRITAS REIPVBLICAE] diam: 14.0 mm wt: 1.1 g wear: SW/SW 460 Context: F VIII 2 Phase: U/S Small find No. 34 VALENS Obv [DN] VALEN[S PFAVG] denom: cat: as CK97 date: 364-78 mint: Rev [SECVRITAS REIPVBLICAE] diam: 17.0 mm wt: 1.3 g wear: SW/W Phase: 6b 461 Context: D XV 3 Small find No. 91 VALENS denom: Obv DN VALE[N-S PF]AVG date: 364-78 mint: cat: as CK97 Rev SECVRITAS-REI[PVBLICAE] diam: 18.5 mm wt: 2.2 g wear: SW/SW 462 Context: E VI U/S Phase: U/S Small find No. 66 VALENS denom: Obv DN VALEN-S PFAVG date: 367-75 mint: SS cat: as CK1354 Rev SECVRITAS-REIPVBLICAE diam: 18.5 mm wt: 2.6 g wear: SW/SW 463 Context: G XX ext 1 Phase: U/S Small find No. 176 VALENS denom: Obv DN VALEN-S PFAVG date: 367-75 mint: SS cat: CK1447-9 Rev [SECVRITAS-REOPVBLICAE] diam: 18.0 mm wt: 2.1 g wear: UW/UW 464 Context: H III 22 Phase: 6-7 Small find No. 43 Obv DN VALEN-S PFAVG VALENS denom: Rev SECVRITAS REIPVBLICAE date: 367-75 mint: AR III cat: CK523 diam: 19.0 mm wt: 2.9 g wear: SW/SW 465 Context: E XIV 4 Phase: 6 Small find No. 185 VALENS denom: Obv DN VALEN-S PFAVG date: 367-75 mint: AR II cat: CK516 Rev SECVRITAS-REIPVBLICAE diam: 18.5 mm wt: 2.2 g wear: SW/W 466 Context: J U/S Phase: U/S Small find No. 51 VALENS denom: Obv DN VALEN-S PFAVG date: 367-75 mint: LG I cat: CK315 Rev [SECVRITAS] REIPVBLICAE diam: 17.0 mm wt: 2.0 g wear: SW/SW 467 Context: G U/S Phase: U/S Small find No. -VALENS denom: Obv [DN VALEN]-S PFAVG date: 375 mint: AR P cat: 528 Rev [SCVRITAS REIPV]BLICAE diam: 18.0 mm wt: 1.4 g wear: ?SW/W 468 Context: L U/S Small find No. 1 Phase: U/S Obv DN VALEN-S PFAVG VALENS denom: date: 375 mint: AR P cat: CK528 Rev SECVRITAS-REIPVBLICAE diam: 18.0 mm wt: 2.2 g wear: UW/SW 469 Context: K XXIII 1 Phase: U/S Small find No. 155 VALENS denom: Obv DN VALEN-S PF[AVG]

date: 375 mint: AR P cat: CK528 Rev SECVRITAS-[REIP]VBLICAE diam: 18.0 mm wt: 1.4 g wear: W/W 470 Context: E VI 3 Phase: 5-6 Small find No. 152 Obv DN GRATIANVS PFAVG GRATIAN denom: date: 367-75 mint: AQ cat: CK1016 Rev GLORIA RO-MANORVM diam: 20.0 mm wt: 2.0 g wear: SW/UW 471 Context: E XIV 2 Phase: 6 Small find No. 136 GRATTAN Obv DN GRATIANVS AVGG AVG denom: date: 367-75 mint: AR I cat: CK349 Rev SECVRITAS REIPVBLICAE diam: 17.5 mm wt: 2.6 g wear: SW/SW Phase: 6-7 472 Context: H III 22 Small find No. 46 Obv DN GRATIANVS AVGG AVG GRATTAN denom: date: 367-75 mint: AR II cat: CK523a Rev GLORIA NO-VI SAECVLI diam: 18.0 mm wt: 2.3 g wear: SW/SW 473 Context: J V 1 Phase: U/S Small find No. 31 GRATIAN denom: Obv [DN] GRAT[IANVS AVGG AVG] date: 367-75 mint: AR III cat: CK523a Rev GLORIA NO-[VI SAECVLI] diam: 17.5 mm wt: 2.2 g wear: SW/SW 474 Context: E XIV 4 Phase: 6 Small find No. 171 Obv DN GRATIANVS AVGG AVG GRATTAN denom: date: 375 mint: AR T cat: CK529 Rev GLORIA NO-VI SAECVLI diam: 18.5 mm wt: 2.3 g wear: SW/UW 475 Context: G II 5 Phase: 6-7 Small find No. 62 GRATTAN denom: Obv [D]N GRATIA-NVS PFAVG date: 378-83 mint: LG P cat: CK376 Rev REPARATIO REIPVB diam: 25.0 mm wt: 4.4 g wear: W/W 476 Context: H III U/S Phase: U/S Small find No. 55 VALENTINIAN II denom: Obv DN VALENTINI-ANVS PFAVG cat: as CK162 date: 388-92 mint: Rev [VICTORIA AVGGG] diam: 14.0 mm wt: 1.2 g wear: UW/C 9 woal Phase: 3-4 477 Context: D XX 8 Small find No. 127 VALENTINTAN TT denom: Obv DN V[ALENTIN-IANVS PFAVG] date: 388-92 mint: RM P cat: CK796 Rev [SALVS REI-PVBLICAE] diam: 14.0 mm wt: 0.8 g wear: UW/UW
 Context: L U/S
 Phase: U/S
 Small find No. 28

 VALENTINIAN II(?)
 denom:
 478 Context: L U/S Obv [DN VALENTIN-IA]NVS [PFAVG] date: 388-92 mint: cat: as CK799 Rev SALVS REI-PVBLICAE diam: 13.5 mm wt: 1.0 g wear: SW/SW 479 Context: J XIII 11 Phase: 5 Small find No. 102 Obv [DN THEODO-]SIVS P[FAVG] THEODOSIUS I denom: cat: as CK797 date: 388-95 mint: Rev SALVS REI[PVBLICAE] diam: 11.5 mm wt: 1.2 g wear: SW/SW 480 Context: E VI 12 Phase: 5-6 Small find No. 54 HOUSE OF THEODOSIUS denom: Obv date: 388-402 mint: cat: as CK796 Rev [SALVS REIPVBLICAE] diam: 13.0 mm wt: 1.2 g wear: C/SW 481 Context: H XXVII 2 Phase: 7 Small find No. 172 HOUSE OF THEODOSIUS denom: Obv date: 388-402 mint: cat: as CK389 Rev VICTOR-[IA AVGGG] diam: 14.0 mm wt: 1.1 g wear: SW/SW 482 Context: D XI 33 Phase: 3 Small find No. 80 ILLEGIBLE AE denom: AS Obv date: C1/2nd mint: cat: -Rev diam: 27.5 mm wt: 8.5 g wear: EW/EW 483 Context: U/S Phase: U/S Small find No. -ILLEGIBLE AE denom: AS Obv date: C1/2nd mint: cat: -Rev diam: 28.0 mm wt: 10.0 g wear: C/C 484 Context: H XXIV 7 Phase: 1 Small find No. 190 denom: DP/AS TLLEGTBLE Obv cat: date: C1/2nd mint: Rev diam: 26.0 mm wt: 6.9 g wear: C/C

```
Phase: 5
485 Context: K VII 3
                                        Small find No. 181
   ILLEGIBLE AR FRAG.
                            denom: DEN
                                                     Obv -
   date: C1-3rd mint:
                              cat: -
                                                     Rev -
   diam: 16.0 mm wt: 1.4 g wear: C/SW
486 Context: N I 5
                            Phase: 4?(3-4) Small find No. 10
                                                    Obv -
   ILLEGIBLE AE
                            denom: AS
   date: C2nd mint:
                              cat: -
                                                     Rev -
   diam: 25.5 mm wt: 7.1 g wear: W/VW
487 Context: G II 7
                            Phase: 6-7
                                           Small find No. 125
   ILLEGIBLE AE
                            denom:
                                                    Obv -
   date: C2/3rd mint:
                              cat: -
                                                     Rev -
   diam: 25.5 mm wt: 4.6 g wear: C/C \,
488 Context: F VII 6
                            Phase: 5
                                            Small find No. 126
   ILLEGIBLE AE
                            denom:
                                                    Oby -
   date: C3rd? mint:
                             cat: -
                                                     Rev -
   diam: 27.0 mm wt: 4.1 g wear: C/C
489 Context: E XVIII 4
                             Phase: 6
                                            Small find No. -
   ILLEGIBLE AE
                            denom:
                                                    Obv -
   date: C3rd? mint:
                              cat: -
                                                     Rev -
   diam: 17.5 mm wt: 2.8 g wear: C/C
490 Context: U/S
                                            Small find No. -
                            Phase: U/S
   TLLEGIBLE AE
                            denom:
                                                    Obv -
   date: C3/4th? mint:
                              cat: -
                                                     Rev -
   diam: 17.5 mm wt: 2.8 g wear: C/C
491 Context: F II 2
                            Phase: 3-4
                                            Small find No. 4
   ILLEGIBLE AE
                            denom:
                                                    Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 18.5 mm wt: 2.4 g wear: C/C
492 Context: E V 8
                            Phase: 6
                                            Small find No. 50
   ILLEGIBLE AE
                            denom:
                                                    Oby -
   date: C3/4th mint:
                              cat: -
                                                    Rev -
   diam: 20.0 mm wt: 2.3 g wear: C/C
493 Context: E V 8
                            Phase: 5
                                            Small find No. 53
                                                    Obv -
   ILLEGIBLE AE
                            denom:
   date: C3/4th mint:
                              cat: -
                                                    Rev -
   diam: 17.0 mm wt: 1.3 g wear: C/C
494 Context: E V 9
                            Phase: 5-6
                                            Small find No. 51
   ILLEGIBLE AE FRAGS.
                             denom:
                                                     Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 15.5 mm wt: 1.0 g wear: C/C
495 Context: H T 1
                             Phase: U/S
                                            Small find No. 8
   ILLEGIBLE AE FRAGS.
                                                     Obv -
                            denom:
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 12.0 mm wt: 0.3 g wear: C/C
496 Context: H I 1
                             Phase: U/S
                                            Small find No. 7
   ILLEGIBLE AE FRAGS.
                             denom:
                                                     Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 13.0 mm wt: 0.9 g wear: C/C
497 Context: H I 3
                            Phase: 6
                                            Small find No. 9
   ILLEGIBLE AE FRAGS.
                            denom:
                                                     Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 12.5 mm wt: 0.3 g wear: C/C
498 Context: F XX 2
                            Phase: U/S
                                            Small find No. 45
   ILLEGIBLE AE
                            denom:
                                                    Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 17.0 mm wt: 1.4 g wear: C/C
499 Context: F XIII 8
                            Phase: 5-6
                                            Small find No. 78
   ILLEGIBLE AE
                            denom:
                                                    Obv -
   date: C3/4th mint:
                              cat: -
                                                     Rev -
   diam: 20.0 mm wt: 1.5 g wear: C/C
                           Phase: 5
500 Context: F VI 5
                                           Small find No. 58
   ILLEGIBLE AE FRAGS.
                             denom:
                                                     Oby -
```

125

date: C3/4th mint: cat: diam: 12.0 mm wt: 0.8 g wear: C/C 501 Context: H II 1 Phase: U/S denom: ILLEGIBLE AE FRAGS. date: C3/4th mint: cat: diam: 15.0 mm wt: 0.9 g wear: C/C 502 Context: F VI 6 Phase: 5 ILLEGIBLE AE FRAGS. denom: date: C3/4th mint: cat: diam: 17.5 mm wt: 1.2 g wear: C/C 503 Context: F VI 6 Phase: 5 denom: TLLEGIBLE AE date: C3/4th mint: cat: diam: 21.5 mm wt: 3.2 g wear: C/C 504 Context: F VI 6 Phase: 5 ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 19.5 mm wt: 3.4 g wear: C/C 505 Context: F XIII 8 Phase: 5-6 ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 20.0 mm wt: 2.6 g wear: C/C 506 Context: G VII 3 Phase: 6-7 TLLEGIBLE AE denom: date: C3/4th mint: cat: diam: 20.0 mm wt: 2.7 g wear: C/C 507 Context: E VIII 4 Phase: 6+ ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 21.0 mm wt: 2.8 g wear: C/C 508 Context: G XX 1 Phase: U/S TLLEGIBLE AE denom: date: C3/4th mint: cat: diam: 11.5 mm wt: 0.4 g wear: C/C 509 Context: D XI P1 Phase: 3 ILLEGIBLE AE FRAG. denom: date: C3/4th mint: cat: diam: 13.0 mm wt: 0.3 g wear: C/C 510 Context: G XXI 4 Phase: 6a ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 14.5 mm wt: 1.1 g wear: C/C 511 Context: E XIV 2 Phase: 6 ILLEGIBLE AE FRAGS. denom: date: C3/4th mint: cat: diam: 14.5 mm wt: 0.5 g wear: C/C 512 Context: E XIV 2 Phase: 6 ILLEGIBLE COPY denom: date: C3/4th mint: cat: diam: 7.0 mm wt: 0.2 g wear: C/C 513 Context: F XXIV 13 Phase: 6-7 ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 17.5 mm wt: 2.3 g wear: C/C 514 Context: F XXIV 16 Phase: 6-7 ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 19.0 mm wt: 2.7 g wear: C/C 515 Context: F XXIV 15 Phase: 6-7 denom: ILLEGIBLE AE date: C3/4th mint: cat: diam: 17.0 mm wt: 1.4 g wear: C/C

Rev -Small find No. 23 Obv -Rev -Small find No. 113A Oby -Rev -Small find No. 127 Oby -Rev -Small find No. 129 Obv -Rev -Small find No. 145 Obv -Rev -Small find No. 83 Obv -Rev -Small find No. 113 Obv -Rev -Small find No. 129 Oby -Rev -Small find No. 83 Obv -Rev -Small find No. 157 Obv -Rev -Small find No. 138 Obv -Rev -Small find No. 144 Obv -Rev -Small find No. 218 Obv -Rev -Small find No. 226 Obv -Rev -Small find No. 227 Obv -Rev -

516 Context: F XIII U/S Phase: U/S Small find No. -ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 21.5 mm wt: 0.8 g wear: C/C 517 Context: D XXIV 1 Phase: U/S Small find No. 118 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 18.0 mm wt: 1.5 g wear: C/C 518 Context: D XXIV 1 Phase: U/S Small find No. 116 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 18.5 mm wt: 2.1 g wear: SW/C 519 Context: J I 2 Phase: 6 Small find No. 20 ILLEGIBLE AE denom: Oby date: C3/4th mint: cat: -Rev diam: 19.5 mm wt: 2.3 g wear: C/C 520 Context: J IV 2 Phase: 5-6 Small find No. 26 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 14.5 mm wt: 0.8 g wear: C/C 521 Context: G XXX 4 Phase: 6-7 Small find No. 240 TLLEGIBLE AE Obv denom: date: C3/4th mint: cat: -Rev diam: 11.0 mm wt: 0.2 g wear: C/C 522 Context: J IV 5 Phase: 5-6 Small find No. 37 ILLEGIBLE COPY denom: Obv date: C3/4th mint: cat: c.as -Rev diam: 10.5 mm wt: 0.3 g wear: C/C 523 Context: J VII 2 Phase: 5-6 Small find No. 47 denom: ILLEGIBLE COPY Oby date: C3/4th mint: cat: c.as -Rev diam: 10.0 mm wt: 0.4 g wear: C/C 524 Context: G XXIX 1 Phase: U/S Small find No. 251 ILLEGIBLE AE FRAGS. denom: Obv date: C3/4th mint: cat: -Rev diam: 14.5 mm wt: 0.2 g wear: C/C 525 Context: K XIV 2 Phase: 6-7 Small find No. 24 ILLEGIBLE AE FRAGS. denom: Obv date: C3/4th mint: cat: -Rev diam: 18.0 mm wt: 1.0 g wear: C/C 526 Context: K XVI 1 Phase: U/S Small find No. 64 ILLEGIBLE AE Obv denom: date: C3/4th mint: cat: -Rev diam: 20.0 mm wt: 1.5 g wear: C/C 527 Context: F XXVI 2 Phase: U/S Small find No. 245 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 15.0 mm wt: 0.6 g wear: C/C 528 Context: K XVI 2 Phase: 5 Small find No. 66 ILLEGIBLE AE denom: Oby date: C3/4th mint: cat: -Rev diam: 16.5 mm wt: 0.9 g wear: C/C 529 Context: K XVI 2 Phase: 5 Small find No. 69 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 17.5 mm wt: 1.3 g wear: C/C 530 Context: K XVI 2 Phase: 5 Small find No. 71 ILLEGIBLE AE denom: Obv date: C3/4th mint: cat: -Rev diam: 13.5 mm wt: 0.9 g wear: C/C 531 Context: K XIX 3 Phase: 6b Small find No. 86 ILLEGIBLE AE denom: Obv -

date: C3/4th mint: cat: diam: 19.5 mm wt: 4.2 g wear: C/C Phase: U/S 532 Context: D XIX 1 ILLEGIBLE COPY denom: date: C3/4th mint: cat: diam: 6.0 mm wt: 0.1 g wear: C/C 533 Context: H XX 2 Phase: 6a ILLEGIBLE AE denom: cat: date: C3/4th mint: diam: 19.5 mm wt: 2.8 g wear: C/C 534 Context: K XXIII 2 Phase: 6 denom: TLLEGIBLE AE date: C3/4th mint: cat: diam: 18.5 mm wt: 2.1 g wear: C/C 535 Context: K V 2 Phase: 6-7 ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 15.5 mm wt: 1.5 g wear: C/C 536 Context: J III 1 Phase: U/S ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 14.5 mm wt: 1.0 g wear: C/C 537 Context: K U/S Phase: U/S TLLEGTBLE AE denom: date: C3/4th mint: cat: diam: 19.5 mm wt: 3.5 g wear: C/C 538 Context: K U/S Phase: U/S ILLEGIBLE AE denom: date: C3/4th mint: cat: diam: 18.5 mm wt: 3.5 g wear: C/C 539 Context: F XIII 18 Phase: 5-6 TLLEGIBLE AE denom: ANT date: C3/4th mint: cat: diam: 20.5 mm wt: 1.8 g wear: C/C 540 Context: G XIII 1 Phase: U/S ILLEGIBLE AE denom: date: C3/4th? mint: cat: diam: 17.0 mm wt: 0.7 g wear: C/C 541 Context: F XIII 8 Phase: 5-6 ILLEGIBLE AE COIN? denom: date: C3/4th? mint: cat: diam: 21.5 mm wt: 3.0 g wear: C/C 542 Context: J IV 2 Phase: 5-6 ILLEGIBLE AE denom: date: C3/4th? mint: cat: diam: 19.5 mm wt: 1.7 g wear: C/C 543 Context: D XVIII 1 Phase: U/S ILLEGIBLE AE denom: date: C4th mint: cat: diam: 18.0 mm wt: 1.1 g wear: UW/C 544 Context: E XIV 2 Phase: 6 ILLEGIBLE COPY denom: date: C4th mint: cat: diam: 15.0 mm wt: 1.1 g wear: SW/C 545 Context: E XIV 2 Phase: 6 ILLEGIBLE AE denom: cat: date: C4th mint: diam: 12.0 mm wt: 0.4 g wear: SW/C 546 Context: D U/S Phase: U/S denom: ILLEGIBLE AE COPY date: C4th mint: cat: diam: 11.0 mm wt: 0.6 g wear: UW/C

Small find No. 135 Obv -Rev -Small find No. 113 Oby -Rev -Small find No. 126 Oby -Rev -Small find No. 147 Obv -Rev -Small find No. 97 Obv -Rev -Small find No. 188 Obv -Rev -Small find No. 186 Obv -Rev -Small find No. 175 Obv -Rev -Small find No. 3 Obv -Rev -Small find No. 81 Obv -Rev -Small find No. 22 Oby -Rev -Small find No. 87 Obv -Rev -Small find No. 143 Obv -Rev -Small find No. 156 Obv [....] PFAVG Rev -Small find No. 110 Obv -Rev -

Rev -

547 Context: G V 5		
ILLEGIBLE AE FRAGS.		Obv -
date: - mint:		Rev -
diam: 8.0 mm wt:		
548 Context: F XIII 8		
ILLEGIBLE AE	denom:	Obv -
date: - mint:		Rev -
diam: 26.0 mm wt:		
549 Context: G V ext 6		Small find No. 181
ILLEGIBLE AE	denom:	Obv -
date: - mint:		Rev -
diam: 23.0 mm wt:		
550 Context: G XXIV 9		Small find No. 203
ILLEGIBLE AE	denom:	Obv -
date: - mint:		Rev -
diam: 21.5 mm wt:		
551 Context: J VI 1		Small find No. 29
ILLEGIBLE AE	denom:	Obv -
date: - mint:		Rev -
diam: 22.5 mm wt:		Cmall find No.
552 Context: B/D U/S ILLEGIBLE AE	denom:	Small find No
date: - mint:		Obv -
diam: 23.0 mm wt:		Rev -
553 Context: E V 9	2.0 g wear: C/C Phase: 5-6	Small find No. 71
ILLEG FRAGS OF ?COIN		Obv -
	denom:	000 -
d_{a+a} , $C_3/(1+h_2)$ mint.	cat.	Pov -
date: C3/4th? mint:		Rev -
diam: 6.5 mm wt:	0.1 g wear: C/C	
diam: 6.5 mm wt: 554 Context: F VII 6	0.1 g wear: C/C Phase: 5	Small find No. 123
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN?	0.1 g wear: C/C Phase: 5 denom:	Small find No. 123 Obv -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: -	Small find No. 123
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C	Small find No. 123 Obv - Rev -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6	Small find No. 123 Obv - Rev - Small find No. 76
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom:	Small find No. 123 Obv - Rev - Small find No. 76 Obv -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: -	Small find No. 123 Obv - Rev - Small find No. 76
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: 556 Context: D XV 3 NOT A COIN date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: -	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Rev -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear: Phase: U/S denom:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1 NOT A COIN? (IRON)	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear: Phase: U/S denom: cat: -	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67 Obv -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1 NOT A COIN? (IRON) date: - mint:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear: Phase: U/S denom: cat: -	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67 Obv - Rev -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1 NOT A COIN? (IRON) date: - mint: diam: 13.5 mm wt:	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear: Phase: U/S denom: cat: - 0.7 g wear: C/C Phase: U/S	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67 Obv - Rev -
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1 NOT A COIN? (IRON) date: - mint: diam: 13.5 mm wt: 559 Context: K U/S	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 6-7 denom: cat: 0.0 g wear: Phase: U/S denom: cat: - 0.7 g wear: C/C Phase: U/S denom:	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67 Obv - Rev - Small find No. 187
diam: 6.5 mm wt: 554 Context: F VII 6 ILLEGIBLE AE COIN? date: - mint: diam: 23.0 mm wt: 555 Context: E VI 9 NOT A COIN date: - mint: diam: 20.5 mm wt: 556 Context: D XV 3 NOT A COIN date: - mint: diam: 23.5 mm wt: 557 Context: G V ext 6 NOT A COIN: RING date: - mint: diam: 0.0 mm wt: 558 Context: K XVIII 1 NOT A COIN? (IRON) date: - mint: diam: 13.5 mm wt: 559 Context: K U/S NOT A COIN: SHELL	0.1 g wear: C/C Phase: 5 denom: cat: - 4.0 g wear: C/C Phase: 5-6 denom: cat: - 3.5 g wear: Phase: 6b denom: cat: - 1.0 g wear: C/C Phase: 0/S denom: cat: - 0.7 g wear: C/C Phase: U/S denom: cat: -	Small find No. 123 Obv - Rev - Small find No. 76 Obv - Rev - Small find No. 101 Obv - Rev - Small find No. 183 Obv Rev Small find No. 67 Obv - Rev - Small find No. 187

13.2.2.2 Catterick 1972 (Site 434) - catalogue of the coins

1 Context: P III 9 Phase: 3a Small find No. 102 VESPASIAN denom: DEN Obv [IMP] CAES VESP AVG PM COS IIII date: 72-73 mint: RM cat: 50 Rev VESTA diam: 18.0 mm wt: 2.7 g wear: VW/VW Small find No. 190 2 Context: P III 23 Phase: 3a/3b DOMTTTAN denom: AS Obv IMP CAES DOMIT AVG GERM COS XII CENS PER PP date: 86 mint: RM Rev MONE[TA] AVGVSTI SC cat: 335 diam: 27.5 mm wt: 8.3 g wear: SW/W Small find No. 95 3 Context: R V 5 Phase: 4b DOMITIAN Obv IMP CAES DOMIT AVG GERM COS XV CENS denom: AS [PER PP] date: 90-91 mint: RM cat: 397 Rev [VITVTI AVGVSTI] SC diam: 27.0 mm wt: 7.0 g wear: W/VW 4 Context: P III 17 Phase: 3b Small find No. 202 NERVA denom: DP Obv IMP NERVA CAES AVG PM TRP COS II PP date: 96 mint: RM cat: 61 Rev FORTVNA AVGVST SC diam: 13.6 mm wt: 29.5 g wear: SW/SW 5 Context: S I 2 Phase: U/S? Small find No. 8 HADRTAN denom: DP Obv cat: as 577 date: 118-24 mint: RM Rev [....] SC, in exergue: FORTRED diam: 26.5 mm wt: 9.6 g wear: ?SW/SW 6 Context: R III 3 Phase: 5 Small find No. 43 HADRIAN denom: SEST Obv HADRIANVS-AVG COS III PP date: 134-38 mint: RM cat: 777 Rev Diana SC diam: 30.5 mm wt: 21.1 g wear: VW/VW 7 Context: P I 7 Phase: 4b Small find No. 34 MARCUS AURELIUS? denom: DP Obv cat: date: 161-80 mint: RM Rev diam: 28.0 mm wt: 18.3 g wear: EW/EW 8 Context: P III 2 Phase: U/S Small find No. 95 SEPTIMIUS SEVERUS Obv [IMP] CAE L SEP SEV PERT AVG COS II denom: DEN date: 194-95 mint: EM cat: 399 Rev LIB[ER]A AVG diam: 17.5 mm wt: 2.2 g wear: SW/W 9 Context: R IV 3 Phase: 4b Small find No. 87 'SEPTIMIUS SEVERUS' Obv denom: DENpl date: '193-211' mint: cat: c.as -Rev diam: 19.0 mm wt: 3.1 g wear: SW/SW Small find No. 48 10 Context: P II 2 Phase: Modern Obv IMPC [M AVR SEV] ALEXAND AVG SEVERUS ALEXANDER denom: DEN Rev PM TRP V[II] COS [II PP] cat: 78 date: 228 mint: RM diam: 18.0 mm wt: 2.7 g wear: ?SW/SW 11 Context: P I 7 Phase: 4b Small find No. 28 GALLIENUS denom: ANT Obv [GA]LLIENVS [AVG] date: 260-68 mint: RM cat: 179 Rev DI[ANAE CONS AVG] mm: X diam: 16.0 mm wt: 4.2 g wear: SW/SW 12 Context: R IV -Phase: U/S Small find No. 63 CLAUDIUS II denom: ANT Obv [IMP]C CLAV[DIVS AVG] date: 268-70 mint: RM cat: 54 Rev [IOVI VICTORI] mm: /N diam: 17.0 mm wt: 1.6 g wear: W/SW 13 Context: P I 7 Small find No. 26 Phase: 4b CLAUDIUS II denom: ANT Obv [IMP]C CLAVDIVS AVG date: 268-70 mint: cat: as 45 Rev -3.4 g wear: UW/SW diam: 18.0 mm wt: 14 Context: P I 17a Phase: 4a? Small find No. 155 CLAUDIUS II Obv IMP CLAVDIVS PF AVG denom: ANT date: 268-70 mint: cat: -Rev diam: 20.0 mm wt: 2.3 g wear: SW/C Phase: U/S 15 Context: P VII 1 Small find No. 1 'CLAUDIUS II, POSTH.' denom: ANT Obv [DIVO CL]AVDIO

cat: c.as 274 Rev [FO]RTV[NA REDVX] date: 270+ mint: diam: 0.0 mm wt: 1.8 g wear: -/-Small find No. 49 16 Context: Q V 1 Phase: U/S denom: ANT Obv IMPC VICTORINVS PF AVG VICTORINUS date: 270 mint: cat: 118, E682 Rev [PAX AVG] mm: V/* diam: 18.5 mm wt: 2.0 g wear: W/W Small find No. -17 Context: P -Phase: U/S VICTORINUS denom: ANT Obv [IMP]C V[ICTORINV]S PF AVG date: 270 mint: cat: 118, E682 Rev PAX AVG mm: V/* diam: 18.0 mm wt: 2.4 g wear: SW/SW 18 Context: P V 4 Phase: 4b Small find No. 134 denom: ANT VICTORINUS Obv [IMPC V]ICTORIN[VS PF AVG] date: 270 mint: cat: 78, E699 Rev [VIRTVS] AVG diam: 18.5 mm wt: 1.8 g wear: W/W Small find No. 121 19 Context: P IV 4 denom: ANT Phase: 4b VICTORINUS Obv [IMPC V]ICTORIN[VS PF AVG] date: 270 mint: cat: 78, E699 Rev [VIRTVS AVG] diam: 16.5 mm wt: 1.6 g wear: SW/SW 20 Context: P II 4 Phase: 4a/4b Small find No. 110 denom: ANT TETRICUS I Obv date: 270-73 mint: cat: as 136, as E764 Rev [SPES...] diam: 19.0 mm wt: 2.3 g wear: SW/SW 21 Context: Q V 1 Phase: U/S Small find No. 37 TETRICUS I denom: ANT Obv [IMP TETRICVS PFAVG] date: 272-73 mint: cat: as 90, E786/7 Rev [LAETITIA AVG..] diam: 19.0 mm wt: 2.9 g wear: ?W/W Phase: 4b denom: ANT 22 Context: P III 4 Small find No. 99 TETRICUS I Obv IMPC TETRICVS PFAVG date: 273 mint: cat: 126, E788 Rev SALVS AVGG diam: 20.0 mm wt: 2.7 g wear: SW/SW Phase: 4b Small find No. 99 denom: ANT Obv IM 23 Context: P III 4 TETRICUS I Obv IMPC [TETRICVS ...] date: 270-73 mint: cat: -Rev diam: 17.5 mm wt: 2.2 g wear: W/W 24 Context: P II 2 Phase: Modern Small find No. 82 TETRICUS I denom: ANT Obv IM[PC TETRI]CVS [PFAVG] date: 270-73 mint: cat: as 100, as E775 Rev diam: 18.0 mm wt: 1.7 g wear: SW/C Small find No. 45 25 Context: P I 11 Phase: 4b 'TETRICUS I' denom: ANT Obv cat: c.as 141, E765 date: '270-73' mint: Rev [VICTORIA AVG] diam: 14.5 mm wt: 1.7 g wear: SW/SW Phase: 4b Small find No. 22 26 Context: P I 7 denom: ANT TETRICUS II, CAESAR Obv [CPIV] ESV TETRI[CVS CAES] date: 270-73 mint: cat: 248 [Not in E] Rev [PAX AVG] diam: 16.0 mm wt: 2.1 g wear: SW/SW 27 Context: R V 1 Phase: U/S Small find No. 70 RADIATE COPY denom: ANT Obv date: '260-73' mint: cat: c.as -Rev diam: 13.0 mm wt: 0.5 g wear: C/C Phase: U/S 28 Context: P V 1 Small find No. 115 RADIATE COPY denom: ANT Obv date: '260-73' mint: cat: c.as -Rev diam: 14.0 mm wt: 0.9 g wear: SW/C Small find No. 106 29 Context: R IV 2b Phase: U/S RADIATE COPY denom: ANT Obv date: '260-73' mint: cat: c.as -Rev diam: 9.5 mm wt: 0.3 g wear: C/C Small find No. 6 30 Context: R II 4 Phase: 4b? Obv -RADIATE COPYdenom: ANTdate: '260-73' mint:cat: c.as -RADIATE COPY Rev diam: 17.0 mm wt: 1.2 g wear: C/C

31 Context: P VII 2 Phase: U/S Small find No. 214 RADIATE COPY denom: ANT date: '260-73' mint: cat: c.as diam: 16.0 mm wt: 1.1 g wear: C/C 32 Context: R II 4 Phase: 4b? CARAUSIUS denom: AUREL date: 290-93 mint: CO cat: 334 diam: 23.0 mm wt: 3.7 g wear: UW/C 33 Context: P I 15 Phase: 4a ALLECTUS denom: OUIN date: 293-96 mint: CO cat: 128 diam: 21.0 mm wt: 2.3 g wear: UW/SW 34 Context: P I 6 Phase: U/S denom: QUIN ALLECTUS date: 293-96 mint: CO cat: 128 diam: 19.5 mm wt: 2.4 g wear: SW/SW 35 Context: R III 1 Phase: U/S DIOCLETIAN denom: FOLL date: 303-05 mint: LN cat: 6LN28a diam: 26.5 mm wt: 8.6 g wear: UW/SW 36 Context: R V 4 Phase: 6 CONSTANTINE I denom: FOLL date: 310 mint: LN P cat: 6LN119 diam: 24.5 mm wt: 4.3 g wear: UW/UW 37 Context: P III 7 Phase: 4b CONSTANTINE I denom: FOLL date: 313-15 mint: TR P cat: 7TR40 diam: 22.0 mm wt: 2.6 g wear: SW/SW 38 Context: R VI 2 Phase: 4b CONSTANTINE I denom: FOLL date: 315-16 mint: TR P cat: 7TR76 diam: 21.5 mm wt: 2.9 g wear: SW/UW 39 Context: R IV 4 Phase: 4b CONSTANTINE I denom: date: 318-19 mint: TC S cat: 7TC83 diam: 19.0 mm wt: 3.5 g wear: SW/SW Phase: 4b 40 Context: R VI 3 CONSTANTINE I denom: date: 318-19 mint: TR S cat: 7TR209 diam: 17.5 mm wt: 3.1 g wear: UW/UW Phase: 4b 41 Context: R TV 4 CONSTANTINE I denom: cat: 7AQ64 date: 320-21 mint: AQ P diam: 18.5 mm wt: 2.1 g wear: SW/UW 42 Context: P I 8 Phase: 4a CONSTANTINE I denom: date: 322-23 mint: TR S cat: 7TR368 diam: 18.5 mm wt: 3.6 g wear: UW/UW Phase: Modern Small find No. 36 43 Context: P II 2 denom: CONSTANTINE II, CAESAR date: 323-24 mint: LN cat: 7LN286 diam: 20.0 mm wt: 2.9 g wear: SW/SW Phase: 4b 44 Context: P I 7 'CONSTANTINE II, CAESAR' denom: date: (323-24' mint: cat: date: '323-24' mint: cat: c.as 7TR438 diam: 14.5 mm wt: 1.6 g wear: SW/SW 45 Context: P V 4 Phase: 4b Small find No. 143 CRISPUS, CAESAR denom: date: 321 mint: AR T cat: 7AR230 date: 321 mint: AR T cat: 7AR230 diam: 17.5 mm wt: 3.3 g wear: SW/SW Phase: 4b 46 Context: P I 14 CONSTANTIUS II, CAESAR denom:

Obv -Rev -Small find No. 8 Obv IMPC CARAVSIVS P[F AVG] Rev P[AX] AVGGG mm: [S/P]/C Small find No. 141 Obv IMPC ALLECTVS PFAVG Rev VIRTVS AVG mm: QC Small find No. 12 Obv IMPC ALLECTVS PFAVG Rev VIRTVS AVG mm: QC Small find No. 33 Obv IMP DIOCLETIANVS AVG Rev GENIO POPV-LI ROMANI Small find No. 138 Obv IMP CONSTANTINVS PFAVG Rev MARTI CONSERVATORI Small find No. 104 Obv IMP CONSTANTINVS AVG Rev SOLI INVIC-TO COMITI Small find No. 84 Obv C[ONSTANTINVS PF AVG] Rev SOLI INVIC-TO COMITI Small find No. 191 Obv IMP CONSTANT-INVS AVG Rev VICTORIAE LAETAE PRINC PERP Small find No. 105 Obv [IMP] CONSTAN-TINVS MAX [AVG] Rev VICTORIAE LAETAE PRINC PERP Small find No. 137 Obv CONST[AN]-TINVS AVG Rev DN CONSTANTINI MAX AV[G] VOT/XX Small find No. 63 Obv CONSTAN-TINVS AVG Rev BEATA TRAN-QVILLITAS VO/TIS/XX Obv CONSTANTI-NVS IVN [NC] Rev [BEAT TR]A-[NQLIT]AS VOT/IS/XX Small find No. 135 Obv CONSTANT[INVS] IVNOBC [sic] Rev [SARMATIA DEVICTA] Obv CRISPVS-NOB CAES Rev CAESARVM NOSTRORVM VOT/V Small find No. 133 Obv FL IVL CONSTANTIVS NOBC

date: 325-26 mint: AR Q cat: 7AR297, HK299 Rev VIRTVS CAESS diam: 19.5 mm wt: 2.8 g wear: SW/UW 47 Context: R II 7b Phase: 4b? Small find No. 96 denom: CONSTANTINE I Obv [CONSTA]N-TINOPOLIS Rev Victory on prow date: 330-35 mint: cat: as 7TR523 diam: 17.5 mm wt: 2.1 g wear: SW/SW Phase: 5 Small find No. 98 48 Context: R III 2b denom: CONSTANTINE T Obv CONSTAN-TINOPOLIS date: 330-31 mint: TR S cat: 7TR530, HK59 Rev Victory on prow diam: 17.0 mm wt: 2.2 g wear: UW/UW Phase: U/S 49 Context: R IV 2b Small find No. 100 denom: CONSTANTINE T Obv CONSTAN-TINOPOLIS date: 330-31 mint: LG P cat: 7LG241, HK185 Rev Victory on prow diam: 18.0 mm wt: 1.3 g wear: SW/W Phase: Unphased Small find No. 154 50 Context: R IV 17a denom: CONSTANTINE I Obv CONSTAN-TINOPOLIS date: 332-33 mint: TR P cat: 7TR543, HK66 Rev Victory on prow

 date: 332-33 mint: TR P
 cat: 7TR543,

 diam: 18.0 mm wt: 2.0 g
 wear: UW/UW

 51 Context: R II 2 Phase: 4b? Small find No. 3 CONSTANTINE I denom: Obv CONSTAN-TINOPOLIS date: 330-35 mint: cat: as 7TR523, HK52 Rev Victory on prow diam: 16.0 mm wt: 2.3 g wear: UW/C Phase: 4b 52 Context: P I 11 Small find No. 44 CONSTANTINE I denom: Obv CONSTAN-TINOPOLIS date: 333-34 mint: cat: as 7TR544, HK77 Rev Victory on prow diam: 17.0 mm wt: 2.5 g wear: UW/UW Phase: 4a/4b Small find No. 108 53 Context: P II 4 'CONSTANTINE I' denom: Obv [CONSTAN-TINOPOLIS] date: 330+ mint: cat: c.as 7TR523, HK52 Rev Victory on prow diam: 12.0 mm wt: 0.6 g wear: SW/SW 54 Context: R III 2 Phase: 5 Small find No. 54 'CONSTANTINE I' Obv CON[STAN-TINOPOLIS] denom: date: 330+ mint: cat: c.as 7TR523, HK52 Rev Victory on prow diam: 14.0 mm wt: 0.4 g wear: SW/SW Phase: 5 Small find No. 52 55 Context: R III 2 'CONSTANTINE I' denom: Obv [CONS]TAN-[TINOPOLIS] cat: c.as 7TR523, HK52 date: 330+ mint: Rev Victory on prow diam: 15.5 mm wt: 1.0 g wear: SW/C Phase: 4b Small find No. 72 56 Context: P I 11 denom: CONSTANTINE I Obv VRBS ROMA date: 332 mint: LG P cat: 7LG257, HK200 Rev Wolf and Twins diam: 17.0 mm wt: 2.1 g wear: SW/SW 57 Context: P I 11 Phase: 4b Small find No. 73 Obv VRBS ROMA CONSTANTINE I denom: date: 333-34 mint: TR S cat: 7TR561, HK85 Rev Wolf and Twins diam: 17.0 mm wt: 2.0 g wear: SW/SW 58 Context: P I 7 Phase: 4b Small find No. 4 CONSTANTINE I denom: Obv VRBS ROMA date: 332 mint: LG S cat: 7LG257, HK200 Rev Wolf and Twins diam: 17.0 mm wt: 1.6 g wear: UW/UW Phase: 4b Small find No. 18 59 Context: P I 7 CONSTANTINE I Obv VRBS ROMA denom: date: 332 mint: LG P cat: 7LG257, HK200 Rev Wolf and Twins diam: 15.5 mm wt: 1.4 g wear: SW/SW Phase: 4b? Small find No. 103 60 Context: R II 7b CONSTANTINE I denom: Obv VRBS ROMA date: 332-33 mint: TR P cat: 7TR547, HK70 Rev Wolf and Twins date: 332-33 mint: TR P cat: 7TR547, diam: 17.0 mm wt: 2.3 g wear: UW/SW 61 Context: R IV 2 Phase: U/S Small find No. 57 'CONSTANTINE I'denom:Obv [VRBS] ROMAdate: 330+mint:cat: c.as 7TR522, HK51Rev Wolf and Twins 'CONSTANTINE I' diam: 14.0 mm wt: 1.4 g wear: SW/SW

62 Context: P IV 4 Phase: 4b Small find No. 107 CONSTANTINE Idenom:Obv CONSTANTI-NVS MAX AVGdate: 330-31 mint: TR Pcat: 7TR518, HK48Rev GLOR-IA EXERC-ITVS 2 stds CONSTANTINE I diam: 17.5 mm wt: 1.5 g wear: UW/UW Phase: U/S Small find No. 5 denom: Obv [CONSTANTINVS] IVN NOBC cat: as 7TR520, HK49 Rev [GLOR]-IA EXERC-ITVS 2 stds 63 Context: R II 1 CONSTANTINE II, CAESAR date: 330-35 mint: diam: 16.5 mm wt: 2.3 g wear: UW/UW Phase: 4b Small find No. 24 denom: Obv CONSTANTINVS IVN [NOBC] cat: as 7TR520, HK49 Rev GLOR-IA EXERC-ITVS 2 stds 64 Context: P I 7 CONSTANTINE II, CAESAR date: 330-35 mint: ucontext: P I 11Phase: 4bSmall find No. 64CONSTANTINE II, CAESARdenom:Obv CONdate: 333-34mint: TR Pcat: 7TR5556HKR1diam: 17 517 517 5 diam: 16.5 mm wt: 2.0 g wear: UW/UW 65 Context: P I 11 Obv CONSTANTINVS IVN NOBC date: 333-34 mint: TR P cat: 7TR5556 HK81 diam: 17.5 mm wt: 1.9 g wear: W/SW Rev GLOR-IA EXERC-ITVS 2 stds Context: P I 11Phase: 4bSmall find No. 69CONSTANTINE II, CAESARdenom:Obv [CCdate: 330-31 mint: LG Pcat: 7LG244, HK187Rev GLCdiam: 16.0 mm wt: 1.6 gwear: W/WContext: 0 T 5 66 Context: P I 11 Obv [CONSTANTINVS] IVN NOBC Rev GLOR-[IA EXERC]-ITVS 2 stds Context: Q I 5Phase: 4 (4b?)Small find No. 82'HOUSE OF CONSTANTINE'denom:Obv -date: 330+mint:cat: c.as 7TR518, HK48Rev [GLORIA EXERCITVS] 2 stds 67 Context: Q I 5 diam: 13.5 mm wt: 1.2 g wear: SW/SW

 68 Context: Q II 1
 Phase: U/S
 Small find No. 81

 'HOUSE OF CONSTANTINE'
 denom:
 Obv

 date: 330+
 mint:
 cat: c.as 7TR518, HK48
 Rev [GLORIA EXERCITVS] 2 stds

 diam: 14.0 mm wt: 0.9 g wear: SW/SW Phase: 4b Small find No. 53 69 Context: P I 11 CONSTANTINE I denom: Obv CONSTANTINVS MAX AVG date: 335-37 mint: cat: as 7TR590, HK92 Rev [GLORIA EXERCITVS] 1 std diam: 16.0 mm wt: 1.4 g wear: UW/UW Phase: 4b Small find No. 35 70 Context: P I 7 CONSTANTINE I Obv CONSTANTI-NVS MAX AVG denom: date: 336 mint: LG P cat: 7LG280, HK228 diam: 15.0 mm wt: 1.5 g wear: SW/SW Rev GLOR-[IA EXERC]-ITVS 1 std CONTEXT: P II 2 Phase: Modern Small find No. 51 CONSTANTINE II, CAESAR denom: 71 Context: P II 2 CONSTANTINE II, CAESARdenom:date: 335-37mint: TR Scat: 7TR591, HK93 Obv CONSTANTI-NVS IV[N NC] Rev GLOR-IA EXERC-ITVS 1 std CONTEXT: P V 4 Phase: 4b Small find No. 127 CONSTANTINE II, CAESAR denom: diam: 16.0 mm wt: 1.0 g wear: SW/SW 72 Context: P V 4 Obv [CONST]ANTI-NVS IVN NC CONSTANTINE II,CAESAR denom: date: 335-37 mint: TR S cat: 7TR591, HK93 Rev [GLOR]-IA EXERC-ITVS 1 std diam: 15.5 mm wt: 1.7 g wear: SW/SW 73 Context: P I 7 Phase: 4b Small find No. 39 CONSTANTIUS II, CAESARdenom:date: 335-37mint:cat: as 7TR592, HK94 Obv [FL IVL] CONSTANTIVS NOBC Rev GLOR-IA EX[ERC-ITVS] 1 std diam: 14.5 mm wt: 1.2 g wear: UW/SW Phase: 4b? Small find No. 14 74 Context: R II 4 ..ase: denom: HOUSE OF CONSTANTINE Obv date: 335-41 mint: cat: as 7TR590, HK92 Rev [GLORIA EXERCITVS] 1 std diam: 14.5 mm wt: 1.2 g wear: SW/SW Phase: U/S Small find No. 5 75 Context: P I 2 date: 336 mint: AR cat: diam: 160 ---HOUSE OF CONSTANTINE Obv cat: as 7AR394, HK398 Rev [GLOR-IA EXERC-ITVS] 1 std diam: 16.0 mm wt: 0.8 g wear: SW/SW Phase: 4b? Small find No. 81 76 Context: R II 4 'HOUSE OF CONSTANTINE' denom: date: 335+ mint: cat: Obv [....] AVG date: 335+ mint: cat: c.as 7AR34, HK434 Rev [GLORIA EXERCITVS] 1 std diam: 14.0 mm wt: 1.2 g wear: W/SW 77 Context: P I 11 Phase: 4b Small find No. 42 CONSTANS denom: Obv FL IVL C[ONSTA]NS AVG

date: 337-41 mint: TR P cat: as 8TR85, HK127 Rev GLORI-A EXER-CITVS 1 std diam: 14.0 mm wt: 1.5 g wear: UW/UW 78 Context: R II 2 Phase: 4b? Small find No. 2 denom: CONSTANS Obv CONSTANS-P[F AVG] date: 340-41 mint: TR P cat: 8TR111, HK133 Rev GLORI-A EXE[R-CITVS] 1 std diam: 17.5 mm wt: 1.7 g wear: UW/UW Small find No. 17 79 Context: P I 7 Phase: 4b denom: CONSTANTIUS II Obv CONSTANTI-VS PFAVG date: 340-41 mint: TR S cat: 8TR108, HK132 Rev GLORI-A EXER-CITVS 1 std diam: 16.5 mm wt: 1.2 g wear: SW/SW Phase: 4b 80 Context: P V 4 Small find No. 128 denom: CONSTANTIUS II Obv CONSTANTI-VS PFAVG date: 337-40 mint: SS cat: 8SS98, HK773 Rev GLOR-IA EXERC-ITVS 1 std diam: 16.0 mm wt: 1.2 g wear: UW/UW Phase: 4b 81 Context: R VI 3 Small find No. 94 CONSTANTIUS II denom: date: 340-41 mint: AR P cat: 8AR56, HK diam: 15.5 mm wt: 1.5 g wear: UW/SW CONSTANTIUS II Obv CONSTANTI-VS PFAVG cat: 8AR56, HK441 Rev GLORI-A EXER-CITVS 1 std Phase: U/S Small find No. 80 82 Context: P III 1 HELENA denom: Obv [FL IVL HE]-LENAE AVG date: 337-40 mint: TR P cat: 8TR90, HK128 Rev P[AX PV]-BLICA diam: 14.0 mm wt: 1.0 g wear: W/SW Phase: 4b Small find No. 88 83 Context: P I 7 THEODORA denom: Obv FL MAX THEO-DORAE AVG date: 337-40 mint: TR P cat: 8TR65, HK113 Rev PIETAS ROMANA diam: 15.5 mm wt: 1.7 g wear: UW/SW Phase: 4b Small find No. 120 84 Context: P I 7 THEODORA denom: Obv FL MAX THEO-DORAE AVG date: 337-40 mint: TR S cat: 8TR79, HK120 Rev PIETAS ROMANA diam: 16.0 mm wt: 1.5 g wear: W/SW Phase: 4b Small find No. 113 85 Context: P IV 4 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: TR S cat: 8TR199, HK155 Rev VICTORIAEDDAVGGQNN diam: 15.0 mm wt: 1.5 g wear: UW/UW Phase: 4a/4b Small find No. 105 86 Context: P II 4 denom: CONSTANS Obv CONSTAN-S PFAVG date: 346-48 mint: TR P cat: 8TR206, HK160 Rev VICTORIAEDDAVGGQNN diam: 16.0 mm wt: 1.9 g wear: UW/SW Small find No. 52 87 Context: P II 2 Phase: Modern CONSTANS denom: Obv CONSTAN-S PFAVG cat: 8TR185, HK140 date: 346-48 mint: TR S Rev VICTORIAEDDAVGGONN diam: 16.5 mm wt: 1.1 g wear: SW/SW 88 Context: P I 4 Phase: 4a Small find No. 30 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: TR S cat: 8TR185, HK140 Rev VICTORIAEDDAVGGQNN diam: 15.0 mm wt: 1.1 g wear: SW/UW 89 Context: P I 7 Phase: 4b Small find No. 31 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: TR P cat: 8TR182, HK138 Rev VICTORIAEDDAVGGQNN diam: 16.0 mm wt: 1.4 g wear: UW/UW Phase: 4b 90 Context: P I 12 Small find No. 71 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: TR S cat: 8TR205, HK158 Rev VICTORIAEDDAVGGQNN diam: 15.5 mm wt: 1.2 g wear: SW/SW Phase: 4b Small find No. 29 91 Context: P I 7 CONSTANS denom: Obv CONSTAN-S PFAVG date: 346-48 mint: cat: as 8TR185, HK140 Rev VICTORIAEDDAVGGQNN diam: 15.0 mm wt: 2.1 g wear: UW/UW Phase: 4a Small find No. 20 92 Context: P I 4 denom: CONSTANS Obv [CONSTAN]-S PFAVG date: 346-48 mint: LG S cat: 8LG57, HK267 Rev VICTORIAEDDAVGGQNN diam: 15.0 mm wt: 1.4 g wear: UW/UW

Phase: 4b Small find No. 27 93 Context: P I 7 CONSTANS

CONSTANS denom: date: 346-48 mint: RM P cat: 8RM84, HK638 Obv [CONSTAN]-S PFAVG Rev VICTORIAEDDAVGGQNN diam: 16.0 mm wt: 1.8 g wear: SW/SW Phase: 4b 94 Context: P I 14 Small find No. 136 denom: CONSTANTIUS II Obv CONSTANTI-VS PFAVG date: 346-48 mint: TR S cat: 8TR193, HK145 Rev VICTORIAEDDAVGGQNN diam: 15.0 mm wt: 1.7 g wear: SW/UW Phase: 4b Small find No. 132 95 Context: P I 14 CONSTANTIUS II denom: date: 346-48 mint: LG P cat: 8LG62, HK271 CONSTANTIUS II Obv CONSTANTI-VS PFAVG Rev VICTORIAEDDAVGGQNN diam: 14.5 mm wt: 1.8 g wear: SW/SW Phase: 4b Small find No. 90 96 Context: P I 7 CONSTANTIUS II denom: date: 346-48 mint: RM S cat: 8RM80, HK632 diam: 17.5 mm wt: 2.4 g wear: W/SW CONSTANTIUS II Obv CONSTANT-IVS PFAVG Rev VICTORIAEDDAVGGQNN CONSTANTIUS II/CONSTANS denom: Obv -date: 346-48 mint: cat. ac 2000 97 Context: P III 2 cat: as 8TR181, HK137 Rev VICTORIAEDDAVGGQNN diam: 12.5 mm wt: 0.6 g wear: C/SW Phase: 4b Small find No. 157 98 Context: R IV 4b denom: CONSTANS Obv DN CONSTA-NS PFAVG date: 348-50 mint: LG P cat: 8LG84, CK178 Rev FEL TEMP REPAR-ATIO Hut diam: 19.5 mm wt: 3.3 g wear: UW/UW 99 Context: P III 4 Phase: 4b Small find No. 98 'CONSTANS' denom: Obv DN CONSTA-NS PFAVG date: 348+ mint: cat: c.of 8AR100, CK405 Rev [FEL TE]MP-REPARATIO Galley-phoenix [P]ARL? diam: 22.5 mm wt: 6.2 g wear: UW/SW
 100 Context: R V 6
 Phase: 4b?
 Small find No. 146
 MAGNENTIUS denom: Obv IM CAE MAGN-ENTIVS A[VG] date: 350-51 mint: TR cat: 8TR264, CK50 Rev FELICITAS REIPVBLI[CE] diam: 23.0 mm wt: 4.6 g wear: UW/SW 101 Context: P II 2 Phase: Modern Small find No. 49 'MAGNENTIUS' denom: Obv DN MAGNEN-[TIVS PFAVG] date: 351+ mint: cat: c.as 8AM5, CK5 Rev [VICTORIAE DDNN AVG ET CAE(S)] VOT/V/ MVL/X diam: 17.5 mm wt: 2.5 g wear: W/W Phase: 4b Small find No. 74 102 Context: P I 11 'CONSTANTIUS II' denom: Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359, CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 6.5 mm wt: 0.3 g wear: C/C Phase: 4b Small find No. 61 103 Context: P I 7 denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359, CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 10.5 mm wt: 0.6 g wear: C/UW 104 Context: P I 6 Phase: U/S Small find No. 14 denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] cat: c.as 8TR359, CK76 Rev [FEL TEMP REPARATIO] FH3 date: 353+ mint: diam: 13.0 mm wt: 0.8 g wear: SW/SW Phase: U/S Small find No. 97 105 Context: P III 2 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] denom: date: 353+ mint: cat: c.as 8TR359, CK76 Rev [FEL TEMP REPARATIO] FH3 diam: 13.0 mm wt: 0.8 g wear: SW/SW Phase: 4b? Small find No. 144 106 Context: P I 18a denom: 'CONSTANTIUS II' Obv [DN CONSTANTIVS PFAVG] date: 353+ mint: cat: c.as 8TR359, CK76 Rev [FEL TEMP REPARATIO] FH3 date: 353+mint:cat: c.as 8TRdiam:9.5 mmwt:0.8 gwear:SW/SW

 Context: R IV 2
 Phase: U/S
 Small find No. 62

 'CONSTANTIUS II'
 denom:
 Obv [DN CONSTANTIVS PFAVG]

 date: 353+
 mint:
 cat: c.as 8TR359, CK76
 Rev [FEL TEMP REPARATIO] FH3

 107 Context: R IV 2 'CONSTANTIUS II' diam: 14.0 mm wt: 1.0 g wear: SW/SW

108 Context: P III 1	Phase: U/S	Small	find No. 7	9
ILLEGIBLE FRAGMENT	denom:		Obv -	
date: C3/4th mint:	cat: -		Rev -	
diam: 13.5 mm wt: 0.6 g	wear: C/C			
109 Context: P II 2	Phase: Mode	ern Small	find No. 6	0
ILLEGIBLE FRAGMENT	denom:		Obv -	
date: C4th mint:	cat: -		Rev -	
diam: 15.0 mm wt: 0.4 g	wear: C/C			

Appendix 13.2.1 Hoard 1, of radiate copies

Context: F XIII 8, Phase 5 (or 6), Sf No 158.

No. Ruler 1 RADIATE COPY denom: ANT Obv One sided, embedded in iron mass date: '260-73' diam: 18.0 mm cat: c.as -Rev -2 'TETRICUS I' denom: ANT Obv Head of Tetricus I date: '260-73' diam: 15.0 mm cat: c.as 141 Rev Victoria 3 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 14.0 mm cat: c.as -Rev Standing figure 4 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 19.0 mm cat: c.as Tetricus 141 Rev Victoria 5 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 15.0 mm cat: c.as Tetricus 66 Rev FEL TEMP? [sic] AVG for FELICIT? AVG 6 RADIATE COPY denom: ANT Obv Illegible, corroded + cracked flan date: '260-73' diam: 16.0 mm cat: c.as -Rev Illegible 7 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 15.0 mm cat: c.as Tetricus 94? Rev Figure with spear pointing down, off centre. Mars? 8 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 15.0 mm cat: c.as -Rev Illegible 9 RADIATE COPY Obv Square clipped flan, bearded head denom: ANT date: '260-73' diam: 16.0 mm cat: c.as -Rev Illegible 10 'TETRICUS II' denom: ANT Obv Head of Tetricus II date: '260-73' diam: 15.0 mm cat: c.as -Rev "Sceatta-like" [sic] cross and pellets 11 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 13.0 mm cat: c.as -Rev Standing figure 12 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 12.0 mm cat: c.as Tetricus 110 Rev [PIETAS AVG]? Sacrificial Implements 13 RADIATE COPY denom: ANT Obv Illegible, clipped flan, probably orichalcum [brass] date: '260-73' diam: 15.0 mm cat: c.as -Rev Illegible 14 RADIATE COPY Obv Radiate head, thick flan denom: ANT date: '260-73' diam: 12.0 mm cat: c.as -Rev Standing figure 15 RADIATE COPY denom: ANT Obv Clipped, squarish flan, obv. corroded date: '260-73' diam: 12.0 mm cat: c.as -Rev Meaningless lines 16 RADIATE COPY denom: ANT Obv Clipped, squarish flan, Radiate head date: '260-73' diam: 11.0 mm cat: c.as -Rev Standing figure 17 RADIATE COPY denom: ANT Obv Clipped, uneven flan, Radiate head date: '260-73' diam: 12.0 mm cat: c.as -Rev Standing figure 18 RADIATE COPY denom: ANT Obv Diademed head [?sic] date: '260-73' diam: 12.0 mm cat: c.as -Rev Illegible 19 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 12.0 mm cat: c.as Tetricus 66 Rev Standing figure ?FEL TEMP [sic] for FELICIT AVG? 20 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 12.0 mm cat: c.as -Rev Standing figure 21 RADIATE COPY denom: ANT Obv Illegible, thin, clipped orichalcum flan date: '260-73' diam: 11.0 mm cat: c.as -Rev Illegible 22 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 10.0 mm cat: c.as Tetricus 110? Rev Jug [= PIETAS AVG Pontifical Implements?] 23 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 10.0 mm cat: c.as -Rev Illegible 24 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 12.0 mm cat: c.as Tetricus 76? Rev Hilaritas holding patera [for palm], in field V 25 RADIATE COPY denom: ANT Obv Radiate head Rev Jumbled lines, dotted border, date: '260-73' diam: 11.0 mm cat: c.as irregular flan 26 RADIATE COPY Obv Radiate head, irregular flan, 12x8 mm denom: ANT

date: '260-73' diam: 12.0 mm cat: c.as Tetricus 98? Rev Standing figure, ?Sol 27 RADIATE COPY denom: ANT Obv Clipped irregular fragment, much off centre date: '260-73' diam: 8.0 mm cat: c.as -Rev -28 RADIATE COPY denom: ANT Obv Crude radiate crown, no face date: '260-73' diam: 9.0 mm cat: c.as -Rev Corroded, v. thick flan 29 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as Tetricus 98? Rev Standing figure, ?Sol 30 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as -Rev ?Figures, * in field 31 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as -Rev Line and dot, irregular flan 32 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as -Rev Illegible, irregular triangular flan 33 RADIATE COPY denom: ANT Obv Radiate crown [only] 8.0 mm cat: c.as Tetricus 98? Rev Standing figure, ?Sol date: '260-73' diam: 34 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as -Rev "Sceatta-like cross" [sic], arms cutting a circle 35 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 6.0 mm cat: c.as -Rev Female figure 36 RADIATE COPY denom: ANT Obv ?Radiate head date: '260-73' diam: 8.0 mm cat: c.as Claudius 261? Rev Circle within two lines at right angles. Altar? 37 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 8.0 mm cat: c.as -Rev "Sceatta-like" [sic] cross and pellet 38 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 9.0 mm cat: c.as -Rev Illegible 39 RADIATE COPY denom: ANT Obv Radiate head Rev Female figure with cornucopia? Thick date: '260-73' diam: 8.0 mm cat: c.as Tetricus 76? flan 40 RADIATE COPY denom: ANT Obv Radiate crown date: '260-73' diam: 9.0 mm cat: c.as Tetricus 76? Rev ?Palm [Hilaritas, holding palm + cornucopiae?] 41 RADIATE COPY denom: ANT Obv Radiate crown date: '260-73' diam: 8.0 mm cat: c.as -Rev Dot in small circle 42 RADIATE COPY denom: ANT Obv Illegible, irregular, squarish flan date: '260-73' diam: 8.0 mm cat: c.as -Rev Illegible 43 RADIATE COPY denom: ANT Obv Illegible date: '260-73' diam: 15.0 mm cat: c.as -Rev Joined to 44 44 RADIATE COPY denom: ANT Obv Irregular flan, joined to 43 date: '260-73' diam: 12.0 mm cat: c.as -Rev Standing figure 45 RADIATE COPY denom: ANT Obv Radiate head, half embedded in iron mass, along with 46 date: '260-73' diam: 17.0 mm cat: c.as Tetricus 110 Rev Sacrificial Implements [PIETAS AVG] 46 RADIATE COPY denom: ANT Obv Illegible, embedded in iron mass, along with 45 date: '260-73' diam: 8.0 mm cat: c.as -Rev Illegible 47 RADIATE COPY denom: ANT Obv Joined to 48 date: '260-73' diam: 9.0 mm cat: c.as -Rev Meaningless lines 48 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 11.0 mm cat: c.as -Rev Stuck to 47 49 RADIATE COPY Obv Radiate head denom: ANT date: '260-73' diam: 12.0 mm cat: c.as -Rev Stuck to 50 50 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 13.0 mm cat: c.as -Rev Stuck to 51, irregular flan 51 RADIATE COPY Obv Stuck to 50 and 52 denom: ANT date: '260-73' diam: 17.0 mm cat: c.as -Rev Stuck to 50 and 52 52 RADIATE COPY denom: ANT Obv Stuck to 51 and 53 date: '260-73' diam: 14.0 mm cat: c.as -Rev Stuck to 51 and 53 53 RADIATE COPY denom: ANT Obv Radiate head date: '260-73' diam: 13.0 mm cat: c.as -Rev Stuck to 52

54	RADIATE COPY		der	nom: ANT		Obv	Radiate head, ?Claudius II
	date: 270+	diam:	19.0 mm	cat: c.as	-	Rev	Illegible
55	RADIATE COPY		der	nom: ANT		0bv	Illegible
	date: '260-73'	diam:	9.0 mm	cat: c.as	-	Rev	Illegible, stuck to 54
56	RADIATE COPY		der	nom: ANT		0bv	Stuck to 54
	date: '260-73'	diam:	7.0 mm	cat: c.as	Tetricus 110	Rev	Sacrificial Implements [PIETAS AVG]
57	RADIATE COPY		der	nom: ANT		0bv	Radiate head
	date: '260-73'	diam:	17.0 mm	cat: c.as	-	Rev	Joined to 58
58	RADIATE COPY		der	nom: ANT		Obv	Radiate head [almost disintegrated],
							stuck to 57 and 59
	date: '260-73'	diam:	10.0 mm	cat: c.as	-	Rev	Stuck to 57 and 59
59	RADIATE COPY		der	nom: ANT		Obv	Radiate head [almost disintegrated]
	date: '260-73'	diam:	19.0 mm	cat: c.as	-	Rev	Stuck to 58
60	RADIATE COPY		der	nom: ANT		Obv	Stuck to 61
	date: '260-73'	diam:	9.0 mm	cat: c.as	-	Rev	?Altar
61	RADIATE COPY		der	nom: ANT		Obv	Radiate crown, joined to 60 and 62
	date: '260-73'	diam:	12.0 mm	cat: c.as	-	Rev	Joined to 60 and 62
62	RADIATE COPY		der	nom: ANT		Obv	Illegible, irregular flan, stuck to 61
	date: '260-73'	diam:	11.0 mm	cat: c.as	-	Rev	Illegible

Appendix 13.2.2 Hoard 2, of radiate copies

Context: G XXII 5, Phase 5, Sf no 165.

```
No. Ruler
 1 'TETRICUS I'
                                denom: ANT
                                                         Obv Head of Tetricus I, good style for copy
    date: '270-73' diam: 20.0 mm cat: c.as -
                                                         Rev Corroded
 2 RADIATE COPY
                               denom: ANT
                                                         Obv Faint radiate bearded head
    date: '260-73' diam: 18.0 mm cat: c.as -
                                                         Rev Standing figure
 3 'TETRICUS I'
                                                         Obv Head of Tetricus I, legend mere strokes
                               denom: ANT
    date: '270-73' diam: 19.0 mm cat: c.as 110
                                                        Rev Sacrificial Implements [PIETAS AVG]
 4 RADIATE COPY
                                                         Obv Radiate head MA...
                               denom: ANT
    date: '260-73' diam: 18.0 mm cat: c.as -
                                                         Rev Corroded, squarish flan
 5 RADIATE COPY
                                denom: ANT
                                                          Obv Radiate head, possibly cuirassed bust,
                                                              corroded
    date: '260-73' diam: 17.0 mm cat: c.as -
                                                          Rev Corroded
 6 RADIATE COPY
                               denom: ANT
                                                          Obv Radiate head, probably Tetricus I
    date: '260-73' diam: 18.0 mm cat: c.as Tetricus 76
                                                          Rev Hilaritas
 7 RADIATE COPY
                               denom: ANT
                                                          Obv Radiate head
    date: '260-73' diam: 18.0 mm cat: c.as -
                                                          Rev Illegible, corroded, broken edge
 8 RADIATE COPY
                                                          Obv Radiate head, blundered legend, oval
                                denom: ANT
                                                             flan 18x14 mm
    date: '260-73' diam: 18.0 mm cat: c.as Tetricus 76
                                                          Rev probably Hilaritas
 9 'TETRICUS I'
                                denom: ANT
                                                          Obv Head of Tetricus I, corroded, possibly
                                                             regular issue
    date: '270-73' diam: 17.0 mm cat: c.as -
                                                          Rev Corroded
10 RADIATE COPY
                                                          Obv Radiate head C... ?Tetricus I
                               denom: ANT
   date: '260-73' diam: 15.0 mm cat: c.as -
                                                          Rev Corroded
11 RADIATE COPY
                               denom: ANT
                                                         Obv Radiate head
   date: '260-73' diam: 14.0 mm cat: c.as -
                                                         Rev Female figure
12 RADIATE COPY
                               denom: ANT
                                                         Obv Radiate head
    date: '260-73' diam: 17.0 mm cat: c.as -
                                                         Rev Illegible
13 RADIATE COPY
                                                         Obv Radiate head
                               denom: ANT
    date: '260-73' diam: 16.0 mm cat: c.as -
                                                         Rev Illegible
14 RADIATE COPY
                                denom: ANT
                                                          Obv Radiate head, good style, probably
                                                              Tetricus I
    date: '260-73' diam: 16.0 mm cat: c.as Tetricus 98
                                                          Rev Probably Sol [= ORIENS AVG]
15 RADIATE COPY
                                                          Obv Radiate head, almost disintegrated
                                denom: ANT
    date: '260-73' diam: 15.0 mm cat: c.as -
                                                          Rev Crude figure, both sides much off-centre
                                                          Obv Head of Tetricus I ... TRI...
16 'TETRICUS I'
                                denom: ANT
    date: '270-73' diam: 16.0 mm cat: c.as 76
                                                          Rev Hilaritas with prominent palm, crude but
                                                              vigorous
17 RADIATE COPY
                                denom: ANT
                                                          Obv Radiate head
    date: '260-73' diam: 15.0 mm cat: c.as -
                                                         Rev Dotted border
18 RADIATE COPY
                                denom: ANT
                                                          Obv Faint Radiate head
   date: '260-73' diam: 14.0 mm cat: c.as Tetricus 76 Rev Probably Hilaritas, blundered legend
19 'TETRICUS I'
                                                          Obv Head of Tetricus I, TETR...
                               denom: ANT
   date: '260-73' diam: 17.0 mm cat: c.as 76
                                                          Rev Hilaritas, broken edge
20 RADIATE COPY
                               denom: ANT
                                                          Obv Radiate head, clipped squarish flan
    date: '260-73' diam: 14.0 mm cat: c.as -
                                                          Rev Illegible, dotted border
21 RADIATE COPY
                                denom: ANT
                                                          Obv Radiate head, dotted border, irregular
                                                              flan
    date: '260-73' diam: 15.0 mm cat: c.as Claudius 261? Rev Probably disintegrated altar
22 RADIATE COPY
                                                          Obv Faint Radiate head
                                denom: ANT
    date: '260-73' diam: 14.0 mm cat: c.as Tetricus 98? Rev Standing figure ?Sol [=ORIENS AVG]
23 RADIATE COPY
                                denom: ANT
                                                          Obv Illegible
    date: '260-73' diam: 15.0 mm cat: c.as Tetricus 76? Rev Crude figure with palm much off
                                                             centre, ?Hilaritas
24 RADIATE COPY
                                denom: ANT
                                                          Obv Radiate head, squarish flan, broken
                                                             edges
    date: '260-73' diam: 13.0 mm cat: c.as Claudius 261? Rev Lines, probably disintegrated altar
25 RADIATE COPY
                               denom: ANT
                                                          Obv Illegible, corroded fragment
    date: '260-73' diam: 13.0 mm cat: c.as -
                                                          Rev Illegible
```

```
26 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 17.0 mm cat: c.as -
27 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 17.0 mm cat: c.as -
28 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 13.0 mm cat: c.as -
29 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 14.0 mm cat: c.as -
30 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 9.0 mm cat: c.as -
31 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 12.0 mm cat: c.as -
32 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 15.0 mm cat: c.as -
33 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 12.0 mm cat: c.as -
34 RADIATE COPY
                             denom: ANT
   date: '260-73' diam: 15.0 mm cat: c.as -
```

```
Obv Illegible, corroded half coin
Rev Illegible
Obv Illegible, in 3 corroded fragments
Rev Illegible
Obv Faint radiate head
Rev Illegible, corroded, v. thin flan
Obv Corroded fragment, part of Radiate head,
     14+ mm
Rev Illegible
Obv Illegible, broken fragment
Rev Illegible
Obv Fragmentary, corroded, stuck to 32
Rev Illegible
 Obv Corroded, stuck to 31
Rev Illegible
 Obv Fragmentary, corroded, stuck to 34
 Rev Illegible
Obv Corroded, signs of Radiate head, stuck
    to 33
Rev Illegible
```

Appendix 13.2.3 Provisional list of coins from Catterick Bypass (Site 433) now missing

These coins do not appear in the main catalogue and diameter, weight and condition were not recorded.

1	Context: A I 1	Phase:	U/S	Small	find	No.	-
	VICTORINUS	denom:					Victorinus
	date: 268-70 mint:	cat:					SALVS AVG
2	Context: A I 1	Phase:		Small	find		
	SALONINA	denom:					Salonina
	date: 258-68 mint:	cat:				Rev	
3	Context: A I U/S	Phase:		Small	find		
	TRAJAN	denom:					IMP TRAIANO AVG GER DAC PM TRP
	date: 103-11 mint:	cat:					COS V PP SPQR OPTIMO PRINC Felicitas
4	Context: A I U/S	Phase:		Small	find		
	HADRIAN?	denom:	DEN			Obv	Bearded head of ?Hadrian, half coin
	1					-	only
-	date: 117-38 mint:	cat:		G	61	Rev	
5	Context: A I U/S	Phase:		Small	rına		
	ILLEGIBLE 1ST/2ND CENTURY	denom:				0bv	
~	date: C1/2nd mint:	cat:		G	61	Rev	
6		Phase:		Small	rına		
	CLAUDIUS II	denom:					Claudius II
7	date: 268-70 mint:	cat:		Cmall	£ : م		Illegible
/	Context: B	Phase: denom:		Small	rina		- Tetricus I
	TETRICUS I date: 270-73 mint:						
0	Context: B II U/S	cat:	U/S	Small	find		[PIETAS AVG] Sacrificial Implements
0	HADRIAN	denom:		SILLATI	TTHU		- HadrianCOS III
	date: 119-38 mint:	cat:					SALVS AVG S C
٩	Context: B II U/S		u/s	Small	find		
9	GALLIENUS	denom:		SILLATI	TTHU		GALLIENVSAVG
	date: 258-68 mint:		as 274				SALVS AVG
10	Context: B III U/S	Phase:		Small	find		
10	ANTONINUS PIUS	denom:		DINGIT	1 I II U		Antoninus Pius
	date: 138-61 mint:	cat:					PAX AVG S C
11	Context: B II U/S	Phase:		Small	find		
	VALENS	denom:		DINGIT	1 I II U		DN VALENS PF AVG
			CK528/532				SECVRITAS REIPVBLICAE mm: SCON
12			U/S				
		denom:		Dillarr	11IIQ	0bv	
	date: - mint:	cat:				Rev	
13	Context: B II U/S		U/S	Small	find		
10	VALENTINIAN I	denom:		Dinull			[DN VALENTINIANVS PF AVG]
	date: 364-75 mint: -		as CK92				GLORIA ROMANORVM
14	Context: E I 2	Phase:		Small	find		
	CONSTANTIUS II	denom:				0bv	Constantius II
	date: 324-61 mint: -	cat:	-			Rev	Illegible
15	Context: E I 2	Phase:	5-6	Small	find		-
	TETRICUS? fragment	denom:	ANT			0bv	Tetricus?
	date: C3rd mint: -	cat:	-			Rev	-
16	Context: E I 4	Phase:	Unphased	Small	find	No.	3
	CONSTANTINE I [or copy *]	denom:	AE4			0bv	CONSTANTINOPOLIS [* AE4 module, so
							may be a copy]
	date: 330-31+ mint: LG P	cat:	7LG241=HK	185		Rev	Victory on prow PLG
17	Context: E I 5	Phase:	Unphased	Small	find	No.	4
	VICTORINUS ?	denom:	ANT			0bv	Victorinus?
	date: 268-70? mint: -	cat:	-			Rev	-
18	Context: E I 5	Phase:	Unphased	Small	find	No.	5
	CLAUDIUS II ?	denom:	ANT			Obv	Claudius II?
	date: 268-70? mint: -	cat:	-			Rev	-
19	Context: E I 5	Phase:	Unphased	Small	find	No.	7
	Clipping from C3rd COIN	denom:	-			0bv	-

date: C3rd mint: -20 Context: F I 4 CARAUSTUS date: 286-93 mint: -21 Context: D IV 3 CONSTANTINE I date: 330-31 mint: LG P 22 Context: D III 5 TRAJAN date: 103-11 mint: 23 Context: D IX 2 COMMODUS date: 185 mint: 24 Context: D IX 3 ILLEGIBLE C3rd date: C3rd mint: 25 Context: D spoil ILLEGIBLE C3rd date: C3rd mint: 26 Context: D XIV 2 CONSTANTINIAN period date: 306-61 mint: 27 Context: D XIV 2 CONSTANTINE I date: 330-41 mint: RM P 28 Context: D XVII 2 VALENS/VALENTINIAN I date: 364-78 mint: 29 Context: D X ext 2 ILLEGIBLE date: C1-3? mint: 30 Context: D XIV 3 ILLEGIBLE COPY [MINIM] date: C3/4th mint: 31 Context: E VI 1 CONSTANS date: 333-50 mint: 32 Context: D X ext 2 ILLEGIBLE LATE C4th date: C4th mint: 33 Context: E VI 1 ILLEGIBLE C3/4th date: C3/4th mint: 34 Context: D X 2 TETRICUS I ? date: 270-73? mint: 35 Context: D X 2 CONSTANTINE II date: 330-40 mint: 36 Context: F II 2 TLLEGTBLE date: mint: 37 Context: F II 1 CONSTANTIUS II date: 324-61 mint: 38 Context: E IV 1 VALENS date: 364-78 mint:

39 Context: D XIII 1 CONSTANTINIAN

denom: AE3

cat: -Rev -Phase: Unphased Small find No. 1 denom: AUREL Obv Carausius [IMP..CARAVSIVS..AVG] cat: as 878 Rev PAX AVG [no mm] Phase: 7 Small find No. 3 denom: AE3 Obv CONSTANTINOPOLIS cat: 7LG241=HK185 Rev Victory on prow PLG Phase: 5-6 Small find No. 6 denom: DEN Obv [IMP NERVA TRAIANVS AVG GER] DACICVS Rev PM TRP COS V PP Mars walking r. cat: 80 Phase: U/S Small find No. 8 denom: DEN Obv [M COMM ANT P FEL AVG BRIT] cat: 124 Rev [PM TRP XI IMP VII COS V PP] Commodus seated 1. Small find No. 7 Phase: 6 denom: ANT Obv cat: -Rev -Phase: U/S Small find No. denom: ANT Obv Radiate head cat: -Rev -Small find No. 17 Phase: U/S denom: AE4 Obv cat: -Rev -Small find No. 21 Phase: U/S denom: AE3 Obv VRBS ROMA cat: as HK540 Rev Wolf and Twins RP [sic] Phase: 7 Small find No. 22 denom: AE3 Obv cat: as CK96 Rev SECVRITAS REIPVBLICAE Phase: U/S Small find No. 23 denom: DEN? Obv cat: -Rev -Phase: 7 Small find No. 24 denom: -Obv -Rev cat: -Phase: U/S Small find No. 11 denom: AE3 Obv cat: -Rev -Small find No. 27 Phase: U/S denom: -Obv cat: -Rev Late C4th type Phase: U/S Small find No. 12 denom: -Obv cat: -Rev -Phase: 7 Small find No. 31 denom: ANT Obv Radiate head, possibly Tetricus I cat: -Rev -Phase: 7 Small find No. 32 denom: AE4 Obv Diademed head, Constantine II or Crispus [sic] cat: as 7LG238=HK181 Rev [GLORIA EXERCITVS] type Phase: 3/4 Small find No. 4 denom: AE4 Obv cat: -Rev -Small find No. 26 Phase: U/S denom: AE3 Obv Constantius II cat: -Rev Victory to 1. [?] Small find No. 13 Phase: U/S denom: AE3 Obv [DN VALENS PF AVG] cat: as CK97 Rev SECVRITAS REIPVBLICAE Phase: U/S Small find No. 28

Obv -

145

date: 306-61 mint: cat: -Rev -40 Context: E VI 1 Phase: U/S Small find No. 14 VALENS/VALENTINIAN I denom: AE3 Obv date: 375 mint: AR T cat: CK525/6,530 Rev [GLORIA ROMANORVM] TCON 41 Context: E VI 1 Phase: U/S Small find No. 15 TETRICUS? FRAGMENT denom: ANT Obv Radiate head, Tetricus? date: 270-73? mint: cat: -Rev -42 Context: E VI 1 Phase: U/S Small find No. 16 ILLEGIBLE Obv denom: cat: -Rev date: mint: -43 Context: E VI 1 Phase: U/S Small find No. 20 JULTAN TT denom: SILIO Obv FL CL IVLIANVS PP AVG date: 360-63 mint: LG Rev VOTIS V MVLTIS X mm: LVG cat: as 8LG218 44 Context: F XIII 1 Phase: U/S Small find No. 5 CONSTANTINIAN denom: AE3 Obv date: 321-24 mint: cat: as 7TR368 Rev [BEATA TRANQVILLITAS] type 45 Context: F XIII 1 Phase: U/S Small find No. 7 RADIATE COPY denom: ANT Obv date: C3rd mint: cat: c.as -Rev -46 Context: E IV 1 Small find No. 21 Phase: U/S ILLEGIBLE, FRAGMENTARY denom: AE Oby mint: date: cat: -Rev -Small find No. 22 47 Context: E IV 1 Phase: U/S ILLEGIBLE, DISINTEGRATED denom: AE Obv date: - mint: cat: -Rev -48 Context: E VI 2 Phase: U/S Small find No. 23 CLAUDIUS II ? denom: ANT Obv Radiate head, probably Claudius II date: 268-70? mint: cat: -Rev -49 Context: E VI 1 Phase: U/S Small find No. 24 ILLEGIBLE denom: AE Obv date: - mint: cat: -Rev -50 Context: E VI 1 Phase: U/S Small find No. 25 CONSTANS Obv [DN CONSTANS PF AVG] denom: AE3 date: 346-48 mint: cat: as 8TR182=CK138 Rev [VICTORIAE DD AVGG QNN] 2 Victories type 51 Context: G VIII 1 Phase: U/S Small find No. 1 ILLEGIBLE FRAGMENTS denom: AE Obv date: - mint: cat: -Rev -52 Context: G XIII 1 Phase: U/S Small find No. 3 ILLEGIBLE denom: AE Obv cat: date: -Rev mint: -53 Context: E IX 1 Phase: U/S Small find No. 27 ILLEGIBLE denom: AE Obv Smooth disk, probably not a coin date: mint: cat: -Rev -54 Context: E IX 1 Phase: U/S Small find No. 29 CONSTANTINE I Obv Constantine I denom: AE date: 330-37 mint: TR P cat: as 7TR518=HK48 Rev GLORIA EXERCITVS mm: TRP 55 Context: G IV 1 Phase: U/S Small find No. 6 CONSTANTINIAN denom: AE3 Obv date: 306-61 mint: cat: -Rev -56 Context: E IX 1 Small find No. 30 Phase: U/S HELENA / FAUSTA denom: AE3 Obv Helena or Fausta date: 324-30? mint: cat: -Rev -Small find No. 36 57 Context: D VIII 2 Phase: U/S ANTONINUS PIUS denom: DEN Obv [IMP T AEL CAES HADR(I) ANTONINVS] date: 138-39 mint: cat: 8 [or 34 Fortuna?] Rev AVG PIVS [PM TRP COS II DES] Minerva standing 1. 58 Context: E IX 1 Small find No. 31 Phase: U/S CONSTANTINIAN denom: AE3 Obv date: 335-41 mint: cat: as 8TR57=HK107 Rev GLORIA EXERCITVS 1 Standard 59 Context: E IX 1 Phase: U/S Small find No. 32 CONSTANTINIAN denom: AE4 Obv -

date: 306-61 mint: cat: Rev -Phase: U/S Small find No. 33 60 Context: E IX 1 CONSTANTINE I denom: AE3 Obv date: 318-20? mint: cat: ? Rev Victories holding wreath 61 Context: E VI 4 Phase: 5-6 Small find No. 38 denom: ANT GALLIENUS [Claudius II] Obv Gallienus [later list makes it Claudius II] date: 258-70 mint: cat: as 297/Claud.152 Rev VICTORIA AET [later list: IOVI CONSERVATOR] Phase: 6(-7) 62 Context: E VI 5 Small find No. 39 CONSTANTINIAN denom: AE Obv Diademed head date: 306-61 mint: cat: -Rev -63 Context: E VI 4 Phase: 5-6 Small find No. 36 ILLEGIBLE, CLAUDIUS II ? Obv Possibly Claudius II [but earlier denom: ANT list: diademed head] date: C3/4th mint: cat: -Rev -64 Context: E VI on Wall 3 Phase: 5-6 Small find No. 37 ILLEGIBLE, MINIM denom: -Obv date: C3/4th mint: cat: -Rev -65 Context: G V 2 Phase: 6(-7) Small find No. 9 CARAUSIUS denom: AUREL Obv Carausius [but earlier list has Herennius Etruscus ?] date: 286-93 mint: - cat: as 878 Rev PAX AVG [no mm]

J A Davies, with identifications by P J Casey

The following abbreviations are used:

Mints

AR	Arles
LG	Lyons
LN	London
RM	Rome

Denominations [denom:]

ANT	Antoninianus
AUREL	Aurelianus
DEN	Denarius
SEST	Sestertius

Catalogue [cat:] [Numbers refer to *RIC* unless otherwise stated.]

- LRBC I Carson, R A G, Hill, P F, and Kent, J P C (1960) Late Roman Bronze Coinage.
- RIC Mattingly, H, Sydenham, E A, Sutherland, C H V, Carson, R A G eds (1926–1981), *The Ro*man Imperial Coinage, vols 1–9.
- BMC Mattingly, H, 1965–68 Coins of the Roman Empire in the British Museum, vols 1–6.
- E Elmer, G, 1941 Die Münzprägung der Gallischen Kaiser in Köln, Trier und Mailand.

A copy or counterfeit of a particular ruler/issuer is denoted by single quotation marks, eg 'TETRICUS I', and by the use of a lower case 'c' in the catalogue reference, eg c of 141 = a copy of *RIC* 141. The use of the word 'of' indicates that a precise catalogue reference has been obtained; 'as' is used, for both official issues and copies, to denote an incompletely catalogued coin.

The condition [wear:] of both the obverse and reverse is denoted by the following abbreviations:

UW	Unworn
SW	Slightly worn
W	Worn
VW	Very worn
EW	Extremely worn
С	Corroded
NSU	Not struck up

The flan diameter [diam:] is given in millimetres [mm] and the weight [wt:] in grams [g].

AML No Context

2	8111042	301	Copper Alloy Date = AD 219–20 Description = <i>denarius</i> of Julia Paula. obv IVLIA PAVLA AVG. rev CONCORDIA AVGG Reference – <i>RIC</i> 216 Wear – SW/SW
3	8111057	63	Copper Alloy Date = AD 134–8 Description = <i>sestertius</i> of Hadrian. obv HADRIANVS AVG C(05 III PP). rev (FORTVNA) AVGSC Reference – <i>RIC</i> 759 Wear – W/W
4	8111067	54	Copper Alloy Date = AD 337–41 Description = Constantius II. obv CONSTANTIVSPFATG. rev GLORIAEXERCITVS Reference – <i>LRBC</i> I 441 Wear – UW/UW
5	8111071	100	Copper Alloy Date = AD 258–68 Description = <i>antoninianus</i> of Gallienus. obv GALLIENVS AVG. rev (FORTV) NA REDVX Reference – <i>RIC</i> 193 Wear – SW/SW
6	8111135	174	Copper Alloy Date = 69–70 AD Description = <i>as</i> of Ti- tus/Domitian Reference – <i>RIC</i> – Wear – VW/EW
7	8111152	328	Copper Alloy Date = AD '270-73' Description = 'antoninianus' of 'Tetricus I'. obv (IMP TETRIC) VS AVG. rev (PAX) AVG Reference – c of <i>RIC</i> 102 Wear – UW/UW
8	8111196	361	Copper Alloy Date = c AD 200 Description = <i>denarius</i> of Caracalla. Reference - <i>RIC</i> - Wear - C/C

9 8111200 339 Copper Alloy Date = AD 330+ Description = 'Constantine I'.

10	8111202 339	obv VRBS ROMA. rev LUPA ROMANA Reference – copy as <i>LRBC</i> I 51 Wear C/C Copper Alloy Date = AD 258–68				Date = AD 96–8 Description = <i>dupondius</i> of Nerva. obv (IMP NERVA CAES) AVG PM (TRP COS () PP) Reference – <i>RIC</i> – Wear – VW/C
		Description = antontinianus of Gallienus. obv (GALLIENVS AVG) rev (M) ONETA (AVG) Reference – <i>RIC</i> 243 Wear – W/W	18	8111397	622	Copper Alloy Date = AD 154–5 Description = <i>dupondius</i> of Antoninus Pius. obv ANTONINVS AVG PIVS PP TR P XVIII.
11	8111216 535	Copper Alloy Description = sestertius of Trajan. Reference $- RIC -$				rev LIBERTAS COS III SC Reference – <i>RIC</i> 932 Wear – SW/SW
10		Wear – C/C	19	8111425	682	Copper Alloy Date = AD 147–8
12	8111238 379	Copper Alloy Date = AD 330–5 Description = Constantine I. obv CONSTANTI (NVSMAX AVG). rev GLORIAEXERCITVS Reference – <i>LRBC</i> I 78				Description = <i>denarius</i> of Marcus Aurelius, Caesar. obv AVRELIVS CAESAR AVG PII(F) rev TR POT COS II Reference – <i>RIC</i> 932 Wear – SW/SW
10	0111005 510	Wear – SW/SW	20	8111441	995	Copper Alloy Date = AD 222–8
13	8111305 713	Copper Alloy Date = AD 103–11 Description = <i>denarius</i> of Trajan. obv IMP TRAIANO AUG GER DAC PM TRP COS VPP. rev SPQR OPTIMO PRINCIPI Reference – <i>RIC</i> 188				Description = <i>denarius</i> of Severus Alexander. obv IMP C M AVR SEV ALEXAND AVG. rev SALVS PVBLICA Reference – <i>RIC</i> 178 Wear – W/W
		Wear – W/W	21	8111477	1429	Copper Alloy Date = AD 98
14	8111361 650	Copper Alloy Date = $81-96$ AD Description = <i>as</i> of Domitian. Reference - <i>RIC</i> - Wear - VW/EW				Description = sestertius of Nerva. obv (DIVVS) AV (GVSTVS). rev (IMP NERVA CAESAR AVGVS)TVS REST SC Reference – <i>RIC</i> 136
15	8111373 773	Copper Alloy Date = AD 81–96 Description = as of Domitian. Reference – RIC –	22	8111533	950	Wear – W/W Copper Alloy Date = AD 208–10
		Wear – EW/EW				Description $=$ denarius of Septimius Severus.
16	8111377 970	Copper Alloy Date = AD 268–70 Description = antoninianus of Victorinus. obv IMP C VICTORINVS (PF AVG). rev PROVID (ENTIA)				obv SEVERVS PIVS AVG. rev INDULGENTIA AVGG IN CART Reference – <i>RIC</i> 266 Wear – UW/UW
		AVG Reference – <i>RIC</i> 61 Wear – SW/SW	23	8111539	1650	Copper Alloy Date = 1st century AD Description = as (illegible) Reference
17	8111386 788	Copper Alloy				Wear $- C/C$

24	8111563	1664	Copper Alloy Date = AD 103–11 Description = dupondius of Trajan. obv IMP CAES NERVAE TRAIANO AUG GER DAC PM TRP COS V. PP rev SPQR OTIMO PRINCIPI SC Reference – <i>RIC</i> 587		8111819 1819	Copper Alloy Date = AD 134–8 Description = <i>sestertius</i> of Hadrian. obv HADRIANVS AVG COS III PP. rev AEQV (ITAS AVG SC) Reference – <i>RIC</i> –743 Wear – W/W
25	8111618	1819	Wear – SW/SW Copper Alloy Date = AD 119–21 Description = sestertius of Hadrian. obv (IMP CAESAR TRAIAN) HADRIANVS (AVG PM TR P COS III) rev (MONETA) AVGVSTI SC Reference – <i>RIC</i> 586(c)	32	8111832 2065	Copper Alloy Date = AD 97 Description = <i>denarius</i> of Nerva. obv 'IMP NERVA CAES AVG PM TR P COAS III PP'. rev 'COS III PATER PATRIAE' Reference - <i>RIC</i> 24 var Wear - W/W
26	8111619	1599	Wear – VW/VW Copper Alloy Date = 2nd century AD Description = <i>denarius</i> (illegi- ble).	33	8111850 2074	Copper Alloy Date = AD 103–11 Description = $dupondius$ of Trajan. Reference – RIC – Wear – EW/EW
27	8111625	2154	Reference – – Wear – C/C Copper Alloy	34	8111889 2074	Copper Alloy Date = 84–96 AD Description = <i>as</i> of Domitian.
			Date = AD '270–73' Description = 'antoninianus' of 'Tetricus I'. obv IMP TET (RICVS) AVG. rev (HILARI) TAS AV(GG) Reference – c of <i>RIC</i> 81 Wear – UW/UW	35	8111894 1923	Reference – as RIC 242c Wear – EW/EW Copper Alloy Date = AD '260–73' Description = radiate copy. Reference – c as RIC – Wear – C/C
28	8111627	1819	Copper Alloy Date = AD 81–96 Description = as of Domitian. Reference – RIC – Wear – W/W	36	8111904 2406	Copper Alloy Date = AD 145–6 Description = <i>as/dupondius</i> of Faustina II. oby FAVSTINA AVG PII AVG
29	8111628	1819	Copper Alloy Date = AD 96–7 Description = <i>dupondius</i> of Nerva. oby IMP NERVA CAES AVG			FIL. rev SC Reference – <i>RIC</i> 1405(a) Wear – UW/UW
30	8111703	2501	PM TRP COS () PP. rev FORTUNA (AVGVST) SC Reference – as <i>RIC</i> 61 Wear – W/W Copper Alloy Date = AD 69–81 Description = <i>as</i> of Vespasian/Titus. Reference – <i>RIC</i> – Wear – EW/EW	37	8111911 2324	Copper Alloy Date = AD 103–11 Description = <i>sestertius</i> of Trajan. obv IMP CAES NERVAE TRAIANO AVG GER DAC PM TRP COS VPP. rev SPQR OPTIMO PRINCIPI SC Reference – <i>RIC</i> 492 Wear – UW/UW
						, - · ·

38	8111915 2273	Copper Alloy Date = $AD 98-9$		Reference – <i>RIC</i> 11 etc Wear – SW/SW
		Description = <i>as</i> of Trajan. obv IMP CAES NERVA TRAIAN AVG GERM PP	40	Copper Alloy. Illegible.
		Reference $-RIC -$ Wear $-W/EW$	41	Copper Alloy. Illegible.
39	8111945 3512	Copper Alloy Date = AD 98–9	Condition	
		Description = <i>denarius</i> of Trajan.	P J Casey writes:	

obv IMP CAES NERVA

rev PONT MAX TR POT COS

TRAIAN AVG GERM.

Π

An attempt has been made to ascertain the condition of the coin at the moment of its loss, this is a subjective estimate and does not have any absolute chronological significance.

Bridge (Site	logues of coins from Catterick e 240), Honey Pot Road (Site 251), ick Racecourse (Site 273)				$\begin{array}{l} Diam~(max) = 13mm\\ Wear - W/W \end{array}$	
J A Davies		2	8310002	66	Copper Alloy Date = $AD 293-6$ Description = Alloctus	
The followin	g abbreviations are used:				Description = Allectus. Antoninianus.	
LRBC	I Carson, R A G, Hill, P F, and Kent, J P C (1960) Late Roman Bronze Coinage.				Rev. PAX AVG. Mint: London. Issue period (Reece) XI Reference – RIC 5:33 Diam (max) = 23mm	
RIC	Mattingly, H, Sydenham, E A, Suther- land, C H V, Carson, R A G eds (1926–1981), <i>The Roman Imperial</i> <i>Coinage</i> , vols 1–9.	3	8310003	65	Wear – UW/SW Copper Alloy Date = AD 364–78	
BMC	Mattingly, H, 1965–68 Coins of the Ro- man Empire in the British Museum, vols 1–6.				Description = Valens. Rev GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa Reference – As RIC 9:17b	
Ε	Elmer, G, 1941 Die Münzprägung der Gallischen Kaiser in Köln, Trier und Mailand.				Diam (max) = 19mm Wear – W/W	
A copy or counterfeit of a particular ruler/issuer is de- noted by the word 'irregular' in the description/re- verse field, with no further annotation under 'catalogue'.			8310004	101	Copper Alloy Date = AD 270–84 Description = Radiate copy – Gallienus. Rev. DIANAE CONS AVG; an- telope, 1.	
	n [wear:] of both the obverse and reverse 7 the following abbreviations:				Issue period (Reece) XI Reference – RIC – Diam (max) = 18mm	
UW	V Unworn				Wear $- W/W$	
SW	Slightly worn	5	8310005	65	Copper Alloy Date = AD 341–6	
W	Worn				Description = Constantine I. Rev. GLORIA EXERCITVS, 1	
VW	Very worn				standard. Irregular. Issue period (Reece) XIIIb.	
EW	Extremely worn				Reference – RIC – Diam (max) = 15mm	
С	Corroded				Wear $-$ SW/W	
NSU	Not struck up	6	8310006	65	Copper Alloy Date = AD 367–75	
The flan diameter [diam:] is given in millimetres [mm] and the weight [wt:] in grams [g].					Description = Valentinian I. Rev. SECVRITAS REIPVBLICAE. Mint: Arles.	
13.3.4.1 Catalogue of coins from Catterick Bridge (Site 240)					Issue period (Reece) XVa Reference – RIC 9:17(a) Diam (max) = 17mm	
AML no					Wear – W/W	
1 8310001	65 Copper Alloy Date = AD 388–93 Description = Theodosius. Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC –	7	8310007	101	Copper Alloy Date = AD 375–8 Description = Valens. Rev. SECVRITAS REPVBLICAE. Mint: Arles.	

151

8	8310008	Issue period (Reece) XVa Reference – RIC 9:19(b) Diam (max) = 18mm Wear – SW/W Copper Alloy				Rev. VICTORIAE DD NN AVG ET CAE. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 10mm Wear – SW/SW
		Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SALVS. Issue period (Reece) XI Reference – Elmer – Diam (max) = 17mm Wear – SW/W	14	8310018	114	Copper Alloy Date = AD 320–1 Description = Constantine II. <i>Follis</i> . Rev. DOMINORVM NOSTRORVM CAESS, VOT/V. Mint: Ticinum. Issue period (Reece) XIIIa
9	8310009 10	Copper Alloy Date = AD 268–70 Description = Victorinus. Antoninianus.				Reference – RIC 7:152 Diam (max) = 20mm Wear – UW/UW
		Rev. SALVS AVG. Mint: Cologne. Issue period (Reece) X. Reference – Elmer 697 Diam (max) = 19mm Wear – UW/SW	15	8310020	69	Copper Alloy Date = AD 330–5 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards. Issue period (Reece) XIIIb.
10	8310010	Copper Alloy Date = AD 364–78 Description = Valens. Rev: GLORIA ROMANORVM.				Reference – RIC – Diam (max) = 17mm Wear – SW/SW
		Mint: Lyons. Issue period (Reece) XVa Reference – RIC – Diam (max) = 17mm Wear – W/W	16	8310021	66	Copper Alloy Date = AD 330–1 Description = CONSTANTINOPOLIS. <i>Follis</i> . Rev Victory on prow.
11	8310011 65	Copper Alloy Date = AD 375–8 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Arles.				Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:523 Diam (max) = 18mm Wear – W/W
		Issue period (Reece) XVa Reference – RIC 9:19(b) Diam (max) = 19mm Wear – SW/SW	17	8310024	69	Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 2
12	8310012 101	Copper Alloy Date = AD 76 Description = Vespasian. Denarius. Rev. COS VII; Eagle. Mint: Rome.				standards. Irregular. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 13mm Wear – SW/SW
		Issue period (Reece) III Reference – BMC 2:179 Diam (max) = 19mm Wear – VW/EW	18	8310025	67	Copper Alloy Date = AD 350–60 Description = House of Constantine. Rev. FEL TEMP REPARATIO,
13	8310013 66	Copper Alloy Date = AD 351–3 Description = Magnentius.				fallen horseman. Issue period (Reece) XIV Reference – RIC – Diam (max) = 17mm

		Wear – SW/SW			Wear – C/C
19	8310026 67	Copper Alloy Date = AD 307-8 Description = Constantine I. <i>Follis</i> . Rev. MARTI PATRI CONSERVATORI. Mint: Trier. Issue period (Reece) XII Reference - RIC 6: 772(a)	25	8310034 66	Copper Alloy Date = AD 270–84 Description = Radiate copy. Il- legible. Issue period (Reece) XI Reference – RIC – Diam (max) = 17mm Wear – C/C
90	2210027 67	Diam (max) = 27mm Wear – W/SW	26	8310035 114	Date = AD 300-402 Description = Illegible
20	8310027 67	Copper Alloy Date = AD 337–40 Description = Helena. <i>Follis</i> . Rev. PAX PVBLICA.			Reference – RIC – Diam (max) = 16mm Wear – C/C
		Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 14mm Wear – SW/SW	27	8310036 69	Copper Alloy Date = AD 347–8 Description = House of Constantine. <i>Follis</i> Rev. VICTORIAE DD AVGG Q
21	8310028 65	Copper Alloy Date = AD 335–40 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb.			NN. Mint: Lyons. Issue period (Reece) XIIIb. Reference – As RIC 8:45 Diam (max) = 12mm Wear – SW/SW
		Reference – RIC – Diam (max) = 16mm Wear – SW/SW	28	8310047 69	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I.
22	8310030 69	Copper Alloy Date = AD 335–40 Description = House of Constantine. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard.			Rev. VICTORIA AVG. Issue period (Reece) XI Reference – Elmer – Diam (max) = 15mm Wear – W/W
		Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 314mm Wear – SW/SW	29	8310039 69	Copper Alloy Date = AD 270–84 Description = Radiate copy – DIVO CLAVDIO. Pey CONSECRATIO alter
23	8310031 69	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. SECVRITAS			Rev. CONSECRATIO, altar. Issue period (Reece) XI Reference – RIC – Diam (max) = 15mm Wear – W/W
		REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa Reference – RIC – Diam (max) = 18mm Wear – SW/SW	30	8310040 69	Copper Alloy Date = AD 321 Description = Constantine I. <i>Follis</i> Rev. BEATA TRANQVILLITAS, VO/TIS/XX.
24	8310033 66	Copper Alloy Date = AD 300–402 Description = Illegible. Reference – RIC – Diam (max) = 17mm			Mint: Trier. Issue period (Reece) XIIIa Reference – RIC 7:317 Diam (max) = 19mm Wear – SW/SW

31	8310043 69	Copper Alloy Date = AD 335–7 Description = Constantine II. Follis. Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:591			Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa. Part of flan only. Reference – RIC – Diam (max) = 15mm Wear – SW/SW
		Diam (max) = 16mm Wear – W/W	37	8310052 69	Date = AD 354-64 Description = House of
32	8310046 69	Copper Alloy Date = AD 330–1 Description = Constantine I. Follis. Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb			Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 10mm Wear – SW/SW
		Reference – RIC 7:525 Diam (max) = 19mm Wear – W/W	38	8310053 73	Copper Alloy Date = AD 354–64 Description = House of Constantine.
33	8310048 69	Copper Alloy Date = AD 347–8 Description = Constans. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Issue period (Reece) XIIIb			Rev. FEL TEMP REPARATIO, fallen horseman. irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 8mm Wear – SW/SW
		Reference – RIC – Diam (max) = 14mm Wear – SW/SW	39	8310054 73	Copper Alloy Date = AD 364–78 Description = House of Valentinian.
34	8310049 69	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV			Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVA Reference – RIC – Diam (max) = 16mm Wear – W/W
		Reference – RIC – Diam (max) = 10mm Wear – SW/SW	40	8310055 75	Copper Alloy Date = AD 341–6 Description = House of Constantine.
35	8310050 69	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV			Rev. GLORIA EXERCITVS, 1 standard. Irregular. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 15mm Wear – C/C
		Reference – RIC – Diam (max) = 12mm Wear – SW/SW	41	8310056 75	Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. Female figure stg.1; with
36	8310051 67	Copper Alloy Date = AD 364–78 Description = House of Valentinian.			cornucopiae. Issue period (Reece) XI Reference – Elmer – Diam (max) = 15mm Wear – C/C

42	8310060	516	Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. VIRTVS AVG. Mint: Rome. Issue period (Reece) X. Reference – RIC 5:109 Diam (max) = 20mm Wear – W/W	48	8310068	79	Diam (max) = 19mm Wear - SW/SW Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV
43	8310061	145	Copper Alloy Date = AD 364–78 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa Reference – RIC – Diam (max) = 18mm Wear – SW/SW	49	8310070	79	Reference – RIC – Diam (max) = 10mm Wear – SW/SW Copper Alloy Date = Description = Constans. Rev. FEL TEMP REPARATIO, hut. Issue period (Reece) XIV Reference – RIC – Diam (max) = 19mm
	8310062		Copper Alloy Date = AD 332–3 Description = Constantine I. <i>Follis.</i> Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:537 Diam (max) = 17mm Wear – UW/SW	50	8310085	145	Wear – SW/W Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. SPES AVGG. Cast from another barbarous radiate. Issue period (Reece) XI Reference – As Elmer 791 Diam (max) = 20mm Wear – W/W
45	8310063	145	Copper Alloy Date = AD 335–7 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:586 Diam (max) = 15mm Wear – SW/W	51	8310086	303	Copper Alloy Date = AD 332–3 Description = Constantine II. <i>Follis.</i> Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:539 Diam (max) = 18mm Wear – SW/UW
46	8310065	526	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. PAX AVG. Issue period (Reece) XI Reference – Elmer – Diam (max) = 14mm Wear – SW/SW	52	8310088	94	Copper Alloy Date = AD 270–84 Description = Radiate copy – Victorinus. Rev. INVICTVS. Issue period (Reece) XI Reference – Elmer – Diam (max) = 17mm Wear – SW/SW
47	8310066	78	Copper Alloy Date = AD 268–70 Description = Victorinus Rev. PAX AVG. Issue period (Reece) XI Reference – Elmer	53	8310089	304	Copper Alloy Date = AD 364–78 Description = Valentinian I. Rev. SECVRITAS REIPVBLICAE. Irregular.

54	8310090	94	Mint: as Arles. Issue period (Reece) XVa Reference – RIC – Diam (max) = 16mm Wear – W/W Copper Alloy Date = AD 270–84 Date = AD 270–84			Description = Magnentius/Decentius. Rev. SALVS DD NN AVG ET CAES, Chi–Rho. Issue period (Reece) XIV Reference – RIC – Diam (max) = 25mm Wear – SW/SW
			Description = Radiate copy – Tetricus I. Rev illegible. Issue period (Reece) XI Reference – Elmer – Diam (max) = 15mm Wear – W/W	60	8310099 79	Copper Alloy Date = AD 351–2 Description = Decentius. Rev. VICTORIAE DD NN AVG ET CAE. Mint: Amiens. Issue period (Reece) XIV
55	8310091	94	Copper Alloy Date = AD 341–6 Description = House of Constantine.			Reference – RIC 8:10 Diam (max) = 19mm Wear – UW/UW
			Rev. GLORIA EXERCITVS, 1 standard. Irregular. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 12mm Wear – SW/SW	61	8310100 79	Copper Alloy Date = AD 330–78 Description = Illegible. Reference – RIC – Diam (max) = 13mm Wear – SW/SW
56	8310092	94	Copper Alloy Date = AD 351–3 Description = Magnentius. Rev. VICTORIAE DD NN AVG ET CAES. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 16mm Wear – W/W	62	8310101 79	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 11mm Wear – SW/SW
57	8310095	79	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 9mm Wear – SW/SW	63	8310102 79	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 7mm Wear – SW/SW
58	8310096	79	Copper Alloy Date = AD 335–40 Description = House of Constantine. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – W/W	64	8310103 98	Copper Alloy Date = AD 367–75 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Irregular. Mint: as Arles. Issue period (Reece) XVa Reference – As RIC 9:19b Diam (max) = 17mm Wear – SW/SW
59	8310097	79	Copper Alloy Date = AD 353	65	8310111 145	Copper Alloy Date = AD 270–4

		Description = Tetricus I. Rev. COMES AVG. Mint: Cologne. Antoninianus. Issue period (Reece) X Reference – Elmer 770 Diam (max) = 18mm Wear – SW/SW	71	8310126	161	Copper Alloy Date = AD 337–40 Description = Theodora. Rev. PIETAS ROMANA. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 8:79 Diam (max) = 16mm
66	8310112 100	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. PAX AVG. Issue period (Reece) XI Reference – As Elmer 771 Diam (max) = 20mm Wear – UW/SW	72	8310127	145	Wear – SW/SW Copper Alloy Date = AD 253–402 Description = Illegible. Frag- ment of coin. Reference – RIC – Diam (max) = 16mm Wear – C/C
67	8310114 126	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. VIRTVS AVG. Mint: Rome. Issue period (Reece) X Reference – RIC 5:109 Diam (max) = 19mm		8310130		Copper Alloy Date = AD 253–84 Description = Illegible. <i>Antoninianus</i> . Rev. PAX AVG. Reference – RIC – Diam (max) = 18mm Wear – C/SW
68	8310116 94	Wear – W/W Copper Alloy Date = AD 341–6 Description = Constantine II. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: as Lyons. Issue period (Reece) XIIIb Reference – As RIC 7: 238 Diam (max) = 15mm Wear – SW/SW		8310131 8310138		Copper Alloy Date = AD 348–50 Description = Constans. Rev. FEL TEMP REPARATIO, galley. Mint: Trier. Issue period (Reece) XIV Reference – RIC 8:213 Diam (max) = 23mm Wear – SW/SW Copper Alloy
69	8310117 405	Copper Alloy Date = AD 341–6 Description = House of Constantine. Rev Victory on prow. Hybrid. Irregular. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 9mm Wear – SW/SW	76	8310143	145	Date = AD 364-7 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Lyons. Issue period (Reece) XVa Reference – As RIC 9:10a Diam (max) = 18mm' Wear – SW/SW Copper Alloy Date = AD 367–75
70	8310123 157	Copper Alloy Date = AD 364–7 Description = House of Valentinian. Rev. GLORIA ROMANORVM. Mint: Aquileia. Issue period (Reece) XVa Reference – As RIC 9:11 Diam (max) = 16mm	77	8310150	525	Date – AD 307–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa Reference – RIC 5:15 Diam (max) = 18mm Wear – W/W Copper Alloy
		Wear – SW/SW			-	Date = AD 364-78

	Description = House of Valentinian.		Wear - SW/SW
78 8310154 214	Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa Reference – As RIC 9:9 Diam (max) = 16mm Wear – W/W Copper Alloy	83 8310173 542	Copper Alloy Date = AD 253–60 Description = Gallienus. Antoninianus. Rev. GERMANICVS MAX V. Mint: Lyons. Issue period (Reece) IXb Reference – RIC 5:18 Diam (max) = 20mm
	Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 13mm Wear – C/C	84 8310174 542	Wear – SW/SW Copper Alloy Date = AD 241–6 Description = Constantine II. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: as Lyons. Issue period (Reece) XIIIb Reference – As RIC 7:238
79 8310160 145	Copper Alloy Date = AD 367–75 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa Reference – RIC 9:16a Diam (max) = 18mm Wear – SW/SW	85 8310175 542	Diam (max) = 14mm Wear - SW/SW Copper Alloy Date = AD 332-3 Description = CONSTANTINOPOLIS. <i>Follis.</i> Rev Victory on prow. Mint: Trier.
80 8310161 327	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. FORTVNA REDVX. Mint: Rome. Issue period (Reece) X Reference – RIC 5:193 Diam (max) = 20mm Wear – SW/SW	86 8310176 542	Issue period (Reece) XIIIb Reference – RIC 7: 543 Diam (max) = 16mm Wear – UW/SW Copper Alloy Date = AD 350–3 Description = Decentius. Rev. VICTORIAE DD NN AVG ET CAE, VOT/V/MVLT/X.
81 8310165 145	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev. SALVS AVGG. Mint: Cologne. Issue period (Reece) X Reference – Elmer 779 Diam (max) = 21mm Wear – SW/W	87 8310181 235	Mint: Lyons. Reference – RIC 8:137 Diam (max) = 22mm Wear – SW/SW Copper Alloy Date = AD 347–8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier.
82 8310171 513	Copper Alloy Date = AD 330–1 Description = VRBS ROMA. <i>Follis</i> . Rev. Wolf and twins. Mint: Trier. Issue period (Reece) XIIIb Reference – RIC 7:529 Diam (max) = 16mm	88 8310183 344	Issue period (Reece) XIIIb Reference – RIC 8:195 Diam (max) = 17mm Wear – SW/SW Copper Alloy Date = AD 367–75 Description = Gratian.

	Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa Reference – RIC 9:15 Diam (max) = 17mm Wear – SW/SW	94	8310191	585	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC –
89 8310186 2191	Copper Alloy Date = AD 193–6 Description = Julia Domna. <i>Denarius</i> . Rev Diana. Mint: Rome. Issue period (Reece) VIII. Part of flan only. Reference – As RIC 4: 548 Diam (max) = 18mm 18mm Wear – SW/SW	95	8310192	585	Diam (max) = 9mm Wear - SW/SW Copper Alloy Date = AD 350-60 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Issue period (Reece) XIV. Reference - RIC - Diam (max) = 17mm
90 8310187 508	Copper Alloy Date = AD 270-84 Description = Radiate copy. Il- legible. Issue period (Reece) XI Reference - RIC - Diam (max) = 19mm Wear - C/C	96	8310198	344	Wear – SW/SW Copper Alloy Date = AD 347–8 Description = Constantius II. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier.
91 8310188 542	Copper Alloy Date = AD 341–6 Description = Constantius II. Rev. GLORIA EXERCITVS, 1 standards. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – SW/SW	97	8310201	239	Issue period (Reece) XIIIb Reference – RIC 8:184 Diam (max) = 17mm Wear – SW/SW Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO,
92 8310189 542	Copper Alloy Date = AD 270–84 Description = Radiate copy – Gallienus. Rev. DIANAE CONS AVG, An- telope. Issue period (Reece) XI.	98	8310204	344	 Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 8mm Wear – SW/SW Copper Alloy
	Reference – As RIC 5:180 Diam (max) = 21mm Wear – W/W				Date = AD 367–75 Description = Valens. Rev. GLORIA ROMANORVM. Mint: Aquileia.
93 8310190 585	Copper Alloy Date = AD 337–40 Description = Constantius II. Follis. Rev GLORIA EXERCITVS, 1				Issue period (Reece) XVa. Reference – RIC 9: 11(b) Diam (max) = 18mm Wear – SW/SW
	standard. Mint: Siscia. Issue period (Reece) XIIIb. Reference – RIC 8:92 Diam (max) = 17mm Wear – UW/UW	99	8310208	601	Copper Alloy Date = AD 341–6 Description = Constantine II. Rev. GLORIA EXERCITVS, 1 standard. Irregular. Issue period (Reece) XIIIb Reference – RIC –

100 8310209 344	Diam (max) = 13mm Wear – SW/SW Copper Alloy Date = AD 364–78 Description = House of Valentinian.		Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 10mm Wear – SW/SW
	Rev. GLORIA ROMANORVM. Issue period (Reece) XVa Reference – RIC – Diam (max) = 16mm Wear – W/W	106 8310217 508	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular
101 8310210 157	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev FEL TEMP REPARATIO,		Issue period (Reece) XIV Reference – RIC – Diam (max) = 10mm Wear – SW/SW
	fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 11mm Wear – SW/SW	107 8310218 508	Copper Alloy Date = AD 337–40 Description = Helena. <i>Follis</i> . Rev. PAX PVBLICA. Issue period (Reece) XIIIb. Reference – RIC –
102 8310211 251	Copper Alloy Date = AD 337–40 Description = Constans.		Diam (max) = 14mm Wear – SW/SW
	Follis. Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:72 Diam (max) = 15mm	108 8310237 255	Copper Alloy Date = AD 300–402 Description = Illegible Reference – RIC – Diam (max) = 21mm Wear – C/C
$103\ 8310213\ 255$	Wear – SW/SW Copper Alloy	109 8310238 134	Copper Alloy Date = AD 335–64 Description = House of
105 0510215 255	Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SALVS. Issue period (Reece) XI. Reference – Elmer –		Constantine. Rev. illegible. Reference – RIC – Diam (max) = 12mm Wear – SW/SW
	Diam (max) = 18mm Wear – SW/SW	110 8310241	Copper Alloy Date = AD 222–35 Description = Julia Mamaea.
104 8310215 159	Copper Alloy Date = AD 347-8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb.		Denarius. Rev. FELICITAS PVBLICA. Mint: Rome. Issue period (Reece) IXa Reference – As RIC 4:335 Diam (max) = 20mm Wear – UW/UW
	Reference – RIC 8:210 Diam (max) = 14mm Wear – SW/SW	111 8310243 255	Copper Alloy Date = AD 300–402 Description = Illegible. Reference – RIC –
105 8310216 344	Copper Alloy Date = AD 354–64 Description = House of		$\begin{array}{l} \text{Diam} (\text{max}) = 21\text{mm} \\ \text{Wear} - \text{C/C} \end{array}$
	Constantine.	$112\ 8310245\ 255$	Copper Alloy

113 8310247 258	Date = AD 260–8 Description = Gallienus. Antoninianus. Rev. Virtus. Issue period (Reece) X. Reference – As RIC 5:317 Diam (max) = 16mm Wear – UW/UW Copper Alloy	118 8310263 81	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 10mm Wear – SW/SW
	Date = AD 287–93 Description = Carausius. Antoninianus. Rev. PAX AVG. Issue period (Reece) XI Reference – RIC – Diam (max) = 21mm Wear – UW/UW	119 8310264 102	Copper Alloy Date = AD 270–84 Description = Radiate copy – DIVO CLAVDIO. Rev. CONSECRATIO, eagle. Issue period (Reece) XI. Reference – RIC – Diam (max) = 20mm
114 8310249 607	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SPES PVBLICA. Issue period (Reece) XI Reference – Elmer – Diam (max) = 20mm Wear – C/C	120 8310265 102	Wear – W/W Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. FIDES MILITVM. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 12mm
115 8310257	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SALVS AVGG. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 15mm Wear – W/W	121 8310266 103	Wear – SW/SW Copper Alloy Date = AD 367–75 Description = Gratian. Rev. SECVRITAS REIPVBLICAE. Mint: Lyons. Issue period (Reece) XVa Reference – RIC 9:21(b)
116 8310258 133	Copper Alloy Date = AD 347–8 Description = Constantius II. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:184 Diam (max) = 16mm Wear – UW/UW	122 8310269 914	Diam (max) = 18mm Wear - W/W Copper Alloy Date = AD 264-78 Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVa Reference - RIC - Diam (max) = 15mm
117 8310260	Copper Alloy Date = AD 347–8 Description = House of Constantine. <i>Follis</i> . Rev. VOT XV MVLT XX. Mint: Antioch. Issue period (Reece) XIIIb Reference – As RIC 8:114 Diam (max) = 14mm Wear – SW/W	123 8310270 81	Wear – W/SW Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 12mm

$124\ 8310272\ 607$	Wear – SW/SW Copper Alloy Date = AD 270–84		Reference – RIC – Diam (max) = 17mm Wear – SW/SW
	Description = Radiate copy. Rev. illegible – altar? Issue period (Reece) XI Reference – RIC – Diam (max) = 9mm Wear – SW/SW	130 8310278 621	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev illegible. Issue period (Reece) X Reference – Elmer –
125 8310273 607	Copper Alloy Date = AD 330–1 Description = CONSTANTINOPOLIS.	131 8310279 616	Diam (max) = 17mm Wear – W/C Copper Alloy
100 0010074 010	<i>Follis.</i> Rev. Victory on prow. Mint: Lyons. Issue period (Reece) XIIIb. Reference – RIC 7:241 Diam (max) = 16mm Wear – W/W	101 0010270 010	Date = AD 330–5 Description = CONSTANTINOPOLIS. Follis. Rev Victory on prow. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 17mm
126 8310274 618	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev. VICTORIA AVG. Mint: Cologne. Issue period (Reece) X. Reference – Elmer 765 Diam (max) = 19mm Wear – SW/SW	132 8310284 542	Wear – SW/SW Copper Alloy Date = AD 341–6 Description = VRBS ROMA. Rev Wolf and twins. Irregular. Mint: As Lyons. Issue period (Reece) XIIIb Reference – As RIC 7: 247 Diam (max) = 14mm Wear – UW/SW
127 8310275 618	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. FORTVNA REDVX. Part of flan only. Issue period (Reece) X Reference – As RIC 5:139 Diam (max) = 16mm Wear – SW/SW	133 8310286 81	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. PAX AVG. Issue period (Reece) XI Reference – Elmer – Diam (max) = 17mm Wear – W/W
128 8310276 618	Copper Alloy Date = AD 354–64 Description = Constantius II. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 13mm Wear – UW/UW	134 8310296 542	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 9mm Wear – SW/SW
129 8310277 618	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa.	135 8310301 633	Copper Alloy Date = AD 330–1 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards.

	Mint: Lyons. Issue period (Reece) XIIIb Reference – RIC 7:238 Diam (max) = 16mm Wear – W/W	141 8310311 632	Copper Alloy Date = AD 316 Description = Lininius. <i>Follis</i> . Rev GENIO POP ROM. Mint: Trier. Issue period (Reece) XII.
136 8310302 633	Copper Alloy Date = AD 354–64 Description = House of Constantine, fallen horseman.		Reference – RIC 7:120 Diam (max) = 20mm Wear – SW/W
	Irregular Rev. FEL TEMP REPARATIO Issue period (Reece) XIV. Reference – RIC as 8TR359 Diam (max) = 9mm Wear – SW/SW	142 8310312 678	Copper Alloy Date = AD 321–3 Description = Constantine I. <i>Follis</i> . Rev. BEATA TRANQVILLITAS, VO/TIS/XX.
137 8310303 344	Copper Alloy Date = AD 293–6 Description = Allectus. <i>Antoninianus</i> . Rev. PAX AVG.		Issue period (Reece) XIIIa. Reference – RIC – Diam (max) = 20mm Wear – SW/W
	Mint: London. Issue period (Reece) XI. Reference – RIC 5:33 Diam (max) = 22mm Wear – SW/SW	143 8310313 690	Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. Annona? Mint: Rome.
138 8310304 239	Copper Alloy Date = AD 336 Description = Constantine II. Follis. Rev. GLORIA EXERCITVS, 1		Issue period (Reece) X. Reference – As RIC 5:18 Diam (max) = 18mm Wear – SW/SW
	standard. Mint: Lyons. Issue period (Reece) XIIIb. Reference – RIC 7:336 Diam (max) = 15mm Wear – SW/SW	144 8310314 632	Copper Alloy Date = AD 337–40 Description = Helena. <i>Follis</i> . Rev. PAX PVBLICA. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 15mm
139 8310309 542	Copper Alloy Date = AD 259–68 Description = Postumus.	$1458310315\ 687$	Wear – SW/SW Copper Alloy
	Antoninianus. Rev. IMPX.COS.V. Principal mint. Issue period (Reece) X. Reference – Elmer 597 Diam (max) = 20mm Wear – SW/SW		Date = AD 335–48 Description = House of Constantine. Rev Illegible. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 15mm Wear – SW/SW
140 8310310 632	Copper Alloy Date = AD 330–1 Description = VRBS ROMA. <i>Follis.</i> Rev Wolf and twins. Mint: Lyons. Issue period (Reece) XIIIb. Reference – RIC 7:247 Diam (max) = 17mm Wear – SW/SW	146 8310316 618	Copper Alloy Date = AD 351–3 Description = Magnentius/Decentius. Rev. VICTORIAE DD NN AVG ET CAES. Fragment of flan only. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 15mm

147 8310317 685	Wear – UW/UW Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. Jupiter. Mint: Rome. Issue period (Reece) X.		Description = Constans. Follis. Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:99 Diam (max) = 14mm Wear – UW/SW
	Reference – As RIC 5:54 Diam (max) = 17mm Wear – W/W	$153\ 8310333\ 344$	Copper Alloy Date = AD 341–6
148 8310318	Copper Alloy Date = AD 293–6 Description = Allectus. <i>Antoninianus</i> . Rev. PAX AVG. Mint: London. Issue period (Reece) XI. Reference – RIC 5:28		Description = Constantine I. Rev. GLORIA EXERCITVS, 1 standard. Irregular. Mint: as Arles. Issue period (Reece) XIIIb Reference – As RIC 7:402 Diam (max) = 14mm Wear – SW/SW
	Diam (max) = 23mm Wear – UW/UW	$154\ 8310351\ 292$	Copper Alloy Date = AD 354–64 Description = House of
149 8310319 598	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE. Mint: Lyons. Issue period (Reece) XVa		Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 10mm Wear – SW/SW
	Reference – RIC – Diam (max) = 18mm Wear – SW/SW	155 8310358 300	Copper Alloy Date = AD 337–40 Description = Theodora. <i>Follis</i> .
150 8310320 614	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular.		Rev. PIETAS ROMANA. Issue period (Reece) 13b. Reference – RIC – Diam (max) = 15mm Wear – SW/SW
	Issue period (Reece) XIV Reference – RIC – Diam (max) = 11mm Wear – SW/SW	156 8310377 361	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI.
151 8310326	Copper Alloy Date = AD 337–40 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard.		Mint: Arles. Issue period (Reece) XVa Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/W
	Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:82 Diam (max) = 15mm Wear – SW/SW	157 8310378 622	Copper Alloy Date = AD 270–84 Description = Radiate copy. Il- legible. Issue period (Reece) XI Reference – Elmer –
152 8310331	Copper Alloy Date = AD 340		Diam (max) = 9mm Wear - SW/SW

158 8310380 2	233	Copper Alloy Date = AD 348–50		Diam (max) = 26mm Wear – EW/EW
		Description = Constans. Rev. FEL TEMP REPARATIO, hut. Issue period (Reece) XIV Reference – RIC – Diam (max) = 21mm Wear – SW/SW	164 8310431 379	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I/II. Rev. SPES, reversed. Issue period (Reece) XI Reference – Elmer –
159 8310381 1	101	Copper Alloy Date = AD 341–6 Description = Constantine II.		Diam (max) = 15mm Wear - W/SW
		Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: As Lyons. Issue period (Reece) XIIIb. Reference – As RIC 7:238 Diam (max) = 15mm Wear – SW/SW	165 8310436 688	Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. Female figure standing right. Issue period (Reece) XI Reference – Elmer – Diam (max) = 13mm
160 8310382 2	233	Copper Alloy Date = AD 354–64	100 0010400 070	Wear – W/W
		Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 10mm Wear – C/C	166 8310439 379	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. FIDES MILITVM. Mint: Rome. Issue period (Reece) X. Reference – RIC 5:192a Diam (max) = 18mm
161 8310405 1	048	Copper Alloy Date = AD 192	100 0010440 000	Wear – UW/UW
		Description = Commodus. Denarius. Rev. P.M.TR.PXVII IMP.VIII COS.VII P.P. Mint: Rome. Issue period (Reece) VIIb. Reference – RIC 3:234 Diam (max) = 18mm Wear – SW/W	167 8310440 379	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. LAETITIA. Issue period (Reece) XI Reference – Elmer – Diam (max) = 18mm Wear – SW/SW
162 8310410 1	1089	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC as 8TR359 Diam (max) = 8mm Wear – SW/SW	168 8310441 379	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. LAETITIA. Issue period (Reece) XI Reference – Elmer – Diam (max) = 16mm Wear – W/W
163 8310430 1	1063	Copper Alloy Date = AD 98–117 Description = Trajan. As. Rev: illegible. Mint: Rome. Issue period (Reece) IV Reference – RIC –	169 8310443 379	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev. VIRTVS AVGG. Mint: Cologne. Issue period (Reece) X Reference – Elmer 780

	Diam (max) = 19mm Wear - SW/SW		Reference – RIC 8: 108 Diam (max) = 15mm Wear – UW/SW
170 8310446 622	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. LAETITIA. Issue period (Reece) XI Reference – Elmer – Diam (max) = 17mm Wear – SW/SW	176 8310483	Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. Pin figure. Issue period (Reece) XI Reference – Elmer – Diam (max) = 11mm Wear – W/W
171 8310447 622	Copper Alloy Date = AD 270–84 Description = Radiate copy – DIVO CLAVDIO. Rev. CONSECRATIO, altar. Issue period (Reece) XI Reference – RIC – Diam (max) = 16mm Wear – W/W	177 8310485 267	Copper Alloy Date = AD 341–6 Description = VRBS ROMA. Rev. Wolf and twins. Irregular. Issue period (Reece) XIIIb Reference – RIC – Diam (max) = 14mm Wear – W/SW
172 8310448 622	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. SPES AVGG. Issue period (Reece) XI Reference – Elmer – Diam (max) = 18mm Wear – SW/SW	178 8310487 363	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa Reference – RIC 9:15 Diam (max) = 18mm Wear – W/W
173 8310452 509	Copper Alloy Date = AD 270–84 Description = Radiate copy – Postumus. Rev. MONETA AVG. Issue period (Reece) XI Reference – As Elmer 336 Diam (max) = 19mm Wear – W/SW	179 8310500 720	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 9mm Wear – C/C
174 8310453 556	Copper Alloy Date = AD 222–35 Description = Julia Mamaea. Sestertius. Rev VENERI FELICI, SC. Mint: Rome. Issue period (Reece) IXa Reference – RIC 4:694 Diam (max) = 32mm Wear – SW/SW	180 8310516 701	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Brockage. Issue period (Reece) XI Reference – Elmer – Diam (max) = 17mm Wear – SW/C
175 8310461 598	Copper Alloy Date = AD 340 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb	181 8310520 623	Copper Alloy Date = AD 255–7 Description = Valerian. Antoninianus. Rev. RESTITVTOR ORBIS. Mint: Rome. Issue period (Reece) IXb Reference – RIC 5:117 Diam (max) = 21mm

	Wear – W/W		Wear – C/C
182 8310521 738	Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. Providentia. Issue period (Reece) X Reference – As RIC 5:87	188 8310554 2050	Copper Alloy Date = AD 340-402 Description = Illegible. Reference - RIC - Diam (max) = 11mm Wear - C/C
	Diam (max) = 19mm Wear – W/W	189 8310555 2050	Copper Alloy Date = As 364–75 Description = Valentinian I.
183 8310522 739	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. FIDES EXERCI. Mint: Rome. Issue period (Reece) X Reference – RIC 5:34		Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa Reference – As RIC 9:9a Diam (max) = 17mm Wear – SW/SW
	Diam (max) = 17mm Wear – W/W	190 8310591 753	Copper Alloy Date = AD 270–84 Description = Radiate copy –
184 8310523 739	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. COMES/VICTORIA AVG. Issue period (Reece) XI Reference – Elmer –		Tetricus II. Rev. PAX AVG. Issue period (Reece) XI Reference – Elmer – Diam (max) = 18mm Wear – W/W
	Diam (max) = 10mm Wear - SW/SW	191 9902401 1801	Copper Alloy Date = AD 330–402 Description = Illegible.
185 8310524	Copper Alloy Date = AD 270–84 Description = Radiate copy. Il- legible.		Reference – RIC – Diam (max) = 16mm Wear – C/C
	Issue period (Reece) XI Reference – Elmer – Diam (max) = 15mm Wear – C/C	192 9902402 1801	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 15mm
186 8310525 738	Copper Alloy Date = AD 228–31 Description = Severus Alexan-	$193\ 9902405\ 1808$	Wear – C/C Copper Alloy
	der. Denarius. Rev. ANNONA AVG. Mint: Rome. Issue period (Reece) IXa Reference – RIC 4:188 Diam (max) = 18mm Wear – UW/UW		Date = AD 270-84 Description = Radiate copy – Tetricus II. Rev. VIRTVS AVGG. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 19mm Wear – SW/SW
187 8310553 205	 Copper Alloy Date = AD 268–74 Description = Gallic Empire. Antoninianus. Rev. Female figure standing left. Issue period (Reece) X. Reference – Elmer – Diam (max) = 18mm 	194 9902406 1899	Copper Alloy Date = AD 341–6 Description = VRBS ROMA. Rev. Wolf and twins. Irregular Mint: as Lyons. Issue period (Reece) XIIIb. Reference – As RIC 7:242 Diam (max) = 14mm

195 9902407 1899	Wear – W/SW Copper Alloy	201 9902414 1899	Copper Alloy Date = AD 275–402 Description = Illegible.
100 0002401 1000	Date = AD 330–1 Description = CONSTANTINOPOLIS. Follis.		Reference – RIC – Diam $(max) = 14mm$ Wear – C/C
	Rev. Victory on prow. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:523 Diam (max) = 17mm Wear – SW/W	202 9902415 1802	Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI. Reference – RIC –
196 9902408 1899	Copper Alloy Date = AD 330–402 Description = Illegible. Reference – RIC –	$203 \ 9902417 \ 2052$	Diam (max) = 13mm Wear – W/W Copper Alloy
	Diam (max) = 14mm Wear - C/C	200 0002111 2002	Date = AD 270–84 Description = Radiate copy – Tetricus I.
197 9902410 1899	Copper Alloy Date = AD 330–1 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards.		Rev. COMES AVG. Issue period (Reece) XI. Reference – RIC – Diam (max) = 18mm Wear – C/C
	Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:528 Diam (max) = 17mm Wear – W/W	204 9902418 2052	Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. illegible. Issue period (Reece) X.
198 9902411 1827	Copper Alloy Date = AD 341–6 Description = CONSTANTINOPOLIS.		Reference – RIC – Diam (max) = 17mm Wear – W/C
	Rev. Victory on prow. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 14mm Wear – W/W	207 9902419 1803	Copper Alloy Date = AD 367–75 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa.
199 9902412 1899	Copper Alloy Date = AD 337–40 Description = Helena. <i>Follis</i> . Rev. PAX PVBLICA.		Reference – RIC 9:17a Diam (max) = 19mm Wear – W/W
	Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:78 Diam (max) = 14mm Wear – W/SW	208 9902422 1802	Copper Alloy Date = AD 353–5 Description = Constantius II. Rev. FEL TEMP REPARATIO, fallen horseman. Issue period (Reece) XIV.
200 9902413 1827	Copper Alloy Date = AD 364–78 Description = Valens. Rev. GLORIA ROMANORVM.		Reference – RIC – Diam (max) = 17mm Wear – W/SW
	Irregular. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 19mm Wear – W/W	207 9902423 1816	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I/II. Rev. SPES.

	Issue period (Reece) XI. Reference – Elmer – Diam (max) = 18mm		$\begin{array}{l} \text{Diam} (\text{max}) = 26\text{mm} \\ \text{Wear} - \text{C/C} \end{array}$
208 9902424 1816	Wear – W/VW Copper Alloy Date = AD 347–8 Description = Constans. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:205	214 9902430 1832 215 9902431 1804	Copper Alloy Date = AD 270–84 Description = Radiate copy – Claudius II. Rev. illegible. Issue period (Reece) XI Reference – RIC – Diam (max) = 17mm Wear – W/W Copper Alloy
209 9902425 1816	Diam (max) = 15mm Wear – W/W Copper Alloy		Date = AD 347–8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q
200 0002120 1010	Date = AD 330–1 Description = Constantius II. Follis. Rev. GLORIA EXERCITVS, 2 standards. Mint: Rome. Issue period (Reece) XIIIb.		NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:193 Diam (max) = 14mm Wear – C/SW
	Reference – RIC 7:337 Diam (max) = 17mm Wear – W/W	216 9902432 1832	Copper Alloy Date = AD 275–402 Description = Illegible. Reference – RIC –
210 9902426 1817	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC –	217 9902433 1804	Diam (max) = 7mm Wear – C/C Copper Alloy
	$\begin{array}{l} \text{Diam} (\text{max}) = 19\text{mm} \\ \text{Wear} - \text{C/C} \end{array}$		Date = AD 270–84 Description = Radiate copy – Claudius II.
211 9902427 1827	Copper Alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 14mm Wear – C/C		Rev. female fig, 1. Issue period (Reece) XI. Reference – RIC – Diam (max) = 18mm Wear – W/W
212 9902428 1802	Copper Alloy Date = AD 319 Description = Constantine I. <i>Follis</i> . Rev. VICTORIAE LAETAE PRIN P, VOT/PR. Mint: Trier. Issue period (Reece) XIIIa. Reference – As RIC 7:223 Diam (max) = 16mm	218 9902434 1900	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 11mm Wear – SW/SW
213 9902429 1802	Wear – W/W Copper Alloy Date = AD 81–96 Description = Domitian. As. Rev. illegible. Mint: Rome. Issue period (Reece) III. Reference – RIC –	219 9902435 1857	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 14mm

220 9902436	1857	Wear – SW/SW Copper Alloy Date = AD 335–40 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb.		Date = AD 270-84 Description = Radiate copy – DIVO CLAUDIO. Rev. CONSECRATIO, altar. Issue period (Reece) XI. Reference – RIC – Diam (max) = 17mm Wear – C/C
		Reference – RIC – Diam (max) = 15mm Wear – UW/SW	227 9902444 1829	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI
221 9902438	1802	Copper Alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 14mm Wear – C/C		SAECVLI. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 19mm Wear – W/W
222 9902439	1827	Copper Alloy Date = AD 98–117 Description = Trajan. Sestertius. Rev. illegible. Salus seated 1. Mint: Rome. Issue period (Reece) IV. Reference – RIC – Diam (max) = 33mm	228 9902445 1827	Copper Alloy Date = AD 43–64 Description = Claudius. As. Rev. S–C, Minerva. Irregular. Issue period (Reece) II. Reference – As RIC 1:100 Diam (max) = 24mm Wear – VW/VW
223 9902440	1857	Wear – VW/VW Copper Alloy Date = AD 350–3 Description = Magnentius. Rev. FEL TEMP REPARATIO, galley. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 22mm	229 9902446 1828	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev. HILARITAS AVGG. Mint: Trier. Issue period (Reece) X. Reference – Elmer 789 Diam (max) = 20mm Wear – SW/W
224 9902441	1823	Wear – UW/UW Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. illegible. Issue period (Reece) XI. Reference – RIC – Diam (max) = 16mm Wear – C/C	230 9902447 1828	Copper Alloy Date = AD 347-8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:193 Diam (mar) = 15mm
225 9902442	1802	Copper Alloy Date = AD 341–6 Description = Constantius II. Rev. GLORIA EXERCITVS, 1 standard. Irregular. Mint: As Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:106 Diam (max) = 13mm Wear – UW/UW	231 9902448 1900	Diam (max) = 15mm Wear – SW/SW Copper Alloy Date = AD 341–6 Description = CONSTANTINOPOLIS. Rev. Victory on prow. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 12mm Wear – SW/SW

226 9902443 1802 Copper Alloy

232 9902450	1835	Copper Alloy Date = AD 350–3 Description = Magnentius. Rev. GLORIA ROMANORVM. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 22mm Wear – W/W	239 9902457 1841	 Copper Alloy Date = AD 270–84 Description = Radiate copy – Postumus. Rev. FORTVNA AVG. Issue period (Reece) XI. Reference – RIC – Diam (max) = 19mm Wear – W/C
233 9902451		Copper Alloy Date = AD 330–5 Description = VRBS ROMA. <i>Follis</i> . Rev. Wolf and twins. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – SW/SW	240 9902458 1839	Copper Alloy Date = AD 287–93 Description = Carausius. <i>Antoninianus</i> . Rev. PAX AVG. Issue period (Reece) XI. Reference – RIC – Diam (max) = 22mm Wear – UW/SW
234 9902452	1832	Copper Alloy Date = AD 270 Description = Quintillus. <i>Antoninianus</i> . Rev. illegible. Issue period (Reece) X. Reference – RIC – Diam (max) = 18mm Wear – SW/C	241 9902459 1832	 Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. PAX AVG. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 17mm Wear – SW/SW
235 9902453	1802	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 18mm Wear – C/C	242 9902460 1873	Copper Alloy Date = AD 287–93 Description = Carausius. <i>Antoninianus</i> . Rev. PAX AVG (vertical scep- tre).
236 9902454	1840	Copper Alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. illegible. Issue period (Reece) X. Reference – RIC –	243 9902461 1832	Issue period (Reece) XI. Reference – RIC – Diam (max) = 20mm Wear – SW/SW
		$\frac{\text{NHC} - \text{HC}}{\text{Diam} (\text{max}) = 19\text{mm}}$ Wear - W/C		Date = AD 270-4 Description = Tetricus I. Antoninianus. Rev. LAETITIA.
237 9902455	1840	Copper Alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 10mm Wear – C/C		Mint: Trier. Issue period (Reece) X. Reference – As Elmer 786 Diam (max) = 17mm Wear – SW/SW
238 9902456	1832	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SPES PVBLICA. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 16mm Wear – SW/SW	244 9902464 1827	Copper Alloy Date = AD 287–93 Description = Carausius. Antoninianus. Rev. PAX AVG. Mint: unattributed. Issue period (Reece) XI. Reference – RIC 5: 883 Diam (max) = 25mm Wear – SW/SW

245 9902465	1802	Copper Alloy Date = AD 330 Description = Constantine I. Follis. Rev. GLORIA EXERCITVS, 2 standards. Mint: Arles.	251 9902475 1804	Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/UW Copper Alloy Date = AD 275–402 Description – Uberible
		Issue period (Reece) XIIIb. Reference – RIC 7:345 Diam (max) = 18mm Wear – SW/SW		Description = Illegible. Reference – RIC – Diam (max) = 12mm Wear – C/C
246 9902466	1816	Copper Alloy Date = AD 348–50 Description = Constans. Rev. FEL TEMP REPARATIO, galley. Mint: Trier. Issue period (Reece) XIV. Reference – RIC 8:213 Diam (max) = 22mm Wear – UW/UW	252 9902476 1804	Copper Alloy Date = AD 335–40 Description = House of Constantine. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – C/SW
247 9902471	1827	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Part flan only. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 15mm Wear – SW/SW	253 9902477 2116	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC as 8TR359 Diam (max) = 9mm Wear – SW/SW
248 9902472	1804	Copper Alloy Date = AD 388–94 Description = House of Theodosius. Rev. SALVS REIPVBLICAE. Mint: Rome.	254 9902478 1804	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 13mm Wear – C/C
		Issue period (Reece) XVI. Reference – RIC 9:64 Diam (max) = 12mm Wear – SW/SW	255 9902479 1804	Copper Alloy Date = AD 270–4 Description = Tetricus I. <i>Antoninianus</i> . Rev. VICTORIA AVG.
249 9902473	1804	Copper Alloy Date = AD 351–3 Description = Magnentius. Rev. VICTORIAE DD NN AVG ET CAES, VOT/V/MVLT/X. Issue period (Reece) XIV.		Mint: Cologne. Issue period (Reece) X. Reference – As Elmer 762 Diam (max) = 18mm Wear – SW/W
		Reference – RIC – Diam (max) = 22mm Wear – SW/SW	256 9902480 1804	Copper Alloy Date = AD 354–64 Description = House of Constantine.
250 9902474	1804	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles.		Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC as 8TR359 Diam (max) = 10mm Wear – SW/SW

257 9902481	2115	Copper Alloy Date = AD 335–40 Description = House of Constantine. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – W/W	263 9902487 2114	Issue period (Reece) XI. Reference – RIC 5:101 Diam (max) = 23mm Wear – Unavailable Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI.
258 9902482	2115	Copper Alloy Date = AD 324–5 Description = Constantine I. <i>Follis</i> .		Reference – RIC – Diam (max) = 14mm Wear – VW/W
		Rev. PROVIDENTIAE AVGG. Mint: London. Issue period (Reece) XIIIa. Reference – RIC 7:294 Diam (max) = 20mm Wear – Unavailable	264 9902488 2114	Copper Alloy Date = AD 341-6 Description = Constantine II. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: As Lyons. Issue period (Reece) XIIIb.
259 9902483	2115	Copper Alloy Date = AD 347–8 Description = Constans. <i>Follis</i> .		Reference – As RIC 7:238 Diam (max) = 14mm Wear – UW/UW
		Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:210 Diam (max) = 16mm Wear – W/W	265 9902489 2115	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC –
260 9902484	2115	Copper Alloy Date = AD 347–8 Description = Constans.		Diam (max) = 18mm Wear - SW/SW
		Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:185 Diam (max) = 16mm Wear – UW/UW	266 9902490 2115	Copper Alloy Date = AD 347-8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference - RIC 8:195
261 9902485	1804	Copper Alloy Date = AD 270–4 Description = Tetricus I.		Diam (max) = 17mm Wear – UW/SW
		Antoninianus. Rev. SALVS AVGG. Issue period (Reece) X. Reference – As Elmer 779 Diam (max) = 17mm Wear – W/W	267 9902491 2114	Copper Alloy Date = AD 375–8 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa.
262 9902486	2114	Copper Alloy Date = AD 287–93 Description = Carausius. Antoninianus.		Reference – RIC 9:18b Diam (max) = 18mm Wear – SW/SW
		Rev. PAX AVG. Mint: London.	268 9902492 2115	Copper Alloy Date = AD 350–3

	Description = Magnentius. Rev. FELICITAS PEUDVPLICE Imagular		Diam (max) = 18mm Wear – Unavailable
	REIPVBLICE. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 20mm Wear – UW/SW Found with glass bead (Chap- ter U.3.1)	274 9902498 2115	Copper Alloy Date = AD 335–7 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier.
269 9902493 2115	Copper Alloy Date = AD 341–6 Description = VRBS ROMA. Rev. Wolf and twins. Irregular. Issue period (Reece) XIIIb.		Issue period (Reece) XIIIb. Reference – RIC 7:591 Diam (max) = 16mm Wear – Unavailable
	Reference – RIC – Diam (max) = 10mm Wear – Unavailable	275 9902500 2115	Copper Alloy Date = AD 354–64 Description = House of Constantine.
270 9902494 2115	Copper Alloy Date = AD 347–8 Description = Constantius II. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Lyons.		Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC as 8TR359 Diam (max) = 9mm Wear – Unavailable
	Issue period (Reece) XIIIb. Reference – RIC 8:45 Diam (max) = 15mm Wear – Unavailable	276 8418001 2115	Copper Alloy Date = AD 367–75 Description = Valens. Rev. SECVRITAS REIPVBLICAE.
271 9902495 2115	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. DIANAE CONS AVG, stag.		Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9: 17b Diam (max) = 18mm Wear – W/W
	Mint: Rome. Issue period (Reece) X. Reference – RIC 5:179 Diam (max) = 19mm Wear – Unavailable	277 8418002 2115	Copper Alloy Date = AD 341–6 Description = CONSTANTINOPOLIS. Rev. Victory on prow. Irregular. Mint: As Lyons.
272 9902496 2114	Copper Alloy Date = AD 375–6 Description = Valens. Rev. SECVRITAS REIPVBLICAE.		Issue period (Reece) XIIIb. Reference – As RIC 7:241 Diam (max) = 13mm Wear – W/W
	Mint: Lyons. Issue period (Reece) XVa. Reference – RIC 9:23a Diam (max) = 17mm Wear – Unavailable	278 8418007 1804	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE.
273 9902497 2115	Copper Alloy Date = AD 330–5 Description = CONSTANTINOPOLIS. <i>Follis</i> . Rev. Victory on prow.		Mint: Arles. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 17mm Wear – W/SW
	Issue period (Reece) XIIIb. Reference – RIC –	279 8418010 2119	Copper Alloy Date = AD 354–64

	Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV, Reference – RIC – Diam (max) = 9mm Wear – SW/SW	285 8418023 2132	Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 14mm Wear – SW/SW
280 8418012 2114	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 18mm Wear – UW/UW	286 8418024 2119	Copper Alloy Date = AD 337–40 Description = Constantius II. Follis. Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:108 Diam (max) = 17mm
281 8418013 2118	Copper Alloy Date = AD 270–402 Description = Illegible. (Quar- ter of a coin). Reference – RIC – Diam (max) = $12mm$ Wear – C/C	287 8418027 2147	Wear – Unavailable Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular.
282 8418017 2121	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 11mm Wear – Unavailable	288 8418028 2159	Issue period (Reece) XIV. Reference – RIC – Diam (max) = 11mm Wear – SW/SW Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI.
283 8418018 2121	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO. Irregular. Issue period (Reece) XIV Reference – RIC – Diam (max) = 9mm Wear – SW/SW	289 8418029 2159	Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 19mm Wear – W/VW Copper Alloy Date = AD 347–8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN.
284 8418019 2121	Copper Alloy Date = AD 347–8 Description = Constans. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN.		Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:199 Diam (max) = 16mm Wear – UW/UW
	Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:195 Diam (max) = 16mm Wear – UW/UW	290 8418030 1804	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE.

	Issue period (Reece) XVa. Reference – RIC –		Wear – W/W
291 8418034 2119	Diam (max) = 15mm Wear – W/W Copper Alloy Date = AD 330–1 Description = Constantine I. Follis.	296 8418040 1804	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 15mm Wear – C/C
	Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:525 Diam (max) = 17mm Wear – SW/SW	297 8418041 1804	Copper Alloy Date = AD 337–40 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Lyons. Issue period (Reece) XIIIb.
292 8418036 1804	Copper Alloy Date = AD 340 Description = Constans. <i>Follis</i> .		Reference – RIC 8:22 Diam (max) = 15mm Wear – Unavailable
	Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:111 Diam (max) = 17mm Wear – Unavailable	298 8418042 1804	Copper Alloy Date = AD 347-8 Description = Constans. Rev. VICTORIAE DD AVGG Q NN. Irregular. Mint: As Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:182
293 8418037 1804	Copper Alloy Date = AD 313–14 Description = Constantine I.		Diam (max) = 14mm Wear – SW/SW
	Follis. Rev. MARTI CONSERVATORI. Mint: Ticinum. Issue period (Reece) XII. Reference – RIC 7:12 Diam (max) = 20mm Wear – Unavailable	299 8418043 1804	Copper Alloy Date = AD 350–3 Description = Magnentius. Rev. VICTORIAE DD NN AVG ET CAE, VOT/V/MVLT/X, no column. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 14mm
294 8418038 1804	Copper Alloy Date = AD 347-8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8: 194 Disco (cost) - 14 cost	300 8418044 2118	Wear - C/SW Copper Alloy Date = AD 270-84 Description = Radiate copy - no legend. Rev. Pin figure. Issue period (Reece) XI. Reference - RIC - Discussioned (Reece) - NI.
205 0410020 1004	Diam (max) = 14mm Wear – SW/SW	201 0410045 2110	Diam (max) = 19mm Wear - C/VW
295 8418039 1804	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint. Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 19mm	301 8418045 2118	Copper Alloy Date = AD 337–40 Description = Constans. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Arles. Issue period (Reece) XIIIb. Reference – RIC 8:23

	$\begin{array}{l} \text{Diam} (\text{max}) = 15\text{mm} \\ \text{Wear} - \text{W/W} \end{array}$		Diam (max) = 20mm Wear – Unavailable
302 8418047 1804	Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 13mm Wear – C/C	308 8418054 2147	Copper Alloy Date = AD 341–6 Description = Constantine I. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: As Lyons. Issue period (Reece) XIIIb.
303 8418049 1804	CuA Date = AD 341–6 Description = VRBS ROMA. Rev. Wolf and twins. Irregular.	000 0410055 1004	Reference – As RIC 7:237 Diam (max) = 13mm Wear – SW/SW
	Mint: as Lyons. Issue period (Reece) XIIIb. Reference – As RIC 7:242 Diam (max) = 16mm Wear – SW/SW	309 8418055 1804	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. DIANAE CONS AVG, an- telope.
304 8418050 1804	Copper Alloy Date = AD 337 Description = Constantine II. Follis. Rev. GLORIA EXERCITVS, 1 STANDARD.		Mint: Rome. Issue period (Reece) X. Reference – RIC 5:181 Diam (max) = 19mm Wear – SW/SW
	Mint: Arles. Issue period (Reece) XIIIb. Reference – RIC 7:412 Diam (max) = 14mm Wear – Unavailable	310 8418056 2147	Copper Alloy Date = AD 388–92 Description = Arcadius. Rev. VICTORIA AVGGG. Mint: Lyons. Issue period (Reece) XVI.
305 8418051 1804	Copper Alloy Date = AD 364–7 AD 364–7 Description = Valens. Rev. GLORIA ROMANORVM.		Reference – RIC 9:44d Diam (max) = 14mm Wear – SW/SW
	Mint: Aquileia. Issue period (Reece) XVa. Reference – RIC 9:7a RIC 9:7a Diam (max) = 17mm 17mm Wear – SW/SW	311 8418057 2146	Copper Alloy Date = AD 367–75 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Trier. Issue period (Reece) XVa.
306 8418052 1804	Copper Alloy Date = AD 367–75 Description = Valens. Rev. GLORIA ROMANORVM.		Reference – RIC 9: 30a Diam (max) = 18mm Wear – Unavailable
	Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:17b Diam (max) = 20mm Wear – VW/W	312 8418058 2148	Copper Alloy Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 1 standard. Irregular.
307 8418053 2115	Copper Alloy Date = AD 321 Description = Constantine I. Follis. Rev. BEATA		Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 11mm Wear – SW/SW
	TRANQVILLITAS, VOT/IS/XX. Mint: Trier. Issue period (Reece) XIIIa Reference – RIC 7:303	313 8418059 2166	Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. illegible. Issue period (Reece) XI.

	Reference – RIC – Diam (max) = 15mm Wear – C/W		Reference – RIC – Diam (max) = 14mm Wear – W/W
314 8418060 2148	Copper Alloy Date = AD 364–78 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 18mm Wear – W/W	320 8418066 2115	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. LAETITIA AVG. Mint: Rome. Issue period (Reece) X. Reference – RIC 5: 226 Diam (max) = 20mm Wear – W/W
315 8418061 2115	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. FIDES EXERCI. Mint: Rome. Issue period (Reece) X. Reference – RIC 5:36 Diam (max) = 21mm Wear – W/W	321 8418067 2115	Copper Alloy Date = AD 375–8 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:18b Diam (max) = 19mm Wear – UW/SW
316 8418062 2115	Copper Alloy Date = AD 367–75 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Lyons. Issue period (Reece) XVa. Reference – RIC 9:21a Diam (max) = 17mm Wear – UW/SW	322 8418072 2115	Copper Alloy Date = AD 332–3 Description = VRBS ROMA. <i>Follis</i> . Rev. Wolf and twins. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:542 Diam (max) = 18mm Wear – SW/SW
317 8418063 2115	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/SW	323 8418073 2114	Copper Alloy Date = AD 270–84 Description = Radiate copy. Obv. Similar to Meare heath hoard, Group C. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 13mm Wear – SW/SW
318 8418064 2115	Copper Alloy Date = AD 364–78 Description = Valens. Rev. GLORIA ROMANORVM. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 18mm Wear – SW/SW	324 8418075 2114	Copper Alloy Date = AD 270–84 Description = Radiate copy – DIVO CLAUDIO. Rev. CONSECRATIO, altar. Issue period (Reece) XI. Reference – RIC – Diam (max) = 12mm Wear – W/W
319 8418065 2115	Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI.	325 8418076 2115	Copper Alloy Date = AD 354–64 Description = House of Constantine.

	Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 7mm Wear – SW/SW		Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:18a Diam (max) = 17mm Wear – UW/UW
326 8418077 2146	Copper Alloy Date = AD 347-8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference - RIC 8:186 Diam (max) = 16mm	332 8418083 2115	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. Mars stg.1, holding branch and spear. Issue period (Reece) X. Reference – RIC – Diam (max) = 20mm Wear – W/W
327 8418078 2146	Wear – Unavailable Copper Alloy Date = AD 270–402 Description = Illegible. Reference – RIC – Diam (max) = 12mm Wear – C/C	333 8418084 1804	Copper Alloy Date = AD 268–70 Description = Victorinus. Antoninianus. Rev. SALVS AVG. Mint: Cologne. Issue period (Reece) X. Reference – Elmer 697 Diam (max) = 17mm
328 8418079 2149	Copper Alloy Date = AD 330–1 Description = VRBS ROMA. <i>Follis</i> . Rev Wolf and twins. Mint: Lyons. Issue period (Reece) XIIIb. Reference – RIC 7:247 Diam (max) = 17mm Wear – Unavailable	334 8418085 2114	Wear – SW/SW Copper Alloy Date = AD 270–84 Description = Radiate copy – Claudius II. Rev. PAX AVG. Issue period (Reece) XI. Reference – RIC – Diam (max) = 16mm Wear – W/W
329 8418080 2147	Copper Alloy Date = AD 364–78 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 19mm Wear – SW/SW	335 8418086 2114	Copper Alloy Date = AD 337–40 Description = Constantine I (deified). <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:81
330 8418081 2148	Copper Alloy Date = AD 313–14 Description = Licinius. <i>Follis</i> . Rev. SOLI INVICTO COMITI. Mint: Ticinum. Issue period (Reece) XII. Reference – RIC 7:9 Diam (max) = 21mm Wear – Unavailable	336 8418087 2148	Diam (max) = 15mm Wear - W/SW Copper Alloy Date = AD 341-6 Description = CONSTANTINOPOLIS. Rev. Victory on prow. Irregular. Issue period (Reece) XIIIb.
331 8418082 2146	Copper Alloy Date = AD 375–8 Description = Valentinian I. Rev. SECVRITAS REIPVBLICAE.	337 8418089 2116	Reference – RIC – Diam (max) = 14mm Wear – W/SW Copper Alloy Date = AD 332–3

	Description = Constantine I. Follis. Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:537 Diam (max) = 18mm Wear – SW/SW	343 8418095 1804	Copper Alloy Date = AD 378–83 Description = Gratian. Rev. VIRTVS ROMANORVM. Mint: Arles. Issue period (Reece) XVb. Reference – RIC 9:23 Diam (max) = 18mm Wear – SW/UW
338 8418090 1804	Copper Alloy Date = AD 367–75 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa. Reference – As RIC 9: 17a Diam (max) = 18mm Wear – SW/SW	344 8418096 1804	Copper Alloy Date = AD 388–92 Description = Valentinian II. Rev. VICTORIA AVGGG. Mint: Arles. Issue period (Reece) XVI. Reference – RIC 9:30b Diam (max) = 12mm Wear – SW/SW
339 8418091 1804	Copper Alloy Date = AD 364–78 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Mint: Arles. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 19mm Wear – SW/SW	345 8418097 1804	Copper Alloy Date = AD 330–5 Description = Constantius II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 15mm Wear – SW/W
340 8418092 1804	Copper Alloy Date = AD 347–8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:203 Diam (max) = 16mm Wear – SW/SW	346 8418098 1804	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. FELIC TEMPO. Mint: Milan. Issue period (Reece) X. Reference – RIC 5:145 Diam (max) = 20mm Wear – W/W
341 8418093 2147	Copper Alloy Date = AD 364–75 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 18mm Wear – SW/SW	347 8418099 2125	Copper Alloy Date = AD 268–70 Description = Claudius II. Antoninianus. Rev. GENIVS. Mint: Rome. Issue period (Reece) X. Reference – RIC 5:47 Diam (max) = 16mm Wear – Unavailable
342 8418094 1804	Copper Alloy Date = AD 260–8 Description = Gallienus. <i>Antoninianus</i> . Rev. illegible. Issue period (Reece) X. Reference – RIC – Diam (max) = 18mm Wear – SW/SW	348 8418100 2147	Copper Alloy Date = AD 347–8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 8:195

349 8418101 1804	Diam (max) = 15mm Wear – Unavailable Copper Alloy		Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 18mm
	Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/SW	355 8418110 2133	Wear – SW/SW Copper Alloy Date = AD 161–80 Description = Marcus Aurelius. Sestertius. Rev. illegible. Mint: Rome. Issue period (Reece) VIIa. Reference – RIC –
350 8418102 1804	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/SW	356 8418115 2133	 Reference – RIC – Diam (max) = 30mm Wear – VW/VW Copper Alloy Date = AD 270–4 Description = Tetricus I. Antoninianus. Rev. PAX AVG. Mint: Cologne. Issue period (Reece) X. Reference – As Elmer 771
351 8418104 2147	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I/II. Rev. illegible. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 16mm Wear – SW/SW	357 8418126 2133	Diam (max) = 19mm Wear - SW/SW Copper Alloy Date = AD 275-402 Description = Illegible. Reference - RIC - Diam (max) = 8mm Wear - C/C
352 8418105 2125	Copper Alloy Date = AD 336–7 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Thessalonica. Issue period (Reece) XIIIb. Reference – RIC 7:223 Diam (max) = 16mm Wear – SW/W	358 8418127 1899	Copper Alloy Date = AD 347–8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:199 Diam (max) = 15mm Wear – SW/SW
353 8418107 2147	Copper Alloy Date = AD 270–84 Description = Radiate copy – Victorinus. Rev. PAX AVG. Cast imitation. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 21mm Wear – SW/SW	359 8418128 1899	Copper Alloy Date = AD 347–8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Mint: Arles. Issue period (Reece) XIIIb. Reference – As RIC 8:95 Diam (max) = 15mm
354 8418108	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI.	360 8418129 2210	Wear – SW/SW Copper Alloy Date = AD 364–78

	Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVa. Reference – RIC –		Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 12mm Wear – SW/SW
	Diam (max) = 16mm Wear – W/W	367 8418136 1899	Copper Alloy Date = AD 330–1 Description = VRBS ROMA.
361 8418130 1899	 Copper Alloy Date = AD 275–402 Description = Illegible. Reference - RIC - Diam (max) = 13mm Wear - C/C 		Follis. Rev. Wolf and twins. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:524 Diam (max) = 16mm Wear – SW/SW
362 8418131 1899	Date = AD 388–402 Description = Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 13mm Wear – SW/SW	368 8418137 1899	Copper Alloy Date = AD 378–83 Description = Gratian. Rev. VOT XV MVLT XX. Mint: Lyons. Issue period (Reece) XVb. Reference – RIC 9: 30(a) Diam (max) = 15mm
363 8418132 1899	 Copper Alloy Date = AD 330–1 Description = Constantine II. Follis. Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 7:520 Diam (max) = 16mm Wear – SW/SW 	369 8418138 1899	Wear – SW/SW Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. SALVS AVG (Figure of Laetitia). Issue period (Reece) XI. Reference – Elmer – Diam (max) = 17mm Wear – SW/SW
364 8418133 1898	 Copper Alloy Date = AD 337–40 Description = Constantius II. Follis. Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:74 Diam (max) = 15mm Wear – SW/SW 	370 8418139 1899	Copper Alloy Date = AD 347-8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Trier. Issue period (Reece) XIIIb. Reference - RIC 8:195 Diam (max) = 15mm Wear - UW/SW
365 8418134 1898	 Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 13mm 	371 8418140 1899	Copper Alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 10mm Wear – C/C
366 8418135 1898	Wear - SW/SW	372 8418141 1899	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. PAX AVG.

	Issue period (Reece) XI. Reference – Elmer – Diam (max) = 17mm Wear – SW/SW		Rev. VOT/XV/MVLT/XX. Issue period (Reece) XVb. Reference – RIC – Diam (max) = 15mm Wear – W/W
373 8418142 2207	Copper Alloy Date = AD 341–6 Description = CONSTANTINOPOLIS. Rev. Victory on prow. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 13mm Wear – SW/SW	379 8418148 2057	Copper Alloy Date = AD 335–7 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 1 standard. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:591
374 8418143 2210	Copper Alloy Date = AD 347-8 Description = Constans. Follis. Rev. VICTORIAE DD AVGG Q NN. Mint: Lyons. Issue period (Reece) XIIIb. Reference - RIC 8:40 Diam (max) = 16mm Wear - W/W	380 8418149 2057	Diam (max) = 16mm Wear – SW/W Copper Alloy Date = AD 332–3 Description = Constantine II. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb.
375 8418144 2092	Copper Alloy Date = AD 364–78 Description = Valens. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 16mm Wear – SW/SW	381 8418150 1898	Reference – RIC 7:539 Diam (max) = 17mm Wear – SW/SW Copper Alloy Date = AD 355–60 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman.
376 8418145 2210	Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. illegible. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 13mm Wear – C/C	382 8418151 1898	Issue period (Reece) XIV. Reference – RIC – Diam (max) = 16mm Wear – C/SW Copper Alloy Date = AD 268–70 Description = Victorinus. <i>Antoninianus</i> . Rev. PROVIDENTIA AVG. Mint: Trier.
377 8418146 2078	Copper Alloy Date = AD 310 Description = Constantine I. <i>Follis.</i> Rev. SOLI INVICTO COMITI. Mint: London. Issue period (Reece) XII. Reference – RIC 6:122 Diam (max) = 24mm Wear – SW/W	383 8418152 2058	Issue period (Reece) X. Reference – Elmer 743 Diam (max) = 20mm Wear – W/W Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 1
378 8418147 2092	Copper Alloy Date = AD 378–83 Description = House of Theodosius.		standard. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 10mm Wear – SW/SW

384 8418153 2167	Copper Alloy Date = AD 324–5		Wear - SW/SW
	Description = Helena. Follis. Rev. SECVRITAS REIPVBLICE. Mint: London. Issue period (Reece) XIIIa. Reference – RIC 7:299 Diam (max) = 20mm Wear – UW/UW	390 8418160 2058	Copper Alloy Date = AD 270–4 Description = Tetricus II. Antoninianus. Rev. PIETAS AVGVSTOR. Mint: Cologne. Issue period (Reece) X. Reference – Elmer 777 Diam (max) = 18mm
385 8418154 2167	Copper Alloy Date = AD 287–93 Description = Carausius. Rev. SALVS AVG. <i>Antoninianus</i> . Issue period (Reece) XI. Reference – RIC – Diam (max) = 22mm Wear – UW/UW	391 8418161 2085	Wear – SW/W Copper Alloy Date = AD 321–4 Description = Constantine I. <i>Follis</i> . Rev. DN CONSTANTINI MAX AVG, VOT XX. Issue period (Reece) XIIIa. Reference – RIC –
386 8418155 2167	Copper Alloy Date = AD 367–75 Description = Valens. Rev. GLORIA ROMANORVM. Mint: Aquileia. Issue period (Reece) XVa. Reference – RIC 9:11(b) Diam (max) = 17mm Wear – SW/SW	392 8418162 2168	Diam (max) = 19mm Wear – UW/UW Copper Alloy Date = AD 364–78 Description = Valentinian I. Rev. GLORIA ROMANORVM. Mint: Lyons. Issue period (Reece) XVa. Reference – RIC –
387 8418157 2210	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 11mm Wear – SW/SW	393 8418163 2168	Diam (max) = 18mm Wear – W/SW Copper Alloy Date = AD 270–84 Description = Radiate copy – Gallienus. Rev. DIANAE CONS AVG, stag. Issue period (Reece) XI. Reference – As RIC 5:178
388 8418158 2092	Copper Alloy Date = AD 276–82 Description = Probus. <i>Antoninianus</i> . Rev. VICTORIA GERM. Mint: Rome. Issue period (Reece) XI. Reference – RIC 5:221 Diam (max) = 22mm Wear – SW/UW	394 8418164 2168	Diam (max) = 18mm Wear – W/SW Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. illegible. Issue period (Reece) XVI. Reference – RIC –
389 8418159 2210	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 9mm	395 8418165 2168	Diam (max) = 12mm Wear – W/C Copper Alloy Date = AD 338–402 Description = House of Theodosius. Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC –

	$\begin{array}{l} \text{Diam} (\text{max}) = 12\text{mm} \\ \text{Wear} - \text{SW/SW} \end{array}$		Mint: Arles. Issue period (Reece) XVa. Reference – RIC –
396 8418166 2169	Copper Alloy Date = AD 347–8 Description = House of		Diam (max) = 16mm Wear – W/W
	Constantine. Follis. Rev. VICTORIAE DD AVGG Q NN. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 13mm Wear – SW/SW	402 8418172 2168	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV. Reference – RIC –
397 8418167 2211	Copper Alloy Date = AD 347–8 Description = House of		Diam (max) = 12mm Wear – W/SW
	Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 10mm Wear – SW/SW	403 8418173 2169	Copper Alloy Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 1 standard. Irregular. Issue period (Reece) XIIIb. Reference – RIC –
398 8418168 2169	Copper Alloy Date = AD 341–6 Description = House of		Diam (max) = 10mm Wear - SW/SW
	Constantine. Rev. GLORIA EXERCITVS, 1 standard. Irregular. Issue period (Reece) XIIIb. Fragment of coin. Reference – RIC – Diam (max) = 10mm Wear – SW/SW	404 8418174 2169	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SALVS AVGG. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 13mm Wear – SW/SW
399 8418169 2092	Copper Alloy Date = AD 367–75 Description = Valens. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa. Reference – RIC 9:17b Diam (max) = 19mm Wear – SW/SW	405 8418175 2169	Copper Alloy Date = AD 335–40 Description = Constantius II. Follis. Rev. GLORIA EXERCITVS, 1 standard. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 14mm
400 8418170 2169	Copper Alloy Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 12mm Wear – SW/SW	406 8418176 2169	Wear – SW/SW Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. SECVRITAS REIPVBLICAE. Issue period (Reece) XVA. Reference – RIC – Discon (march) – 15 mm
401 8418171 2177	Copper Alloy Date = AD 364–78 Description = Valens. Rev. GLORIA ROMANORVM.	407 8418177 2168	Diam (max) = 15mm Wear – SW/SW Copper Alloy Date = AD 330–5

	Description = House of Constantine. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2 standards. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 16mm Wear – W/W	413 8418183 2176	Copper Alloy Date = AD 351–3 Description = Magnentius. Rev. VICTORIAE DD NN AVG ET CAE. Irregular. Issue period (Reece) XIV. Reference – RIC – Diam (max) = 12mm Wear – SW/SW
408 8418178 2079	Copper Alloy Date = AD 347-8 Description = House of Constantine. <i>Follis</i> . Rev. VICTORIAE DD AVGG Q NN. Issue period (Reece) XIIIb. Reference - RIC - Diam (max) = 14mm Wear - SW/SW	414 8418184 2191	Copper Alloy Date = AD 388–92 Description = Valentinian II. Rev. VICTORIA AVGGG. Mint: Arles. Issue period (Reece) XVI. Reference – As RIC 9:30a Diam (max) = 13mm Wear – SW/SW
409 8418179 2191	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. GLORIA ROMANORVM. Mint: Arles. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 17mm Wear – W/SW	415 8418187 2184	Copper Alloy Date = AD 332–3 Description = Constantine I. <i>Follis.</i> Rev. GLORIA EXERCITVS, 2 standards. Mint: Trier. Issue period (Reece) XIIIb. Reference – RIC 7:537 Diam (max) = 17mm Wear – Unavailable
410 8418180 2172	Copper Alloy Date = AD 270–84 Description = Radiate copy. Rev. Female figure. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 7mm Wear – C/C	416 8418188 2184	Copper Alloy Date = AD 341–6 Description = Constantine II. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Mint: as Trier. Issue period (Reece) XIIIb. Reference – As RIC 7:520
411 8418181	Copper Alloy Date = AD 341–6 Description = Constans. Rev. VICTORIAE DD AVGG Q NN. Irregular. Mint: as Trier. Issue period (Reece) XIIIb. Reference – As RIC 8:205 Diam (max) = 14mm Wear – UW/UW	417 8418189 2195	Diam (max) = 14mm Wear – SW/SW Copper Alloy Date = AD 388–402 Description = House of Theodosius. Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC –
412 8418182 2176	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV., Reference – RIC as 8TR359 Diam (max) = 11mm Wear – UW/UW	418 8418190 2184	Diam (max) = 12mm Wear - SW/SW Copper Alloy Date = AD 388-402 Description = House of Theodosius. Rev. VICTORIA AVGGG. Issue period (Reece) XVI. Reference - RIC - Diam (max) = 13mm Wear - SW/SW

419 8418191 2195	Copper Alloy Date = AD 341–6 Description = Constans. Rev. VICTORIAE DD AVGG Q NN. Irregular.		Issue period (Reece) XIIIb. Reference – RIC 7:286 Diam (max) = 16mm Wear – UW/SW
	Mint: As Trier. Reference – As RIC 8:205 Diam (max) = 16mm Wear – SW/SW	425 8418197 2169	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SPES AVGG.
420 8418192 2195	Copper Alloy Date = AD 330–1 Description = Constantine I. <i>Follis</i> . Rev. GLORIA EXERCITVS, 2		Issue period (Reece) XI. Reference – Elmer – Diam (max) = 18mm Wear – W/W
	standards. Mint: Arles. Issue period (Reece) XIIIb. Reference – RIC 7:345 Diam (max) = 18mm Wear – Unavailable	426 8418198 2169	Copper Alloy Date = AD 367–75 Description = Gratian. Rev. GLORIA NOVI SAECVLI. Mint: Arles. Issue period (Reece) XVa. Part
421 8418193 2192	Copper Alloy Date = AD 270–4 Description = Tetricus I. Rev. VIRTVS AVGG. Mint: Cologne. Antoninianus.		of flan only. Reference – RIC 9:15 Diam (max) = 18mm Wear – SW/SW
	Issue period (Reece) X. Reference – Elmer 780 Diam (max) = 19mm Wear – SW/SW	427 8418200 2171	Copper Alloy Date = AD 268–70 Description = Victorinus. <i>Antoninianus</i> . Rev. COMES AVG.
422 8418194 2193	Copper Alloy Date = AD 259–68 Description = Postumus. <i>Antoninianus</i> . Rev. VICTORIA AVG. Principal mint.		Mint: Trier. Issue period (Reece) X. Reference – Elmer – Diam (max) = 19mm Wear – SW/SW
	Issue period (Reece) X. Reference – As Elmer 132 Diam (max) = 20mm Wear – SW/W	428 8418201 2079	Copper Alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. SPES AVGG.
423 8418195 2212	Copper Alloy Date = AD 364–78 Description = House of Valentinian. Rev. GLORIA ROMANORVM.		Issue period (Reece) XI. Reference – Elmer – Diam (max) = 17mm Wear – SW/C
	Irregular. Mint: as Arles. Issue period (Reece) XVa. Reference – RIC – Diam (max) = 17mm Wear – W/SW	429 8418214 2207	Copper Alloy Date = AD 354–64 Description = House of Constantine. Rev. FEL TEMP REPARATIO, fallen horseman. Irregular. Issue period (Reece) XIV.
424 8418196 2212	Copper Alloy Date = AD 337 Description = Constantine II. <i>Follis</i> .		Reference – RIC – Diam (max) = 7mm Wear – C/C
	Rev. GLORIA EXERCITVS, 1 standard. Mint: Lyons.	430 8418215 2207	Copper Alloy Date = AD 337–40

		Description = Theodora. Follis. Rev. PIETAS ROMANO. Issue period (Reece) XIIIb.			Reference – RIC 7:293 Diam (max) = 20mm Wear – UW/UW
		Reference – RIC – Diam (max) = 14mm Wear – W/SW	2	8310901 2	Copper alloy Date = AD 270–84 Description = Radiate copy – DIVO CLAVDIO.
431	.8418216 2167	Copper Alloy Date = AD 388–93 Description = House of Theodosius. Rev. SALVS REIPVBLICAE. Mint: Aquileia.			Rev. CONSECRATIO, altar. Issue period (Reece) XI. Reference – RIC – Diam (max) = 16mm Wear – W/W
		Issue period (Reece) XVI. Reference – RIC 9:58 Diam (max) = 14mm Wear – C/SW	3	8310902 2	Copper alloy Date = Post–Roman Description = Illegible. Rev. illegible. Reference – –
432	8418217 2169	Copper Alloy Date = AD 388–93 Description = House of			Diam (max) = 17mm Wear - C/C
		Theodosius. Rev. SALVS REIPVBLICAE. Issue period (Reece) XVI. Reference – RIC – Diam (max) = 9mm Wear – SW/SW	4	8310904 2	Copper alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 11mm Wear – C/C
433	8310029 69	Copper Alloy Date = AD 1580–1610 Description = German jetton. Illegible. Reference – – Diam (max) = 23mm	5	8310905 2	Copper alloy Date = AD 321 Description = Constantine II. Follis. Rev. BEATA TRANQVILLITAS, VOT/IS/XX.
434	8310078 86	Copper Alloy Date = AD 1580–1610 Description = German jetton. Illegible. Reference – – Diam (max) = 24mm			Mint: London. Issue period (Reece) XIIIa. Reference – As RIC 7:237 Diam (max) = 19mm Wear – W/W
435	8402404 Copper	Alloy Date = AD 1625–49 Description = Charles I 2d 'timer'. Scottish. Diam (max) = 14mm	6	8310906 2	Copper alloy Date = AD 287–93 Description = Carausius. <i>Antoninianus</i> . Rev. PAX AVG. Mint: unattributed. Issue period (Reece) XI. Reference – As RIC 5:897
	3.4.2 Catalogue ad (Site 251)	of coins from Honey Pot			Diam (max) = 22mm Wear – W/SW
	AML no Conte		7	8310907 2	Copper alloy Date = AD 268–9
1	8310935 2	Copper alloy Date = AD 324–5 Description = Constantine I. <i>Follis</i> Rev. PROVIDENTIAE AVGG. Mint: London. Issue period (Reece) XIIIa.			Description = Marius. Antoninianus. Rev. CONCORDIA MILITVM. Mint: Cologne. Issue period (Reece) X. Reference – Elmer 632 Diam (max) = 20mm

		Wear – W/SW				Diam (max) = 12mm Wear - C/C
8	8310908 2	Copper alloy Date = AD 316 Description = Licinius. <i>Follis</i> . Rev. GENIO POP ROM. Mint: Trier. Issue period (Reece) XII. Reference – RIC 7:121 Diam (max) = 21mm Wear – UW/SW	15	8310930 2		Copper alloy Date = AD 270 Description = DIVO CLAVDIO. Antoninianus. Rev. CONSECRATIO, eagle. Issue period (Reece) X. Reference – RIC 5:266 Diam (max) = 18mm Wear – C/C
9	8310909 2	Copper alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 9mm Wear – C/C	16	8310931 2	2	Copper alloy Date = AD 275–402 Description = Illegible. Reference – RIC – Diam (max) = 13mm Wear – C/C
10	8310910 2	Copper alloy Date = AD 341–6 Description = CONSTANTINOPOLIS. Rev. Victory on prow. Irregular. Mint: as Lyons. Issue period (Reece) XIIIb. Reference – As RIC 7:241 Diam (max) = 16mm Wear – W/W	17	8310932 2		Copper alloy Date = AD 341–6 Description = House of Constantine. Rev. GLORIA EXERCITVS, 2 standards. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 14mm Wear – C/VW
11	8310911 2	Copper alloy Date = AD 270-84 Description = Radiate copy – Tetricus I. Rev. SPES PVBLICA. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 16mm Wear – W/W	18	8310936 3	37	Copper alloy Date = AD 270–84 Description = Radiate copy – Tetricus I. Rev. SPES PVBLICA. Issue period (Reece) XI. Reference – Elmer– Diam (max) = 16mm Wear – SW/SW
12	8310914 2	Copper alloy Date = AD 337–40 Description = Helena. <i>Follis</i> . Rev. PAX PVBLICA. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 13mm Wear – SW/SW	19	8310940 3	37	Copper alloy Date = AD 259–68 Description = Postumus. <i>Antoninianus</i> . Rev. FIDES MILITVM. Princi- pal mint. Issue period (Reece) X. Reference – As Elmer 133
13	8310915 2	Copper alloy Date = AD 270–84 Description = Radiate copy. Il- legible. Issue period (Reece) XI. Fragmented flan. Reference – Elmer – Diam (max) = 12mm Wear – C/C	20	8310945 4	14	Diam (max) = 21mm Wear – W/W Copper alloy Date = AD 268–70 Description = Claudius II. <i>Antoninianus</i> . Rev. PROVIDENT AVG.
14	8310919 201	Copper alloy Date = AD 275–402 Description = Illegible. Reference – RIC –				Mint: Rome. Issue period (Reece) X. Reference – RIC 5:91 Diam (max) = 18mm Wear – W/W

21	8310998 2	Copper alloy Date = AD 270–84 Description = Radiate copy. Il- legible. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 19mm Wear – W/W	3	8413509 101	Copper alloy Date = AD 270–84 Description = Radiate copy – Postumus. Rev. FORTVNA AVG, seated. Issue period (Reece) XI. Reference – Elmer – Diam (max) = 16mm Wear – C/C
22	8310999 4	Copper alloy Date = AD 323 Description = Constantine I. <i>Follis</i> . Rev. BEATA TRANQVILLITAS, VO/TIS/XX. Mint: Trier. Issue period (Reece) XIIIa. Reference – RIC 7:39C Diam (max) = 20mm Wear – W/W	4	8413529 287	Copper alloy Date = AD 276–82 Description = Probus. Antonianus. Rev. MARS VICTOR. Mint: Lyons. Issue period (Reece) I. Reference – RIC 5:38 Diam (max) = 24mm Wear – SW/SW
23	8311000 4	Copper alloy Date = AD 341–6 Description = Constantinpolis* Rev. Victory on prow. Irregular. Issue period (Reece) XIIIb. Reference – RIC – Diam (max) = 11mm Wear – W/W	5	8413533 25	Copper alloy Date = AD 84 Description = Domitian. Dupondius. Rev. FIDEI PVBLICAE S.C. Mint: Rome. Issue period (Reece) III. Reference – RIC 2:244 Diam (max) = 28mm Wear – W/W
	3.4.3 Catalogue cecourse (Site 2	e of coins from Catterick 273)	6	8413534 25	Copper alloy Date = AD 112–17 Description = Trajan. Sestertius. Rev. S.P.Q.R. OPTIMO PRINCIPI–S.C. VIA
	AML no Conte	ext			TRAIANA (in ex).
1	8413501 10	Copper alloy Date = AD 98–117 Description = Trajan. Sestertius.			Mint: Rome. Issue period (Reece) IV. Reference – RIC 2:637 Diam (max) = 35mm Wear – UW/UW
		Rev. female figure standing left, holding sceptre. Mint: Rome. Issue period (Reece) IV. Reference – RIC – Diam (max) = 20mm Wear – SW/SW	7	8413535 25	Copper alloy Date = AD 103–11 Description = Trajan. Sestertius. Rev. S.P.Q.R. OPTIMO PRINCIPI–S.C., Dacia. Mint: Rome.
2	8413502 10	Copper alloy Date = AD 270–84 Description = Radiate copy – Tetricus II. Rev. PIETAS, implements.			Issue period (Reece) IV. Reference – RIC 2:564 Diam (max) = 33mm Wear – SW/UW
		Issue period (Reece) XI. Reference – Elmer – Diam (max) = 15mm Wear – W/W	8	8413536 25	Copper alloy Date = AD 103–11 Description = Trajan. Sestertius.

Rev. S.P.Q.R. OPTIMO PRINCIPI–S.C., Dacia. Mint: Rome. Issue period (Reece) IV. Reference – RIC 2:564 Diam (max) = 32mm Wear – SW/UW

9 8413547 115 Copper alloy Date = AD 196–211 Description = Julia Domna. Denarius. Rev. HILARITAS. Mint: Rome. Issue period (Reece) VIII. Reference – RIC 4: 557 Diam (max) = 20mm Wear – UW/UW

13.3.6 Catalogue of coins from Thornbrough Farm 1990 (Site 452)

$R \; J \; Brickstock$

The following abbreviations are used:

Mints	
AR	Arles
LG	Lyons
LN	London
$\mathbf{R}\mathbf{M}$	Rome

Denominations[denom:]ANTAntoninianusAURELAurelianusDENDenariusSESTSestertius

Catalogue [cat:] [Numbers refer to *RIC* unless otherwise stated.]

- RIC Mattingly, H, Sydenham, E A, Sutherland, C H V, Carson, R A G eds (1926-1981), The Roman Imperial Coinage, vols 1-9.
- BMC Mattingly, H, 1965-68 Coins of the Roman Empire in the British Museum, vols 1-6.

No. Ruler

CK Carson, RAG, and J.P.C. Kent, 1960 Late Roman Bronze Coinage, Pt II.

E Elmer, G, 1941 Die Münzprägung der Gallischen Kaiser in Köln, Trier und Mailand.

A copy or counterfeit of a particular ruler/issuer is denoted by single quotation marks, eg 'TETRICUS I', and by the use of a lower case 'c' in the catalogue reference, eg c of 141 = a copy of *RIC* 141. The use of the word 'of' indicates that a precise catalogue reference has been obtained; 'as' is used, for both official issues and copies, to denote an incompletely catalogued coin.

The condition [wear:] of both the obverse and reverse is denoted by the following abbreviations:

UW	Unworn
SW	Slightly worn
W	Worn
VW	Very worn
\mathbf{EW}	Extremely worn
С	Corroded
NSU	Not struck up

The flan diameter [diam:] is given in millimetres [mm] and the weight [wt:] in grams [g].

1	VESPASIAN	denom: denariu	S		Obv. [IMP CAES VESP AVG CENS]
	date: 73	mint: RM	cat: 64, BMC97		Rev. [PONTIF MAXIM] outwardly
	diam: 16.0mm	wt: 2.3g	wear: VW/VW	Context: 157	Sf no: 9017076
2	HADRIAN	denom: denariu	s		Obv. IMP CAESAR TRAIAN - HADRIANVS
					AVG
	date: 119-22				Rev. PM TRP COS III ?Aequitas
	diam: 17.0mm	wt: 1.5g	wear: W/W	Context: 800	Sf no: 9017122
3	HADRIAN	denom: sestert			Obv. HADRIANVS AVG COS III PP
	date: 134-38	mint: RM	cat: Hunter 555	5	Rev. ?[SALVS AVG] SC Salus
					<pre>stdg.l.,hldg ?, leaning on column</pre>
	diam: 30.5mm	wt: 22.4g	wear: W/W	Context: 787	Sf no: 9017120
4	'SEPTIMIUS SEVERUS	'denom: 'denari	us'		Obv
	date: '193-211'		cat: c.as -		Rev
	diam: 19.0mm	-		Context: 102	Sf no: 9017039
5	'JULIA DOMNA'	denom: 'denariu	15 '		Obv. IVLIA DOMNA AVG
	date: '193-211'	mint:	cat: c.as 613 v	var, BMC334	Rev. ?[RO]M[AE ETERNAE]
		wt: 1.7g	wear: W/W	Context: 138	Sf no: 9017051
6	'JULIA MAMAEA'	denom: 'denariu	15'		Obv. IV[LIA MA]MAEA AVG
	date: '227-35'	mint:	cat: c.of Sev.A	Alex.362	Rev. V[ES]TA holding patera and
					trans. sceptre
	diam: 18.0mm	wt: 2.8g	wear: ?W/W	Context: 105	Sf no: 9017007
7	CLAUDIUS II	denom: antonini	ianus		Obv. [IMPCLAVDIVSAVG]
	date: 268-70	mint:	cat: as 41		Rev. ?[FORTVNA REDVX]
	diam: 16.5mm	wt: 1.9g	wear: UW/SW	Context: 102	Sf no: 9017003
8	TETRICUS I	denom: antonin	ianus		Obv. IMP TETRICVS PFAVG
	date: 271	mint:	cat: 70, E784		Rev. FIDES MILITVM
	diam: 17.5mm	wt: 2.2g	wear: W/W	Context: 102	Sf no: 9017013
9	TETRICUS I	denom: antonini			Obv. IMP TETRICVS PFAVG
	date: 273		cat: 80, E789		Rev. [HILA]RITAS AVGG
	diam: 19.0mm	wt: 2.0g	wear: SW/SW	Context: 103	Sf no: 9017008
10	TETRICUS I	denom: antonini	ianus		Obv. [IMPC TE]TRICVS PFAVG
	date: 273	mint:	cat: 100, E775		Rev. [PAX] AVG
	diam: 17.5mm	wt: 1.5g	wear: SW/W	Context: 122	Sf no: 9017052
11	TETRICUS I	denom: antonin	ianus		Obv. IM[PTETRICV]S[AVG]
	date: 273	mint:	cat: 100-102, H	5771/5	Rev. [PAX AVG]

	diam: 17.0mm	wt: 1.1g	wear: SW/SW				
12	TETRICUS I FRAGMENT	denom: antonin	ianus			Obv.	[IMPTETRICVSAVG]
	date: 270-73	mint:	cat: as 100, ET	775		Rev.	[PAX AVG]
	diam: 16.0mm	wt: 2.3g	wear: W/W	Context:	16		Sf no: 9017043
13	TETRICUS I	denom: antonin:	ianus			Obv.	[IMPC TETRICUS PFAVG]
	date: 270-73	mint:	cat: 117			Rev.	[PROVID AVG]
	diam: 17.0mm	wt: 1.8g	wear: W/W	Context:	102		Sf no: 9017001
14	'TETRICUS I'	denom: 'antonin	nianus'			Obv.	[IMPC TETRI]CVS PFAVG
	date: '270-73'	mint:	cat: c.of 141,	E765		Rev.	VIC[TORIA AVG]
	diam: 15.0mm	wt: 0.6g	wear: SW/SW	Context:	105		Sf no: 9017053
15	'TETRICUS I'	denom: 'antonin	nianus'			Obv.	-
	date: '270-73'	mint:	cat: c.as -			Rev.	-
	diam: 13.5mm	wt: 0.6g	wear: SW/C	Context:	122		Sf no: 9017018
16	CARAUSIUS	denom: AUREL				Obv.	[IMP.C]ARA[VSIVSAVG]
	date: 286-93	mint:	cat: as 878			Rev.	-
	diam: 24.5mm	wt: 3.8g	wear: SW/C	Context:	102		Sf no: 9017004
17	CARAUSIUS FOR DIOCL		AUREL			Obv.	IMPC DIOCLETIANVS PFAVG
	date: 292-93	mint: LN	cat: CAR.DIO.MA	AX.5		Rev.	PAX AVGGG S/P/MLXXI
	date: 292-93 diam: 23.0mm						
18		wt: 3.3g	wear: SW/SW		102		
18	diam: 23.0mm	wt: 3.3g IS FRAG denom: -	wear: SW/SW	Context:	102	Obv.	Sf no: 9017006
18	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75	wt: 3.3g NS FRAG denom: - mint: LG/AR	wear: SW/SW cat: as CK280	Context:	102	Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG]
	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH	wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: -	wear: SW/SW cat: as CK280 wear: SW/SW	Context:	102 40 (Sa	Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069
	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th	wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: -	wear: SW/SW cat: as CK280 wear: SW/SW cat: -	Context: Context:	102 40 (Sa	Obv. Rev. ample Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 -
	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH	wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: -	wear: SW/SW cat: as CK280 wear: SW/SW cat: -	Context: Context:	102 40 (Sa	Obv. Rev. ample Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 -
19	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th	wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C</pre>	Context: Context:	102 40 (Sa 84	Obv. Rev. ample Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 -
19	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm	<pre>wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom:</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C -</pre>	Context: Context:	102 40 (Sa 84	Obv. Rev. ample Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 -
19	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH	<pre>wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint:</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: -</pre>	Context: Context: Context:	102 40 (Sa 84	Obv. Rev. ample Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 -
19 20	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH date: C3/4th	<pre>wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint: wt: 0.6g</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: - wear: C/C</pre>	Context: Context: Context:	102 40 (Sa 84 15	Obv. Rev. ample Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 - - Sf no: 9017078 - Sf no: 9017021
19 20	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 10.0mm ILLEGIBLE C3RD/4TH date: C3/4th	<pre>wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint: wt: 0.6g FRAGS. denom: mint: -</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: - wear: C/C - cat: -</pre>	Context: Context: Context: Context:	102 40 (Sa 84 15	Obv. Rev. ample Obv. Rev. Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 - - Sf no: 9017078 - Sf no: 9017021 -
19 20 21	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 10.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 17.0mm	<pre>wt: 3.3g IS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint: wt: 0.6g FRAGS. denom: mint: - wt: 1.0g</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: - wear: C/C - cat: -</pre>	Context: Context: Context: Context:	102 40 (Sa 84 15	Obv. Rev. ample Obv. Rev. Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 - - Sf no: 9017078 - Sf no: 9017021 -
19 20 21	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 10.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 17.0mm GEORGE III	<pre>wt: 3.3g MS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint: wt: 0.6g FRAGS. denom: mint: - wt: 1.0g denom: 1d</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: - wear: C/C - cat: -</pre>	Context: Context: Context: Context:	102 40 (Sa 84 15 217	Obv. Rev. ample Obv. Rev. Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 - - Sf no: 9017078 - - Sf no: 9017021 - - Sf no: 9017086 GEORGIVS III.D:G.REX
19 20 21	diam: 23.0mm VALENTINIAN I/VALEN date: 364-75 diam: 15.5mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 15.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 10.0mm ILLEGIBLE C3RD/4TH date: C3/4th diam: 17.0mm	<pre>wt: 3.3g MS FRAG denom: - mint: LG/AR wt: 0.9g denom: - mint: - wt: 0.3g FRAG. denom: mint: wt: 0.6g FRAGS. denom: mint: - wt: 1.0g denom: 1d mint:</pre>	<pre>wear: SW/SW cat: as CK280 wear: SW/SW cat: - wear: C/C - cat: - wear: C/C - cat: - wear: C/C cat: -</pre>	Context: Context: Context: Context: Context:	102 40 (Sa 84 15 217	Obv. Rev. ample Obv. Rev. Obv. Rev. Obv. Rev. Obv. Rev.	Sf no: 9017006 [DN VALENPF AVG] SEC[VRITAS REIPVBLICAE] OF/- 6708) Sf no: 9017069 - - Sf no: 9017078 - - Sf no: 9017021 - - Sf no: 9017086 GEORGIVS III.D:G.REX BRITANNIA

Appendix 13.5.1 Some published references to coin finds from Catterick

1. Taylor and Collingwood 1924.

'By the kindness of Mr Edward Wooler, FSA, the owner, we publish illustrations of the altar (CIL, vii, 272) dedicated *Deae Suriae*, two lions, a column with scale-work on it and a bronze cauldron, which at its discovery contained 24 gallons of coins (plate X).' (See 5 below).

2. Cade 1789.

'During my residence at the vicarage house here, two coins of Nero and Domitian were digged up (*sic*) in the garden;' [Mentions also coins from Binchester and Thornton, nr Darlington, plus observations on Piercebridge.]

3. Hildyard 1957, 446–7. II. Coins (1952 excavations).

'Only seven coins were found of which only one was stratified and all but two were in the poorest condition.'

'1. Tiberius AR den. M and S 3. III 6'6" In metalling of road V. PONTIF MAXIM.

2. Theodora PIETAS ROMANA (Cohen 4) 15mm AE. From doorway of Room II above late paving.

3. Constantinian Obv. CONST... 14mm AE. In stokehole material outside building I.

4. 4th Century illegible AE 16mm. In stokehole material outside building I.

5. 4th Century illegible AE 15mm. Found with large buckle on floor of Room I, Building I.

6. 'Late 4th Century'. Diameded head AE 13mm. Building I, topsoil.

7. Fragmentary AE illegible.'

Other information:

'An old inhabitant paid us a visit one day and volunteered the following information:

(a) Walls and a coin were found near the corner of the steeple-chase course (presumably when it was being made) some forty years ago. The coin 'crumbled' (*sic*) before it was examined.

(b) A pewter pot...

(c) The occupier of the farm on the north side of the river once picked up a gold coin, with the name Caesar on it, in the field opposite the site, (through which Dere Street passes). After carrying it about in his pocket for some years he lost it in his farmyard. Some time later while he was inspecting a horse brought by a dealer to his yard the animal, scraping the ground with its hoof brought the coin to light once more. But before he could recover it the horse dealer had picked it up and refused to surrender it to its former owner. Archaeologically and psychologically, this story seems not improbable.!'

4. Hildyard 1955. Excavation in advance of a new 'ammunition store' at the RAF station, 1939. [The building was in fact the RAF Station's ambulance station (P R Wilson – see Chapter 2)]

p 243: 'On the upper floor [of the third room] was found a 4th Century 3rd brass which Mr. W.V. Wade, FSA, states is either Valentinian I (364-375) or Valentinian II (375-392) probably the former. In either case the reverse type is GLO-RIA ROMANORVM (Emperor standing right with head turned backwards, right hand on head of kneeling captive, in left hand a labarum).'

– almost certainly Valentinian I $(364\mathchar`-75)$ therefore. [RJB]

(Used, admittedly along with other evidence, to suggest post-367 occupation.)

5. Hildyard and Wade 1950, 403 (1939 excavations).

'The site has been known as Roman since Camden's time and Gough, in his edition of the *Britannia* [1806 vol III, 336-7] gives a description of the site and of previous finds. These included the magnificent bronze cauldron, now at Brough Hall, found in 1625. Its capacity is 24 gallons and if, as is said, it was full of coins (none of which are now known) when found, this hoard must have been as large as any recorded in Britain. Other notable finds have been an aureus of Nero...'

p 418:

1. barbarous Radiate. copy of PIETAS AVGVSTOR. Trench I, U/S

2. Small Bronze. 'This coin, illegible when found, decomposed before it could be examined.' Trench I, $U\!/\!S$

6. Towneley 1806, Roman Antiquities, 1st April 1802.

p 392: 'A pillar, a fragment of pottery...were found in the summer of 1801, upon a bank behind the farmhouse at Thornborough, adjoining the river Swale. ... Many Roman coins were found at the same time on Thornborough farm."

Appendix 14.1 Summary of Artefacts by Function

Tables 84–92	Personal ornaments

Simple nar	ne Typology	Site	Material	Catalogue number
Hobnail		46	Iron	79
		240	Iron	15
		251	Iron	1
		433	Iron	175
		434	Iron	64
		452	Iron	11
Shoe sole		273	Iron	5
Hair pin	Cool 3A	240	Copper alloy	1
man pin	0001 511	433	Copper alloy	4
		434	Copper alloy	3
	Cool 5D	433	Copper alloy	$\frac{3}{2}$
		455 46	Bone	2 6–10
	Crummy 2			
		273	Bone	11
		433	Bone	80-81, 84-87
		434	Bone	82-83
	Cool 24	433	Copper alloy	1
	Crummy 1	240	Bone	4–5
		433	Bone	57-73, 75-79
		434	Bone	74
	Crummy 6	46	Bone	14
	·	433	Bone	115–17, 119
	Cool 1	433	Copper alloy	5-6, 8-9
		434	Copper alloy	7
		482	Copper alloy	3
	Crummy 3	46	Bone	12–13
	or unning b	240	Bone	7/2–3, 7/5
		$\frac{240}{433}$	Bone	88–105
		433	Bone	107–111
		434	Bone	106
	knob-headed	433	Glass	3–5
		452	Jet/shale	1
	Cool 15	433	Copper alloy	10
	faceted head	433	Jet/shale	18–19
	Crummy 5	433	Bone	112–4
	composite	433	Bone	126 - 7
	-		Jet/shale	22
	stem	240	Jet/shale	7/6-7
		433	Jet/shale	20–21
	Cool 3B	433	Copper alloy	11–12, 14
	Cool 18B – antler	434	Copper alloy	15
	$\frac{1001100}{100} = \frac{1000}{100}$	454 46	Copper alloy	1-2, 4
	0001 20	$40 \\ 452$	Copper alloy	
	0196			1
	Cool 26	46	Copper alloy	5
		482	Copper alloy	2
	misc	240	Bone	4, 6, 15
		433	Bone	120–23
Bead	melon	433	Frit	1–9
		434	Frit	1-4
	annular green	240	Glass	3
	annular blue/green	433	Glass	10–4
	annular blue	434	Glass	5
	hexagonal green	240	Glass	2, 6, 7
	nonagonar groon	433	Glass	30
	short biconical green	435 240	Glass	7/3
	short siconical green	$\frac{240}{433}$	Glass	33
	aphonical blue			
	spherical blue	433	Glass	16–7
		434	Glass	7

Simple name Typology

name	Typology	Site M	aterial	Catalogue number
		Embleton	Class	11–2
	cylindrical green	273	Glass	1
	cymurical green	433	Glass	1 28–9
	commented mean	433 240	Glass	28-9 7/9-10
	segmented green	240 433	Glass	18-23
		455 452	Glass	
	complian/gament			5 34
	carnelian/garnet cuboid blue	433 240	gemstone Glass	
		240 240	Glass	7/8
	gold–in–glass	240 433	Glass	4 15
		455 452	Glass	4
	nonto non al mucan (mallam	432 433	Glass	4 31
	pentagonal green/yellow short biconical blue	433 433	Glass	32
	bracelet	433 240	Jet/shale	7/2
	Dracelet	433	Jet/shale	23–4, 26
	cylindrical	433 240	Jet/shale	7/1
	cymuncai	433	Jet/shale	28–29
	homianhomiaal	455 Embleton		20-29 9
	hemispherical			9 7/3
	segmented unfinished	$\begin{array}{c} 240\\ 434 \end{array}$	jet/shale	
	annular		Jet/shale	25
	annular	433	Jet/shale	27
	ab ant bigger ical wellow/mage	452	bone	3
	short biconical yellow/green	434	Glass	6
	spherical blue/green	433	Glass	17
	annular opaque yellow	240	Glass	7/2
	black with wave	240	Glass	7/1
	disc cylindrical green	240	Glass	7/4–5
		433	Glass	24–7
	C ()]]	452	Glass	6
	faceted barrel	46	Copper alloy	
		433	Copper alloy	
	1 1 1		Copper alloy	
	globular	240	Copper alloy	
		433	Copper alloy	
	1	434	Copper alloy	
	annular	452	Copper alloy	
	spacer	452	Copper alloy	
	samian	240	Fired clay	7/1
	green fragment	46	Glass	5
	spherical	Embleton		2
	Kilbride Jones 3G	433	Glass	2
	Kilbridge Jones 3F	433	Glass	1
	cable twist	240	Copper alloy	
	11 4 . 4 9	433	Copper alloy	
	cable twist?	240	Copper alloy	
	ribbon twist	433	Copper alloy	
	annular cabled	433	Jet/shale	15–6
	jet beads	46	Jet/shale	2
		240	Jet/shale	4–5
	beaded	433	Copper alloy	
	Light bangle	240	Copper alloy	
		433	Copper alloy	
	l'alt han alt 9	434 Gad Gab	Copper alloy	
	light bangle?	Cad–Sch	Copper alloy	
	multiple unit	433	Copper alloy	
	tore twist	240	Copper alloy	
		433	Copper alloy	
		Cad–Sch	Copper alloy	
	Torc twist expanding	240	Copper alloy	
	expanding	46	Copper alloy	7 8

Bracelet

Simple nam	e Typology	Site M	laterial	Catalogue number
		240	Copper allo	y 3
		433	Copper allog	
	annular	240	bone	7/1
	plain	433	Copper allog	
	unclassified	240	Copper allog	
	plain	46	Iron	76–7
	annular	40 46	Jet/shale	
	annular	$\frac{40}{240}$		3,9
			Jet/shale	7/5, 8
		433	Jet/shale	1-3, 5-12
	l l	434	Jet/shale	11
	annular decorated	46	Jet/shale	6-7
	1 .1 1	433	Jet/shale	13–4
	annular ridged	433	Jet/shale	17
Brooch	Colchester variant	433	Copper alloy	
	Hod Hill	240	Copper allog	•
	Plate, animal tinned	240	Copper allog	
		433	Copper allog	
	Colchester derivative	433	Copper allog	
	fantail		Copper allog	
	headstud	433	Copper alloy	
	trumpet	46	Copper alloy	
		240	Copper allog	
		273	Copper allog	
		434	Copper allog	
	bow – unclassified	240	Copper allog	y 2
		433	Copper allog	y 23
		Cad-Sch	Copper allo	y 8
	dragonesque	46	Copper allo	y 11
	0	434	Copper allo	
	disc	46	Copper allog	
		433	Copper allo	•
	plate – animal	46	Copper allog	•
	r	433	Copper allo	•
	plate – unclassified	240	Copper allog	
	F	433	Copper allo	
		434	Copper allog	·
	divided bow	240	Copper allog	
	knee	433	Copper allog	
	Kilee	434	Copper allog	
		452	Copper allog	
			Copper alloy	
	knee/fantail	433	Copper allog	
	bow – free German	434	Iron	24
	penannular A2	434 46	Copper allog	
		$\frac{46}{46}$		
	penannular A3		Copper alloy	
	nononnular D	433 46	Copper alloy	
	penannular B	46	Copper alloy	
	1 1 1 1	433	Copper alloy	
	penannular unclassified	46	Copper alloy	
		240	Copper alloy	
	1	452	Copper alloy	
	crossbow	240	Copper allog	
		433	Copper alloy	
		Cad–Sch	Copper allog	
	Pin, spring etc	46	Iron	21
		240	Copper allog	y 7/5; 22–3
		433	Copper allo	y 35
		Cad-Sch	Copper allo	
Finger ring	spiral	240	Copper allo	
5 6	^	433	Copper allo	•

Simple name	e Typology	Site	Material	Catalogue number
	expanded	240	Iron	42
		433	Iron	174
		452	Copper allo	y 4
	constricted shoulder	433	Copper allo	y 84
		434	Copper allo	y 83
	faceted	240	Copper allo	y 8
		433	Copper allo	y 85
	key	251	Iron	12
	-	433	Copper allo	y 241
	trinket	240	Copper allo	y 7
		433	Copper allo	y 75, 81–2
	black	46	Jet/shale	10
		434	Glass	6
Necklace		46	Jet/shale	1 & Silver 1
			Bone	1
		240	Copper allo	y 6
		433	Copper allo	y 300
Dress pin		433	Copper allo	y 13, 16–7*
Pendant		46	bone	2
		240	bone	3
		433	Jet/shale	30
Earring	Allason–Jones 1	240	Copper allo	y 7/11
	Allason–Jones 6	433	Copper allo	y 80
Intaglio		46	gemstone	1
		Cad-Sch	n gemstone	1
Chain	double loop in loop	240	Copper allo	y 10
gemstone	cornelian	240	gemstone	1

The bone hair pin typology is that of Crummy 1979 The copper-alloy hair pin typology is that of Cool 1991 The glass bangle (bracelet) typology is that of Kilbride Jones 1937–8

The penannular brooch typology is that of Fowler 1960

The earring typology is that of Allason–Jones 1989

NB one of the dress pins (Site 433 No 16) is Anglian (Rogers 1993, 1363, fig. 664.5368)

Table 93	Toilet equipment	
----------	------------------	--

Simple nam	e Typology	Site	Material	Catalogue number
Ligula		433	Copper alloy	109–110
C		434	Copper alloy	111
			Bone	129
		452	Copper alloy	6
		Cad–Sch	Copper alloy	8
Unguent spo	on	46	Copper alloy	19–21
0		273	Copper alloy	1
Scoop		240	Copper alloy	7/14
1		433	Copper alloy	112, 116
Spatula		240	Copper alloy	11
		433	Iron	45, 173
Spoon probe		46	Copper alloy	22
		482	Copper alloy	5
Probe		46	Copper alloy	23–4
Scoop probe		433	Copper alloy	115
Crescentic bl	ade	433	Copper alloy	119
Uncertain/ho	ok	240	Copper alloy	7/13
Tweezers		46	Copper alloy	17-8
		433	Copper alloy	101-3, 106-8
		434	Copper alloy	105
		Cad-Sch	Copper alloy	4
Nail cleaner		46	Iron	80
×			Copper alloy	25
		240	Copper alloy	13
		433	Iron	172
		452	Bone	6
Miscellaneou	s, chatelaine elements	433	Copper alloy	113–4, 120
	s, Sickle shaped	433	Copper alloy	118
Pestle	, i i i i i i i i i i i i i i i i i i i	Other	Copper alloy	3–4
Razor	Manning type 4	46	Iron	40
	pivoting	240	Copper alloy	12
	blade	433	Iron	84
	Manning type 2	433	Iron	82
	suspension loop	433	Iron	83
Enamelled fla		433	Copper alloy	1
Mirror		46	Copper alloy	26
		10	copper anoy	

The razor typology is that of Manning 1985.

Simple name	Typology	Site	Material	Catalogue number
Strap fitting	Belt (?)	46	Copper alloy	38
1 0	distributor, cruciform	433	Copper alloy	294
	mount caterpillar	273	Copper alloy	6
	mount, cruciform	273	Copper alloy	7
	mount lunulate	Embleton	Copper alloy	10
	mount openwork	240	Copper alloy	29
	-	273	Copper alloy	8-9
		433	Copper alloy	309
	mount teardrop shaped	Embleton		11
	mount, miscellaneous	46	Copper alloy	36
		240	Copper alloy	30–31
		433	Copper alloy	160-5, 296
	mount trompenmuster	433	Copper alloy	310
	pendant lanceolate	433	Copper alloy	204
	pendant leaf–shaped	433	Copper alloy	203
	strap end	240	Copper alloy	34
		433	Copper alloy	206–207
Belt plate	solid	46	Copper alloy	35
		452	Copper alloy	12
Belt plate	openwork fragment	46	Copper alloy	37
		240	Copper alloy	27
		434	Copper alloy	167
Buckle	trapeziform	433	Copper alloy	158–9
	unclassified	452	Copper alloy	10
	pin	452	Copper alloy	11
Button and	****1 1 ***	10	a 11	22
loop fastener	Wild III	46	Copper alloy	39
	1	433	Copper alloy	180
	unclassified	433	Copper alloy	181
Apron mount	1.	433	Copper alloy	205
Cuirass	hinge	433	Copper alloy	169–74
	hook	240	Copper alloy	25-6
A 1 .	tie ring	433	Copper alloy	176-7
Armour scale		433	Copper alloy	184–6, 187
Helmet	noinfonging ban	434 Other	Copper alloy	187
neimet	reinforcing bar handle	433	Copper alloy	1 190
Shield	boss	435 46	Copper alloy	
Silleiu	grip	40 46	Iron Iron	5 6
Spearhead	barbed	$40 \\ 433$	Iron	9–11
Spearneau	cavalry lance	433	Iron	6
	ceremonial	433	Iron	8
	circular blade	452	Iron	1
	leaf-shaped	46	Iron	1–2
	ical shaped	433	Iron	1–5, 7
		452	Iron	2
	unclassified	240	Iron	- 7/43
Arrowhead	barbed	46	Iron	3
1110 miloud		433	Iron	18
	flint	452	Stone	5
	triangular	Citadella	Iron	2
Calthrop	C	433	Iron	19–21
Scabbard	mount	433	Copper alloy	192, 194
	runner	433	Copper alloy	193
Sword	handle	46	Bone	37
Dagger mount		240	Copper alloy	28
		434	Copper alloy	202
Bow stiffener		433	bone	146
Bolt head		46	Iron	1, 4

Table 94Military equipment

Simple name Typology	Site N	Iaterial	Catalogue number
	433	Iron	12–7
	433 434	Iron	12-1
	$454 \\ 452$	Iron	3
Ballista ball	Cadbury	Stone	1
Binding	433	Copper allog	y 195–201
Ferrule	434	Iron	2
Inscribed stone	433	Stone	5

The typology of the button and loop fasteners is that of Wild $1970\,$

Simple name	Typology	Site	Material	Catalogue number
Bridle bit	snaffle	433	Iron	70–73
		434	Iron	17
Misc. elements		46	Copper alloy	43
		433	Iron	74
		452	Iron	9
Buckle	double	251	Copper alloy	1
	frame fragment	240	Copper alloy	7/16
	-	452	Iron	10
	pin	46	Iron	78
		240	Copper alloy	7/17
		433	Iron	75
		434	Iron	7/18
Harness fitting	g circular strap fitting	433	Copper alloy	208–212
	cruciform harness distributor	Embleton	Copper alloy	9
	harness loop	240	Copper alloy	18
	hook	240	Copper alloy	35
	mount with loop	240	Copper alloy	7/21–23, 32
	mount fragment	46	Copper alloy	41
	mount, openwork	240	Copper alloy	7/19
	mount petal	240	Copper alloy	33
	pendant	240	Copper alloy	37, 7/20
	pendant lozenge	46	Copper alloy	40
Hipposandal		46	Iron	37
		433	Iron	76–77
		434	Iron	19
Tethering peg		433	Iron	66
Hub lining		433	Iron	67–9
Linchpin	Manning 1b	46	Iron	35
-	Manning 1b	433	Iron	64
	Manning 2b	46	Iron	34
	-	433	Iron	65
		434	Iron	15–6
Pole binding		46	Iron	36
Terret		46	Copper alloy	42
Spur	prick	46	Iron	38
		433	Iron	58
	prick; zoomorphic	433	Copper alloy	213–4
Horseshoe	_	251	Iron	6
		452	Iron	7–8
Oxshoe		434	Iron	20

Table 95Transport equipment

The linchpin typology is that of Manning 1985

Table 96 Tools

Simple name	Typology	Site	Material	Catalogue
Chisel		240	Iron	7/44
0111501		433	Iron	26, 31–2
Gouge		433	Iron	35
Gougo	blade	46	Iron	18–19
Axe	splayed	434	Iron	3
Bradawl	spiayea	46	Iron	11
Firmer chisel		433	Iron	29
Saw		433	Iron	34
Socketed		100	nom	01
paring chisel		433	Iron	30
Spoon drill bit		433	Iron	33
Farriers		100	nom	50
butteris	gouge	46	Iron	17
Dutiens	handle	46	Iron	16
Blacksmith's	handle	40	nom	10
rake		433	Iron	28
Mandrel		434	Iron	5
File	metalworking	46	Iron	13
Hammer	cross-pane	40 46	Iron	9
Iron handling	cross-pane	40	11011	5
rod		433	Iron	104-7
Awl		46 46	Iron	20-21
AWI		40 240	Iron	4
		$\frac{240}{433}$	Bone	4 2–5
		400	Iron	36-42
		434	Iron	4
Samanan		434 433	Bone	4 7
Scraper		433 434	Iron	7
Plastering tool		434 433	Iron	43-44
Wedge		$\frac{433}{251}$	Iron	40-44 3
Mushroom	for potting?	433	Fired clay	15
Knife		433 433	v	87
Kille	Manning 9 Manning 11	433	Iron Iron	88
	Manning 11	433 434	Iron	21
	Manning 12	434 433	Iron	89–90
	Manning 12	433 434	Iron	22
	Manning 14	434 433	Iron	98–100
	Manning 14 Manning 15	433		95–100 95–97
	8	433	Iron	95–97 92–4
	Manning 16	433	Iron	85-86
	Manning 23	433 433	Iron	102
	socketed blade	433 46	Iron Iron	42–44
	tang unclassified	$\frac{40}{240}$	Iron	
	unclassifieu	$\frac{240}{433}$		7, 7/45
		433 434	Iron	91, 101
		434 Cadbury	Iron Iron	23–24 19
Hone				19 16–22
попе		46	Stone	7/1-2
		$\begin{array}{c} 240\\ 433 \end{array}$	Stone	
			Stone	45, 47–56
		$\begin{array}{c} 434\\ 452 \end{array}$	Stone	44 2
Blade	fragmonts	452 46	Stone	2 41
Diaue	fragments	40 433	Iron Iron	
Uandia	Cmummur T 1		Iron	103
Handle	Crummy Type 1	$\begin{array}{c} 46\\ 240 \end{array}$	Bone	38–40 7/10
			Bone	7/10
	Cummu Trans 1.9	433 452	Bone	30–37
	Crummy Type 1?	$\begin{array}{c} 452 \\ 433 \end{array}$	Bone	8 38
Shears	Crummy 2	433 46	Bone	38 39
Silears		40	Iron	บฮ

Simple name	Typology	Site	Material	Catalogue
		433	Iron	79–81
Hammer	small claw	251	Iron	2
Pick–axe		46	Iron	7
Chisel or punc	h	433	Iron	23
Chisel or set		433	Iron	25
Chisel, set				
or pick		433	Iron	24
Punch		46	Iron	12
		433	Iron	27
		452	Copper alloy	7 5
Punch or drift		46	Iron	10
Rasp		46	Iron	14–15
Point		433	Bone	8
File		433	Bone	1
Scriber		46	Iron	22
Set or wedge		433	Iron	22
Tang		434	Iron	25, 28-29
Tool	tang with wedge–head	434	Iron	6
Tool	with cranked handle	452	Iron	6

The knife typology is that Manning 1985 The handle typology is that of Crummy 1983

Simple name Typology	Site	Material	Catalogue number
Casting waste	46	Copper alloy	66
	452	Copper alloy	65
Offcut	46	Copper alloy	65–66
Mould	433	Stone	57–60;
		Fired clay	16
Billet	46	Iron	23–25
	240	Iron	37

Table 97Metalworking evidence

Simple name	Typology	Site	Material	Catalogue
Spindlewhorl	calcite gritted	433	Fired clay	23, 25, 29
Spinarement	colour coat	46	Fired clay	1, 3
	domed	452	Lead	2
	flat	46	Lead	1
		251	Lead	1
	greyware	433	Fired clay	19, 20, 21, 24, 27, 28
	Nene valley	46	Fired clay	2
	·	433	Fired clay	22
	orange mortarium	433	Fired clay	30
	oxidised	434	Fired clay	42
	samian	46	Fired clay	4–5
		240	Fired clay	7/3
		433	Fired clay	31-41, 51
		434	Fired clay	44
	unclassified	46	Jet/shale	11
		240	Jet/shale	8;
			Fired clay	7/2
		433	Lead	4,
			Fired clay	18, 26
		434	Fired clay	43
		452	Copper alloy	8
		Embleton	Lead	19
Spindlewhorl?	pierced disc	433	Lead	5
Needle	Greep 1.1	46	Bone	18
		433	Bone	19–20
	Greep 1.3	433	Bone	21
	Greep 1.3	434	Bone	22–23
	Greep 2.1	46	Bone	19
	Greep 2.2	46	Bone	20
	Greep 3	46	Bone	23-24
	Greep 3	240	Bone	7/8
	Greep 3	251	Bone	25
	Greep 3	433	Bone	24-29
	Greep 3.1	46	Bone	16-17
	Greep 3.1	433	Bone	12–17
	Greep 3.1	434	Bone	18
	Greep 3.2	240	Bone	21
	Greep 3.2	433	Copper alloy	121
	indeterminate	46	Copper alloy	27–29
		273	Copper alloy	2
		433	Copper alloy	122–26
			Iron	123, 155-56
		434	Iron	62
	weaving/netting	46	Bone	22
	unclassified	452	Bone	7
Pin-beater		434	Bone	9
Weaving comb		433	Bone	10
Weaving tablet		46	Bone	41
Pin	wire head	240	Copper alloy	7/32

Table 98Textile equipment

The needle typology is that of Greep 1995

Simple name	Site	Material	Catalogue number	
antler fragment	46	bone	50	
Bone debris	46	bone	49, 51	
	433	bone	143, 148	
	452	bone	12–13	

 Table 100
 Boneworking evidence

Simple name	Typology	Site	Material	Catalogue
Stylus	Manning 1A	46	Iron	59
·	Manning 1	46	Iron	60
	8	433	Iron	157
		434	Iron	50
	Manning 2	433	Iron	158–61
	Manning 2 or 3	46	Iron	61–64
	Manning 3	434	Iron	49
	Manning 4	46	Iron	65–71
	-	240	Iron	12–14
		273	Iron	3
		433	Iron	162–67
		434	Iron	51–57
	plain	273	Bone	36
	decorated	240	Copper alloy	7/31
	fragment	46	Iron	72–74
	-	434	Iron	58-60
Seal Box	Bateson 1	273	Copper alloy	16
	Bateson 2	240	Copper alloy	39
	Bateson 3	433	Copper alloy	251
	petal base	46	Copper alloy	59
Diploma	_	433	Copper alloy	252
Sealing		Embleton	Lead	20

Table 101 Writing equipment

The iron stylus typology is that of Manning 1985. The seal box typology is that of Bateson 1981.

Simple name	Site	Material	Catalogue number
Dividers	433	Copper alloy	250
Steelyard	433	Copper alloy	249;
		Iron	169–71
	240	Copper alloy	38
	Citadella	Copper alloy	
Weight	240	Stone	23
Balance arm	433	Copper alloy	248

 Table 102
 Weighing and measuring equipment

Simple name	Typology	Site	Material	Catalogue
Millstone		46	Stone	18
Quern	beehive	46	Stone	2
		273	Stone	26
		433	Stone	1, 3–5
	lava	46	Stone	3–15
		240	Stone	24
		433	Stone	6–14
		434	Stone	27–28
		452	Stone	1
	rotary	46	Stone	16–17, 19–23
	Totaly	240	Stone	25
		433	Stone	15-26
		434	Stone	29–32
		452	Stone	2
	saddle	46	Stone	1
Rynd	sadule	46	Iron	8
Mortar		433	Stone	42-43
Wortai		Embleton		1
Pestle		452	Stone	1
		432		
Ladle			Iron	110–13
Ladle or peel		433	Iron	109
Baker's peel		433	Iron	108
Clibanus		433	Fired clay	7
Fleshhook		46	Iron	45
		433	Iron	115, 232
D		434	Iron	30-1
Bucket	handle	46	Iron	47-48
		433	Iron	122-7
		434	Iron	34, 36
	handle mount	433	Iron	118–21
		434	Iron	35
Bowl		433	Iron	114
			Jet/shale	31
Footed goblet		433	Copper alloy	141
Hanging bowl		433	Copper alloy	140
Jug		433	Copper alloy	311
Platter		433	Jet/shale	35
		452	Jet/shale	2
Spoon	Crummy 1	46	Copper alloy	30–32
	Crummy 3	433	Copper alloy	128–30
	perforated bowl	433	Bone	39–40
	sieve spoon	433	Silver	1
	handle	240	Copper alloy	7/15
		433	Copper alloy	117, 131
Spoon/spatula		433	Bone	128
Tankard		433	Copper alloy	138
Vessel	handle	433	Copper alloy	132–33, 135–37
VC55C1	inaliait	Cadbury	Copper alloy	5-6
	escutcheon	433	Copper alloy	134
	rim	46	Copper alloy	33
	foot?	433	Copper alloy	142
Inlay	1001:	433	Bone	130, 132–40
		400		
		40.4	Jet/shale	34
		434	Bone	131
		452	Bone	9
		A (2	Iron	58, 107 - 7
Box fittings		46		
Box fittings		434	Iron	47-48
Box fittings Box lid Candleholder				

Table 103 Household equipment

Simple name	Typology	Site	Material	Catalogue	
Candleholder Candlestick	wall hook type	240 433 434 433	Iron Iron Iron Iron	$9\\117\\32-33\\116$	
Lamp		433	Fired clay	9–11	

The spoon typology used is that of Crummy 1983

Simple name	Typology	Site	Material	Catalogue number
Goad	Rees II	46	Iron	26
		240	Iron	5-6
		434	Iron	8–10
Scythe		46	Iron	27
·		433	Iron	47–49
Pitchfork tip		433	Iron	57–9
Tine		433	Iron	54–56
Rake tooth		433	Iron	52–53
Spadeshoe		433	Iron	50
-	Manning 1a	433	Iron	51
Mowers anvil	C	433	Iron	46
Ploughshare		452	Iron	4
Animal bell		Embleton	Copper alloy	16

Table 104Agricultural equipment

The typology for the spadeshoe is that of Manning 1985. The typology for the goads is that of Rees 1979

Simple name	Typology	Site	Material	Catalogue
Latchlifter		434	Iron	39–41
Key	padlock	46	Iron	55
v	1	433	Iron	152–54
		434	Iron	46
	tumbler lock lift L	46	Iron	53
		433	Iron	137–45
		434	Iron	43-45
	tumbler lock lift, T	433	Iron	130–36
		434	Iron	42
	tumbler lock slide	46	Iron	52
		433	Iron	146–47
	lever lock	46	Iron	56
		433	Iron	148–50
		Cadbury	Iron	18
	fragment	46	Iron	54
	maginent	433	Iron	151
	handle fleur-de-lis	46	Copper alloy	58
	manufe fieur-de-fis	433	Copper alloy	242
Lock	padlock bolt	240	Iron	10
LUCK	paulock bolt	$\frac{240}{433}$	Iron	128
		434	Iron	38
	circular padlock	240	Iron	11
	tumbler lock bolt	$\frac{240}{433}$		239
			Copper alloy	
	bolt	434	Iron	37
	pin	433	Copper alloy	240
		452 Finih latan	Copper alloy	27
	1 /		Copper alloy	14
	plate	46	Iron	50, 57
		433	Iron	129
		452	Copper alloy	26
	spring	46	Iron	51
	post–Roman	273	Iron	2
Nail		46	Copper alloy	44-45
		273	Copper alloy	12–13
		100	Lead	1
		433	Copper alloy	127, 215-22
		Cadbury	Copper alloy	9
Stud		46	Copper alloy	51–56
		240	Copper alloy	16, 18, 20; 7/21-29
		251	Copper alloy	2–3
		273	Copper alloy	10-11, 14-15
		433	Copper alloy	223–26, 230–232
		452	Copper alloy	12–14, 16; Iron 13
		Embleton	Copper alloy	5–8
		Cadbury	Copper alloy	12
Stud	composite	46	Copper alloy	19
	_	452	Copper alloy	15, 17–19
	enamelled	433	Copper alloy	227-9
		Other	Copper alloy	2
	bell-shaped	433	Copper alloy	147-55
Tack	See See Pee	46	Copper alloy	46–48, 50
		240	Copper alloy	17
Rivet		$\frac{240}{240}$	Copper alloy	23, 24, 7/30
		$\frac{240}{433}$	Copper alloy	233
		UUF	Iron	199
		Cadhuw		199 10–11
Double anilad last		Cadbury	Copper alloy	
Double–spiked loop		46	Iron	93 22 7/46
		240	Iron	22, 7/46
		433	Copper alloy	237-38

Table 105Fasteners and fittings

Simple name	Typology	Site M	aterial	Catalogue
			Iron	188–89
		434	Copper alloy	
		404	Iron	73-75
		RAF	Iron	4
Double-spiked		10/11	11011	I
loop with ring		46	Iron	100
100P		433	Iron	190
Ring-headed pin		433	Iron	191–92
Washer		46	Iron	111–12
Terminal		46	Copper alloy	
		433	Copper alloy	
Ferrule		46	Iron	28–33
		251	Iron	4
		273	Iron	1, 5
		433	Iron	61–62
		434	Iron	11-13;140
		Cadbury	Iron	6
Hinge fitting		434	bone	141
Dolphin handle		433	Copper alloy	139
Handle (?)		Embleton	Copper alloy	15
		RAF	Copper alloy	7
Misc.fitting	boss	433	Copper alloy	234, 236
		434	Copper alloy	
	clip	240	Copper alloy	
	collar	433	Iron	3
	enamelled	46	Copper alloy	
		433	Copper alloy	
	folding stool question	46	Copper alloy	
	furniture ?	452	Copper alloy	
	rivetted strip	433	Copper alloy	
Mount		433	Copper alloy	
			Copper alloy	
Pendant			Copper alloy	
Strap mount		433	Copper alloy	166

Simple name	Typology	Site	Material	Catalogue
Counter	black; white	433	Glass	7–10
	Greep 1	433	Bone	41-2
	-	434	Bone	43
	Black Burnished	434	Fired clay	69-70
	Greep 2	46	Bone	42
	-	433	Bone	44–49
	Greep 4	433	Bone	50, 52
	-	434	Bone	51
	crambeck base	433	Fired clay	47
	blue/green	433	Glass	11–12
	Greep 3	46	Bone	43-46
	-	273	Bone	47
		Embleton	Bone	1
	hemispherical	433	Jet/shale	32
	oxidised	240	Fired clay	6
	samian	46	Fired clay	7–10
		273	Fired clay	11
		433	Fired clay	46, 49, 50, 52–68
		Embleton	Fired clay	1
	stone	433	Stone	61–76
		434	Stone	77–78
	tile	433	Fired clay	45, 48
	unclassified	46	Fired clay	12
Counter/pebble		452	Stone	4
Die		433	Bone	53–56

Table 107Recreation items

The bone counter typology is that of Greep 1995

Simple name	Typology	Site	Material	Catalogue
Altar		240	Stone	1–2
		433	Stone	1
Altar base		433	Stone	18
Lamp chimney		434	Fired clay	12–13
Tombstone		433	Stone	2–4
Pebbles		46	Stone	3
Figurine	cockerel	433	Lead	1
0	Dea Nutrix	433	Fired clay	4
	dove or pigeon	434	Fired clay	6
	drapery only	433	Fired clay	5
	feet only	433	Fired clay	3
	left foot	452	Lead	1
	Venus	433	Fired clay	2
	Vulcan	46	Copper alloy	1
Figurine (?)		433	Lead	3
Caduceus		433	Copper alloy	246
Phallic pendant		433	Copper alloy	244
Enamelled stand		433	Copper alloy	243
Hollow casting	breast-shaped	240	Copper alloy	40
Mask	-	434	Fired clay	1
Mount	cockleshell	433	Lead	2
Spear-head		240	Copper alloy	41

Table 109 Religious items

Simple name	Typology	Site	Material	Catalogue
Chimney		433	Fired clay	14
Window grill		433	Iron	176
Wallhook		46	Iron	89
		434	Iron	68–70
Wallhook	L–shaped	433	Iron	183–5
Cramp		46	Iron	95–6
		240	Iron	26
		433	Iron	194–5
		434	Iron	80
Door strap		452	Iron	19
Hinge	drop	46	Iron	86-7
		240	Iron	19
		433	Iron	181
		RAF	Iron	1–2
	Unclassified	46	Iron	88
		240	Iron	16
	loop	46	Iron	84–5
		433	Iron	177-80
	L–shaped drop	434	Iron	65–7
	staple	240	Iron	17–18
		273	Iron	7
		433	Iron	182
	strap	46	Iron	82–3
Holdfast		240	Iron	21
		433	Iron	196
Joiners dog		46	Iron	94
		240	Iron	23–5
		433	Iron	193
		434	Iron	77–9
Split spiked loop		452	Iron	15
0, 1		RAF	Iron	3
Staple	arm	251	Iron	8
	Т	46	Iron	90–2
		240	Iron	20
		433	Iron	186-7
	U	434	Iron	71–2
	U	46	Iron	97
		240	Iron	27
		251 422	Iron	7
		433	Iron	197–8
		434 452	Iron	82
Tino		452	Iron	14
Tine Watar pipe		434 46	Iron	26, 81 81
Water pipe		$\begin{array}{c} 46\\ 433 \end{array}$	Iron	81
Water spout nozzle		433 433	Lead Lead	12, 14 1

 Table 110
 Items relating to buildings and services

26 Mortars

26.1 Analysis of Mortar and Plaster Samples from Catterick Bypass (Site 433)

J Bennett and L Biek \dagger

Samples taken by the Excavator to elucidate relationships between various walls, and parts of walls, were treated with acid in the usual way described by Biek (1963, 233–6) to release the insoluble aggregate, which was washed, dried and passed through a sieve train to give a weight-% grading for each sample. From these results was created an overall histogram showing the individual characteristic patterns.

It was clear that some samples were of plasters or renders rather than mortars – others of concretes – and these were considered separately. The results for mortars (with a few for concretes, for comparison) have been collected in Table 113 and allow fair discrimination on the basis of the grading. Thus Nos 98 and 99 are virtually identical, while they are quite different from No 400.

Generally, small fragments of brick or tile were found in many samples in small quantities but significantly larger amounts were seen in material which had come from locations where more rapid setting in presence of water was required, as in a bath house; there, the addition of such *pozzolans* then also provided greater resistance of the set mortar to water. The nature and range of interpretation of such evidence has been fully discussed in a recently published report on a villa excavation which may be consulted for further background details (Payne *et al* 1995).

Specific relationships in the present case were indicated as shown in Table 113 (see with Fig 381).

In the original field listings certain correspondences were suggested, explicitly or implicitly. Unfortunately exact locations within a wall were not specified precisely. To some extent it has been possible to comment, positively or negatively; subsequent reworking by others has modified and refined archaeological relationships and questions but it is still possible to confirm, and especially refute, certain connections between periods of activity, within the limits of the analytical method (cf Payne et al 1995), In particular, some of the results suggest repair or repointing. Whatever the present interpretations, the detailed unambiguous results (available in archive) represent a valuable dataset of Roman mortars, renders, screeds, plasters and concretes which will hopefully be developed with other similar results into a useful working database.

30.2.2 Animal bone from the 1959 Bypass excavations (Site 433)

$G \, W I \, Hodgson \dagger$

Introduction

The remains consisted of bone, teeth, antler and shell. For the most part they come from food forming species but there are also present some human bones (Chapter 29.1) and part of the skull of a Barbary 'Ape' (see p 000).

Food-forming species

The minimum number of each species present is:

Cattle (four); Sheep (four); Pig (one); Horse (one); Hare (one); Bird (one) species unknown but approximating in size to a young modern domestic hen; Oyster (one).

The presence of a single oyster shell does not of itself necessarily indicate that oyster was eaten for it is possible that shells were brought to the site as decoration, as a keepsake or as a source of lime.

Six fragments of antler from red deer are also present but as none of these is associated with skull bone, being mere shed specimens, it is not possible to estimate the number of animals from which they came or even if these animals were eaten.

The cattle, sheep, pig and horse remains apparently all come from domestic animals. Shoulder blades and fetlock bones tend to be whole or entire while the long bones associated with the major cuts of meat are butchered and give the impression of having been broken and smashed as if to extract marrow. On the evidence of the four cattle mandibles recovered each of which has the 3rd permanent pre-molar in wear but not worn, it is assumed the animals were at least 2.5 years old when killed (Silver 1969). This suggests an ability to overwinter animals until they approached more of an optimum size as regards meat production than calf. Of four right sheep/goat mandibles recovered, all are estimated to have been between fifteen and eighteen months old when slaughtered. This suggests they may have come from 'wether' or 'wedder' lambs or young sheep slaughtered before the second winter as part of a normal culling procedure (Hodgson 1977a). The pig remains do not permit an assessment of the age of the animal to be made. The bone dimensions of the animals are well within those published for the major Roman sites of Corbridge (Hodgson 1968) and Vindolanda (Hodgson 1977b). The horse remains are those of animals which were small horses, possibly pack animals.

Catalogue

Cattle 'Celtic Shorthorn' type

Skull

a: Frontals with both horn cores present Minimum circumference at base of horn core

\mathbf{L}	eft		Right	
433, D XXIV 10	16.3cm			14.2cm
433, F VII 6	12.7cm			13.5cm
433, D XXI 9	14.0cm			13.7cm
L	nce at base of horn core eft	499 D I 15	Right	11 5 am
433, F XX 5	13.4cm	433 D I 15		11.5cm
433, D I 15	11.5cm	433 D XI 32)		-
433, D XI 32	12.9cm			
433, D XI 2	-			

c: 10 fragments of skull

d: Maxilla Left ar	nd right sides joined (1 s	pecimen) (433, D XXI)	
Left	Dentition	Right	Dentition
1	P.M.2,3,4; M.1,2,3	1	P.M.2,3,4; M.1,2,3

Mandibles

Dentition reported on basis of teeth present, and on circumstantial evidence of sockets where teeth are lacking):

tition 2,3,4; M.1,2,3 2,3,4; M.1,2,3 3,4; M.1,2,3
tition 4; M.1,2,3 4; M.1,2,3
4; IV 3,4;

Scapula

	Left		Right
	min width neck	max width glenoid	
433, F?VII 7	4.7cm	4.9cm	No specimens
433, D XI2	4.9cm	5.4cm+	-
433, F XIII 10	6.2cm	$6.7 \mathrm{cm}$ +eroded	

Thoracic vertebra one specimen, presumed to be bovine

Radius one right specimen present

	prox width	distal width	length
433, D XI 32	6.3cm	6.3cm	24.3cm

Metacarpal

	prox width	distal width	length
Left 433, D I 15	5.1cm	5.1cm	19.2cm
Right 433, D X 4	5.1cm	5.4cm	18.3cm
433, D I 15	5.9cm	6.3cm	19.1cm

Femur two right youthful specimens (epiphyses not fused)

433, F XIII 5A	no measurement possible
433, -	no measurement possible

Metatarsal

	prox width	distal width	length
Left	_		_
433, F VII	4.3cm	5.5cm	20.6cm
433, D X 12	4.2cm	5.2cm	18.7cm
Right			
433, D I 15	-	4.6cm	-

Calcaneum

433, J XIII 40 width = 5.2cm; length = 12.2cm

Innominate

Diameter of acetabulum (from anterior border of acetabulum to crest of ilium) Left 433, D X 15 7.1cm+ 433, J XIII ? + = eroded

4.8cm+

Sheep

Mandibles

	Right Dentition		
433, J XIII 40 433, E VI 15 433, D XI 35 All at stage 'r' in erupt	<i>d.m.3.</i> M.1,2 <i>d.m.1,2,3</i> M.1,2 M.2,3)	<i>al</i> 1964); italics r	efer to deciduous teeth.
Scapula			
Left 433, J XIII 40	min width of neck = 1	1.8cm	
Humerus			
Right 433, J XIII 40	distal width $= 2.9$ cm		
Radius			
T 0	prox width	distal width	length
Left 433, D XI 32	2.7cm	2.5cm	12cm
Metacarpal			
T C	prox width	distal width	length
Left 433, J XIII 40	2.0cm	2.4cm	14cm
Femur			
	distal width		
Right 433, D XI 2	2.9cm		
Tibia			
Right			
433, G II 1	eroded, no measurem distal end only	ent possible	
Innominate			
Diameter of acetabu	llum		
Right 433, D I 23	2.3cm		
Horse			
Scapula			
T C	min width neck	max	width glenoid
Left	6.0	۲ ۹	

Left 433, D XI 33

5.2cm

Tibia

Right 433, J XIII 40

distal width = 7.8cm

Splint bone (lateral metapodial)

433, J XIII 40

Metatarsal

433, J XIII 40 Right prox width = 5.3cm distal width = 5.2cm length = 28.3cm

Bird Aves

(species unknown but approximating in size to a young chicken *Gallus gallus*) Three fragments of: tibio-tarsus; radio-ulna; and long bone shaft

Pig

Two fused mandibles bearing second incisor on left side. Two large 'tusks' or canines, not associated with bone (433, E III).

Red Deer Cervus elaphus

Six fragments of antler, none of which is associated with skull.

Hare *Lepus* sp

Left mandible – ramus

Barbary 'ape' *Macaca sylvanus* 433, C II 3 (see Chapter 30.2.1)

Oyster Ostrea edulis One single valve

30.4 Animal remains from RAF Catterick 1966

Wilf Dodds†

This text was revised for publication by Louisa Gidney in 1991

Introduction

Since the late Wilf Dodds completed his report in 1966, some of the bones have been lost; it has not therefore been possible to quantify the material or to undertake a complete revision in the light of modern assemblages of this period from the North.

Species present

Horse: This species is represented by two teeth, and the distal processes of two limb bones.

Cattle: Remains of cattle form the largest component of the collection: 270 or more fragments. These may represent a minimum number of six individuals, mostly mature or aged beasts. By their small size they can well be assigned to the 'Celtic Ox' type. One complete radius gives an estimated withers height of 1.26m. The distal epiphysis has a clear fusion line which suggests, on recent data, that the animal was aged $c 3\frac{1}{2}$ years at death (Silver 1969). *Sheep*: These existed in very small numbers – about three individuals were represented. All were comparatively young. Three horn cores indicate a rather small straight-horned variety.

Pig: Three individuals were represented, mainly by jaws and dentition; one was aged, the others young to middle aged.

Red deer: One individual only was represented, the distal tibia with epiphysis fused suggesting that it was not less than three years old.

Dog: This was not represented in the bone assemblage but inferred from the number of chewed and gnawed bones.

Fowl?: One individual represented by fourteen bones and fragments.

Discussion

This is a fairly representative small assemblage for the late Roman North, demonstrating a bias towards cattle husbandry, with young and mature animals being culled for meat. Sheep and pigs are in a definite minority. The straight horn cores of the sheep would indicate a small and unimproved breed.

Figure 18 Bainesse (Site 46) – magnetometer survey chart

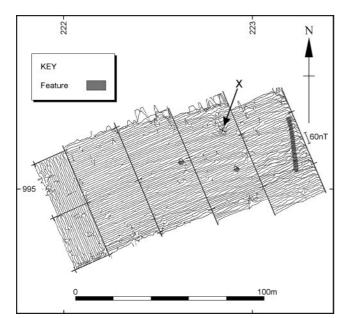
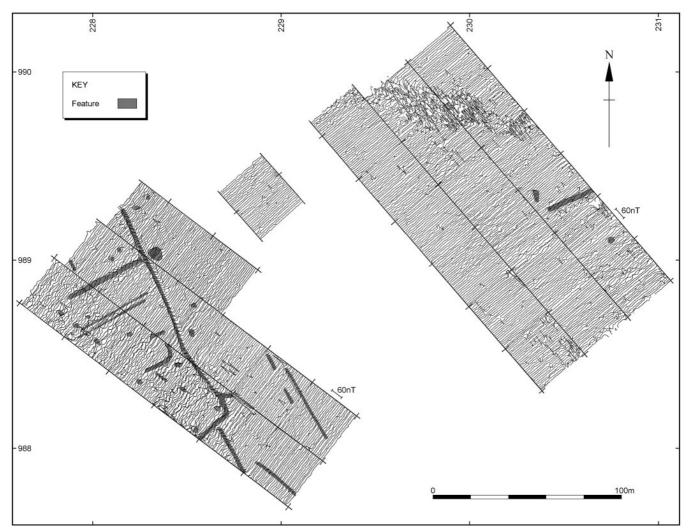
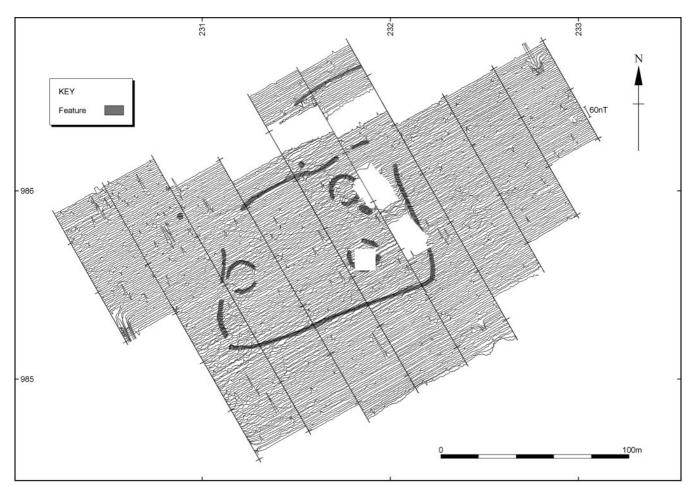




Figure 19 Honey Pot Road (Site 251) – magnetometer survey chart

 $Figure \ 20 \quad Catterick \ Racecourse \ (Site \ 273) - interior \ of \ Racecourse \ magnetometer \ survey \ chart$

 $Figure~21 \quad Catterick~Race course~(Site~273) - southern~part~of~Race course~magnetometer~survey~chart$

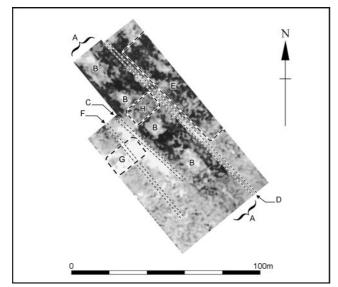
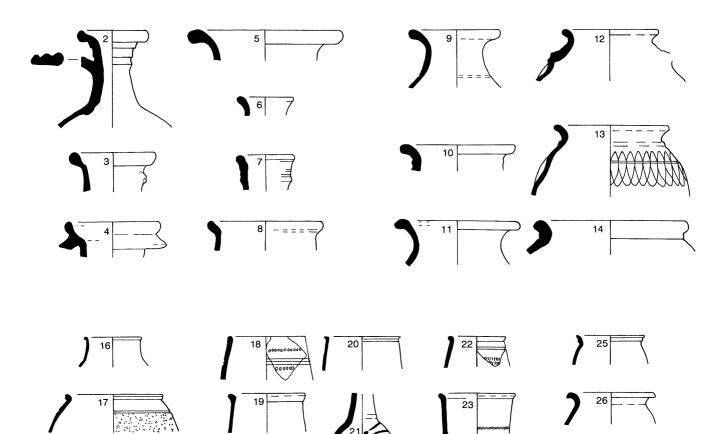
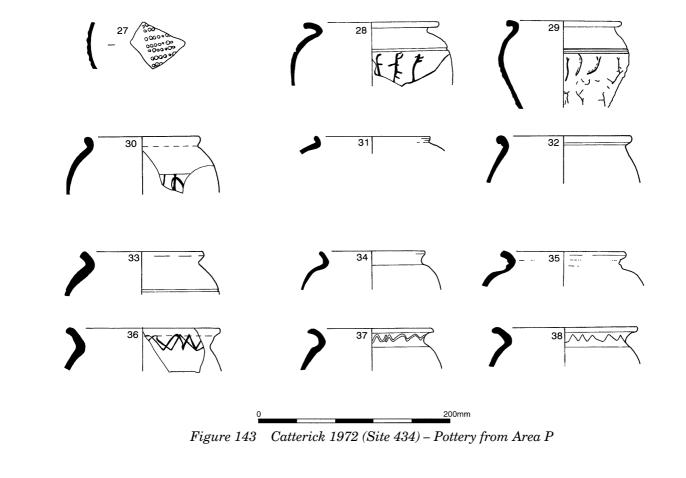




Figure 22 Catterick Triangle (Site 425) – resistivity results

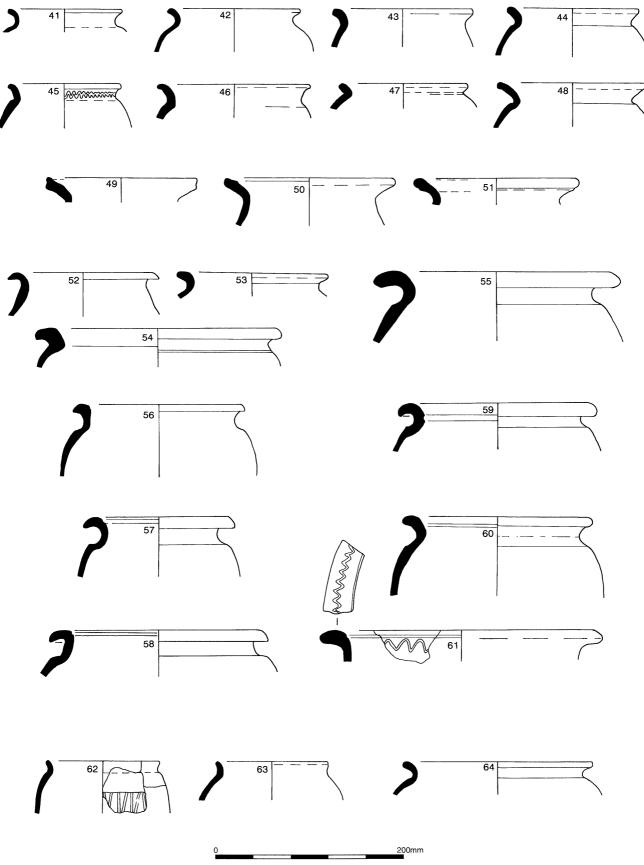


Figure 144 Catterick 1972 (Site 434) – Pottery from Area P

230

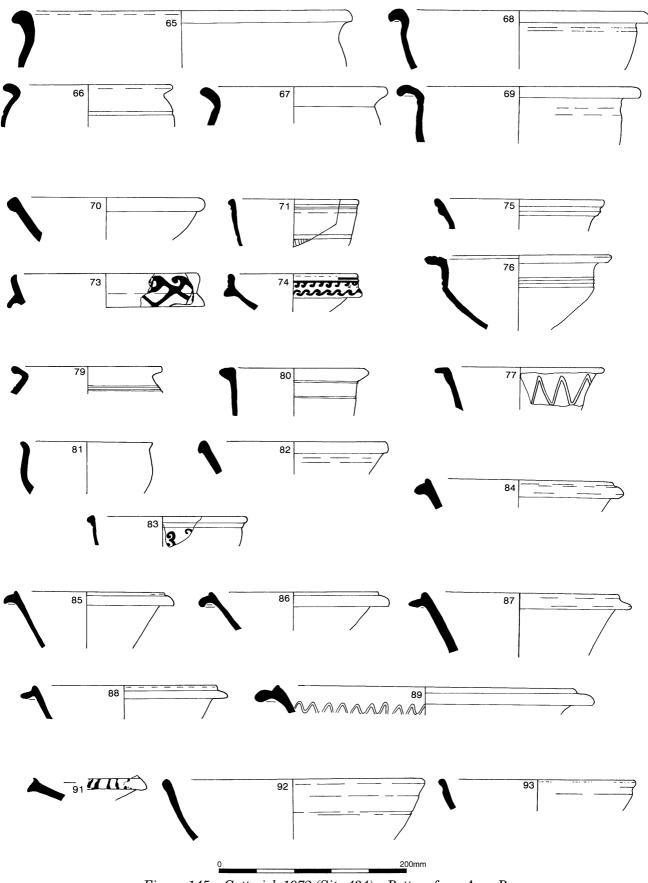
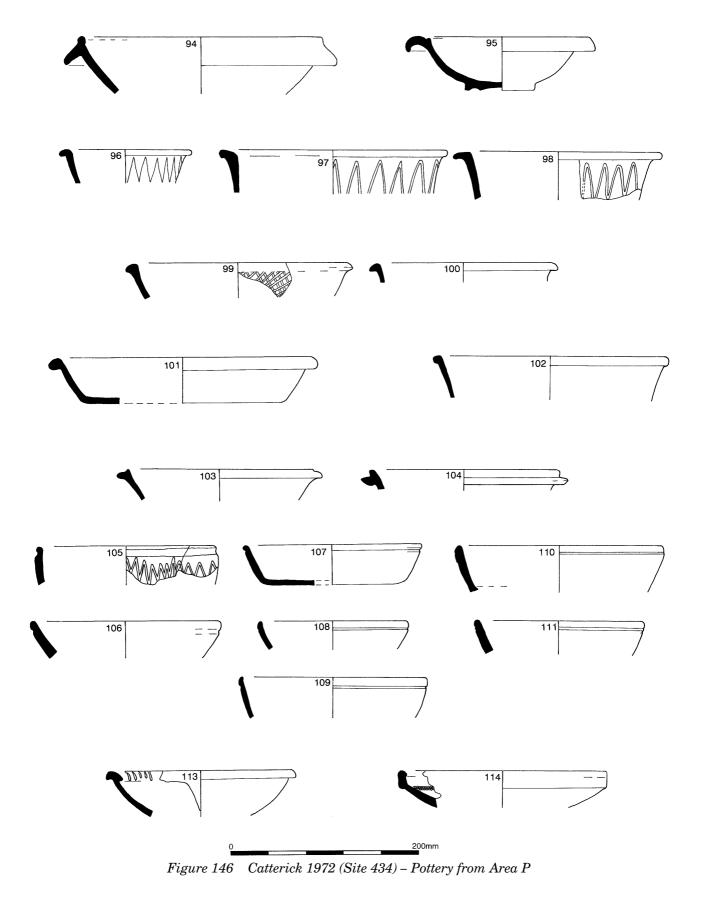



Figure 145 Catterick 1972 (Site 434) – Pottery from Area P

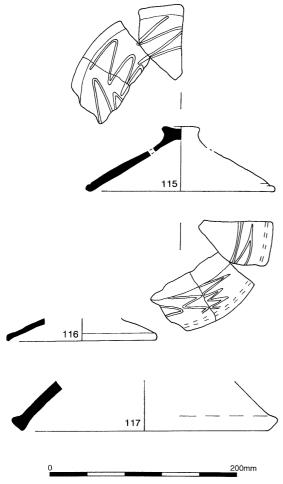


Figure 147 Catterick 1972 (Site 434) – Pottery from Area P

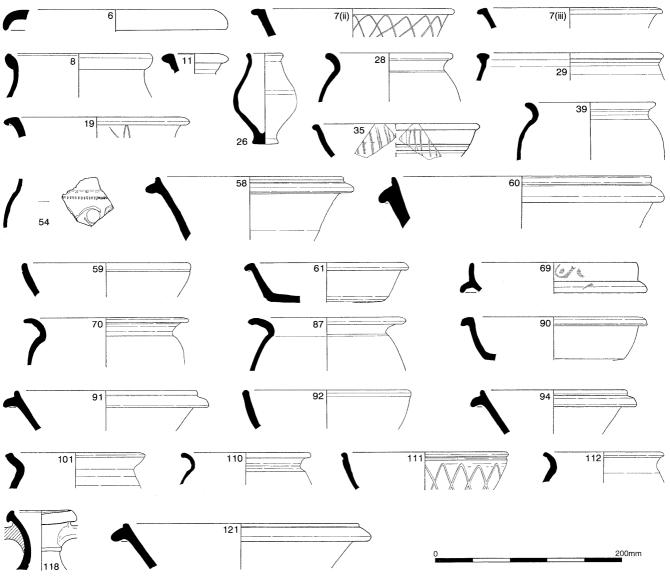


Figure 148 Catterick 1972 (Site 434) – Pottery from Area Q

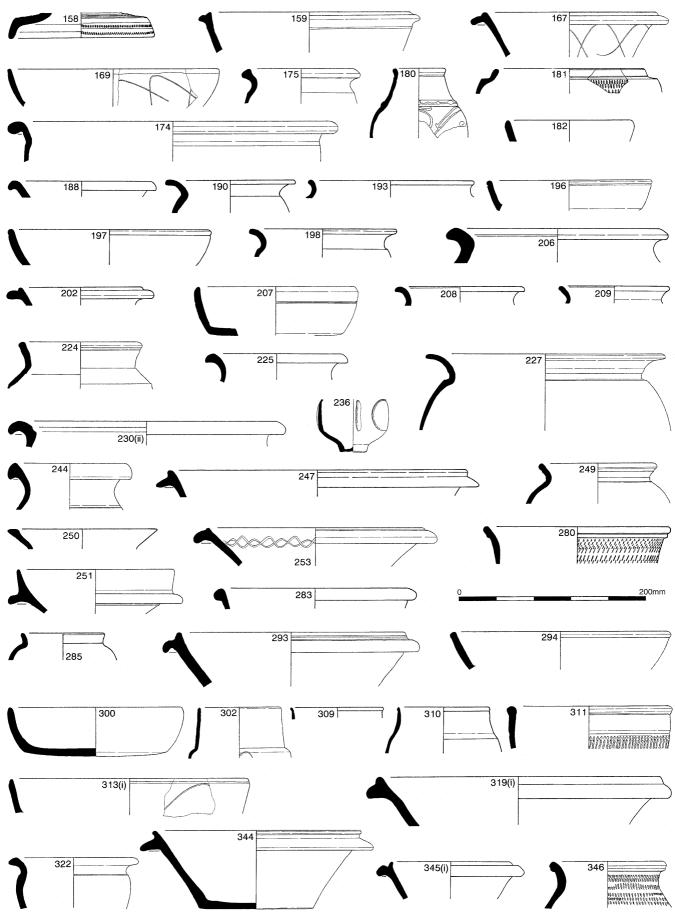


Figure 149 Catterick 1972 (Site 434) – Pottery from Area R

236

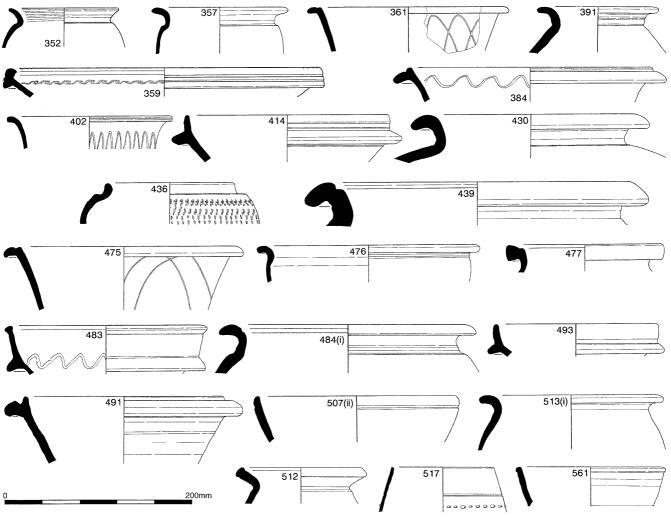


Figure 150 Catterick 1972 (Site 434) – Pottery from Area R

Area	Fabric	Forms
A	B4	M74, M81, M82(×2), M82/3, M85, M85A, M90, M91, M96A, M103, M107
	B16	M7
	B17	M17?
	B30	M26?
	C2	M115
	C5	M116
3	B4	M72(MS54), M76, M85, M87(×2)
	B8	M52
	B10	M28(MS32)
	B14	M4, M46A?
	B15	M9?
	B16	M10?, M20?, ??(MS33), ???(MS53)
	B33	M64F
a	D4	METT MAA MAAT MAET MILAN
С	B4	M71?, M94, M94?, M97?, M102?
	B5	M66?
	B8	M50
	B15	M28?
	B16	M2
	B17	M17(MS55), M46A
	B30	M115
	C9	M112A
D	B4	M73, M74, M75, M76, M80, M85(×2), M89?, M96, M103
	B7	M75, M74, M75, M76, M66, M65(×2), M692, M59, M105 M6, M66A, M74
	B8	M47, M49(\times 2), M50(\times 2), M51(\times 3)
	B9	M52, M52A, M60(\times 3), M61, M62
	B10	M28A
	B14	M112
	B16	M8, M11A, M23, M23A
	B21	M31
	B26	$M60(\times 3), M61A, M62(\times 2)$
	B28	M45A
	B37	M97
E	B4	M71, M72, M73(MS35), M73, M72/4, M83, M85, M87, M97?, M98(×3), M99,
	DŦ	M11, M12, M15(M555), M15, M12/4, M65, M65, M67, M57, M56(×5), M55, M166
	B6	M63A, M64?(\times 2), M64A, M64D
	B8	M48, M49, M58, M60A
	B8 B9	M48, M49, M58, M60A M52, M60(\times 6), M61, M62(\times 2)
	B9 B10	
		M32?
	B11	M40
	B12	M37, M46, M55?
	B16	M2(MS38), ??(MS37), ??(MS48)
	B17	M32(MS36)
	B26	M60(×8), M60?, M61, M62(×2)
	B31	M31B
	B33	$M60(\times 2)$
	C1	M111
	C6	M111A
	C9	M112C
F	₽ <i>1</i>	M05 M00
F	B4 B7	M95, M99 M68
	B7	M68
	B8	$M49(\times 2), M50(\times 6), M51(\times 3), M52(\times 2), M53, M60A$
	B9	$M52, M60(\times 2)$
	B12	$M40, M43(\times 2), M45, M46A, M47, M64$

Table 11Catterick Bypass and Catterick 1972 (Sites 433 and 434) – occurrence of mortariaforms (expressed as minimum number of vessels)

$K = \begin{bmatrix} M103 \\ M64 \\ B8 \\ M51 \\ B9 \\ M60(\times 9), M60B, M62 \\ B12 \\ M43, M45 \\ B16 \\ M17?, M21?, M22?, M28, ??(MS47), ??(MS57) \\ B26 \\ M60 \\ B29 \\ M67 \\ C4 \\ M112 \\ C10 \\ M111 \\ \end{bmatrix} \\ K = \begin{bmatrix} B4 \\ M67/8, M87, M94, M96, M101 \\ B6 \\ M64, M64?, M64A, M64B, M107 \\ B8 \\ M50(\times 6), M50A, M51(\times 6), M52(\times 2), M53, M60, M62(\times 2) \\ B9 \\ M60(\times 8), M62 \\ B11 \\ M61 \\ \end{bmatrix}$	Area	Fabric	Forms
B26 M417, M50?, M52 B36 M43, M43? G B1 M109A B4 M95 B6 M64 B8 M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A B9 M52, M58(×2), M60(×5), M61, M62(×3) B11 M45(×2), M46A2, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M50?, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(M542), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS43), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M96(×2), M B36 M50, M52 B6 B4 M69(X52), M100A, M101, M102? B6 M64A B8 B10 M23, M27/8 B12 B13 M43 M31A B33 M647 M544), ??(MS41), ??(MS43) B4 M735, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96(×2), M96, M20		B14	M28?
B34 M29? B36 M43, M43? G B1 M109A B4 M95 B6 M64 B8 M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A B9 M52, M58(×2), M60(×5), M61, M62(×3) B11 M45(×2), M46A2, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M50?, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46),M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M197(MS44), ??(MS41), ??(MS43) B26 M50, M60, M62 B33 M64F B34 M31A B36 M34?, M36? C1 M118 </td <td></td> <td></td> <td></td>			
G B1 M109A B4 M95 B6 M64 B8 M487, M49(×4), M50(×3), M507, M52(×3), M527, M55, M60, M60A B9 M52, M58(×2), M60(×5), M61, M62(×3) B11 M45(×2), M46A2, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M527, M60 B16 M9A, M28 B26 M50, M507, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(M542), M732, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M58, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M197(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M347, M367 C1 M118 C2 M115 C11 M117A J B4 M735, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96, M93 M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43, M45 B16 M17, M217, M227, M28, ??(MS47), ??(MS57) B26 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43, M45 B16 M177, M217, M227, M28, ??(MS47), ??(MS57) B26 M60 B10 M67(%, M87, M94, M96, M101 K B4 M67(%, M87, M94, M96, M101 B6 M64, M647, M64A, M64B, M107 B7 M60(×8), M62 B11 M61 K M64 M67(%, M87, M94, M96, M101 B6 M64, M642, M644, M64B, M107 B7 M60(×8), M62 B11 M61 K M64 M67(%, M87, M94, M96, M101 B6 M64, M642, M644, M64B, M107 B7 M60(×8), M62 B11 M61 K M64 M65(%, M87, M94, M96, M101 B6 M64, M64, M642, M644, M64B, M107 B7 M60(×8), M62 B11 M61 K M64 M61, M54 B11 M61 K M54 M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54, M54 B11 M61 K M54 M54, M54, M54, M54, M54, M54, M54,			
B4 M95 B6 M64 B8 M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A B9 M52, M58(×2), M60(×5), M61, M62(×3) B11 M45(×2), M463, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A M59, M52 B7 M60 M10 M99(×2), M100A, M101, M102? M60 B10 M23, M27/8 B12 M43 B14 M45 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M34, M35 B16 M117 <td></td> <td></td> <td>M43, M43?</td>			M43, M43?
B6 M64 B8 M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A B9 M62, M58(×2), M60(×5), M61, M62(×3) B11 M45(×2), M46A?, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M50?, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M56, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46),M74(×3), M74A, M76(MS29), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M9(×2), M100A, M101, M102? B6 M64A M59(×2), M100A, M101, M102? B6 M64A M64 B7 M60 M10 M23, M27/8 B12 M43 M64 M64 B8 M50 M62 M33 B16 M7, M12, M197(MS44), ??(MS41), ??(MS43) M64 B7 M46 M64 M64 B3 M61 M33 M64F B33 M64F M64 M64 </td <td>G</td> <td>B1</td> <td>M109A</td>	G	B1	M109A
B8 M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A B9 M52, M56(×2), M60, K5), M61, M62(×3) B11 M45(×2), M46A?, M54 B12 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M50?, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS99), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M B6 M64A B8 M50, M52 B7 M60 M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 M64 B10 M23, M27/8 M12 B12 M43 M64 B33 M64F M34 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) M51 B26 M53, M60 M62 B33 M64F M64 M64 B6		B4	M95
B9 M52, M56(x2), M60(x5), M61, M62(x3) B11 M45(x2), M46A?, M54 B12 M34, M38(x3), M39, M40(x2), M43(x3), M46A(x2), M46C, M52?, M60 B16 M9A, M28 B26 M50, M50?, M52(x2), M59, M60(x8), M62(x5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M704(MS42), M73?, M74(MS45), M74(MS46), M74(x3), M74A, M76(MS30), M76(x40), M76(x4), M78, M79(x3), M81, M88, M95(x2), M M99(x2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M34?, M36? C1 M118 C2 M115 C1 M118 C2 M115 C1 M117A J B4 M73/5, M74, M75, M76, M78, M82, M84(x2), M87(x2),		B6	M64
Bi1 M45(×2), M46A?, M54 Bi2 M34, M38(×3), M39, M40(×2), M43(×3), M46A(×2), M46C, M52?, M60 Bi6 M9A, M28 B26 M50, M50?, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS30), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M278 B12 M43 B12 M43 B14 M43 M64F B33 B26 M58, M60, M62 B33 M64F B34 M31A B36 M34, M36? C1 M118 C2 M115 C3 M115 C11 M117A J B4 M73/5, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96, M96, M101 G2 M115 G3 M61 B5 M60(×9), M60B, M62 <th< td=""><td></td><td></td><td>M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A</td></th<>			M48?, M49(×4), M50(×3), M50?, M52(×3), M52?, M55, M60, M60A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
B16 M9A, M28 B26 M50, M507, M52(×2), M59, M60(×8), M62(×5) B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M342, M36? C1 M118 C2 M115 C3 M115 C3 M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43, M45 B16 M17X, M21?, M22?, M28, ??(MS47), ??(MS57) B26 B16 M172, M21?, M22?, M28, ??(MS47), ??(MS57) B26 B29 M607 M44 M61 B20			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
B33 M46A, M58, M64E B36 M35, M37, M40, M46B B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46),M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M34?, M36? C1 M118 C2 M115 C3 M115 C11 M117A J B4 M73/5, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96, M93 B6 M64 B8 M51 B9 M60(×8), M60B, M62 B12 M43, M45 B16 M17, M221, M227, M28, ??(MS47), ??(MS57) B26 M60 B29 M67 M64 B8 M51 B4 M67/8, M87, M94, M96, M101 B29 M60			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
B37 M60 C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46),M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 B7 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M34?, M36? C1 M118 C2 M115 C31 M117A J B4 M73/5, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96, M99 M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43, M45 B16 M172, M227, M28, ??(MS47), ??(MS57) B26 M60 B29 M67 C4 M112 C10 M111 K B4 M67/8, M87, M94, M96, M101			
C7 M114 H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46), M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M34?, M36? C1 M118 C2 M115 C3 M115 C11 M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43 B1 M117 M118 M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 B12 M43, M45 B16 M17?, M21?, M22?, M28, ??(MS47), ??(MS57) B26 M60 B9 M60(×9), M60B, M62 B12 M43 M45 B16 M17?, M21?, M22?, M28, ??(MS47), ??(MS57) B26 M60			
H B4 M68, M70A(MS42), M73?, M74(MS45), M74(MS46),M74(×3), M74A, M76(MS39), M76(MS40), M76(×4), M78, M79(×3), M81, M88, M95(×2), M M99(×2), M100A, M101, M102? B6 M64A B8 M50, M52 B9 M60 B10 M23, M27/8 B12 M43 B16 M7, M12, M19?(MS44), ??(MS41), ??(MS43) B26 M58, M60, M62 B33 M64F B34 M31A B36 M30? C1 M118 C2 M113 C3 M115 C3 M103 B6 M60 M60 M61 M103 B6 M64 M60 B12 M43, M45 M103 B6 M64 B7 M03, M27, M36? M103 B6 M64 B8 M51 B9 M60(×9), M60B, M62 M12 B12 M43, M45 M16 M111 M27, M27, M28, ??(MS47), ??(MS57) M26 B29 M67 M60 M29 M60 M29 M60 B29 M67 M21			
$M76(MS39), M76(MS40), M76(\times 4), M78, M79(\times 3), M81, M88, M95(\times 2), MM99(\times 2), M100A, M101, M102?B6M64AB8M50, M52B9M60B10M23, M27/8B12M43B16M7, M12, M19?(MS44), ??(MS41), ??(MS43)B26M58, M60, M62B33M64FB34M31AB36M34?, M36?C1M118C2M115C8M115C11M117AJB4M73/5, M74, M75, M76, M78, M82, M84(\times 2), M87(\times 2), M95(\times 2), M96, M94M103B6M64B8M51B9M60(\times 9), M60B, M62B12M43, M45B16M17?, M21?, M22?, M28, ??(MS47), ??(MS57)B26M60B29M67C4M112C10M111KB4M67(8, M87, M94, M96, M101B6M64(\times 8), M62B12M43, M45B16M17?, M21?, M22?, M28, ??(MS47), ??(MS57)B26M60B29M67C4M112C10M111KB4M67(S, M87, M94, M96, M101B6M64(\times 8), M62B11M61$		07	M114
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	B4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C2	M115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			M115
$K = \begin{bmatrix} M103 \\ M64 \\ B8 \\ M51 \\ B9 \\ M60(\times 9), M60B, M62 \\ B12 \\ M43, M45 \\ B16 \\ M17?, M21?, M22?, M28, ??(MS47), ??(MS57) \\ B26 \\ M60 \\ B29 \\ M67 \\ C4 \\ C10 \\ M111 \\ K \end{bmatrix} \\ K = \begin{bmatrix} B4 \\ M67/8, M87, M94, M96, M101 \\ B6 \\ M64, M64?, M64A, M64B, M107 \\ B8 \\ M50(\times 6), M50A, M51(\times 6), M52(\times 2), M53, M60, M62(\times 2) \\ B9 \\ M60(\times 8), M62 \\ B11 \\ M61 \\ \end{bmatrix} $		C11	M117A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J	B4	M73/5, M74, M75, M76, M78, M82, M84(×2), M87(×2), M95(×2), M96, M99?,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D 4	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
B26 M60 B29 M67 C4 M112 C10 M111 K B4 M67/8, M87, M94, M96, M101 B6 M64, M64?, M64A, M64B, M107 B8 M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2) B9 M60(×8), M62 B11 M61			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
C4 M112 C10 M111 K B4 M67/8, M87, M94, M96, M101 B6 M64, M64?, M64A, M64B, M107 B8 M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2) B9 M60(×8), M62 B11 M61			
C10 M111 K B4 M67/8, M87, M94, M96, M101 B6 M64, M64?, M64A, M64B, M107 B8 M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2) B9 M60(×8), M62 B11 M61			
B6M64, M64?, M64A, M64B, M107B8M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2)B9M60(×8), M62B11M61			
B6 M64, M64?, M64A, M64B, M107 B8 M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2) B9 M60(×8), M62 B11 M61	к	B4	M67/8 M87 M94 M96 M101
B8 M50(×6), M50A, M51(×6), M52(×2), M53, M60, M62(×2) B9 M60(×8), M62 B11 M61			
B9 M60(×8), M62 B11 M61			
B11 M61			
		B12	M34, M38, M39, M42/3, M43, M44, M46A, M52, M55
B16 ??(MS49)			
B18 M12?			
B26 M50, M60(×2), M62		B26	M50, M60(×2), M62

B29	M42/3
B33	M64F
B36	M56
B4	M70?, M73, M74, M76(×3), M82, M82A, M83, M102
B8	M50, M61
B11	??(MS50)
B12	M44
B26	M62
B28	M46
C9	M112A, M112B
B4	M71(MS51), M76, M79, M83
B6	M64C
B4	M70(MS52), M74(×3), M76(×4), M77, M78(×3), M82, M84, M85, M87, M88,
	M89, M99, M102, M105
B8	M54
B11	M43
B12	M51?, M54
B32	M74
C2	M115
B4	M88A, M104, M107?
	M65A(MS62)
	M62
	M60(×3)
	M35A?
	M45?, M46A
	M17, M28
B36	M46A, M88A, M104, M107?
B4	M81, M97, M100
	M64, M96
	M27?
	M43
	M2/4, M26?
B26	M51
B4	M71?, M85B, M89, M101, M102, M105, M105?
	M50
	$M60(\times 2)$
B16	M24?
B36	M43
	B36 B4 B8 B11 B12 B26 B28 C9 B4 B6 B4 B6 B4 B8 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B16 B36 B4 B8 B10 B11 B16 B26 B4 B8 B9 B11 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B12 B12 B32 C2 B4 B5 B8 B9 B11 B12 B12 B12 B12 B12 B12 B12 B12 B12

Table 12	Bainesse (Site 46) – fabric
proportion	ns by phase

proportions by phase					Fabric Proportions				
		* – intrusive		Phase Fabric Sherd % Nos Wt %					
Phase	Fabric	Fabric Propo Sherd % Nos	rtions Wt %	RE %		W4A TOTALS	$\begin{array}{c} 0.8\\ 254\end{array}$	0.4 4503g	0.0 686%
2	CRH	9.5	4.2	0.0			-	0	
	NV*	4.8	0.4	0.0					
	R1	9.5	4.2	0.0	3-4	B1	16.7	5.4	0.0
	R1B	19.0	2.1	0.0		\mathbf{CGS}	5.6	3.3	10.3
	R1D	14.3	18.6	31.7		MB15	5.6	67.9	28.2
	R2	14.3	34.3	12.7		MV	11.1	1.3	0.0
	R3B	9.5	5.1	0.0		O3A	5.6	1.0	0.0
	R12	4.8	11.0	33.3		019	5.6	5.1	0.0
	\mathbf{SG}	9.5	0.8	0.0		R1	11.1	2.3	0.0
	W6	4.8	19.1	22.2		R1B	11.1	2.6	0.0
	TOTALS		236g	63%		R4	5.6	0.3	0.0
-						R12	5.6	0.5	28.2
						R12B	5.6	2.3	0.0
3	A1	1.2	6.7	0.0		\mathbf{SG}	5.6	1.5	0.0
5	A1?	0.4	2.4	0.0		W4A	5.6	6.4	33.
	A7	2.4	6.8	0.0		TOTALS	18	389g	39%
	BB1	6.3	5.2	3.9				8	,
	CGS	1.6	0.2 0.4	2.5					
	EG	0.4	0.4	1.2	4	A1	3.7	22.9	0.0
	01	0.8	$0.5 \\ 0.5$	0.0	-	A1?	0.7	1.3	0.0
	01A	5.1	7.2	8.6		BB1	12.8	12.6	13.2
	01A 02	0.8	0.2	0.0		BB1?	0.4	0.5	0.0
	O2 O2A		0.2 6.1	0.0 14.6		CGS	7.3	2.7	3.0
	O2A O3B	$\begin{array}{c} 2.8\\ 1.2 \end{array}$	0.1 1.1	2.6		CRH	1.1	0.3	5.8
	O3D O3C	0.4	0.1	2.0 0.0		EG	0.4	0.5	1.5
						MB13	0.4	0.2 4.4	0.0
	O4A	0.8	2.4	0.0		MB15 MB15	0.4	4.4	0.4
	O4B	2.4	2.5	2.9		MD15 MV	0.4 0.7	0.5	0.4
	O4C	5.9	2.0	0.0		NV	1.5	0.1	0.0
	05	0.8	1.4	1.5					
	06	0.4	0.4	0.0		O1A	0.7	0.4	0.0
	06?	0.4	0.1	1.2		02 02B	11.0	10.1	22.2
	08?	1.2	0.9	1.3		O3B	0.4	0.4	0.0
	010	4.3	5.5	9.5		O3C	1.1	0.4	0.0
	010A	1.2	1.2	0.0		05	1.1	0.7	1.0
	012	0.4	0.4	0.0		06	0.4	0.4	0.0
	021A	2.4	0.5	0.6		O6?	0.4	0.4	0.0
	R1	12.6	12.5	20.8		08	0.4	1.7	4.5
	R1A	5.1	3.0	0.0		O10A	0.4	0.9	4.4
	R1B	10.2	4.3	4.4		011	0.7	0.4	0.0
	R1C	0.4	0.5	0.0		011?	0.4	0.6	1.4
	R1D	5.9	6.8	2.0		019	0.4	0.2	0.0
	R2	1.2	0.8	1.3		O23?	0.4	0.1	2.0
	R3	0.8	1.0	0.0		R1	14.3	8.0	3.2
	R5	2.0	1.7	0.0		R1A	0.7	1.2	0.0
	R6A	0.8	1.6	0.0		R1B	9.2	8.3	8.4
	$\mathbf{R7}$	0.4	0.9	2.6		R1B?	1.8	1.3	2.2
	R8?	2.0	1.8	0.0		R1D	8.8	5.5	9.
	R12	2.4	1.2	3.9		R2	3.3	2.5	2.
	R12A	2.4	1.5	0.0		R2?	0.7	0.9	5.4
	R12C	0.8	0.4	0.0		R3	1.1	0.6	0.0
	\mathbf{SG}	2.0	0.5	0.0		R3B	3.7	3.2	0.
	W2	5.9	6.7	14.6		R7?	0.4	1.6	0.4
	W3	0.8	0.1	0.0		R12	0.7	0.3	0.0
						D10A	<u> </u>	1.2	0.0
	W4	0.4	0.3	0.0		R12A	3.3	1.4	0.0

Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %					Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %				
<u>iuse</u>		u // 1105				u // 1105			
	R12C	2.2	1.6	3.8	CRH	0.5	0.2	2.5	
	\mathbf{SG}	1.1	0.2	0.0	\mathbf{EG}	0.4	0.3	2.0	
	W2	0.4	0.0	0.0	MB4	0.3	1.2	1.2	
	W4	0.4	0.4	0.0	MB13	0.1	1.5	2.3	
	W4A	0.4	0.8	0.0	MB16	0.5	2.5	1.5	
	W5	0.4	0.1	0.0	MC5	1.5	7.1	1.6	
	TOTALS	273	5671g	501%	MV	2.2	0.7	2.2	
	1011110	210	00119	001/0	NV	1.0	0.3	0.4	
					01	0.3	0.1	0.0	
Pro 5	R1C	100.0	100.0	100.0	01A	0.9	0.1	0.0	
1160	TOTALS	100.0	69g	100.0	01A 02	2.5	0.5 1.4	5.0	
	IUIALS	T	69g	10%	02 02?				
						0.2	0.1	0.0	
~ ~	D1	00 F	60 0	100.0	O2A	0.4	0.3	0.0	
	R1	66.7	68.2	100.0	O2B?	0.1	0.2	0.0	
	R3	33.3	31.8	0.0	O3A	0.6	0.3	0.2	
	TOTALS	3	22g	11%	O3B	0.2	0.0	0.0	
					O3C	0.6	0.4	0.9	
					O4A	0.3	0.2	0.0	
3-5	A1	1.4	62.8	0.0	O4B	0.9	0.7	1.0	
	BB1	8.7	5.1	0.0	O4C	0.3	0.1	0.0	
	CGS	1.4	0.1	0.0	O5	1.8	0.9	0.3	
	O3A	2.9	0.6	0.0	O6	0.1	0.0	0.0	
	O4B?	1.4	0.3	0.0	O6?	0.3	0.2	0.0	
	05?	8.7	1.1	0.0	08	0.1	0.0	0.0	
	010A	1.4	1.7	0.0	010	1.0	0.7	2.8	
	R1	8.7	2.3	0.0	010 010?	0.1	0.1	0.0	
	R1B	2.9	2.5 0.6	0.0	010.	0.1	0.1	0.0	
					012 012A?				
	R1D	13.0	3.1	0.0		0.1	0.0	0.6	
	R2	7.2	6.7	0.0	019	0.2	0.0	0.0	
	R2?	1.4	2.5	6.2	019?	0.1	0.1	0.4	
	R3	26.1	7.4	42.3	O21A?	0.1	0.1	0.4	
	R3B	1.4	0.9	2.1	R1	15.5	7.6	15.9	
	R6?	1.4	0.4	0.0	R1?	0.2	0.2	1.0	
	R12	2.9	2.0	49.5	R1A	2.1	1.0	2.0	
	R12A	2.9	0.5	0.0	R1A?	0.2	0.1	0.0	
	R12B	2.9	1.1	0.0	R1B	4.2	3.3	2.7	
	R12C	1.4	0.2	0.0	R1B?	0.8	0.5	0.9	
	SG	1.4	0.6	0.0	R1C	1.4	1.4	0.0	
	TOTALS	69	$2150 \mathrm{g}$	97%	R1C?	0.1	0.1	0.3	
			C		R1D	5.7	3.8	5.6	
					R1D?	1.5	0.9	0.0	
4-5	CGS	22.2	8.5	0.0	R1R?	0.1	0.0	0.0	
-	MB16	11.1	9.4	0.0	R2	7.1	6.9	11.0	
	O1A	11.1	13.2	0.0	R2?	0.5	0.3	2.9	
	R1?	11.1	$\frac{13.2}{38.7}$	100.0	R3	0.6	0.3	0.0	
	R1B	22.2	5.7	0.0	R3?	0.0	0.4	0.6	
	SG	22.2 22.2	24.5	0.0	R3P R3B	0.2 1.4	$0.1 \\ 2.4$	1.6	
	TOTALS	9	106g	11%	R5	1.3	0.6	0.4	
					R5?	0.1	0.1	0.0	
_	0			0.5	R6	0.1	0.1	0.0	
5	?	0.1	0.0	0.0	R6?	0.1	0.1	0.0	
	A1	2.8	17.8	1.5	R7	0.4	0.2	0.9	
	A1?	1.2	0.3	0.0	R8	0.2	0.1	0.0	
	A2	6.1	17.9	0.0	R12	1.1	0.8	2.2	
	BB1	15.7	7.6	12.1	R12A	0.3	0.2	0.8	
	BB1?	0.2	0.1	0.6	R12A?	0.4	0.1	0.0	

Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %					Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %				
muse									
	R12C	1.1	0.6	3.0	MV	0.5	0.2	0.4	
	\mathbf{SG}	1.8	0.8	0.9	NV	1.4	0.5	0.8	
	W3	0.4	0.4	0.0	NV?	0.1	0.0	0.0	
	W4	0.4	0.2	1.3	01	0.3	0.3	2.6	
	W4A	0.3	0.1	0.9	01?	0.0	0.2	0.0	
	W6	0.1	0.0	0.0	O1A	0.3	0.1	0.0	
	TOTALS	981	25893g	1994%	O1B	0.0	0.0	0.0	
	TOTALO	501	20050g	100470	O1B?	0.1	0.0	0.0	
					O1D	0.0 1.9	0.8	0.0	
3-6	BB1	28.6	79.3	0.0	02 02?	0.2	0.8 0.2	0.9 1.9	
5-0									
	R12B	71.4	20.7	0.0	O2B?	0.0	0.0	0.0	
	TOTALS	7	$29 \mathrm{g}$	0%	03	0.0	0.0	0.4	
					O3A	0.4	0.1	0.4	
					O3A?	0.1	0.0	0.3	
5-6	A1	4.2	7.3	0.0	O3B	0.4	0.3	0.6	
	BB1	12.5	9.7	12.8	O3B?	0.2	0.1	0.0	
	\mathbf{CGS}	8.3	1.9	0.0	O3C	0.1	0.0	0.0	
	01	4.2	6.7	0.0	O4?	0.0	0.1	0.0	
	O3C	4.2	7.5	0.0	O4A	0.3	0.3	0.5	
	O4B	4.2	8.6	0.0	O4B	1.2	1.2	0.4	
	R1	25.0	28.0	23.1	O4B?	0.2	0.1	0.0	
	R1?	4.2	4.0	6.4	O4C	0.1	0.0	0.0	
	R1B?	25.0	21.0	35.9	O4D?	0.0	0.0	0.0	
	R1D	4.2	2.4	0.0	05	0.4	0.3	0.5	
	R12A	4.2	3.0	21.8	06	0.4	0.2	0.0	
	TOTALS	24	372g	78%	O6?	0.4	0.2	0.0	
	TOTALO	24	012g	1070	00?	0.2	0.0	0.0	
					07.	0.0	0.0	0.0	
C		0.2	0.0	0.2	08 08?	$0.3 \\ 0.2$	0.3 0.1		
6	A 1							0.1	
	A1	7.3	25.3	0.0	09	0.1	0.1	0.2	
	A1?	0.2	0.1	0.0	010	1.6	0.9	0.7	
	A2	0.5	4.7	0.0	O10?	0.4	0.3	2.1	
	A2?	0.2	1.5	0.0	O10A	0.0	0.0	0.0	
	A3	0.4	0.8	0.0	011	0.2	0.1	0.0	
	A3?	0.2	0.3	0.0	011?	0.1	0.0	0.0	
	A9	0.0	0.1	0.8	012	0.1	0.0	0.2	
	BB1	18.8	13.1	18.1	O12?	0.0	0.0	0.0	
	BB1?	0.8	0.6	0.9	017	0.0	0.0	0.0	
	С	0.1	0.0	0.0	019	0.2	0.1	0.0	
	C?	0.0	0.0	0.0	O20A	0.2	0.6	0.0	
	\mathbf{CG}	0.1	0.0	0.0	O21A	0.1	0.0	0.0	
	CGS	9.1	5.4	10.6	O23?	0.1	0.0	0.1	
	CRH	0.2	0.1	0.6	R1	14.0	8.1	9.4	
	EG	0.5	0.3	0.2	R1?	0.1	0.1	0.0	
	MB1?	0.0	0.2	0.0	R1A	1.1	0.4	0.4	
	MB4	1.1	3.6	1.9	R1A?	0.1	0.1	0.5	
	MB4?	0.0	0.0	0.1	R1B	4.3	3.0	5.9	
	MB4. MB7	0.0	0.0	0.0	R1B?	4.0 0.6	0.8	1.2	
	MB15	0.0	0.1	0.0	R1D. R1C	0.6	0.5	0.0	
	MB15 MB16	0.0	1.8	$0.0 \\ 0.7$	R1C?	0.0	$0.5 \\ 0.1$	0.0	
	MB17	0.1	0.7	0.4	R1D	9.9	7.8	10.1	
	MB19	0.1	0.6	0.3	R1D?	0.4	0.3	0.8	
	MB19?	0.0	0.2	0.0	R2	4.6	2.8	4.6	
	MB21	0.0	0.2	0.3	R2?	0.4	0.3	0.2	
	MB23	0.1	0.5	0.4	R2A?	0.1	0.0	0.0	
	MC1	0.0	0.1	0.0	R3	0.7	0.5	1.8	
	MC4	0.0	0.2	0.1	R3?	1.0	0.5	0.0	

Fabric Proportions					Fabric Proportions				
Phase Fabric Sherd % Nos Wt % RE %					Phase Fabric Sherd % Nos Wt % RE %				
	R3B	0.2	0.2	0.8	CGS	9.0	4.8	15.5	
	R4	0.0	0.0	0.0	CGS/EG	0.2	0.2	0.0	
	R5	0.3	0.5	0.5	CRH	0.1	0.0	0.0	
	R5A	0.0	0.0	0.1	EG	1.3	1.3	0.9	
	R6	$0.0 \\ 0.2$	0.2	0.0	MB1	0.2	0.1	0.0	
	R6?	0.1	0.2	0.0	MB4	0.8	4.0	2.4	
	R6A	0.0	0.1	0.0	MB4 MB15	0.0	4.0 0.1	0.0	
	R6A?		0.0	0.0	MB15 MB16	0.1	0.1	0.0	
		0.1							
	R7	1.1	0.8	0.4	MB17	0.3	3.8	0.2	
	R7?	0.3	0.2	0.1	MB19	0.1	0.5	0.7	
	R8	0.4	0.3	0.3	MC2	0.1	0.6	0.5	
	R8A	0.0	0.0	0.2	MV	0.3	0.0	0.0	
	R12	0.3	0.2	0.5	NB?	2.8	0.7	0.0	
	R12A	0.5	0.2	0.5	NV	2.2	0.7	1.6	
	R12A?	0.0	0.0	0.3	01	0.2	0.3	0.5	
	R12B	1.6	0.9	2.5	O1A	0.4	0.2	0.0	
	R12B?	0.0	0.0	0.0	O1A?	0.1	0.0	0.0	
	R12C	1.5	0.9	1.9	02	1.7	1.0	0.5	
	R12C?	0.2	0.1	0.0	O2?	0.4	0.2	0.0	
	R19	0.0	0.0	0.0	O3A	0.3	0.3	4.1	
	SG	$0.0 \\ 0.5$	0.5	$0.0 \\ 0.2$	O3A?	0.1	0.0	0.0	
	SG/CGS/EG		0.0	0.2	O3B	0.1	0.0	0.0	
		0.1	0.0		O3B?	0.2 0.2	0.1		
	W2			1.8				0.3	
	W4	0.4	0.2	3.7	O4A	0.5	0.5	0.1	
	W4?	0.0	0.0	0.0	O4B	0.9	0.6	0.6	
	W4A	0.2	0.1	2.0	O4B?	0.3	0.2	0.0	
	W4A?	0.0	0.0	0.1	05	0.7	0.2	0.0	
	W5	0.1	0.0	0.3	O5?	0.1	0.0	0.0	
	TOTALS	3316	66920g	5701%	O6?	0.1	0.1	0.0	
					08	0.3	0.2	0.1	
					O8?	0.1	0.0	0.0	
Pre 6/7	7 MV	50.0	8.3	0.0	O10	0.8	0.9	0.4	
	R8?	50.0	91.7	0.0	O10?	0.3	0.4	0.0	
	TOTALS	2	12g	0%	011	0.1	0.1	0.0	
			0		O11?	0.1	0.0	0.0	
					012	0.1	0.0	0.5	
Pre 7	A1	16.7	63.2	0.0	012?	0.1	0.0	0.0	
	MB8	41.7	24.9	58.8	012A	0.1	0.1	0.8	
	R1C?	33.3	8.3	0.0	012A	0.1	0.1	0.0	
	R7?	8.3	3.6	41.2	019	0.1	0.0	0.0	
	TOTALS	$\frac{0.3}{12}$	551g	17%	R1	17.1	0.0 14.9	16.7	
	TOTAD	14	oorg	1170	R1	17.1 1.1	14.9 0.6	16.7 0.4	
0 -	00	0.0	0.1	0.0	R1A	3.4	1.4	1.7	
6-7	??	0.2	0.1	0.2	R1A?	0.1	0.0	0.0	
	A1	2.1	17.7	3.5	R1B	4.5	4.0	6.6	
	A1?	0.4	4.2	0.0	R1B?	0.3	0.3	1.0	
	A2	0.1	1.1	0.0	R1C	1.3	1.5	0.0	
	A2?	0.1	0.2	0.0	R1C?	0.1	0.0	0.0	
	A3	0.1	0.1	0.0	R1D	5.2	2.4	1.9	
	B1B	0.6	0.3	0.0	R1D?	4.2	3.6	6.6	
	BB1	17.6	10.7	13.5	R2	2.5	2.4	3.5	
	BB1?	0.6	0.3	0.9	R2?	0.7	0.5	0.0	
	BB2	0.3	0.3	1.3	R2A	0.1	0.1	0.5	
	BB2?	0.0	0.0	0.0	R2A?	0.2	0.1	0.0	
	C C	0.1	0.0	0.0	R3	0.1	0.1	0.0	
	CG	0.1	0.0	0.0	R3?	0.1	0.1	0.0	
	CG?								
	UU:	0.1	0.0	0.0	R3B	0.1	0.1	0.0	

Table 12 contd

	Fabric Proportions					Fabric Proportions					
hase	Fabric She			E %	Phase Fabric Sherd % Nos Wt % RE %						
	_										
	R4	0.1	0.1	0.2		TOTALS	34	$247 \mathrm{g}$	61%		
	R5	0.9	0.7	1.1							
	R5?	0.3	0.3	0.2							
	R6	0.9	1.7	1.1	7c	??	0.5	0.2	0.0		
	R6?	0.7	0.6	0.0		A1	0.5	0.3	0.0		
	R6A	0.3	0.3	0.0		BB1	6.8	9.2	10.1		
	R6A?	0.1	0.1	0.0		BB1?	0.9	0.6	2.1		
	R7	1.0	1.0	0.5		BB2	0.9	1.2	3.2		
	R7?	1.2	0.8	1.0		BB2?	0.5	1.2	0.0		
	R8	0.3	0.1	0.7		CGS	11.9	10.9	12.0		
	R12	0.3	0.2	1.5		CRH	0.5	0.1	0.0		
	R12 R12A	0.3	0.2	0.6		EG	1.4	1.3	0.0		
	R12B	0.9	0.9	1.4		MB4	0.9	4.3	3.4		
	R12B?	0.8	0.5	2.0		MB24	1.8	8.2	0.9		
	R12C	1.1	0.7	1.1		MV	0.5	0.1	0.0		
	RB?	0.5	0.8	0.0		NV	5.9	5.5	4.7		
	\mathbf{SG}	0.5	0.2	0.0		O2	2.3	1.1	4.9		
	W2	0.1	0.1	0.0		O6	0.5	0.1	0.0		
	W2?	0.2	0.1	0.0		O10	1.8	1.3	0.0		
	W3	0.1	0.2	0.0		R1	12.3	8.4	2.6		
	W4?	0.1	0.0	0.0		R1A	3.7	4.7	2.1		
	W4A	0.2	0.0	0.0		R1B	1.8	2.8	5.8		
	W4A?	0.1	0.0	0.0		R1B?	1.8	0.7	0.0		
	W6	0.1	0.0	0.0		R1C	2.7	3.7	0.0		
	W6?	0.1	0.0	0.0		R1D	18.3	17.1	14.4		
	TOTALS	1494		2847%		R1D?	0.9	0.7	0.0		
	IUIALS	1494	33491g	204170							
						R2	0.9	1.1	2.8		
_		0.0				R3?	0.5	0.1	0.0		
7a	A1	3.0	37.0	0.0		R8A	1.8	2.3	10.7		
	BB1	27.3	29.8	35.0		R12B	0.5	0.3	0.0		
	011?	6.1	1.7	0.0		R12B?	0.9	0.4	0.0		
	R1	33.3	12.0	30.1		R12C	11.4	6.6	3.4		
	R1D	3.0	1.6	0.0		R12C?	2.7	1.9	11.2		
	R2	9.1	8.1	14.6		\mathbf{SG}	0.5	0.0	0.0		
	R2?	9.1	4.6	8.7		W2?	0.9	3.4	6.0		
	R3?	3.0	1.7	0.0		W4	0.5	0.2	0.0		
	R7?	3.0	2.6	11.7		W4A	0.5	0.2	0.0		
	SG	3.0	1.0	0.0		TOTALS	219	3757g	535%		
	TOTALS	33	702g	103%		TOTALD	215	orong	000 //		
	IOIALO	00	104g	100/0							
					7	??	0.3	0.1	0.2		
7b	??	2.9	0.0	0.0	1						
10			9.3			A1	2.6	18.5	3.4		
	A1?	5.9	10.5	0.0		A1?	0.2	0.7	0.0		
	BB1	11.8	16.6	0.0		A2	0.6	5.1	0.0		
	CGS	5.9	6.5	9.8		A2?	0.1	0.3	0.0		
	NV	2.9	0.8	13.1		A3?	0.1	0.2	0.0		
	NV?	5.9	4.5	0.0		A5?	0.1	0.0	0.0		
	O2	2.9	3.6	0.0		BB1	10.2	6.3	8.3		
	O4?	2.9	4.9	0.0		BB1?	0.9	0.3	0.3		
	R1	29.4	18.6	16.4		BB2	0.3	0.3	1.0		
	R1B	2.9	3.2	18.0		CG	0.2	0.0	0.0		
	R1C	$2.0 \\ 2.9$	2.4	0.0		CGS	17.9	9.7	13.1		
	R10 R1D?	$\frac{2.9}{5.9}$	6.5	0.0		CGS/EG	0.2	0.1	0.0		
	R1D: R2	5.9 5.9	0.5 4.5	0.0 9.8		EG	$\frac{0.2}{2.9}$	0.1 2.9	2.1		
	к2 R3?										
		5.9	3.6	0.0		MB4 MB10	0.9	7.4	3.0		
	R5 R12A	$\begin{array}{c} 2.9 \\ 2.9 \end{array}$	$\begin{array}{c} 2.8\\ 1.6\end{array}$	$\begin{array}{c} 0.0\\ 32.8\end{array}$		MB10 MB15	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	$\begin{array}{c} 1.1 \\ 0.3 \end{array}$	0.9 0.0		

-													
-			Fabric Proportions hase Fabric Sherd % Nos Wt % RE %					Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %					
-													
-	MB16	0.6		1.9	1.1		R12	0.2	0.1	0.0			
	MB16?	0.1		0.2	0.3		R12A	1.2	0.5	0.8			
	MB20	0.1		0.8	0.2		R12A?	0.1	0.2	0.3			
	MC3	1.1		1.1	0.8		R12B	0.9	0.6	1.8			
	MV	0.2		0.0	0.0		R12B?	0.1	0.0	0.0			
	NV	1.9).6	3.0		R12D. R12C	1.6	0.6	0.8			
	01	1.9).4			R12C?		0.0	0.0			
	01A				2.0		SG	$\begin{array}{c} 0.1 \\ 1.2 \end{array}$					
		0.4		0.2	1.8				0.3	0.8			
	O1D	0.2		0.0	0.0		SG/CGS/EG		0.0	0.0			
	02	1.7		1.0	3.6		W2	0.2	0.2	0.0			
	O2A	0.1		0.1	2.9		W4	0.1	0.2	1.1			
	O3A	0.1		0.2	0.2		W4A	0.1	0.1	2.9			
	O3B	0.1		0.0	0.0		W6	0.1	0.0	0.0			
	O3B?	0.1		0.0	0.0		TOTALS	1391	$31781 \mathrm{g}$	3484%			
	O3C?	0.1	(0.0	0.0								
	O4A	0.1	(0.0	0.0								
1	O4A?	0.1	(0.0	0.0	Pre 8	R1?	100.0	100.0	0.0			
1	O4B	0.1	(0.2	0.0		TOTALS	2	$1 \mathrm{g}$	0%			
	O4B?	0.2	(0.5	0.0				-				
i i	O5	0.3	(0.1	0.1								
	O6	0.1		0.0	0.0	4-8	A1	4.5	35.9	0.0			
	06?	0.1		0.0	0.0		CGS	4.5	0.6	0.0			
	08?	0.1		0.0	0.0		02	4.5	13.3	0.0			
	09A	0.1).1	0.0		08	54.5	30.3	75.9			
	010	1.6		0.7	0.4		O10	4.5	13.1	0.0			
	010?	0.1		0.0	0.0		R1	4.5	1.8	0.0			
	010. 010A	0.1).0).1	0.0		R1?	4.5	0.3	20.3			
	0101	0.1		0.0	0.0		R1A?	4.5	0.5	20.0			
	011?	0.1		0.0 0.0	0.0		R1A:	4.5 4.5	0.5 1.9	0.0			
	017).0).1	0.0 0.5		R2A?	4.5 4.5	0.3				
		0.1								0.0			
	019	0.2		0.1	0.0		R7?	4.5	2.0	3.8			
	O20A	0.1		0.0	0.3		TOTALS	22	791g	79%			
	O21A	0.3		0.1	0.0								
	R1	8.9		4.3	8.3	-	00	0.4		0			
	R1?	0.1		0.0	0.0	7-8	??	0.4	0.2	0.0			
	R1B	7.0		7.6	5.4		A1	2.1	11.4	0.0			
	R1B?	1.4		0.6	1.7		A1?	0.2	0.3	0.0			
	R1C	1.6		2.1	2.9		A2?	0.2	0.3	0.0			
	R1C?	1.6		0.1	0.6		BB1	16.7	16.5	17.			
	R1D	8.8		4.8	8.2		BB1?	1.7	1.9	0.0			
	R1D?	0.4		0.2	0.0		BB2	0.2	0.3	0.0			
	R2	3.0		3.2	2.9		BB11	0.2	0.0	0.0			
	R2?	0.2		0.1	0.7		С	0.2	0.1	2.			
	R2A?	0.1		0.1	0.4		\mathbf{CG}	0.4	0.0	0.0			
	R3	0.8		0.6	0.2		\mathbf{CGS}	5.0	1.2	3.4			
	R3?	0.4	(0.2	0.3		\mathbf{EG}	1.0	1.9	0.4			
	R4	0.3		0.6	1.3		MB4	1.3	5.4	5.8			
	R5	1.2		1.1	1.1		MB13	0.2	0.5	0.0			
	R5?	0.1		0.0	0.0		MB16	0.2	0.6	0.4			
	R6	0.3		0.8	0.0		MV	0.2	0.0	0.0			
	R6?	0.1		0.0	0.0		NV	4.8	2.2	6.4			
	R6A	4.0		3.1	6.0		NV?	0.6	0.1	0.			
	R7	2.9		4.6	1.3		01	$0.0 \\ 0.4$	0.0	0.			
	R7?	0.5		1.0).2	0.1		01?	0.4	0.0	0.0			
	R8	0.5		0.2	0.1		O1A	0.2 0.2	0.0	0.0			
	R8?	0.5).1	0.5		01 02	0.2	0.0	0.0			
	R8A	0.1).1).1	0.2 0.2		O2 O3A	0.6	0.4	0.0			

Table 12 contd

Fa nase Fabric S	abric Propo		Е %	Fabric Proportions Phase Fabric Sherd % Nos Wt % RE %					
lase rapric 5.	neru 70 mus	WU 70 IU.	E 70	<u>r nase</u>	rabric Sile			<u>XE %</u>	
O3A?	0.4	0.3	0.0		BB1	18.9	13.9	18.3	
O3B	1.2	0.5	0.0		BB1?	0.6	0.7	2.0	
O3B?	0.4	1.0	0.0		BB2	0.2	0.2	0.2	
O4B	0.2	0.6	3.6		BB2?	0.1	0.1	0.0	
01D	0.2	1.0	$5.0 \\ 5.7$		CG	0.3	0.0	0.4	
O5?	0.0	0.1	0.0		CG?	0.5	0.0	0.0	
O5: O6	0.2	0.1	0.0		CGS	6.9	0.0 3.9	4.3	
O6?	$0.4 \\ 0.2$	$0.3 \\ 0.1$	0.0		EG			4.c 0.2	
						0.5	0.3		
08?	0.6	0.4	0.0		MB4	1.1	3.8	4.6	
010	1.2	0.6	0.0		MB10?	0.1	0.1	0.0	
O10?	0.4	0.3	1.0		MB14	0.1	0.1	0.0	
011?	0.2	0.2	0.0		MB16	0.2	0.2	0.0	
O20A	0.2	0.1	0.0		MB17	0.2	1.1	1.0	
O31	0.6	0.4	1.1		MV	0.2	0.4	0.0	
R1	12.5	11.7	16.5		NV	1.9	0.9	2.0	
R1?	1.5	1.2	1.3		NV?	0.2	0.1	0.0	
R1A	2.3	1.3	1.7		NVW	0.1	0.3	0.0	
R1B	3.8	4.5	6.3		01	0.6	0.2	0.0	
R1B?	1.9	2.0	2.0		01?	0.1	0.1	0.0	
R1C	5.0	7.6	1.2		O1A	0.2	0.1	0.0	
R1C?	2.3	3.1	2.6		01A?	0.1	0.0	0.0	
R1D	1.9	1.3	0.0		02	1.1	0.6	3.8	
R1D?	0.6	0.8	1.3		02?	0.1	0.0	0.0	
R1D: R2	0.0	0.0	0.0		O2B?	0.1	0.1	0.0	
R2?	0.4	0.4	0.0		O2D: O3A	0.2	0.1	0.0	
R2?	0.2	0.1			03A?	0.9 0.2	$0.0 \\ 0.1$		
			0.0		O3A O3B			0.0	
R3	0.8	0.4	0.0			0.2	0.3	0.0	
R3?	0.4	0.1	0.0		04A?	0.1	0.1	0.0	
R5?	0.2	0.1	0.0		O4B	1.1	0.6	1.5	
R6	0.4	0.9	0.0		O4B?	0.1	0.1	0.0	
R6A?	0.2	0.2	0.0		05	0.5	0.3	0.0	
R7	1.3	1.3	0.0		O6	0.5	0.4	2.5	
R7?	0.6	0.8	1.7		O6?	0.2	0.3	0.0	
$\mathbf{R8}$	0.6	0.7	2.6		O8?	0.1	0.1	0.0	
R8?	0.8	0.9	2.5		O10	0.6	0.3	0.0	
R8A	0.4	0.5	1.4		O10?	0.2	0.1	1.3	
R12	2.3	1.4	4.3		O10A	0.2	0.1	0.0	
R12A	3.8	1.2	0.0		O11?	0.1	0.1	0.0	
R12A?	0.8	0.2	0.0		O19	0.1	0.0	0.0	
R12B	4.6	2.6	4.5		O24	0.2	0.1	0.0	
R12B?	1.2	2.1	3.0		R1	13.8	9.5	12.0	
R12C	1.7	1.2	0.0		R1?	1.1	0.8	0.0	
R12C?	1.0	0.5	0.0		R1A	1.2	0.6	1.3	
SG	0.2	0.0	0.0		R1B	4.8	5.0	8.8	
SG/CGS		0.2	0.0		R1B?	1.7	1.0	0.2	
W4	1.0	0.2	0.0		R1C	0.8	1.0	0.2	
W4?	0.2	0.0	0.0		R1C?	0.0	0.1	0.0	
W41 W4A	0.2	0.0	0.0		R1D	8.3	5.8	7.8	
W4A W5	$0.2 \\ 0.2$	0.0	0.0		R1D?	1.2	5.8 1.4	2.7	
TOTALS					R1D? R2	1.2 2.8	$1.4 \\ 3.1$	2.2	
TOTAL	5 920	8126g	842%						
					R2?	0.2	0.2	0.3	
	~ ~	2.5	0.0		R2A?	0.3	0.2	0.0	
3	0.2	2.9	0.0		R3	0.6	0.3	1.5	
A1	1.8	20.1	0.0		R4	0.6	1.0	2.0	
A1?	0.1	1.1	0.0		R4?	0.6	0.5	0.0	
A2	0.1	0.2	0.0		R4B	0.1	0.0	0.0	
A3	0.2	0.6	0.0		R5	0.5	0.4	0.0	

Table 12contd

Phase Fabric Sherd % Nos Wt % RE % Phase Fabric Sherd % No R5? 0.4 0.1 0.0 A2 1. R6 1.1 1.7 0.0 A2? 0. R6? 0.1 0.2 0.0 BB1 10. R6A 0.1 0.1 0.0 BE1 10. R6A 0.1 0.1 0.0 BE1? 0.0 R7 0.9 0.6 0.4 BE2? 0. R87 4.5 2.1 6.3 C 0.0 R12 0.7 0.4 1.5 CGS 8 R12A 1.8 1.1 0.7 CGSW 0. R12B? 0.6 0.5 0.0 MB4 0. R12C? 0.6 0.9 0.0 MB16 0. SG 1.1 0.4 1.5 MB26 0. W2 0.4 0.1 0.0 MV 0. <td< th=""><th>oportions</th><th></th></td<>	oportions				
R5? 0.4 0.1 0.0 A2 1. R6 1.1 1.7 0.0 A2? 0. R6? 0.1 0.2 0.0 BB1 10 R6A 0.1 0.1 0.0 BB1 10 R6A 0.1 0.1 0.0 BB1 10 R6A 0.1 0.1 0.0 BB1 0 R7 0.9 0.6 0.4 BB2 0 R8 0.7 0.8 1.7 BB2? 0 R12 0.7 0.4 1.5 CGS 8 R12 0.7 0.4 1.5 CGS 0 R12A 1.8 1.1 0.7 CGSW 0 R12A 1.8 1.1 0.7 CGSW 0 R12B 0.1 0.1 0.1 0 0 R12C 4.0 2.1 0.1 MB10 0 R12C?	Fabric Proportions				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	los Wt % RE	%			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.0	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11.5			
R8 0.7 0.8 1.7 BB2? 0 R8? 4.5 2.1 6.3 C 0 R8A 0.2 0.3 1.2 CG 0 R12 0.7 0.4 1.5 CGS 8 R12 0.1 0.0 0.0 EG 0 R12B 1.7 1.1 1.7 MB1 0 R12B 0.6 0.5 0.0 MB4 0 R12C 4.0 2.1 0.1 MB10 0 R12C 4.0 2.1 0.1 MB16 0 R2C 0.6 0.9 0.0 MB16 0 SG 1.1 0.4 1.5 MB26 0 W2 0.4 0.1 0.0 MC2 0 W4 0.6 0.5 4.1 NV 3 W4A 0.2 0.1 0.0 012 0 CGS <td< td=""><td></td><td>0.0</td></td<>		0.0			
R8? 4.5 2.1 6.3 C 0 R8A 0.2 0.3 1.2 CG 0 R12 0.7 0.4 1.5 CGS 8 R12A 1.8 1.1 0.7 CGS 0 R12A 1.8 1.1 0.7 CGS 0 R12B 1.7 1.1 1.7 MB1 0 R12B 0.6 0.5 0 MB4 0 R12C 4.0 2.1 0.1 MB10 0 R12C 0.6 0.9 0.0 MB16 0 W2 0.4 0.1 0.0 MC2 0 W3 0.1 0.1 0.0 MV 0 W4A 0.2 0.1 0.0 NV 0 W4A 0.2 0.1 0.0 NV 0 GG 3.1 0.9 0.0 02? 0 CG 3.1 0.9 0.2 0 0 GZ 3.1 0.9 <td< td=""><td></td><td>1.6</td></td<>		1.6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4 5.4	6.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1 0.0	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4 0.3	0.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2 0.4	0.8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0			
		0.0			
		0.0			
BB1 21.4 16.8 35.4 $O2$ 0.0 CG 3.1 0.9 0.0 $O2?$ 0.0 CGS 17.0 11.1 18.9 $O2A$ 0.0 CRH 0.6 0.1 0.0 $O3A$ 0.0 MB4 2.5 10.0 7.1 $O3A?$ 0.0 MB10 1.3 3.5 5.0 $O3B$ 0.0 MV 0.6 0.0 0.0 $0.3B?$ 0.0 NV 4.4 0.9 2.5 $0.3C$ 0.0 O1 0.6 0.1 0.0 $04A$ 0.0 O2? 0.6 0.1 0.0 $04A$ 0.0 O3B 0.6 0.8 0.0 $04B$ 0.0 O4A? 0.6 0.2 0.0 0.5 1.0 O4B? 0.6 0.3 0.0 $0.05?$ 0.0 O10 1.9 1.0 0.0 $0.10?$ 0.0 R1 11.3 5.7 8.9 $0.10A$ 0.0 R1A 9.4 4.8 1.4 0.11 0.0 R1B 1.9 1.1 4.3 $0.11?$ 0.0 R1B? 1.3 0.2 0.0 0.122 0.0 R1D 5.0 4.3 7.9 0.19 0.0		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 0.3	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1 0.0	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1 0.0	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.6 0.4	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.6 0.2	2.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0			
O190.60.30.0O10?0.0R111.35.78.9O10A0.0R1A9.44.81.4O110.0R1B1.91.14.3O11?0.0R1B?1.30.20.0O12?0.0R1C1.31.10.0O12A0.0R1D5.04.37.9O190.0		0.0			
R111.35.78.9O10A0.R1A9.44.81.4O110.R1B1.91.14.3O11?0.R1B?1.30.20.0O12?0.R1C1.31.10.0O12A0.R1D5.04.37.9O190.		0.0			
R1A9.44.81.4O110.0R1B1.91.14.3O11?0.1R1B?1.30.20.0O12?0.1R1C1.31.10.0O12A0.1R1D5.04.37.9O190.1					
R1B1.91.14.3O11?0.0R1B?1.30.20.0O12?0.0R1C1.31.10.0O12A0.0R1D5.04.37.9O190.0		0.5			
R1B?1.30.20.0O12?0.7R1C1.31.10.0O12A0.7R1D5.04.37.9O190.7		1.3			
R1C1.31.10.0O12A0.0R1D5.04.37.9O190.0		0.9			
R1D 5.0 4.3 7.9 O19 0.		0.0			
		0.0			
		0.0			
	.1 0.0	0.0			
R7? 0.6 0.7 0.0 O23 0.		0.6			
R8 1.9 0.8 2.9 O23? 0.		0.0			
R12B 1.3 0.4 0.0 R1 20.	.3 10.3	6.6			
R12C 4.4 6.8 3.6 R1? 0.	.7 0.5	0.3			
W4 0.6 0.6 2.1 R1A 0.		0.0			
TOTALS 159 3538g 280% R1A? 0.		0.4			
R1B 5.		8.7			
R1B? 0.		0.0			
7-9 ?? 0.2 0.0 0.0 R1C 0.		0.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.3			
A1? 0.2 1.8 1.1 R1D 17.		19.9			

Table 12 contd

	Fab	ric Propo	rtions			Fab	ric Propoi	tions	
ase	Fabric She	rd % Nos	Wt % R	E %	Phase	Fabric She			Е %
	R1D?	0.2	0.2	0.3		O5?	0.5	1.1	0.0
	R2	1.4	1.0	2.9		O10	0.5	0.3	0.0
	R2?	0.2	0.1	0.3		O10?	1.5	1.5	0.0
	R3	0.1	0.0	0.0		012A	0.5	0.6	1.9
	R4	1.0	1.0	0.2		O27	1.0	2.6	12.8
	R4?	0.1	0.0	0.0		R1	11.4	7.2	22.4
	R4A	0.1	0.0	0.3		R1?	1.5	6.1	4.8
	R5	1.6	1.6	2.6		R1A	0.5	0.4	0.0
	R5?	0.1	0.1	0.8		R1B	5.5	4.6	10.9
	R6	0.4	1.2	0.8		R1B?	2.0	8.0	0.0
	R6?					R1D. R1C	$\frac{2.0}{3.5}$	3.4	0.0
		0.1	0.1	0.0					
	R7	1.5	0.7	0.0		R1C?	1.0	0.4	0.0
	R7?	0.4	0.3	0.5		R1D	16.4	12.0	8.0
	R8	0.6	0.5	2.5		R1D?	1.5	2.2	4.8
	R8?	0.6	0.4	2.1		R2	1.5	0.6	0.0
	R8A	0.2	0.3	2.0		R2?	1.0	0.5	1.3
	R12	1.2	0.6	0.9		R4	0.5	0.4	0.0
	R12?					R4?			
		0.6	0.4	0.0			0.5	0.2	0.0
	R12A	2.2	1.8	0.7		R5	1.5	6.8	0.0
	R12A?	0.2	0.2	0.0		R5?	0.5	0.1	0.0
	R12B	0.6	0.5	1.3		R6	0.5	0.6	0.0
	R12B?	0.1	0.1	0.1		R7	0.5	0.2	0.0
	R12C	1.7	1.7	2.3		R8	6.0	3.8	2.6
	SG	0.2	0.0	0.0		R12A	1.0	0.6	2.2
	W2			0.0		R12C			
		0.1	0.0				3.5	4.8	0.0
	W2?	0.2	0.0	0.0		R12C?	0.5	0.4	0.0
	W4	0.9	0.4	1.6		\mathbf{SG}	0.5	0.1	0.0
	W4A	0.2	0.2	0.5		TOTALS	201	3114g	312%
	W6	0.1	0.0	0.0					
	W8	0.1	0.0	0.0					
	TOTALS	1956	30637g		9-10	\mathbf{CGS}	100.0	100.0	0.0
	1011110	1000	00001g		0 10	TOTALS	2	15g	0%
8-9	BB1	20.0	2.1	0.0					
	\mathbf{CGS}	40.0	73.8	0.0	10	A1	21.6	44.8	0.0
	O10	20.0	19.5	0.0		BB1	9.8	10.9	48.8
	R2	20.0	4.6	0.0		CGS	13.7	6.1	22.6
	TOTALS	$5^{20.0}$	282g	0.0		EG	13.7 13.7	15.4	3.6
	IUIALO	5	202g	0 /0					
						MV	2.0	0.6	0.0
						O3B?	2.0	0.9	0.0
)		0.5	0.2	0.0		O5	2.0	0.6	0.0
	A1	1.0	4.5	0.0		R1	2.0	0.2	0.0
	A3A	0.5	0.5	0.0		R1B?	7.8	2.9	0.0
	BB1	10.4	9.1	15.7		R1D	19.6	13.0	25.0
	BB1?	0.5	0.1	0.0		R5	2.0	4.0	0.0
						R12C			
	BB2	0.5	1.1	3.5			3.9	0.5	0.0
	\mathbf{CG}	1.5	0.3	3.5		TOTALS	51	1120g	84%
	CGS	5.5	5.0	2.9					
	CRH	5.0	0.8	2.9					
	\mathbf{EG}	0.5	0.1	0.0	3+	BB1	28.0	15.4	0.0
		0.5	1.3	0.0		O3B?	4.0	5.7	0.0
	MR4		2.7	0.0		R1	4.0	2.0	0.0
	MB4 MB6	1 / 1	4.1	0.0		R1 R1D		2.0 3.3	0.0
	MB6	1.0		0.0					111
	MB6 NV	4.5	1.9	0.0			8.0		
	MB6 NV O1	$\begin{array}{c} 4.5 \\ 1.0 \end{array}$	$\begin{array}{c} 1.9\\ 0.3\end{array}$	0.0		R2	24.0	46.3	100.0
	MB6 NV	4.5	1.9						
	MB6 NV O1	$\begin{array}{c} 4.5 \\ 1.0 \end{array}$	$\begin{array}{c} 1.9\\ 0.3\end{array}$	0.0		R2	24.0	46.3	100.0

Table 1	12 c	ontd
---------	------	------

1		ic Propo			Dhara		ic Propo		
nase	Fabric Sher	a % Nos	wt% Ri	Ε %	Phase	Fabric Sher	a % Nos	Wt% Kl	Ε%
	W4	16.0	9.3	0.0		MB20	1.5	4.7	23.3
	TOTALS	25	$246 \mathrm{g}$	6%		NV	6.2	2.3	0.0
			C			NV?	1.5	0.0	0.0
						O2	1.5	0.1	0.0
4+	A1	27.3	95.0	0.0		O3B	1.5	0.2	0.0
	BB1	18.2	0.8	0.0		O3B?	1.5	0.2	4.7
	CGS	9.1	1.2	0.0		O4A?	1.5	1.0	0.0
	R1	9.1	0.5	0.0		O4B	4.6	2.3	0.0
	R1B	18.2	0.5	0.0		O5?	1.5	0.1	0.0
	R1D	9.1	1.4	0.0		011	1.5	0.6	0.0
	R12B	9.1	0.5	0.0		R1	20.0	13.4	34.9
	TOTALS	11	761g	0%		R1A	7.7	1.0	0.0
	1011110		1019	070		R1B	1.5	0.4	0.0
						R1B?	3.1	0.9	0.0
5 +	A1	14.3	52.9	0.0		R1D.	3.1	0.8	0.0
01	BB1	7.1	1.3	0.0		R1D R2	3.1	1.4	0.0
	CGS	14.3	1.5 5.9	16.5		R3B	1.5	0.5	0.0
	EG	3.6	1.6	0.0		R5	$1.5 \\ 1.5$	$0.5 \\ 0.4$	0.0
	MB4	3.6	3.7	11.0		R12	$1.5 \\ 1.5$	0.4	0.0
	MB4 MB7	3.6	15.4	0.0		R12 R12A	4.6	2.0	0.0
	MB16	3.6	9.2	13.2		TOTALS	4.0 65	2.0 2492g	43%
	O1A	3.6	$\frac{5.2}{2.5}$	46.2		IUIALS	00	24 <i>32</i> g	40/0
	01A 02	3.6 3.6	$\frac{2.5}{1.2}$	40.2					
	O2 O2A	3.6 3.6	1.2 0.3	0.0	6-7+	BB1	66.7	68.8	62.5
	O2A O4B	3.6 3.6	0.3	0.0	0-7+	SG		31.3	02.0 37.5
							33.3 3		
	R1 R1A	7.1	1.0	0.0		TOTALS	Э	64g	16%
		3.6	0.1	0.0					
	R1B	3.6	0.8	0.0		MDor	50.0	05.9	0.0
	R1C	3.6	2.6	13.2	7+	MB25 O5	50.0	85.3	0.0
	R1D	10.7	1.0	0.0		TOTALS	50.0	14.7	0.0
	R2	3.6	0.4	0.0		IUIALS	2	34g	0%
	R12C	3.6	0.1	0.0					
	TOTALS	28	1671g	91%	0.1	A 1	F 0	10.0	0.0
					8+	A1	5.3	13.3	0.0
C 1	A 1	1.0	40.7	0.0		BB1	26.3	37.8	100.0
6+	A1	4.6	49.7	0.0		CGS	21.1	16.1	0.0
	A2?	1.5	1.0	0.0		NV D1	5.3	1.1	0.0
	BB1	7.7	2.6	9.3		R1	5.3	5.0	0.0
	CGS	9.2	2.6	0.0		R1C	5.3	3.9	0.0
	EG	1.5	1.8	0.0		R1D	5.3	1.7	0.0
	MB16	1.5	4.6	16.3		R4	10.5	18.3	0.0
	MB16?	1.5	3.9	11.6		R12C	15.8	2.8	0.0
	MB18	1.5	0.9	0.0		TOTALS	19	$180 \mathrm{g}$	12%

Table 13 Bainesse (Site 46) – the incidence of forms by fabric type and phase

* – Intrusive

Phase	Fabric	Forms
2	R1D	J18.1
	R2	BE3.6
	R12	J18.4
3	BB1	J15.4, L1.4
	\mathbf{SG}	$\mathrm{DR15/17}$
	\mathbf{CGS}	DR33, DR18/31/31, DR27
	\mathbf{EG}	DR31
	01A	F1.3
	02A	F1.1
	04B	B11.2 (×2)
	05	B11.2
	06?	B15.4
	08?	B10.4
	010	BE3.1
	O21A R1	B10.4
	R1B	J7.2, J13.4*, J18.4, B1.3, B2.1 BE9.2, J1.3, B1.1, D4.1
	R1B R2	B19.2, 31.3, B1.1, D4.1 B10.1
	R7	J18.2
	R12	J9.1, J18.4
	W2	J5.1
3–4	CGS	DR31
	MV	DR18/31
	MB15	M11
	R12	J20.6
	W4A	J16.4
4	BB1	J13.2, B15.3, D4.1
	\mathbf{CGS}	DR27, DR32, DR30/37, DR37
	MB13	M1–MS18
	CRH	BE1.1 (×3)
	O2	F6.4, F8.5
	O5	B14.2
	O6?	D6.1
	08	B5.3
	O10A	B3.2
	O11? R1	B5.2 L1.2
	R1 R1B	CJ1.4, CJ2.3, J13.4, J18.5
	R1D	J13.4, D2.2
	R1D R2	$B10.1 (\times 2), D4.1, D6.3$
	R7	J1.1
	R12B	BE9.3
	R12C	J18.2
Pre 5	R1C	J2.4
3–5	R2	D4.1
	R3	J7.2, J7.5
	R3B	J7.5
	R12	J20.7
4–5	CGS	DR30/37
	R1?	D4.1

Phase	Fabric	Forms
5	۸ 1	AM1.3
)	A1 BB1	AM1.5 J13.1, J13.2, J13.4 (×4), J15.4 (×4), B15.2, B17.1, D2.1, D4.1 (×2), L1.4
	SG MV	DR18, DR18/31, DR37 (×2) DR18/31(×5), DR 27 (×2), DR32, DR37 (×2)
	CGS	$DR16/31(\times 5), DR27(\times 2), DR32, DR37(\times 2)$ $DR18/31R, DR18/31/31(\times 2), DR27(\times 3), DR33, DR36, DR37(\times 5)$
	EG	DR33 (×2), DR45
	MB4	M70–MS20, M73
	MB4 MB16	M8–MS19, M9, M28
	MB10 MB19	M56*
	MC5	M117
	CRH	BE1.1, BE1.4
	NV	BE2.2
	02	F6.5
	O3A	B10.1
	O3C	D5.3
	04B	B10.1, B16.2
	04D	B10.1
	010	F3.1, CJ2.4
	010	J20.2
	012 019?	B18.2
	015. 021A?	B10.2 B10.1
	R1	F12.3, BE9.2, BE9.3 (×2), J7.2, J7.3, J9.1 (×2), J13.3 (×2), J13.4 (×3), J19.3
	101	B16.3, L1.2, L1.3, L5.1
	R1A	J19.3, J19.4
	R1B	$D4.1 (\times 2), O1.1 (\times 2)$
	R1C	J18.5
	R1D	J1.3, J9.1, J18.1, J18.4 (×2), B1.1 (×2), L5.1 (×2)
	R2	BE3.6 (×2), J1.3 (×2), J15.3, J18.7, B10.1 (×14), B10.8 (×2), B10.9, D6.3
	R3	J20.6
	R3B	J7.2
	R5	J11.6
	R12	J7.3
	R12A	J1.3, J15.3
	R12B	BE1.4
	R12C	J7.3, J9.1, J15.3
	W4	J8.3
	W4A	J8.3
-6	O3C	O2.2
-	R1	J13.4, L1.2
	R1B	01.1
	R12A	J8.4
3	A9	AM4.1
	BB1	BE9.1, BE9.2 (×3), J13.1, J13.2 (×6), J13.4 (×11), J15.2 (×2), J15.4 (×10),
		B15.1, B15.2 (×19), B17.1 (×2), D1.1 (×2), D2.1 (×2), D2.2, D2.6, D4.1 (×5)
	SG/CGS/EG	DR30/37, DR42
	SG	$DR18(\times 2)$, $DR27$, $RITT1$
	MV	CURLE11, DR18/31, DR30/37 (×2), DR31
	CGS	CURLE11, CURLE15(×3), DR18/31(×2), DR18/31R(×6), DR18/31/31(×6),
		DR18/31R/31R, DR27 (×5), DR30 (×2), DR30R, DR30/37(×11), DR31 (×17),
	ЪC	DR31R, DR33 (×14), DR35, DR37 (×17), DR38 (×2), DR46, DR80, DR81
	EG	DR31, DR18/31
	MB4	M68 (×2), M70, M71 (×2)–MS12, M72–MS7, M72–MS17, MS6
	MB7	M67
	MB16	M2–MS23, M6 (×2), M13, M17, M24–MS14, M26
	MB17	$M8 (\times 2) - MS21$
	MB19	M26

Phase	Fabric	Forms
	MB21	M30
	MB23	M31
	MC4	M01 M112
	CRH	BE1.1 (×2), J20.13
	NV	BE1.4 (×5)
	01	F1.3, F2.1, F6.5
	O2	F1.3, F6.4, F8.3, CJ11.1, B10.1 (×2)
	O3	F8.5
	03A	BE1.5, J1.7
	O3B	L1.2, O2.1
	O4A	CJ2.2, J7.1, B16.2
	O4B	B10.1, B11.2
	O5	F12.1, B11.2
	08	B10.1 (×2)
	09	$D1.6 (\times 2)$
	O10	F1.4, BE1.3, J7.1, J17.1, J20.1, B10.1, B10.7, B11.2, B16.2
	010	BE3.8
	R1	BE9.2, CJ1.3, CJ2.3, SJ1.1, J2.5, J7.2, J9.1 (×5), J13.4 (×3), J14.3, J14.4,
		J15.2, J18.4, B10.1, B12.2, B12.4, B16.3, D1.1, D2.1, D2.2, D4.2, L1.2, L1.3
		(×2)
	R1A	F1.5, BE9.3, J13.4 (×2)
	R1B	CJ2.1, BE8.1, BE9.3, J7.2, J7.3, J8.4, J9.1, T13.4 (×3), J14.4, J15.3, B10.1,
		$B11.3, B15.3, B16.2, B16.3, B17.6^*, D2.1, D2.2, D4.2$
	R1D	CJ2.3, CJ3.3, CJ5.1, BE9.3, J2.2, J2.6, J7.2, J7.3 (×3), J9.1 (×2), J13.3 (×2),
		J13.4 (×3), J13.5, J17.3, J18.1 (×2), J20.7, B10.1, D2.1 (×3), D2.2, D4.3 (×3),
		L1.2
	R2	BE1.4, BE3.6, BE3.9, BE7.1 (×2), J8.4, J15.3, B10.1 (×10), B10.8, D4.1, D6.3
	R3	CJ2.2, J7.5 (×2), J9.1
	R3B	J7.5, J14.3, D2.1
	R5	SJ1.2, J11.2, J12.2*
	R6A	CJ2.1 (×2)
	R7	$CJ3.1, D2.1 (\times 2), D2.2$
	R8	J12.7 (*?)
	R8A	J11.2
	R12	BE9.2, J20.7
	R12A	BE9.3, J20.12
	R12B	BE9.3 (×2), J7.2, J13.4, J20.3, J20.6, D2.1
	R12C	BE4.5, J7.3 (×2), L1.3
	W2	F4.1, F6.3, F8.2
	W2A	F10.1, F16.4, D3.1
	W5	J20.6
pre 6–7	MV	DR18/31/31
P		
Pre 7	MB8	M54*
6–7	A1	AM1.1
	BB1	BE9.1, J13.1, J13.4 (×6), J13.6, J13.7, J13.9*, J15.4, B15.2 (×6), B17.2, D1.1
		(×2), D1.3, D2.1, D2.6 (×2), L5.2
	BB2	B14.1, D3.1, D3.2
	SG/CGS/EG	DR31
	SG	DR33 DR19/91 (\times 9) DR19/91/91 (\times 9) DR97 DR90 DR90/97 (\times 9) DR91 (\times 0)
	CGS	DR18/31 (×2), DR18/31/31 (×3), DR27, DR30, DR30/37 (×3), DR31 (×9),
	-	DR31R, DR33 (×12), DR36 (×2), DR37 (×3), DR38/44, DR45, DR46, DR72
	\mathbf{EG}	DR31, DR30/37(×2), DR31 (×2), DR33
	\mathbf{CG}	BE4.3
	MB1	Young 1977 Type M17/18, Young 1977 Type M19?
	MB4	M77, M80, M82, M97

Phase	Fabric	Forms
	MB15	M12
	MB16	M6
	MB17	M2
	MB19	M14, M25-MS2
	MC2	M115
	NV	BE1.4 (×2), BE5.2
	01	F7.1
	O2	F2.1
	O3A	F6.5
	O3B	D3.1
	O4A	D5.3
	O4B	B10.1, L4.2
	05	B10.1, L4.1
	08	B10.1
	O10	F8.1
	012	BE1.6
	O12A	BE3.7
	R1	BE1.4, J9.1 (×2), J13.4 (×8), D2.1 (×2), D2.2, D3.3, D4.2 (×4), D4.3 (×2),
	D / 1	D6.3, L1.2 (×2), L1.3, L1.4, L4.1
	R1A	CJ3.4, J9.1, J13.4, D2.1, L5.1
	R1B	CJ2.2, CJ3.2, CJ3.5, BE9.2, J13.3, J13.4, D4.3, L1.2
	R1D	J2.7 (×3), J8.4, J13.3, J13.4 (×2), J18.1, D6.3
	R2	BE3.4, J13.4, B10.1 (×7), B10.11, D4.1
	R2A	BE3.6
	R5	J11.7
	R7	J12.1, J15.3, D2.2, D3.2, D4.1, D4.3
	R8	J12.1
	R12	D2.2
	R12A	$J_{2.6}$
	R12B	J13.4 (×2), J20.4, B16.3, D1.2
	R12C	CJ2.3
7A	BB1	B15.2 (×2)
	011	B10.1
	R1	J13.4, B10.5
	R2	B10.1 (×3)
7B	CGS	DR18/31/31, DR37
12	R1B	J20.7
	R2	J1.5, B10.1
	R12A	J20.12
70	DD1	
7C	BB1	J13.4, B15.2, B17.2, D2.1, D3.5
	SG	DR18/31/31
	$\begin{array}{c} { m CGS} \\ { m EG} \end{array}$	DR18/31/31, DR31 (×5), DR33, DR38, DR38/44
	MB4	DR31 M74, M83
	NV	BE1.4
	O2	F6.5
	R1	D2.2
	R1A	CJ2.2
	R1B	D2.2, D4.1
	R1D	$J8.4, J13.4 (\times 3), J20.6$
	R1D R2	B10.1, D2.2
	R8A	J6.4, J11.2
	R12C	CJ2.2, BE9.2, J13.4
	W2?	B3.2

$\begin{array}{llllllllllllllllllllllllllllllllllll$		Fabric Fo	Phase
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		A1 A	7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	×2), D2.6,	BB1 J1	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
		SG/CGS/EG D	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		D	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		CGS/EG D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		EG D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MB4 M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 T 1 9		
$\begin{array}{rcl} R1C & CJ2.5, J20.4 \\ R1D & BE9.2, J2.2, J2.3, J10.3, J12.1, J13.4 (\times 2), J13.6, J14.3, D2.1, D4.1 (\times 2), \\ R2 & J15.3, B10.1 (\times 5), B10.8 (\times 4) \\ R2A? & D4.1 \\ R3 & J7.5 \\ R4 & J12.9, D1.1 (\times 2) \\ R5 & J11.4 (\times 2), J11.5 (\times 2) \\ R6 & J3.1 (\times 2) \\ R6A & CJ9.1 (\times 2), J14.2 \\ R7 & CJ3.1, B11.3 \\ R8 & J12.6, J12.7 \\ R8A & J12.7 \\ R12A & J2.5, B12.2, B19.2 \\ R12B & J7.3, J9.1, J17.1, B19.2 \\ W4 & J20.8 \\ W4A & F3.2 \\ \end{array}$			
$\begin{array}{rcrcrc} R1D & BE9.2, J2.2, J2.3, J10.3, J12.1, J13.4 (\times 2), J13.6, J14.3, D2.1, D4.1 (\times 2), \\ R2 & J15.3, B10.1 (\times 5), B10.8 (\times 4) \\ R2A? & D4.1 \\ R3 & J7.5 \\ R4 & J12.9, D1.1 (\times 2) \\ R5 & J11.4 (\times 2), J11.5 (\times 2) \\ R6 & J3.1 (\times 2) \\ R6A & CJ9.1 (\times 2), J14.2 \\ R7 & CJ3.1, B11.3 \\ R8 & J12.6, J12.7 \\ R12A & J2.5, B12.2, B19.2 \\ R12B & J7.3, J9.1, J17.1, B19.2 \\ W4 & J20.8 \\ W4A & F3.2 \\ \end{array}$	11.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(×2) L12		
$7-8 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	(),		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R4 J1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R5 J1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccc} R12B & J7.3, J9.1, J17.1, B19.2 \\ W4 & J20.8 \\ W4A & F3.2 \\ \end{array} \\ 7-8 & \begin{array}{c} O31 & B3.2 (\times 2) \\ BB1 & J13.6, J13.9, B15.2, D1.1 (\times 2), D4.1 \\ C & BE2.1 \\ CGS & CURLE 15, DR18/31, DR31, DR33 (\times 2), DR37 \end{array} $			
W4 J20.8 W4A F3.2 7-8 O31 B3.2 (×2) BB1 J13.6, J13.9, B15.2, D1.1 (×2), D4.1 C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37			
W4A F3.2 7-8 O31 B3.2 (×2) BB1 J13.6, J13.9, B15.2, D1.1 (×2), D4.1 C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37			
7-8 O31 B3.2 (×2) BB1 J13.6, J13.9, B15.2, D1.1 (×2), D4.1 C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37			
BB1 J13.6, J13.9, B15.2, D1.1 (×2), D4.1 C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37		W4A F	
BB1 J13.6, J13.9, B15.2, D1.1 (×2), D4.1 C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37		O31 B	7–8
C BE2.1 CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37			
CGS CURLE 15, DR18/31, DR31, DR33 (×2), DR37			
EG DR31			
MB4 M74, M76, M79, M93, M96			
MB8 M54			
MB16 M2			
NV BE6.1			
O4B B4.6			
O5 $CJ4.1 (\times 2)$			
O6 BE3.3		O6 B	

Phase	Fabric	Forms
	08	D5.3
	010	B10.10
	R1	
	R1A	J1.4 (×2), J12.3, J12.6, J13.4 (×3), J13.6, B17.8, D4.2, O3.2
		F8.6 DEC 9. 119.7. 114.9. D17.6. D1.1 (x9)
	R1B	BE6.2, J12.7, J14.3, B17.6, D1.1 (×2)
	R1C	B17.6 (×2), D1.1 (×2)
	R1D	J12.3
	R7	D1.1 (×2)
	R8	J12.4, J12.6, J12.7
	R8A	J12.2
	R12	$CJ7.1 (\times 2), J1.2$
	R12B	CJ3.6, J11.3, J12.1
8	BB1	J13.1, J13.2, J13.4, J13.6 (×3), B15.2 (×3), B17.2 (×2), D1.1 (×3), D2.1 (×2),
		D2.6, D4.1 (×5), F15.1
	BB2	$D3.5 (\times 2)$
	\mathbf{CG}	BE5.4
	\mathbf{SG}	DR18/31 (×2), DR27 (×2), DR37
	CGS/EG	DR33
	CGS	DR18/31, DR18/31R, DR18/31/31 (×2), DR27, DR30/37 (×2), DR31 (×8),
		DR31R (×2), DR37 (×2), DR38/44, STANFIELD 30
	EG	DR33, DR38/44
	MB4	M81, M88, M94 (×2), M95, M99, M100
	MB17	M5–MS13, M21
	NV	BE2.3, BE5.1, BE5.2, L3.1
	01A	F1.4
	O2	F2.2
	O4B	CJ11.1, B3.2
	06	BE3.3
	O10	F8.5
	R1	CJ2.2, J1.5, J7.2, J9.1 (×3), J13.4 (×2), J14.4, J18.2, B10.1 (×2), B16.3, D2.1,
	101	D3.3, D4.3, L1.3
	R1A	CJ2.4, CJ8.1
	R1B	F1.2, J9.1 (×2), J13.4, J20.7, B16.1, D2.1, D4.1, L1.2, L5.1
	R1D	CJ3.4, SJ2.1, J1.3, J2.6, J9.1 (×5), J13.4 (×4), D2.2 (×2), L1.2
	R1D R2	B10.1 (×7), D1.1
	R3	
	R3 R4	J7.5, J9.1, B15.2
		J9.2
	R6	J3.1
	R7	
	R8	J11.2 (×2), J12.1 (×2), J12.3, J12.6, J12.7, J12.11
	R8A	J8.2, J11.2
	R12	J7.3
	R12A	J7.2
	R12B	B15.1
	R12C	BE4.5
	W4	F3.2
6–9	BB1	J13.4 (×2), B15.2, B17.2, D1.1
	CGS	DR30/37 (×3), DR33, DR35, DR36
	MB4	M70–MS4, M78, M106
	MB10	M32
	R1	J13.4, D4.2
	R1D	CJ12.1
	10112	0012.1
7–9	A1	AM1.1
	BB1	CJ1.2, BE9.1, J13.1 (×2), J13.4, B15.2 (×5), B17.1, B17.2, D1.1 (×3), D2.1
		(×2), D2.2 (×2), D4.1 (×2)

Phase	Fabric	Forms
	BB2	B15.1, D3.1, D3.5 (×2)
	C C	BE1.4
	MV	DR33
	CGS	DR18/31 (×2), DR18/31/31 (×7), DR30/37 (×4), DR31 (×8), DR31R, DR33 (×9), DR37 (×6), DR38 (×2), DR79
	\mathbf{EG}	$DR31 (\times 2)$
	MB1	Young (1977) Types M10 and M13
	MB4	M79 (×2), M83
	MB10	M32
	MB16	M25, M27
	MB26	M59
	NV	BE1.4 (×2), BE2.1 (×2), B7.1
	O3A	J20.1
	O3B	03.1
	O4A	F12.1
	O4B	J19.5, B3.2, B11.1
	05	$CJ4.1(\times 2)$
	010	B10.3, B16.2
	010A	J19.1, B15.4
	011	F4.2, CJ10.1
	$\mathbf{R1}$	CJ2.6, J9.1, J13.4 (×4), J20.4, D1.1, D2.1 (×2), D2.2, L5.1
	R1B	BE1.4 (×2), J2.2, J2.5, J2.6, J11.2, J13.4 (×2), B10.8, D2.1 (×2), D3.1, D4.2
	R1C	J2.2
	R1D	CJ10.3, J2.2, J7.3, J10.2, J13.4 (×15), J14.3, J17.2, B15.1, D2.2, D4.1, D4.2 (×2)
	R2	J1.6, B10.1 (×3), D2.2, D3.6, D4.1, D6.3
	$\mathbf{R4}$	J6.6
	R4A	J12.2
	R5	$J11.2 (\times 2), J11.4 (\times 2), J11.5 (\times 2)$
	$\mathbf{R6}$	J2.5, J2.7
	$\mathbf{R7}$	D4.1
	R8	J11.2 (×4), J16.3
	R8A	J11.2 (×2), J12.4
	R12B	J2.7 (×2), J8.4
	R12C	J13.4 (×2), B11.3
	W4	J1.2
	W4A	D2.2
8–9	CGS R2	DR37 B10.1
9	BB1	J13.4, J13.6, B15.2, B17.1, D2.1 (×2)
	BB2	D3.5
	CG	BE5.4
	CGS	DR33, DR30/37, DR37
	CRH	BE1.1
	O12A	BE3.5
	O27	B4.1 (×2)
	R1	B17.6
	R1B	B15.5, D3.2
	R1D	J13.4 (×2), J20.6, D2.1, D4.2
	R8	J12.2
	R12A	B10.1
10	A1	AM1.1
	BB1	J13.2, D4.1
	\mathbf{CGS}	DR30/37, DR37 (×2)
	\mathbf{EG}	DR30, DR31, DR37 (×3)

Phase							I	lagon	s									
	F1.1	F1.2	F1.3	F1.4	F1.5	F2.1				F3.2	F3.3	F3.4	F3.5	F4.1	F4.2	F5.1	F5.2	F5.3
2																		
Pre 3																		
2–3																		
3	1		1															
Pre 4																		
2-4																		
3-4																		
4																		
Pre 5																		
3–5																		
4–5																		
5									1									
Pre 6																		
3–6																		
5-6																		
6			2	1	1	1								1				
Pre 6–7																		
6–7						1												
7a																		
7b																		
7c																		
7						1				1					2			
Pre 8																		
4–8																		
6–8																		
7–8																		
8	1						1			1								
Pre 9																		
3–9																		
6–9																		
7–9															1			
8–9															-			
9																		
9–10																		
10																		
2+																		
3+																		
5+		1																
6+		1																
6/7+																		
7+																		
8+																		
UT																		

Table 14 Bainesse (Site 46) – incidence of form types by phase

Phase						F	lagon	s					
	F6.1 F6.2	F6.3	F6.4	F6.5	F6.6				F8.3 F8.4	4 F8.5 F8.6 F8.7	F9.1	F10.1	F11.1 F11.2
2													
Pre 3													
2–3													
3													
Pre 4													
2-4													
3-4													
4			1							1			
Pre 5													
3–5													
4–5													
5				1									
Pre 6													
3–6													
5-6													
6		1	1	1				1	1	1		1	
Pre 6–7													
6-7				1		1	1						
7a													
7b													
7c				1									
7	1			-				1					
Pre 8	-							_					
4-8													
6-8													
7–8										1			
8										1			
Pre 9										-			
3-9													
6-9													
7–9													
8-9													
9													
9–10													
9–10 10													
2+													
3+ 5+													
6+													
6/7+													
7+													
8+													

Phase		I	lagons			Con-s	tricted necke	d jars							
	F12.1 F12.2			F14.1 F14.2	F15.1				CJ1.4	CJ2.1	CJ2.2	CJ2.3	CJ2.4	CJ2.5	CJ2.6
2															
Pre 3															
2–3															
3															
Pre 4															
2-4															
3-4															
4									1			1			
Pre 5															
3–5															
4–5															
5		1											1		
Pre 6															
3–6															
5–6															
6	1							1		1	2	2			
Pre 6–7															
6-7											1	1			
7a															
7b															
7c											2				
7														2	
Pre 8															
4-8															
6–8															
7–8															
8					1						1		1		
Pre 9															
3–9															
6–9															
7–9	1						1	L							1
8–9															
9															
9–10															
10															
2+															
3+															
5+															
6+															
6/7+															
7+															
8+															

Phase							Con-	stricted	l necked	l jars								
	CJ3.1	CJ3.2	CJ3.3	CJ3.4	CJ3.5	CJ3.6	CJ4.1	CJ4.2	CJ4.3	CJ5.1	CJ5.2	CJ6.1 (CJ7.1	CJ8.1	CJ9.1	CJ10.	1 CJ10.2	2 CJ10.3
2																		
Pre 3																		
2–3																		
3																		
Pre 4																		
2-4																		
3–4																		
4																		
Pre 5																		
3–5																		
4–5																		
5																		
Pre 6																		
3–6																		
5–6										1								
6	1		1															
Pre 6–7																		
6–7		1		1	1													
7a																		
7b																		
7c																		
7	2														2			
Pre 8																		
4-8																		
6–8																		
7–8						1	2						2					
8				1										1				
Pre 9																		
3–9																		
6–9																		
7–9							2										1	1
8–9																		
9																		
9–10																		
10																		
2+																		
3+																		
5+																		
6+																		
6/7+																		
7+																		
8+																		

Phase C	onstric	ted neck	ed jars						Beaker	s					
			BE1.1 BE1.2	BE1.3	BE1.4	BE1.5	BE1.6				BE2.3	BE2.4	BE3.1 BE	3.2 BE	3.3 BE3.4
2															
Pre 3															
2 - 3															
3													1		
Pre 4															
2–4															
3–4															
4		3													
Pre 5															
3-5															
4-5															
5		1		2						1					
Pre 6															
3–6															
5-6															
6	1		2	1	6	1									
Pre 6–7															
6–7					3		1								1
7a															
7b															
7c					1										
7					4			1			1	1			
Pre 8															
4-8															
6–8															
7–8									1						
8											1				1
Pre 9															
3–9															
6–9		1													
7–9					5				2						
8–9															
9			1												
9–10															
10															
2+															
3+															
5+															
6+															
6/7+															
7+															
8+															

Phase 2 Pre 3 2–3 3 Pre 4 2–4 3–4 4 Pre 5 3–5 4–5 5	BE3.5	BE3.6	BE3.7	BE3.8	BE3.9 BE3.1	Beakers BE4.3 BE4.4	BE4.5	BE5.1 I	<u>3E5.2</u>	BE5.3	BE5.4 BE6.	<u>1 BE6.2</u>]	<u>BE7.1</u>
Pre 3 2–3 3 Pre 4 2–4 3–4 4 Pre 5 3–5 4–5		1											
Pre 3 2–3 3 Pre 4 2–4 3–4 4 Pre 5 3–5 4–5		1											
2–3 3 Pre 4 2–4 3–4 4 Pre 5 3–5 4–5													
3 Pre 4 2-4 3-4 4 Pre 5 3-5 4-5													
Pre 4 2–4 4 4 Pre 5 3–5 4–5													
2–4 3–4 4 Pre 5 3–5 4–5													
3–4 4 Pre 5 3–5 4–5													
l Pre 5 3–5 1–5													
3–5 1–5													
4–5													
:													
		2											
Pre 6													
3–6													
5–6													
3		1		1	1		1						2
Pre 6–7													
3–7		1	1			1			1				
7a 7b													
70 7c													
7								1					
Pre 8								1					
4–8													
3–8													
7–8								1	1		1	1	
3													
Pre 9													
3–9													
3–9													
7–9													
3–9													
9	1										1		
9–10													
10													
2+													
3+ 5 -													
5+ 6+													
5+ 3/7+													
7+													
3+													

nase		Beake												
	BE8.1	BE8.2 BE9.1	BE9.2	BE9.3	BE10.1	SJ1.1	SJ1.2	SJ2.1	SJ2.2	SJ2.3	SJ2.4	SJ3.1	SJ4.1	SJ5.1
3														
			1											
4														
				1										
F				1										
5														
			1	0										
6			1	2										
0														
	1	1	5	6		1	1	1						
6–7	1	T	0	0		1	1	1						
0-1		1	1											
		1	1											
			1											
		1	1	1										
8														
9														
		1												
)														
			1											
ł														

Phase	T1 1	T1 0	T1 0	T1 4	T1 5	T1 C	T1 7	T1 0	TO 1	Jars	το ο	TO 4	TO 5	10.0	TO 7	TO O	10.0	TO 1	T4 1 TE 1
2	J1.1	J1.2	91.3	J1.4	91.9	J1.6	J1.7	91.8	JZ.I	J2.2	JZ.3	J2.4	J2.5	J2.6	JZ.7	JZ.8	JZ.9	J2'I	J4.1 J5.1
2 Pre 3																			
2–3																			
3			1																1
9 Pre 4			1																1
2–4																			
3-4																			
4	1																		
Pre 5												1							
3–5												-							
4-5																			
5			3																
Pre 6																			
3–6																			
5–6																			
6							1			1			1	1					
Pre 6–7																			
6-7														1	3				
7a																			
7b																			
7c																			
7			1							1	3		1		1			2	
Pre 8																			
4-8																			
6–8																			
7–8		1		2															
8			1		1									1				1	
Pre 9																			
3–9																			
6–9																			
7–9		1				1					3			2	1	3			
8–9																			
9																			
9–10																			
10																			
2+																			
3+																			
5+																			
6+																			
6/7+																			
7+																			
8+																			

Phase												Jars								
	J6.1	J6.2	J6.3	J6.4	J6.5	J6.6	J6.7	J6.8	J7.1	J7.2	J7.3	J7.4 J7.5 J	J7.6	J8.1 J8.2	2 J8.3	J8.4	J9.1 J9	.2 J10	.1 J10.2	2 J10.3
2																				
Pre 3																				
2–3																	1			
3										1										
Pre 4																				
2-4																				
3-4																				
Pre 5																				
3–5										1		2								
4–5																				
5										2	3				2		4			
Pre 6																				
3–6																				
5–6																1				
6									2	4	6	3				2	9			
Pre 6–7																	_			
6-7																1	3			
7a																				
7b				_												_				
7c				1												1				
7 D 0											2	1		1		2	2			1
Pre 8																				
4-8																				
6-8																				
7–8										9	1			1			11 1			
8 Dra 0										2	1	1		1			11 1			
Pre 9 3–9																				
3–9 6–9																				
6–9 7–9						1					1					1	1		1	
7-9 8-9						1					1					1	1		1	
9																				
9 9–10																				
9–10 10																				
2+																				
2+ 3+																				
5+ 5+																				
6+											1									
6/7+											Ŧ									
7+																				
8+																				
0.																				

se				Jars												
	J11.1	J11.2	J11.3		J11.5	J11.6 J11.7	J12.1	J12.2	J12.3	J12.4	J12.5	J12.6	J12.7 J12.8	3 J12.9	J12.10	J12.11 J1
3																
4																
5																
						1										
3																
		2							1						1	
3–7																
						1	1									
		1														
				2	2		1					1	2	1		
3																
			1				1	1	2	1		2	2			
		3					2		2 1			$\frac{2}{1}$	1			1
)																
		9		2	2			1		1						
								1								

Table	14	contd
-------	-----------	-------

Phase									Jars								
	J13.1	J13.2	J13.3	J13.4	J13.5	J13.6	J13.7	J13.8		J14.1	J14.2	J14.3	J14.4	J15.1	J15.2	J15.3	J15.4
2																	
Pre 3																	
2–3																	
3				1													1
Pre 4																	
2–4																	
3–4																	
4		1		2													
Pre 5																	
3–5																	
4–5																	
5	1	1	2	7												3	4
Pre 6																	
3–6																	
5–6				1													
6	1	6	3	23	2							2	2		3	2	11
Pre 6–7																	
6–7	1		2	22		1	1		1*							1	1
7a			1														
7b																	
7c				5													
7			1	8		2					1	1			1	1	1
Pre 8																	
4-8																	
6-8																	
7–8	_			3		2			1			1					
8	1	1		8		3							1				
Pre 9																	
3-9				0													
6-9	2	1		2													
7-9	2			24								1					
8–9				0		-											
9				3		1											
9–10		1															
10		1															
2+																	
3+																	
5+ 6+																	
6+ 6/7+				1													
				1													
7+ 8+																	
8+ * = intrusive																	
= intrusive																	

Phase		Jars							
	J16.1 J16.2 J16.3 J16.4 J16.5	J17.1 J17.2 J17.3 J17.4	J18.1	J18.2 J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
2			1		1				
Pre 3									
2–3									
3				1	2				
Pre 4									
2-4									
3–4	1								
4				1		1			
Pre 5									
3–5									
4–5									
5			1		1	1		1	
Pre 6									
3–6									
5–6									
6	1	1 1		2	1				
Pre 6–7									
6-7			1						
7a									
7b									
7c									
7	1	1							
Pre 8									
4-8		1							
6–8									
7–8									
8				1					
Pre 9									
3–9									
6–9									
7–9	1	1							1
8–9									
9									
9–10									
10									
2+									
3+									
5+									
6+									
6/7+									
7+									
8+									

Table 14	contd
----------	-------

hase									Jars										
	J19.2 J	19.3	J19.4	J19.5	J20.1	J20.2	J20.3	J20.4	J20.5	J20.6	J20.7	J20.8	J20.9	J20.10) J20.11	J20.12	120.13	J20.14 J2	21.1
re 3																			
-3																			
re 4																			
4 4																			
4										1									
±										1									
e 5																			
5											1								
5											1								
0		2	2			1				1									
e 6		-	-			1				-									
6																			
6																			
					1		1			2	2					1			
e 6–7																			
7								1											
											1					1			
										1									
		1						1		1		1				1			
e 8																			
8										1									
8																			
8																			
e 9																			
9																			
9																			
9				1	1			1											
Ð																			
										1									
10																			
											1								
7+																			
-																			
÷																			

ase								Bowl	s									
	B1.1	B1.2	B1.3	B1.4	B2.1	B3.1 B3.2	B3.3	B4.1 B4.2	B4.3	B4.4	B4.5	B4.6	B5.1	B5.2	B5.3	B6.1 1	B6.2	B7.1
e 3																		
3																		
	1		1		1													
4																		
						1								1	1			
	2																	
						_												
						1												
						2						1						
						1						1						
						1												
						1												1
								2										

271

Phase						Bowls									
	B8.1 B8.2 B8.3	B9.1 B9.2	B10.1 B10.2	B10.3	B10.4	B10.5	B10.6	B10.7	B10.8	B10.9	B10.10	B10.11	B11.1	B11.2	B11.3
2															
Pre 3															
2–3															
3			1		2									2	
Pre 4															
2–4															
3-4															
4			2											1	
Pre 5															
3–5 4–5															
4–5 5			19						2	1					
Pre 6			15						4	1					
3–6															
5–6															
6			19		1			1	1					3	1
Pre 6–7															
6–7			10									1			
7a			4			1									
7b			1												
7c			1												
7			8					1	3						1
Pre 8															
4–8 6–8			1												
6–8 7–8											1				
8			9								1				
Pre 9			5												
3–9															
6–9															
7–9			3	1					1				1		1
8–9			1												
9			1												
9–10															
10															
2+															
3+			1												
5+			1												
6+ 6/7			1												
6/7+ 7+															
7+ 8+															

Phase						Bowls										
	B11.4	B12.1 B12.2	B13.1	B14.1	B15.1			B15.4	B15.5	B15.6	B16.1	B16.2	B16.3	B16.4	B17.1	B17.2
2																
Pre 3																
2–3																
3								1								
Pre 4																
2–4																
3-4																
4							1									
Pre 5																
3–5																
4–5																
5						1						1	1		1	
Pre 6																
3–6																
5-6																
6		1			1	19	1					3	2		2	
Pre 6–7																
6-7				1		6							1			1
7a						2										
7b																
7c						1										1
7		1				2		1								1
Pre 8																
4-8																
6–8																
7–8						1										
8					1	4					1		1			2
Pre 9																
3–9																
6–9						2										1
7–9					2	5		1				1			1	1
8-9																
9						1			1						1	
9-10																
10																
2+																
3+																
5+																
6+																
6/7+																
7+																
8+						1										

Phase				Bo	wls								Dishe	s		
	B17.	3 B17.4	B17.5			B17.9 1	B17.10 B17.11	D1.1	D1.2	D1.3	D1.4 D1.4	5 D1.6			D2.3 D2.	4 D2.5
2																
Pre 3																
-3																
}																
Pre 4																
-4																
8–4																
														1		
re 5																
-5																
-5													_			
													1			
Pre 6 6																
6—6																
5-0 5				1*				3				2	10	5		
Pre 6–7				1				5				2	10	5		
-7								2	1	1			4	3		
a								-	1	1			1	0		
'b																
'c													1	3		
,								4					4			2
re 8																
-8																
6-8																
-8				3	1			7								
3				1				4					4	2		
re 9																
-9																
6–9								1								
-9								4					6	6		
-9																
)				1									3			
-10														1		
0																
!+																
3+																
ó+													1			
i+ 													1			
/7+																
+																

* = intrusive

ase		Dishe																			
	D2.6	D3.1	D3.2	D3.3	D3.4	D3.5	D3.6	D3.7	D4.1	D4.2	D4.3	D5.1	D5.2	D5.3	D6.1	D6.2	D6.3	D6.4	D6.5	D7.1	D8.
3																					
0																					
									1												
4																					
									2						1		1				
5																					
									1												
									1												
									4					1			1				
3																					
	1	1							6	2	3						1				
6–7																					
	2	2	2	1					2	4	4			1			2				
						1			1												
	1	1			1	1 1			1 4	0											
	1	1			1	1			4	2											
3																					
									1	1				1							
				1		2			6	1	1			1							
)				1		-			Ū		1										
										1											
		2				2	1		5	3							1				
			1			1				1											
)																					
									1												
F																					

Phase		Dishes								Lids					
	D8.2	D9.1	D10.1	D11.1	L1.1	L1.2	L1.3	L1.4	L2.1	L3.1	L4.1	L4.2 L	4.3	L5.1	L5.2
2															
2 Pre 3															
2–3															
3								1							
Pre 4								1							
2–4															
3–4															
4						1									
Pre 5															
3–5															
4–5															
5						1	1	1						3	
Pre 6															
3–6															
5–6						1									
3						3	3								
Pre 6–7															
3–7						3	1	1			2	1		1	1
7a															
7b															
7с															
7						1									
Pre 8															
4–8															
6–8															
7–8															
8						2	1			1				1	
Pre 9															
3–9															
3–9 7 o														1	
7–9														1	
3–9 9															
9 9–10															
10															
2+															
2+ 3+															
5+															
6+															
6/7+															
7+															
8+															

Phase			Other						Amphorae			
	01.1	02.1	02.2	03.1	04.1	AM1.1	AM1.2	AM1.3	AM2.1	AM3.1	AM3.2	AM4.1
2												
Pre 3												
2–3												
3												
Pre 4												
2–4												
3-4												
4												
Pre 5												
3–5												
4–5												
5	1							1				
Pre 6												
3–6												
5–6	1											
6	1											1
Pre 6–7												
6–7						1						
7a												
7b												
7c												
7						1		1				
Pre 8												
4-8												
6–8												
7–8					1							
8												
Pre 9												
3–9												
6–9												
7–9				1		1						
8–9												
9												
9–10												
10						1						
2+												
3+												
5+												
6+												
6/7+												
7+												
8+												

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
	BB1	0	1	5	0.00	14.29	5.43
	CGS	0 0	4	34	0.00	57.14	36.96
	SG	ů 0	2	53	0.00	28.57	57.61
		0	7	92			
1	A1	0	1	56	0.00	25.00	77.78
1 1	EG R1	0 0	1 1	9 4	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 25.00\\ 25.00\end{array}$	$\begin{array}{c} 12.50\\ 5.56\end{array}$
1	W2	0	1	43	0.00	$\frac{25.00}{25.00}$	5.56 4.17
•		0	4	72	0.00	20.00	
		-					
l+	BB1	0	1	3	0.00	50.00	37.50
L+	\mathbf{SG}	0	1	5	0.00	50.00	62.50
		0	2	8			
1–2	BB1	0	1	1.0	0.00	0E 00	00 0 5
1-2 1-2	010	0 9	1 1	$\frac{16}{27}$	$\begin{array}{c} 0.00\\ 100.00\end{array}$	$\begin{array}{c} 25.00\\ 25.00\end{array}$	$20.25 \\ 34.18$
-2	010 01A	0	1	15	0.00	25.00 25.00	18.99
-2	O4A?	0	1	$\frac{10}{21}$	0.00	25.00	26.58
		9	4	79			
2	A1	0	1	52	0.00	10.00	28.57
2	BB1	3	1	4	2.91	10.00	2.20
2	EG	0	3	44	0.00	30.00	24.18
2	O3C	0	1	27	0.00	10.00	14.84
2	04	100	1	25	97.09	10.00	13.74
2	O4B?	0	1	3	0.00	10.00	1.65
2	R12A	0	2	27	0.00	20.00	14.84
		103	10	182			
}	A1	0	2	276	0.00	1.21	9.64
3	A2	ů 0	1	37	0.00	0.61	1.29
}	BB1	$\tilde{71}$	$4\overline{7}$	730	23.28	28.48	25.51
3	BB1?	0	1	18	0.00	0.61	0.63
3	\mathbf{CG}	10	3	19	3.28	1.82	0.66
}	\mathbf{CGS}	24	10	109	7.87	6.06	3.81
}	\mathbf{EG}	0	1	1	0.00	0.61	0.03
3	MB14	0	1	96	0.00	0.61	3.35
3	MB16	0	1	8	0.00	0.61	0.28
3	NV	30	10	56	9.84	6.06	1.96
}	O10	0	2	105	0.00	1.21	3.67
3	019	0	1	3	0.00	0.61	0.10
3	O3B	0	2	65	0.00	1.21	2.27
3	O3C	0	1	4	0.00	0.61	0.14
3	O4A	0	3	25	0.00	1.82	0.87
3	O4C	0	1	5	0.00	0.61	0.17
3	O6	0	1	5	0.00	0.61	0.17
3	R1	10	6	229	3.28	3.64	8.00
3	R12A	9	3	15	2.95	1.82	0.52
3	R12B	9 12	22	213	2.95 4.26	13.33	7.44
3	R1? B1B	13 81	1	8	4.26 26 56	0.61 14 55	0.28
3	R1B	81	24	409	26.56	14.55	14.29

 Table 31
 Catterick Bridge (Site 240) – proportions of fabric types by phase

Table 31	contd
10010 01	

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
3	R1D	0	12	182	0.00	7.27	6.36
3	R5?	0	1	6	0.00	0.61	0.21
3	R6	48	5	128	15.74	3.03	4.47
3	R8	0	1	15	0.00	0.61	0.52
3	W4	0	$\overline{2}$	95	0.00	1.21	3.32
		305	165	2862			
3+	R1B	0	1	15	0.00	100.00	100.00
		0	1	15			
0.4	. 1	0	-	10	0.00	0.40	1.00
3-4	A1	0	1	42	0.00	0.46	1.20
3-4	A2	0	2	225	0.00	0.92	6.42
3-4	A3	0	3	112	0.00	1.38	3.19
3–4	BB1	52	48	605	27.23	22.02	17.26
3–4	BB2	14	2	55	7.33	0.92	1.57
3–4	\mathbf{CG}	0	2	5	0.00	0.92	0.14
3–4	CGS	16	9	118	8.38	4.13	3.37
3–4	\mathbf{EG}	9	13	131	4.71	5.96	3.74
3–4	MB12	0	1	116	0.00	0.46	3.31
3–4	MB26	0	1	67	0.00	0.46	1.91
3–4	MB4	0	3	19	0.00	1.38	0.54
3–4	MB6	0	1	155	0.00	0.46	4.42
3–4	NV	5	18	136	2.62	8.26	3.88
3–4	NV?	0	3	10	0.00	1.38	0.29
3–4	01	0	1	3	0.00	0.46	0.09
3–4	O10	0	1	31	0.00	0.46	0.88
3–4	O10A	0	6	82	0.00	2.75	2.34
3–4	O25	0	1	10	0.00	0.46	0.29
3–4	O25?	0	1	10	0.00	0.46	0.29
3-4	04A?	0 0	3	47	0.00	1.38	1.34
3-4	O4B	5	1	7	2.62	0.46	0.20
3–4	05	0 0	1	6	0.00	0.46	0.17
3-4	O6?	0	1	10	0.00	0.46	0.29
3–4 3–4	R1	0	14	200	0.00	6.42	5.70
3-4	R12A	0	9	100	0.00	4.13	2.85
3-4 3-4	R12A R12B	39	13	173	20.42	5.96	$\frac{2.83}{4.93}$
3-4 3-4	R12B R12C			175	0.00		
		0	1			0.46	0.20
3-4	R13	0	5	40	0.00	2.29	1.14
3-4	R1?	0	1	5	0.00	$\begin{array}{c} 0.46 \\ \overline{} \end{array}$	0.14
3-4	R1B	39	17	382	20.42	7.80	10.90
3-4	R1B?	0	1	28	0.00	0.46	0.80
3-4	R1C?	0	1	11	0.00	0.46	0.31
3-4	R1D	0	10	221	0.00	4.59	6.30
3–4	R4	0	2	17	0.00	0.92	0.48
3–4	R5	12	14	242	6.28	6.42	6.90
3–4	R5?	0	3	34	0.00	1.38	0.97
3–4	\mathbf{SG}	0	2	8	0.00	0.92	0.23
3-4	W2?	0	1	24	0.00	0.46	0.68
3-4	W7	0	1	12	0.00	0.46	0.34
		191	218	3506			
3–5		0	1	2	0.00	0.23	0.03
3–5	A2	16	2	146	2.81	0.46	2.40
3–5	A3?	0	$\overline{1}$	40	0.00	0.23	0.66

Table 31 contd

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	BB1	140	73	1043	24.56	16.70	17.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5		0	1		0.00	0.23	0.33
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	3–5		40	7	53	7.02	1.60	0.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			29	41				8.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	\mathbf{EG}	0	7	14	0.00	1.60	0.23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5			5		0.00		5.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20					0.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0					0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								9.63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								5.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5		59	10	137		2.29	2.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R1B	38		199	6.67	2.52	3.27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	R1B?	0	2	11	0.00	0.46	0.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5		53	29	331	9.30	6.64	5.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	R2?	0	4	60	0.00	0.92	0.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	R4	0	1	5	0.00	0.23	0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5	R5	16	10	139	2.81	2.29	2.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	R5?	0	3	32	0.00	0.69	0.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5	R5A	5	134	1505	0.88	30.66	24.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3–5	R5A?	0	1	146	0.00	0.23	2.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5	R8	35	3	76	6.14	0.69	1.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5	\mathbf{SG}	0		1	0.00	0.23	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			570	437	6087			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		771	0	-	2	0.00		o F o
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								4.63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-7	Rə				100.00	50.00	70.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	8	108			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-5	A2	0	2	212	0.00	9 52	35.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								4.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								8.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								5.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								11.39
								1.01
4-5 R4 6 5 39 12.24 23.81 6.5 4-5 R8? 0 2 27 0.00 9.52 4.5 4-5 W3 0 1 16 0.00 4.76 2.6								17.42
4-5 R8? 0 2 27 0.00 9.52 4.5 4-5 W3 0 1 16 0.00 4.76 2.6								6.53
4-5 W3 0 1 16 0.00 4.76 2.6								4.52
49 21 597								2.68
			49	21	597			

Table 31	contd
----------	-------

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
4–6	NV	0	1	9	0.00	25.00	36.00
4-6	R1B	0	3	16	0.00	75.00	64.00
		0	4	25			
5	A1	0	1	52	0.00	0.19	0.50
5	A2	0	3	623	0.00	0.56	6.05
5	BB1	72	75	829	9.94	13.94	8.05
5	BB1?	0	4	64	0.00	0.74	0.62
5	BB2	0	1	77	0.00	0.19	0.75
5	BBI	12	1	78	1.66	0.19	0.76
5	CG	0	2	12	0.00	0.37	0.12
5 5	$\begin{array}{c} { m CGS} \\ { m EG} \end{array}$	$\frac{15}{20}$	$12 \\ 5$	80 66	$\begin{array}{c} 2.07\\ 2.76\end{array}$	$\begin{array}{c} 2.23 \\ 0.93 \end{array}$	$\begin{array}{c} 0.78\\ 0.64\end{array}$
5	MB12	20 0	5 12	438	0.00	2.23	$0.04 \\ 4.25$
5	MB12 MB26	0	12	23	0.00	0.19	0.22
5	MB29	0	1	170	0.00	0.19	1.65
5	MB4	0	4	172	0.00	0.74	1.67
5	MV	0	$\overline{2}$	10	0.00	0.37	0.10
5	NV	58	42	242	8.01	7.81	2.35
5	NV?	0	5	85	0.00	0.93	0.83
5	O10	0	2	22	0.00	0.37	0.21
5	O19	0	9	38	0.00	1.67	0.37
5	019?	0	4	6	0.00	0.74	0.06
5	02	0	2	11	0.00	0.37	0.11
5	O3A	0	1	6	0.00	0.19	0.06
5 5	O3A? O3C	0 100	$1 \\ 6$	$\begin{array}{c} 31 \\ 65 \end{array}$	$\begin{array}{c} 0.00\\ 13.81 \end{array}$	$\begin{array}{c} 0.19\\ 1.12\end{array}$	$\begin{array}{c} 0.30\\ 0.63\end{array}$
5	O3C?	0	0 4	60	0.00	0.74	$\begin{array}{c} 0.03 \\ 0.58 \end{array}$
5	030: 04A	4	5	57	0.55	0.93	0.55
5	O4A?	0	1	7	0.00	0.19	0.07
5	O4B	0	1	7	0.00	0.19	0.07
5	O4C	0	1	10	0.00	0.19	0.10
5	O5	0	1	5	0.00	0.19	0.05
5	R1	14	12	170	1.93	2.23	1.65
5	R12A	23	13	125	3.18	2.42	1.21
5	R12B	6	8	71	0.83	1.49	0.69
5	R12B?	0	1	13	0.00	0.19	0.13
5	R13	47	20	455	6.49	3.72	4.42
5	R13?	0	4	46	0.00	0.74	0.45
5 5	R1? R1B	0 68	$1 \\ 50$	$\begin{array}{c} 16 \\ 823 \end{array}$	$\begin{array}{c} 0.00\\ 9.39\end{array}$	$\begin{array}{c} 0.19\\ 9.29\end{array}$	$\begin{array}{c} 0.16 \\ 7.99 \end{array}$
5	R1B?	0	3	57	0.00	0.56	0.55
5	R1D	8	12	333	1.10	2.23	3.23
5	R1C?	0	2	23	0.00	0.37	0.22
5	R1D	38	15^{-}	411	5.25	2.79	3.99
5	R2?	0	1	5	0.00	0.19	0.05
5	R4	8	7	104	1.10	1.30	1.01
5	R5	203	144	3786	28.04	26.77	36.76
5	R5?	0	16	245	0.00	2.97	2.38
5	R6	0	1	22	0.00	0.19	0.21
5	R8	24	5	116	3.31	0.93	1.13
5	SG	4	2	11	0.55	0.37	0.11
5	W2?	0	2	8	0.00	0.37	0.08
5 5	W3? W4	0 0	1	$\begin{array}{c} 6 \\ 34 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.19\\ 0.93\end{array}$	$\begin{array}{c} 0.06 \\ 0.33 \end{array}$
5 5	W4 W6	0	$5\\2$	34 48	0.00	0.93	$\begin{array}{c} 0.33\\ 0.47\end{array}$
U	WU	U	4	40	0.00	0.07	0.47

Table 31contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
5	W6?	0	1	11	0.00	0.19	0.11
5	W7?	0	1	15	0.00	0.19	0.15
		724	538	10300			
		2	2	11.0	0.00	1.00	
$5-7 \\ 5-7$	A1 BB1	0	2	410	$\begin{array}{c} 0.00\\ 9.35\end{array}$	$\begin{array}{c} 1.98 \\ 7.92 \end{array}$	25.66
5-7 5-7	CGS	$\begin{array}{c} 10\\ 21 \end{array}$	8 1	$51\\88$	9.55 19.63	0.99	$3.19 \\ 5.51$
5-7 5-7	EG	0	1	8	0.00	0.99	0.50
5-7	MB26	0	1	16	0.00	0.99	1.00
5–7	MB4	ů 0	1	$\frac{10}{24}$	0.00	0.99	1.50
5–7	NV	0	11	48	0.00	10.89	3.00
5-7	NV?	0	7	31	0.00	6.93	1.94
5 - 7	O19?	0	1	3	0.00	0.99	0.19
5 - 7	O3B?	0	1	4	0.00	0.99	0.25
5 - 7	O4A	0	1	10	0.00	0.99	0.63
5 - 7	R1	0	1	34	0.00	0.99	2.13
5 - 7	R12B	0	1	46	0.00	0.99	2.88
5 - 7	R13	4	3	62	3.74	2.97	3.88
5 - 7	R13?	0	3	46	0.00	2.97	2.88
5-7	R1B	10	7	69	9.35	6.93	4.32
5-7	R1C	0	2	15	0.00	1.98	0.94
5–7 5–7	R4	0	3	48	0.00	2.97	3.00
0-7 5-7	R5 R8	$\begin{array}{c} 39\\ 21 \end{array}$	$42 \\ 1$	$505\\36$	$\begin{array}{c} 36.45\\ 19.63\end{array}$	$\begin{array}{c} 41.58 \\ 0.99 \end{array}$	$\begin{array}{c} 31.60\\ 2.25\end{array}$
5–7 5–7	SG	0	1	6	0.00	0.99	$\frac{2.25}{0.38}$
5–7 5–7	W2	$\frac{0}{2}$	1	9	1.87	0.99	0.56
5–7 5–7	W2 W5	0	1	29	0.00	0.99	1.81
		107	101	1598			
6		0	1	7	0.00	0.09	0.04
6	A1	0	2	253	0.00	0.19	1.44
6	A2	0	15	1383	0.00	1.42	7.86
6	A3	0	2	86	0.00	0.19	0.49
6	A3?	0	3	77	0.00	0.28	0.44
6	A3A	0	$2 \\ 2$	36 680	0.00	0.19	0.20
6 6	A8 BB1	$\frac{38}{117}$	95	1407	$\begin{array}{c} 3.14\\ 9.66\end{array}$	$\begin{array}{c} 0.19\\ 8.96\end{array}$	$\begin{array}{c} 3.86\\ 8.00\end{array}$
6	BB1?	0	55 1	5	0.00	0.09	0.03
6	BB2	0	$\frac{1}{2}$	20	0.00	0.19	0.11
6	CG	22	$\frac{2}{4}$	16	1.82	0.38	0.09
6	CG?	0	3	11	0.00	0.28	0.06
6	CGS	48	77	485	3.96	7.26	2.76
6	\mathbf{EG}	35	16	111	2.89	1.51	0.63
6	FW5	2	3	21	0.17	0.28	0.12
6	MB12	0	6	206	0.00	0.57	1.17
6	MB12?	0	3	108	0.00	0.28	0.61
6	MB28	0	1	99	0.00	0.09	0.56
6	MB4	0	9	411	0.00	0.85	2.34
6	MB8	0	3	87	0.00	0.28	0.49
6	MB9?	0	1	28	0.00	0.09	0.16
6	MV	0	1	2	0.00	0.09	0.01
6		47	47	592	3.88	4.43	3.36
6	NV?	0	3	12	0.00	0.28	0.07
6 6	O10 O10?	$\begin{array}{c} 10 \\ 0 \end{array}$	5 1	$99\\4$	$\begin{array}{c} 0.83\\ 0.00\end{array}$	$\begin{array}{c} 0.47 \\ 0.09 \end{array}$	$\begin{array}{c} 0.56 \\ 0.02 \end{array}$
0	010:	U	T	4	0.00	0.09	0.02

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight	
6	011	8	1	24	0.66	0.09	0.14	
6	012A	0	1	5	0.00	0.09	0.03	
6	O19	0	3	5	0.00	0.28	0.03	
6	O1?	0	1	3	0.00	0.09	0.02	
6	O2	0	6	68	0.00	0.57	0.39	
6	O20	3	1	19	0.25	0.09	0.11	
6	O27	4	1	31	0.33	0.09	0.18	
6	O2?	6	1	20	0.50	0.09	0.11	
6	O3A	0	1	5	0.00	0.09	0.03	
6	O3B	0	2	35	0.00	0.19	0.20	
6	O3B?	0	1	15	0.00	0.09	0.09	
6	O3C	0	7	56	0.00	0.66	0.32	
6	O4	0	3	16	0.00	0.28	0.09	
6	O4?	0	3	35	0.00	0.28	0.20	
6	O4A	4	6	85	0.33	0.57	0.48	
6	O4A?	0	3	38	0.00	0.28	0.22	
6	O4B	0	1	4	0.00	0.09	0.02	
6	O4B?	0	1	7	0.00	0.09	0.04	
6	O4C	0	1	8	0.00	0.09	0.05	
6	O5	0	5	63	0.00	0.47	0.36	
6	O5?	0	2	32	0.00	0.19	0.18	
6	$\mathbf{R1}$	79	63	792	6.52	5.94	4.50	
6	R12A	16	15	99	1.32	1.42	0.56	
6	R12B	10	11	244	0.83	1.04	1.39	
6	R12C	0	1	6	0.00	0.09	0.03	
6	R13	107	68	1148	8.84	6.42	6.52	
6	R13?	0	19	510	0.00	1.79	2.90	
6	R1?	0	5	133	0.00	0.47	0.76	
6	R1B	115	81	1374	9.50	7.64	7.81	
6	R1B?	0	17	108	0.00	1.60	0.61	
6	R1C	0	6	125	0.00	0.57	0.71	
6	R1D	20	14	220	1.65	1.32	1.25	
6	R2?	0	2	24	0.00	0.19	0.14	
6	R3	0	1	5	0.00	0.09	0.03	
6	$\mathbf{R4}$	69	53	771	5.70	5.00	4.38	
6	R5	234	258	3406	19.32	24.34	19.35	
6	R5?	66	17	281	5.45	1.60	1.60	
6	R5A	0	1	5	0.00	0.09	0.03	
6	$\mathbf{R7}$	4	1	19	0.33	0.09	0.11	
6	R8	88	36	1060	7.27	3.40	6.02	
6	R8?	46	7	122	3.80	0.66	0.69	
6	\mathbf{SG}	8	5	63	0.66	0.47	0.36	
6	W2	0	3	62	0.00	0.28	0.35	
6	W2A	0	1	4	0.00	0.09	0.02	
6	W4A	0	1	8	0.00	0.09	0.05	
6	W4A?	0	3	52	0.00	0.28	0.30	
6	W5	0	3	24	0.00	0.28	0.14	
6	W6	0	2	63	0.00	0.19	0.36	
6	W7	0	3	7	0.00	0.28	0.04	
6	W9	5	4	43	0.41	0.38	0.24	
		1211	1060	17598				

Table 31contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight	
6+	BB1	0	5	42	0.00	55.56	49.41	
0+ 6+	CGS	4	1	42	26.67	11.11	12.94	
6+	R12B	11	1	6	73.33	11.11	7.06	
6+	R12D R1D	0	$\frac{1}{2}$	26	0.00	22.22	30.59	
0+ 	hib				0.00	22,22		
		15	9	85				
6–7	BB1	0	4	25	0.00	7.84	2.34	
6–7	CGS 0		5	154	0.00	9.80	14.41	
6–7	O19?	0	1	3	0.00	1.96	0.28	
6–7	O25	0	1	5	0.00	1.96	0.47	
6–7	R1	0	2	30	0.00	3.92	2.81	
6–7	R12A	0	1	2	0.00	1.96	0.19	
6–7	R12B	12	1	$2\overline{2}$	13.19	1.96	2.06	
6–7	R5	16	20	285	17.58	39.22	26.66	
6–7	R5?	63	16	543	69.23	31.37	50.80	
		91	51	1069				
7	04A	0	8	171	0.00	0.43	0.51	
7	A1	0	2	146	0.00	0.11	0.43	
7	A2	0	4	240	0.00	0.22	0.71	
7	A3	0	1	192	0.00	0.05	0.57	
7	A3?	0	1	78	0.00	0.05	0.23	
7	BB1	63	65	841	2.69	3.53	2.50	
7	BB1?	8	2	29	0.34	0.11	0.09	
7	\mathbf{CG}	0	9	26	0.00	0.49	0.08	
7	CG?	0	4	60	0.00	0.22	0.18	
7	\mathbf{CGS}	47	27	202	2.01	1.47	0.60	
7	\mathbf{EG}	22	12	143	0.94	0.65	0.43	
7	FW5	0	1	22	0.00	0.05	0.07	
7	MB1	0	1	8	0.00	0.05	0.02	
7	MB11	0	1	52	0.00	0.05	0.15	
7	MB12	0	9	460	0.00	0.49	1.37	
7	MB12?	0	$\overset{\circ}{2}$	106	0.00	0.11	0.32	
7	MB16	ů 0	1	41	0.00	0.05	0.12	
7	MB18	0 0	1	28	0.00	0.05	0.08	
7	MB18/19	0	1	$\frac{20}{42}$	0.00	0.05	$0.00 \\ 0.12$	
7	MB10/15 MB26	3	1	10	0.13	0.05	0.12	
7	MB20 MB27	0	1	94	0.00	0.05	0.03 0.28	
7	MB27 MB28	0	$\frac{1}{2}$	152	0.00	0.05	0.20 0.45	
7	MB28?	0		53	0.00	0.05	0.45	
7	MB28: MB4	0	$1 \\ 4$	378	0.00	0.05	1.12	
7	MB8	4	13	625	0.17	0.71	1.86	
$\frac{7}{7}$	MB8?	0	3	85	0.00	0.16	0.25	
$\frac{7}{7}$	MB9 MC7	0	1	44	0.00	0.05	0.13	
7	MC7	0	3	1161	0.00	0.16	3.45	
7	MV	26	5	27	1.11	0.27	0.08	
7	NV	99	60	569	4.23	3.26	1.69	
7	NV?	0	10	37	0.00	0.54	0.11	
$\frac{7}{2}$	NV??	0	1	20	0.00	0.05	0.06	
7	01	0	1	12	0.00	0.05	0.04	
7	O10	0	17	256	0.00	0.92	0.76	
7	O10?	0	5	63	0.00	0.27	0.19	
7	O19	0	3	11	0.00	0.16	0.03	
7 7	O19? O1?	0 0	4 1	$90\\5$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.22 \\ 0.05 \end{array}$	0.27	

Table 31 cont	u

Phase	Fabric	%Rim	Rim Count		%Rim	%Count	%Weight	
7	O2	0	1	5	0.00	0.05	0.01	
7	O25?	0	$\frac{1}{2}$	34	0.00	0.05	0.01	
7	O25	10	$\frac{2}{2}$	54 74	0.00 0.43	0.11	0.10	
7	O3B	0	8	164	0.40	0.43	0.49	
7	O3C	0 0	3	68	0.00	0.16	0.40	
7	O3C?	0	$\frac{3}{2}$	36	0.00	0.11	0.11	
7	04	0 0	$\frac{1}{2}$	49	0.00	0.11	0.15	
7	04?	0	$\overline{3}$	33	0.00	0.16	0.10	
7	O4A	3	9	216	0.13	0.49	0.64	
7	O4A?	0	1	31	0.00	0.05	0.09	
7	O4B?	0	2	51	0.00	0.11	0.15	
7	O5	0	1	7	0.00	0.05	0.02	
7	O5?	0	1	13	0.00	0.05	0.04	
7	O6	0	2	11	0.00	0.11	0.03	
7	OX	0	1	4	0.00	0.05	0.01	
7	$\mathbf{R1}$	180	151	2441	7.70	8.19	7.26	
7	R12A	34	57	721	1.45	3.09	2.14	
7	R12B	31	34	405	1.33	1.84	1.20	
7	R13	378	201	4203	16.17	10.91	12.49	
7	R13?	30	58	908	1.28	3.15	2.70	
7	R1B	295	148	2535	12.62	8.03	7.53	
7	R1B?	4	7	84	0.17	0.38	0.25	
7	R1C	0	7	166	0.00	0.38	0.49	
7	R1C?	0	1	30	0.00	0.05	0.09	
7	R1D	40	39	872	1.71	2.12	2.59	
7	R2	0	2	75	0.00	0.11	0.22	
7	R2?		103	0.00	0.54	0.31		
7	R3B?	0	2	32	0.00	0.11	0.10	
7	R4	490	372	5879	20.96	20.18	17.47	
7	R5	322	249	4470	13.77	13.51	13.29	
$\frac{7}{2}$	R5?	30	47	595	1.28	2.55	1.77	
$\frac{7}{2}$	R5A	0	14	446	0.00	0.76	1.33	
$\frac{7}{2}$	R5A?	0	2	76	0.00	0.11	0.23	
$\frac{7}{2}$	R8	37	45	745	1.58	2.44	2.21	
7	R8?	54	8	159	2.31	0.43	0.47	
7	SG	0	5	22	0.00	0.27	0.07	
7	W2	0	1	4	0.00	0.05	0.01	
7	W26	2	2	29	0.09	0.11	0.09	
7	W3	0	1	32	0.00	0.05	0.10	
7 7	W4 W4?	8	5	40	$\begin{array}{c} 0.34\\ 0.00\end{array}$	$\begin{array}{c} 0.27 \\ 0.05 \end{array}$	$\begin{array}{c} 0.12\\ 0.00\end{array}$	
7	W49 W4A	0 0	1 1	$1 \\ 17$	0.00	0.05	$0.00 \\ 0.05$	
7	W4A W6?	0	3	76	0.00	0.05	0.03 0.23	
7	WO? W7	4	3 4	78 29	$0.00 \\ 0.17$	0.10	0.23	
7	W7?	4 0	$\frac{4}{2}$	29 10	0.00	0.22	0.09	
7	W8	0	$\frac{2}{3}$	41	0.00	0.11	$0.03 \\ 0.12$	
7	W8 W9	114	33	1024	4.88	1.79	3.04	
1	VV 9	114	00	1024	4.00	1.75	0.04	
		2338	1843	33645				
- .		~	2	-	2.02		0.10	
7+		5	2	5	2.96	1.53	0.10	
7+	A1	0	2	620	0.00	1.53	12.56	
7+	A2	0	13	1456	0.00	9.92	29.49	
7+	A2?	0	1	332	0.00	0.76	6.72	
7+	A3?	0	1	19	0.00	0.76	0.38	
7+	A8	0	6	315	0.00	4.58	6.38	
7+	BB1	23	7	118	13.61	5.34	2.39	

Phase	Fabric %Rim		Count	Weight	%Rim	%Count	%Weight		
7+	CGS	20	31	194	11.83	23.66	3.93		
7+	EG	25	8	65	14.79	6.11	1.32		
7+	MB11?	0	1	5	0.00	0.76	0.10		
7+	MB12	0	6	508	0.00	4.58	10.29		
7+	MB16	0	2	90	0.00	1.53	1.82		
7+	MB26	0	4	172	0.00	3.05	3.48		
7+	MB26?	0	1	29	0.00	0.76	0.59		
7+	MB4	0	3	68	0.00	2.29	1.38		
7+	MB8	0	1	17	0.00	0.76	0.34		
7+	NV	4	3	25	2.37	2.29	0.51		
7+	O21	9	1	75	5.33	0.76	1.52		
7+	R1	0	4	53	0.00	3.05	1.07		
7+	R13	19	11	297	11.24	8.40	6.02		
7+	R13?	0	2	19	0.00	1.53	0.38		
7+	R1B	12	2	35	7.10	1.53	0.71		
7+	R2	5	1	20	2.96	0.76	0.41		
7+	R4	0	3	112	0.00	2.29	2.27		
7+	R5	47	14	286	27.81	10.69	5.79		
7+	\mathbf{SG}	0	1	2	0.00	0.76	0.04		
		169	131	4937					
8	BB1	0	1	12	0.00	1.43	0.73		
8	CGS	0	2	2	0.00	2.86	0.12		
8	MB12	0	1	49	0.00	1.43	2.98		
8	MB12?	0	4	154	0.00	5.71	9.37		
8	MB4	0	1	39	0.00	1.43	2.37		
8	MB8	0	4	190	0.00	5.71	11.56		
8	NV	0	1	5	0.00	1.43	0.30		
8	NV?	0	1	11	0.00	1.43	0.67		
8	O5?	0	1	3	0.00	1.43	0.18		
8	$\mathbf{R1}$	0		74	0.00	2.86	4.50		
8	R13	0	$2 \\ 2 \\ 2$	45	0.00	2.86	2.74		
8	R13?	2	2	51	2.47	2.86	3.10		
8	R1B	0	7	175	0.00	10.00	10.64		
8	R1B?	0	1	6	0.00	1.43	0.36		
8	R4	59	25	577	72.84	35.71	35.10		
8	R5	20	12	226	24.69	17.14	13.75		
8	R5?	0	2	20	0.00	2.86	1.22		
8	W4	0	1	5	0.00	1.43	0.30		
		81	70	1644					
9	BB1?	0	3	80	0.00	2.00	2.86		
9	CG	0	1	17	0.00	0.67	0.61		
9	ĔĠ	5	1	8	4.72	0.67	0.29		
9	MB26	0	1	10	0.00	0.67	0.36		
9	MB27	0	1	60	0.00	0.67	2.14		
9	MB8	Ő	$\frac{1}{2}$	34	0.00	1.33	1.22		
9	NV	0 0	3	15	0.00	2.00	0.54		
9	NV?	0	1	11	0.00	0.67	0.39		
9	010	0 0	$\frac{1}{2}$	75	0.00	1.33	2.68		
9	O10?	0	1	36	0.00	0.67	1.29		
9	O10A	0	1	15	0.00	0.67	0.54		
9	019	0	1	5	0.00	0.67	0.18		
9	O3B	0	1	6	0.00	0.67	0.21		
9	R1	0	10	120	0.00	6.67	4.29		

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight		
9	R12A	0	3	64	0.00	2.00	2.29		
9	R13	12	6	124	11.32	4.00	4.43		
9	R13?	9	9	116	8.49	6.00	4.15		
9	R1B	11	13	148	10.38	8.67	5.29		
9	R1D	0	3	60	0.00	2.00	2.14		
9	R2?	ů 0	6	76	0.00	4.00	2.72		
9	R4	10	42	456	9.43	28.00	16.30		
9	R5	6	13	449	5.66	8.67	16.05		
9	R5?	0	10 12	111	0.00	8.00	3.97		
9	R5A	53	12	688	50.00	8.00	24.59		
9	W7	0	2	14	0.00	1.33	0.50		
		106	150	2798					
0.10	D 1	0	1	32	0.00	100.00	100.00		
9–10	R1	0	1		0.00	100.00	100.00		
		0	1	32					
PRE 7	BB1	0	1	5	0.00	2.63	0.58		
PRE 7	MB12	0	1	45	0.00	2.63	5.26		
PRE 7	MB12 MB4	0	1	94	0.00	2.63	10.99		
PRE 7	MB4 MB8	0	1	25	0.00	2.63	2.92		
PRE 7	NV	11	2	11	17.74	5.26	1.29		
PRE 7	010	0	1	5	0.00	2.63	0.58		
PRE 7	O10 O23	3	1	15	4.84	2.63	1.75		
PRE 7	023 027	3 4	1	15 22	6.45	2.63	$1.75 \\ 2.57$		
PRE 7	O27 O3C?	4 0	1	13	0.45	2.63	$\frac{2.57}{1.52}$		
PRE 7	R1	0	$\frac{1}{2}$	184	0.00	2.03 5.26	1.52 21.52		
PRE 7	R12B		1	104 7	0.00	2.63			
PRE 7 PRE 7	R12D R13	$\begin{array}{c} 0 \\ 11 \end{array}$		70	17.74	10.53	$\begin{array}{c} 0.82\\ 8.19\end{array}$		
PRE 7	R1B?	0	$4 \\ 2$	102	0.00	5.26	11.93		
PRE 7			1	20	0.00	2.63			
	R3	0		$\frac{20}{57}$			2.34		
PRE 7 PRE 7	R4	$\frac{12}{21}$	4	121	19.35	10.53	6.67		
	R5		8		33.87	$\begin{array}{c} 21.05\\ 10.53 \end{array}$	14.15		
PRE 7 PRE 7	R5? R8?	0 0	$\frac{4}{2}$	$\begin{array}{c} 46\\ 13 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	10.53 5.26	$\begin{array}{c} 5.38 \\ 1.52 \end{array}$		
		62	38	855					
Unstratified	A1	0	1	98	0.00	0.62	3.19		
Unstratified	A2	0	1	36	0.00	0.62	1.17		
Unstratified	BB1	8	$\overline{2}$	71	4.26	1.23	2.31		
Unstratified	CGS	7	1	20	3.72	0.62	0.65		
Unstratified	EG	0	1	1	0.00	0.62	0.03		
Unstratified	MB11	0	$\frac{1}{2}$	117	0.00	1.23	3.81		
Unstratified	MB12	0	1	31	0.00	0.62	1.01		
Unstratified	MB12 MB4	0	1	67	0.00	0.62	2.18		
Unstratified	MB4 MB9	0	1	34	0.00	0.62	1.11		
Unstratified	MB9?	0	1	13	0.00	0.62	0.42		
Unstratified	MC6	0	1	186	0.00	0.62	$\begin{array}{c} 0.42 \\ 6.05 \end{array}$		
Unstratified	NV	20	$\frac{1}{4}$	31	10.64	$\begin{array}{c} 0.62\\ 2.47\end{array}$	$\begin{array}{c} 0.05 \\ 1.01 \end{array}$		
Unstratified	010	0	6	98	0.00	3.70	3.19		
Unstratified	010?	0	1	8	0.00	0.62	0.26		
Unstratified	019	0	1	12	0.00	0.62	0.39		
Unstratified	O3C	0	1	5	0.00	0.62	0.16		
Unstratified	R1	32	11	121	17.02	6.79	3.94		
Unstratified	R12A	0	4	44	0.00	2.47	1.43		

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight	
Unstratified	R12B	27	10	154	14.36	6.17	5.01	
Unstratified	R13	31	21	434	16.49	12.96	14.12	
Unstratified	R13?	0	1	6	0.00	0.62	0.20	
Unstratified	R1B	0	10	135	0.00	6.17	4.39	
Unstratified	R1B?	0	5	55	0.00	3.09	1.79	
Unstratified	R4	46	42	808	24.47	25.93	26.28	
Unstratified	R5	0	5	62	0.00	3.09	2.02	
Unstratified	R5?	0	3	56	0.00	1.85	1.82	
Unstratified	R8?	13	10	172	6.91	6.17	5.60	
Unstratified	W7	4	14	199	2.13	8.64	6.47	
		188	162	3074				

Phase	Fabric	Forms
1–2	O10	B8.3
ი	04	E4 9
2	04	F4.2
3	BB1	J13.6, B17.1, D1.1 (×4), D2.2,
	\mathbf{CGS}	DR31, DR36, DR45,
	\mathbf{CG}	BE4.2
	MB14	M3=MS25
	NV	BE4.1, BE6.1
	R1B	J8.3, J20.7, D6.4
	R6	CJ4.1
3–4	BB1	J13.7, B16.2, D1.1, D2.2
01	BB2	$D3.4 (\times 2)$
	CGS	$DR37 (\times 2)$
	EG	DR31, DR30/37, DR37 (×2)
	MB6	M64
	MB12?	M43
	NV	BE1.4
	RIB	J2.8, J20.2
	R12B	J13.7
3–5	A2	AM1.2
0 0	BB1	BE9.1, B17.1, D1.1 (×4)
	CG	BE4.2, BE5.3
	CGS	$DR31 (\times 4), DR31R (\times 5), DR45 (\times 3)$
	EG	DR33
	MB4	M90, M99, M105
	MB8	M51
	NV	BE1.6, F7.1
	$\mathbf{R1}$	CJ4.2
	R1B	D1.1 (×2)
	R1D	J2.5
	R5	J12.10
	R8	$J12.2 (\times 2)$
	R12B	J20.2
4–5	FW5	B17.6
	MB8	M57
	O3B	F1.4
	R13	D1.1
5	BB1	J13.7, J13.8, B17.2, D1.1 (×2)
0	CGS	DR18/31, DR30/37, DR31
	EG	DR31R, DR38
	MB4	M98, M99, M104 ($\times 2$)
	MB12	M39, M42
	NV	BE4.1 (×4), BE5.1
	O3C	F14.1
	O4A	B11.4
	R1B	B17.6
	R1D	CJ3.2
	R5	$SJ2.3, J6.4, J10.1, J11.1, J12.7 \ (\times 4), J12.9 \ (\times 4), J12.10 \ (\times 3), J12.11$
	R8	J12.9
	R13	B17.10, D1.1
	SG	DR37
	W7?	BE4.1
6	A8	AM2.1 (×2)
0	110	· · · · · · · · · · · · · · · · · · ·

 Table 32
 Catterick Bridge (Site 240) – the incidences of form types by phase and fabric

Table 32contd

Phase	Fabric	Forms
	BB1	J13.1, B16.2, B17.6, D1.1
	CG	BE4.2, BE4.3
	CGS	DR15/36, DR18/31, DR18/31/31 (×2), DR30/37, DR31 (×4), DR31R, DR33, DR36 (×2), DR37, DR45
	EG	DR18/31/31, DR30/37, DR31 (×2), DR33 (×2), DR45
	FW5	BE3.10
	MB4	M83, M90, M91, M98, M99, M104/105, M104 (×3), M105
	MB9?	M60, M61
	MB12	M36, M39, M40, M43 (×2)
	NV	BE4.1 (×2), BE5.1, BE6.1
	O4A	B3.1
	010	B9.2
	011	B12.1
	O21A	B8.1
	027	B4.5
	R1 D1D	BE4.4, J12.9 120.0, B17.6, D1.1 (x/4)
	R1B R4	J20.9, B17.6, D1.1 (×4) J6.3 (×2)
	R5	$J_{12.4} (\times 2)$, $J_{12.5} (\times 2)$, $J_{12.7} (\times 7)$, $J_{12.8}$, $J_{12.9} (\times 6)$, $J_{12.10}$, $J_{12.11} (\times 2)$,
		B10.4
	R7	D1.1
	R8	J12.5, J12.7 (×3), J12.9 (×2)
	R12B	
	R13	J20.10, J20.11, B17.5, B17.6, D2.1, D2.3
	SG	DR18/31, DR37
	W9	D8.2
Pre 7	MB4	M103
	MB12	M42
	NV	BE4.1
	O23	J20.2
	027	B8.2
	R13	D1.1
3–7	R1B	B17.6
5-7	CGS	DR45
	R5	J12.10 (×2), J12.11
	R8	J12.7
	R13	D1.1, D7.1
	W2	J15.1
6–7	R5	J12.11, D1.1
7	BB1	B17.2, B17.6, D1.1 (×4)
	\mathbf{CG}	BE4.3
	\mathbf{CGS}	DR30/37 (×3), DR31 (×4), DR33 (×4), DR45
	\mathbf{EG}	DR31, DR31R, DR45
	MB8	M48, M49, M50, M52, M53 (×2)
	MB9	M58 (×2), M60, M61
	MB12	M35, M37 (×2), M38, M39, M40, M41
	MB16	M23=MS24
	MB27	M35, M36, M37
	MC7	$M114 (\times 2)$
	MV	DR27 (×3), DR33
	NV O4A	BE1.4, BE4.1, BE4.4, BE5.3, J9.2, B17.6 (×2), D1.1
	O4A 026	B1.2 B4 3
	026	B4.3

Phase	Fabric	Forms
	R1	F8.4, J1.4, J6.5, J9.2, J20.3, B17.3 (×2), B17.6 (×3), L4.3
	R1B	F16.1, J20.3, J20.14, B17.3, B17.6 (×8), D1.1 (×3), D2.4, D8.1
	R1D	D2.2, L4.1
	R4	SJ2.4, J6.3 (×6), J6.6 (×2), J6.7 (×10), J9.2 (×2), J12.4, D1.1 (×3), L1.1, L2.1
	R5	SJ3.1, J6.4?, J12.4, J12.5 (×3), J12.7 (×9), J12.9 (×5), J12.10 (×3), J12.11 (×2), B13.1, B17.6, D1.1, D10.1
	$\mathbf{R8}$	J8.3, J12.5
	R13	CJ4.1, BE4.4, J1.6, B4.4 (×2), B17.3 (×3), B17.4, B17.5, B17.6 (×9), B17.7 (×3), B17.10, D1.1 (×3), D2.2, D2.3 (×2), D2.4 (×3)
	W7	B4.5
	W9	B4.5, B6.1, D6.2 (×3)
	W26	BE4.1
6+	CGS	DR36
	R12B	J20.7
7+	SG/CGS/EG	DR27, DR31
	BB1	D2.1
	CGS	DR30/37 (×3), DR31 (×3), DR33, DR37, DR38/44
	\mathbf{EG}	DR33
	MB4	M99, M105
	MB8	M59
	MB9	M58
	MB12 MB26	M40 (×2), M44, M55 M60
	MB26 NV	BE4.1
	O21A	B4.1
	R1B	J19.1
	R2	B9.1
	R5	J9.1, J12.7, D1.4
	R13	B17.8, D1.1
8	MB1	M109
C	MB4	M81, M96, M99, M103
	MB8	M47 (×2), M51
	MB12	M40, M41, M43
	R4	J6.6, J6.7
	R5	J12.4, D1.5
	R13	D2.1
7–9	MB9	M62
9	MB1	M109
	MB4	M104
	MB8	M58, M63 (×2)
	MB12	M38
	EG	DR31
	NV	BE1.4
	R1B	B17.6
	R4 R13	J6.3 B4.4, B17.6
	1119	лт. т , лт <i>1</i> .0

Table 33 Catterick Bridge (Site 240) – incidence of form type by phase

Form t	ype:							\mathbf{F}	lagon									
Phase	F1.1	F1.2	F1.3	F1.4	F1.5	F2.1	F2.2	F2.3	F3.1	F3.2	F3.3	F3.4	F3.5	F4.1	F4.2	F5.1	F5.2	F5.3
1																		
1-2																		
2															1			
3																		
3-4																		
3-5 4-5				1														
4-5 5				1														
3 4-6																		
6																		
3-7																		
5-7																		
6-7																		
Pre7																		
7																		
8																		
9																		
6+ 7 -																		
7+																		

Form type:

Flagon

Phase	F6.1	F6.2	F6.3	F6.4	F6.5	F6.6	F7.1	F7.2	F8.1	F8.2	F8.3	F8.4	F8.5	F8.6	F8.7	F9.1	F10.1 F11.1 F11.2
1																	
1 - 2																	
2																	
3																	
3–4																	
3-5							1										
4-5																	
5																	
4-6																	
6																	
3-7																	
5 - 7																	
6 - 7																	
Pre 7																	
7												1					
8																	
9																	
6+																	
7+																	

Form t	type:	Flagon	Constricted necked jar
Phase	F12.1	F12.2 F12.3 F13.1 F14.1 F14.2 F15.1 F16.1	CJ1.1CJ1.2CJ1.3 CJ1.4 CJ2.1 CJ2.2 CJ2.3 CJ2.4 CJ2.5 CJ2.6
1			
1-2			
2			
3			
3-4			
3-5			
4-5			
5		1	
4-6			
6			
3-7			
5-7			
6-7			
Pre 7			
7		1	
8			
9			
6+			
7+			

Form type:

Constricted necked jar

Phase	CJ3.1 CJ3.2 CJ3.3	CJ3.4 CJ3.5 (CJ3.6 CJ4.1	CJ4.2 CJ4.3	CJ5.1 C	J5.2 CJ6.1 CJ7.1	CJ8.1 CJ9.1 CJ10.1 C	J10.2 CJ10.3

1						
1 - 2						
2						
3		1				
3–4						
3–5			1			
4–5						
5	1					
4–6						
6						
3-7						
5 - 7						
6–7						
Pre 7						
7		1				
8				1		
9						
6+						
7+						

Form	type: Constrict	ed necked jar		Beaker			
Phase	CJ11.1CJ12.1	BE1.1 BE1.2 BE1.3 B	E1.4 BE1.5 BE	1.6 BE1.7 BE1.8 BE	2.1 BE2.2 BE2.3 BE	2.4BE3.1 BE3.2 BE3.3	BE3.4
1							
1-2							
2							
3							
3-4		1					
3-5			1				
4-5							
5							
4-6							
6							
3-7							
5-7							
6-7							
Pre 7							
7		1					
8							
9		1					
6+							
7+							

Form type:

Beaker

Phase	BE3.5 I	3E3.6 BE3.'	7 BE3.8	BE3.9	BE3.10	BE4.1	BE4.2	BE4.3	BE4.4	BE4.5	BE5.1	BE5.2	BE5.3	BE5.4	BE6.1	BE6.2]	BE7.1
1																	
1-2																	
2																	
3						1	1								1		
3-4																	
3-5							1						1				
4-5																	
5						5					1						
4-6																	
6					1	2	1	1	1		1				1		
3-7																	
5-7																	
6-7																	
Pre 7						1											
7						2		1	2				1				
8						1											
9																	
6+																	
7+						1											

Table	33 (conto	1														
Form t	type							Be	aker								
Phase	BE8.	1 BE8	8.2 H	BE9.1 B	E9.2	BE9.3	BE10.1	1 SJ	J1.1 SJ	1.2 S	J2.1	SJ2.2	SJ2.3	SJ2.4	SJ3.1	SJ4.1	SJ5.1
L																	
-2																	
-4			-														
-5 5			1	<u>_</u>													
-5													1				
-6													1				
0																	
-7																	
-7																	
-7																	
re7																	
														1	1		
1																	
3+ 7+																	
ΙT																	
Form t	ype								Jar	s							
Phase	J1.1	J1.2	J1.5	3 J1.4	J1.	5 J1.6	5 J1.7	J1.8	J2.1	J2.2	J2.3	J2.4	J2.5 J2	2.6 J2.7	J2.8 J	2.9 J3.	1 J4.1 J5.
-2																	
-																	
-4															1		
-5													1				
-5																	
-6																	
-7																	
5-7 5-7																	
5-7 5-7																	
re7																	
101				1		1											
3																	
a																	

- 9
- 6+
- 7+

Form type

Jars

Phase	J6.1	J6.2	J6.3	J6.4	J6.5	J6.6	J6.7	J6.8	J7.1	J7.2	J7.3	J7.4	J7.5	J7.6	J8.1	J8.2	J8.3 J8.4	J9.1	J9.2	J10.1	J10.2	J10.3
-2																						
2																						
;																	1					
-4																						
-5																						
-5																						
i				1															1			
-6																						
;			2	1		1																
-7																						
-7																						
-7																						
Pre 7																						
,			6	1	1	2	10										1		4			
;																						
)			1																			
i+																						
'+																		1				

Form type:

Jar

Phase	J11.1	J11.2	J11.3	J11.4	J11.5	J11.6	J11.7	J12.1	J12.2	J12.3	J12.4	J12.5 J12.6	J12.7	J12.8	J12.9	J12.10	J12.11
1																	
1-2																	
2																	
3																	
3-4																	
3-5									2							1	
4-5																	
5	1												4		5	3	1
4-6																	
6											2	3	10	1	9	1	2
3-7																	
5-7													1			2	1
6-7																	1
Pre 7																	
7											2	4	9		5	3	2
8											1						
9																	
6+																	
7+													1				

Form type:

Phase	J13.1	J13.2	J13.3	J13.4	J13.5	J13.6	J13.7	J13.8	J13.9	J14.1	J14.2	J14.3	J14.4	J15.1	J15.2	J15.3	J15.4
2																	
						1											
4							2										
-5																	
-5																	
_							1	1									
-6	_																
_	1						1										
7														_			
-7														1			
7																	
re7																	
+ +																	
Ŧ																	
- intr	usive																
	asive																
									Jar								
'orm t	ype								Jar								
'orm t 'hase	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2	, J17.3 ,		J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
'orm t 'hase	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
'orm t hase	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase 2	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase -2 -4 -5	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
'orm t hase -2 -4 -5 -5	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
^b orm t <u>hase</u> -2 -4 -5 -5	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
'orm t 'hase -2 -4 -5 -5 -5	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase 2 4 -5 -5 -5	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
'orm t <u>hase</u> -2 -4 -5 -5 -6 -7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
orm t hase 2 4 5 5 6 7 7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
Vorm t -2 -4 -5 -5 -6 -7 -7 -7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
borm t hase -2 -4 -5 -5 -5 -6 -7 -7 -7 -7 -7 re7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
borm t base -2 -2 -4 -5 -5 -5 -6 -7 -7 -7 -7 -7 re7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
2 2 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7	ype	J16.2	J16.3	J16.4	J16.5	<u>J17.1</u>	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1
22 4 5 5 6 7 7 7 7 7 7 7 7 7	ype	J16.2	J16.3	J16.4	J16.5	J17.1	J17.2			J18.1	J18.2	J18.3	J18.4	J18.5	J18.6	J18.7	J19.1

Jar

Form type

									-										
Phase	J19.2	J19.3	J19.4	J19.5	J20.1	J20.2	J20.3	J20.4	J20.5	J20.6	J20.7	J20.8	J20.9	J20.1	0 J20.1 1	J20.12	J20.1	3 J20.1	4 J21.
1																			
1-2																			
2																			
3											1								
3-4						1					1								
3-5						1													
4-5						1													
5																			
4-6																			
6													1	1	1				
3-7																			
5-7																			
6-7																			
Pre 7						1													
7							2											1	
8																			
9																			
6+											1								
7+																			

Jar

Form type:

Bowls

Phase	B1.1	B1.2	B1.3	B1.4	B2.1	B3.1	B3.2	B3.3	B4.1	B4.2	B4.3	B4.4	B4.5	B4.6	B5.1	B5.2	B5.3	B6.1	B6.2	B7.1
1																				
1-2																				
2																				
3																				
3-4																				
3-5																				
4-5																				
5																				
4-6																				
6						1							1							
3-7																				
5-7																				
6-7																				
Pre7																				
7		1									1	2	2					1		
8																				
9												1								
6+																				
7+										1										

Form type:

Bowl

Phase	B8.1	B8.2	B8.3	B9.1	B9.2	B10.1	B10.2	B10.3	B10.4	B10.5	B10.6	B10.7	B10.8	B10.9	B10.10	B10.11	B11.1	B11.2	B11.3
1																			
1-2			1																
2																			
3																			
3-4																			
3-5																			
4-5																			
5																			
4-6																			
6	1				1				1										
3-7																			
5-7																			
6-7																			
Pre7		1																	
7																			
8																			
9																			
6+			_																
7+			1																

Form type:

Bowl

Phase	B11.4	B12.1	B12.2	B13.1	B14.1	B15.1	B15.2	B15.3	B15.4	B15.5	B15.6	B16.1 B16.2	B16.3	B16.4	B17.1	B17.2
1																
1-2																
2																
3															1	
3-4												1				
3-5															1	
4-5																
5	1															1
4-6																
6		1										1				
3-7																
5-7																
6-7																
Pre7																
7				1												1
8																
9																
6+																
7+																

Form	type:		Bo	owl								Di	$^{\rm sh}$						
Phase	B17.3	B17.4	B17.5	B17.6	B17.7	B17.8	B17.9	B17.10	B17.11	D1.1	D1.2	D1.3	D1.4	D1.5 D1.6	D2.1	D2.2	D2.3	D2.4	D2.5
1																			
1-2																			
2																			
3										4						1			
3-4										1						1			
3-5										6									
4-5				1						1									
5				1				1		3									
4-6																			
6			1	3						6					1		1		
3-7				1															
5-7										1									
6-7										1									
Pre7										1									
7	6	1	1	24	3			1		15						2	2	4	
8														1	1				
9				2															
6+																			
7+						1				1			1		1				
* - int	rusive	9																	

Form type:

 Dish

Phase	D2.6	D3.1	D3.2	D3.3	D3.4	D3.5	D3.6	D3.7	D4.1	D4.2	D4.3	D5.1	D5.2	D5.3	D6.1	D6.2	D6.3 D6.4	D6.5	D7.1	D8.1
1																				
1																				
1-2																				
2																				
3																	1			
3-4					2															
3-5																				
4-5																				
5																				
4-6																				
6																				
3-7																				
5-7																			1	
6-7																				
Pre7																				
7																3				
8																				
9																				
6+																				
7+																				

Form type:		Dis	h								Lid				
Phase	D8.2	D9.1	D10.1	D11.1	L1.1	L1.2	L1.3	L1.4	L2.1	L3.1	L4.1	L4.2	L4.3	L5.1	L5.2
1															
1-2															
2															
3															
3-4															
3-5															
4-5															
5															
4-6															
6	1														
3-7															
5-7															
6-7															
Pre7															
7			1		1				1		1		1		
8															
9															
6+															
7+															

Form t	type:	Ot	her					Amj	phorae			
Phase	01.1	02.1	02.2	03.1	04.1	AM1.1	AM1.2	AM1.3	AM2.1	AM3.1	AM3.2	AM4.1
1												
1-2												
2												
3												
3-4												
3-5							1					
4-5												
5												
4-6									0			
6 3-7									2			
3-7 5-7												
5-7 6-7												
Pre7												
7												
8												
9												
6+												
7+												

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
	O4A	0	1	24	0.00	100.00	100.00
		0	1	24			
1		0	1	1	0.00	0.18	0.01
1	A1	50	12	2728	4.04	2.19	22.45
1	A2	0	1	64	0.00	0.18	0.53
1	BB1	149	76	1308	12.04	13.87	10.76
1	BB1?	0	3	49	0.00	0.55	0.40
1	C	0	1	3	0.00	0.18	0.02
1	CGS	42	13	91	3.39	2.37	0.75
1	MB14	0	5	417	0.00	0.91	3.43
1	MB15?	0	1	30	0.00	0.18	0.25
1	MB16	0	1	68	0.00	0.18	0.56
1	MB16?	0	3	225	0.00	0.55	1.85
1	MB29	0	1	391	0.00	0.18	3.22
1	MB5	0	1	43	0.00	0.18	0.35
1	MV	3	6	24	0.24	1.09	0.20
1	NV O1	18	$\frac{1}{7}$	4	1.45	0.18	0.03
1	01	0	7	$51\\32$	0.00	1.28	0.42
1	O10 O10?	0	4		0.00	0.73	0.26
1 1		0 0	4 1	28 5	0.00	$\begin{array}{c} 0.73 \\ 0.18 \end{array}$	0.23
1	O10A O11?	0	1	$5\\2$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.18	$\begin{array}{c} 0.04 \\ 0.02 \end{array}$
1	011? 019?	0	1	$\frac{2}{5}$	0.00	0.18	0.02
1	019?	0	1	5	0.00	0.18	0.04
1	01 02	180	28	360	14.54	$5.10 \\ 5.11$	2.96
1	O23	0	28	17	0.00	0.18	$2.90 \\ 0.14$
1	023 024	0	1	6	0.00	0.18	$0.14 \\ 0.05$
1	024 02?	0	6	59	0.00	1.09	$0.03 \\ 0.49$
1	O21 O3A	0	3	34	0.00	0.55	0.49
1	O3B	0	5 9	88 88	0.00	1.64	$0.28 \\ 0.72$
1	O3B?	0	$\frac{5}{1}$	12	0.00	0.18	0.12
1	O3C	21	18	271	1.70	3.28	2.23
1	O3C?	0	4	65	0.00	0.73	0.53
1	04A	28	8	118	2.26	1.46	0.95
1	O4B	20	$\frac{3}{2}$	5	0.00	0.36	0.04
1	04B?	13	$\frac{2}{2}$	55	1.05	0.36	$0.04 \\ 0.45$
1	O4D: O4C	10	$\frac{2}{7}$	120	0.81	1.28	0.45
1	05	18	22	410	1.45	4.01	3.37
1	O5?	0	$\frac{22}{2}$	6	0.00	0.36	0.05
1	06	0 0	1	5	0.00	0.18	0.00
1	09	14	1	21	1.13	0.18	0.17
1	R1	52	29	436	4.20	5.29	3.59
1	R12	7	9	87	0.57	1.64	0.72
1	R12?	0	1	3	0.00	0.18	0.02
1	R12A	72	$2\overline{5}$	221	5.82	4.56	1.82
1	R12B	19	4	248	1.53	0.73	2.04
1	R12C	0	3	50	0.00	0.55	0.41
1	R13?	0 0	1	16	0.00	0.18	0.13
1	R1?	0	$\frac{1}{2}$	58	0.00	0.36	0.48
1	R1B	164	62	1265	13.25	11.31	10.41
1	R1B?	19	9	128	1.53	1.64	1.05
1	R1C	3	$\overset{\circ}{2}$	66	0.24	0.36	0.54
1	R1D	234	63	1268	18.90	11.50	10.43
1	R2	0	1	71	0.00	0.18	0.58
1	R2?	11	1	30	0.89	0.18	0.25
	R4	0		22		-	

 Table 46
 Catterick Racecourse (Site 273) – proportions of fabric types by phase

Table 46 contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
1	R5	18	3	82	1.45	0.55	0.67
1	SG	56	50	480	4.52	9.12	3.95
1	W2	0	5	85	0.00	0.91	0.70
1	W3	0	3	49	0.00	0.55	0.40
1	W3?	0	2	25	0.00	0.36	0.21
1	W4	20	8	136	1.62	1.46	1.12
1	W4?	0	1	32	0.00	0.18	0.26
1	W5	17	1	57	1.37	0.18	0.47
1	W6	0	1	12	0.00	0.18	0.10
		1238	548	12153			
2	CGS	0	2	37	0.00	16.67	14.12
2	R12C	0	$\frac{1}{5}$	116	0.00	41.67	44.27
2	R1B	15	3	58	71.43	25.00	22.14
2	R1D	0	1	17	0.00	8.33	6.49
2	SG	6	1	34	28.57	8.33	12.98
		21	12	262			
2+	A1	0	6	564	0.00	4.55	25.09
2+	A1?	0	2	124	0.00	1.52	5.52
2+	A2	0	1	21	0.00	0.76	0.93
2+	BB1	69	13	288	28.99	9.85	12.81
2+	\mathbf{CGS}	46	37	334	19.33	28.03	14.86
2+	MB14	0	1	83	0.00	0.76	3.69
2+	MB16	0	1	39	0.00	0.76	1.73
2+	MV	4	4	19	1.68	3.03	0.85
2+	01	0	1	4	0.00	0.76	0.18
2+	O10	13	2	42	5.46	1.52	1.87
2+	O2	0	20	205	0.00	15.15	9.12
2+	O2?	0	1	3	0.00	0.76	0.13
2+	O3C	25	1	12	10.50	0.76	0.53
2+	R1	0	4	21	0.00	3.03	0.93
2+	R12B	11	1	6	4.62	0.76	0.27
2+	R1B	27	4	69	11.34	3.03	3.07
2+	R1D	8	6	152	3.36	4.55	6.76
2+	R2?	0	1	3	0.00	0.76	0.13
2+	\mathbf{SG}	35	24	248	14.71	18.18	11.03
2+	W4	0	2	11	0.00	1.52	0.49
		238	132	2248			
3	A1	19	5	485	5.49	1.54	10.86
3	A2	0	2	521	0.00	0.62	11.67
3	A2?	0	1	237	0.00	0.31	5.31
3	BB1	39	$4\overline{0}$	331	11.27	12.31	7.41
3	BB1?	7	4	27	2.02	1.23	0.60
3	CGS	27	32	98	7.80	9.85	2.19
3	EG	0	1	1	0.00	0.31	0.02
3	MB16?	ů 0	1	22	0.00	0.31	0.49
3	MB8	0	1	156	0.00	0.31	3.49
3	NF?	0	$\frac{1}{2}$	8	0.00	0.62	0.18
3	NV	18	15	72	5.20	4.62	1.61
3	NV?	0	2	8	0.00	0.62	0.18
3	01	0	1	$\frac{3}{2}$	0.00	0.31	0.10
3	010	$\frac{1}{2}$	1	52	0.58	0.31	1.16
0	010	4	T	04	0.00	0.01	1.10

Table 46 contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
3	O10?	2	3	42	0.58	0.92	0.94
3	01?	0	1	2	0.00	0.31	0.04
3	02	0	2	7	0.00	0.62	0.16
3	O3A?	0	5	7	0.00	1.54	0.16
3	O3B	0	1	14	0.00	0.31	0.31
3	O3C	0	2	33	0.00	0.62	0.74
3	O3C?	0	6	54	0.00	1.85	1.21
3	O4A	13	8	113	3.76	2.46	2.53
3	O4B	0	6	8	0.00	1.85	0.18
3	O4C	0	1	44	0.00	0.31	0.99
3	O5	0	2	21	0.00	0.62	0.47
3	O5?	0	1	3	0.00	0.31	0.07
3	R1	9	30	399	2.60	9.23	8.94
3	R12	0	2	8	0.00	0.62	0.18
3	R12A	21	10	94	6.07	3.08	2.11
3	R12B	0	2	9	0.00	0.62	0.20
3	R13	26	14	271	7.51	4.31	6.07
3	R13?	0	4	81	0.00	1.23	1.81
3	R1?	18	4	51	5.20	1.23	1.14
3	R1B	105	30	457	30.35	9.23	10.24
3	R1C	0	1	17	0.00	0.31	0.38
3	R1D	12	12	52	3.47	3.69	1.16
3	R4	12	53	525	3.47	16.31	11.76
3	R5	0	4	50 16	0.00	1.23	1.12
3	R5?	6	1	16	1.73	$\begin{array}{c} 0.31\\ 0.31\end{array}$	0.36
3 3	$\begin{array}{c} m R5A \\ m SG \end{array}$	$\begin{array}{c} 0 \\ 10 \end{array}$	1	$6\\38$	$\begin{array}{c} 0.00\\ 2.89\end{array}$	2.46	$\begin{array}{c} 0.13 \\ 0.85 \end{array}$
а З	W5	10 0	8 1	2	0.00	$\begin{array}{c} 2.40\\ 0.31\end{array}$	0.85
3	W6	0	$\frac{1}{2}$	21	0.00	0.62	$0.04 \\ 0.47$
	110	346	325	4465	0.00	0.02	0.11
		040	020	4400			
3B	A2	0	4	248	0.00	0.47	2.43
3B	A2?	0	3	161	0.00	0.35	1.58
3B	BB1	595	773	8584	74.75	90.20	84.12
3B	BB1?	0	1	14	0.00	0.12	0.14
3B	\mathbf{CG}	0	$2 \\ 3$	8	0.00	0.23	0.08
3B	CGS	0	3	25	0.00	0.35	0.24
3B	FW8	0	1	5	0.00	0.12	0.05
3B	MB7	0	1	88	0.00	0.12	0.86
3B	MV	0	1	8	0.00	0.12	0.08
3B	NV	20	6	23	2.51	0.70	0.23
3B 2D	010	0	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	7	0.00	0.12	0.07
3B 2D	02	40	2	50	5.03	0.23	0.49
3B 2D	O4A O4B	7		20	$\begin{array}{c} 0.88\\ 0.00\end{array}$	0.35	0.20
3B 3B	O4B O4C	0 0	1	$\frac{14}{36}$	0.00	$\begin{array}{c} 0.12 \\ 0.23 \end{array}$	$\begin{array}{c} 0.14 \\ 0.35 \end{array}$
3B 3B	040 05		$2 \\ 1$	30 7	0.00	$0.23 \\ 0.12$	
зв 3В	05 R1	$\begin{array}{c} 0 \\ 22 \end{array}$	8	125	2.76	$\begin{array}{c} 0.12\\ 0.93\end{array}$	$\begin{array}{c} 0.07 \\ 1.22 \end{array}$
зв 3В	R12	6	8 1	125	$\begin{array}{c} 2.76 \\ 0.75 \end{array}$	$\begin{array}{c} 0.93 \\ 0.12 \end{array}$	0.16
3B 3B	R12A	0	3	39	0.00	$0.12 \\ 0.35$	0.10
3B 3B	R12A R12C	0	4	59	0.00	$0.35 \\ 0.47$	0.58
3B	R120 R13	46	11	217	5.78	1.28	2.13
3B 3B	R13?	14	$\frac{11}{2}$	35	1.76	0.23	0.34
3B	R1B	8	$\frac{2}{5}$	75	1.01	$0.25 \\ 0.58$	$0.54 \\ 0.73$
3B	R1D R1C	0	1	5	0.00	$0.50 \\ 0.12$	0.05
3B	R1D	0	4	78	0.00	0.47	0.76

Table 46 contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
3B	R2	0	1	5	0.00	0.12	0.05
3B	R4	24	4	128	3.02	0.47	1.25
3B	R5	5	$\frac{1}{2}$	37	0.63	0.23	0.36
3B	R5A	0	4	62	0.00	0.47	0.61
3B	SG	0	1	1	0.00	0.12	0.01
3B	W8	9	1	$2\overline{5}$	1.13	0.12	0.24
		796	857	10205			
Natural	\mathbf{SG}	0	1	13	0.00	100.00	100.00
		0	1	13			
TT / /···	1 0	4	-	0.00	1 55	0.00	
Unstratifie		4	7	0.00	1.75	0.06	44.00
Unstratifie		68	28 5	5046 1958	7.10	$\begin{array}{c} 12.23 \\ 2.18 \end{array}$	44.98
Unstratifie Unstratifie		0	5	1258	0.00		$\begin{array}{c} 11.21\\ 2.10\end{array}$
Unstratifie		0 0	5	$\begin{array}{c} 236 \\ 19 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 2.18 \\ 0.44 \end{array}$	$\begin{array}{c} 2.10\\ 0.17\end{array}$
Unstratifie		0	1 5	19 100	0.00	$\begin{array}{c} 0.44\\ 2.18\end{array}$	0.17 0.89
Unstratifie		3	5 1	16	0.00	$\begin{array}{c} 2.18 \\ 0.44 \end{array}$	$\begin{array}{c} 0.89\\ 0.14\end{array}$
Unstratifie		135	19	558	14.09	$\begin{array}{c} 0.44\\ 8.30\end{array}$	$\begin{array}{c} 0.14 \\ 4.97 \end{array}$
Unstratifie		135 12	19	10	14.09	0.30 0.44	4.97
Unstratifie		26	4	95	2.71	1.75	0.05
Unstratifie		20 6	4 6	95 27	0.63	2.62	$0.85 \\ 0.24$
Unstratifie		30	16	182	3.13	2.02 6.99	$\begin{array}{c} 0.24\\ 1.62\end{array}$
Unstratifie		0	10	82	0.00	$\begin{array}{c} 0.99\\ 0.44\end{array}$	0.73
Unstratifie		0	9	772	0.00	$0.44 \\ 3.93$	6.88
Unstratifie		0	9 1	67	0.00	5.95 0.44	0.60
Unstratifie		0	$\frac{1}{2}$	47	0.00	0.44 0.87	$0.00 \\ 0.42$
Unstratifie		0	$\frac{2}{2}$	92	0.00	0.87	0.42
Unstratifie		0	$\frac{2}{1}$	$\frac{52}{15}$	0.00	0.87	$0.82 \\ 0.13$
Unstratifie		0	1	13	0.00	0.44	$0.13 \\ 0.12$
Unstratifie		0	1	84	0.00	0.44	0.12 0.75
Unstratifie		118	4	82	12.32	1.75	0.73
Unstratifie		27	1	9	2.82	0.44	0.08
Unstratifie		8	1	170	0.84	0.44	1.52
Unstratifie		0	1	4	0.00	0.44	0.04
Unstratifie		28	$\frac{1}{2}$	25	2.92	0.87	0.22
Unstratifie		45	1	2 0 97	4.70	0.44	0.86
Unstratifie		0	1	24	0.00	0.44	0.20
Unstratifie		ů 0	5	444	0.00	2.18	3.96
Unstratifie		4	1	20	0.42	0.44	0.18
Unstratifie		25	4	$\frac{10}{67}$	2.61	1.75	0.60
Unstratifie		36	12	103	3.76	5.24	0.92
Unstratifie		0	1	5	0.00	0.44	0.04
Unstratifie		31	$\overline{7}$	123	3.24	3.06	1.10
Unstratifie		32	4	56	3.34	1.75	0.50
Unstratifie		26	2	20	2.71	0.87	0.18
Unstratifie		12	1	$\frac{20}{31}$	1.25	0.44	0.10
Unstratifie		13	1	32	1.36	0.44	0.29
Unstratifie		0	1	5	0.00	0.44	0.04
Unstratifie		96	20	486	10.02	8.73	4.33
Unstratifie		152	25	487	15.87	10.92	4.34
Unstratifie		4	1	13	0.42	0.44	0.12
Unstratifie		16	$\frac{1}{2}$	13 70	1.67	0.44	0.12
Unstratifie		0	$\frac{2}{1}$	6	0.00	0.87	$0.02 \\ 0.05$
Unstratifie		5	9	46	0.50	3.93	0.03 0.41
Unstratifie	a ba	U	ฮ	40	0.02	J.9J	0.41

Table 46contd

Phase	Fabric	%Rim	Count	Weight	%Rim	%Count	%Weight
Unstratified	W4	0	5	50	0.00	2.18	0.45
Unstratified	W5	0	3	17	0.00	1.31	0.15
		958	229	11218			

Phase	Fabric	Forms
1	A1	AM1.2
	BB1	J13.1, J15.4 (×3), D2.1, D2.6 (×4), D4.1
	CGS	DR18, DR18/31, DR18/31/31, DR27 (×2), DR30/37, DR33
	MB5	M65
	MB14 MB162	M20=MS31
	MB16?	M22=MS30
	MB21 MV	M29=MS28 DR18/31, DR33
	NV	BE1.6
	O2	F1.4, F1.5 (×2), F2.3
	O2 O3C	02.1
	O4A	F2.1
	04B?	B10.1
	04D. 04C	D5.1
	05	J17.4
	09	J15.3
	R1	CJ3.2, D4.2, L1.2
	R1B	F9.1, CJ1.4, J13.4, B10.7, B15.6, D4.2 (×2), D9.1
	R1D	J18.6, L1.2 (×2), L1.3 (×2), L4.1, L5.2
	R2?	B10.1
	R5	J11.5
	\mathbf{SG}	DR18R, DR18/31, DR18/31R, DR27, DR30/37 (×2), DR37
	R12A	B16.4
	R12B	J1.8
	W4	J16.1
	W5	F5.2
2	RIB	CJ1.1, B10.2
2	SG	DR18/31R
_		
2+	BB1	BE9.3, J13.1, J13.2, J13.6, D2.1, D4.1
	CGS	DR18/31/31, DR27, DR30/37 (×2), DR31 (×2), DR35/36, DR37
	MB14	M20=MS31
	MB16	M7=MS29
	MV	DR18/31
	O3C	J20.12
	O10 P1P	L4.1 C12.2 P15.1
	R1B R1D	CJ2.2, B15.1 J2.1
	R1D R12B	J20.5
	SG	DR18/31, DR18/31R, DR27, CU11,
	DG	D110/01, D110/0111, D1127, UU11,
3	A1	AM1.1
	BB1	BE9.3, B17.6, D1.1
	CGS	DR18/31, DR18/31/31, DR27 (×2), DR30, DR38/44
	NV	BE4.1 (×2)
	O4A	D5.2
	O10	J4.1
	R1?	L1.2
	R1B	J16.5 (×2), B15.1, B16.3, D2.1,
	R4	J6.2
	R5?	J12.7
	R12A	J20.3
	R13	B17.9 (×2), D1.1
	\mathbf{SG}	DR18R, CU15
3B	BB1	J13.4, J13.6 (×8), J13.8 (×2), B18.2, D1.1 (×4),
	CGS	DR18/31

 Table 47
 Catterick Racecourse (Site 273) – the occurences of forms types by fabric and phase

Phase	Fabric	Forms
	MB7	M66=MS27
	NV	BE1.7, BE4.1
	O2	F2.3
	R1B	J15.4
	R13	F5.3, B17.6 (×2), D2.1 (×2)
	W8	B4.1

Form	type:								Fla	igons								
Phase	F1.1	F1.2	F1.3	F1.4	F1.5	F2.1	F2.2	2 F2.	.3 F3.	1 F3.2	2 F3.	3 F3	.4 F3.	5 F4.1	1 F4	4.2 F5.	1 F5.2	F5.3
1				1	2	1		1									1	
2																		
2+ 3																		
3 3B								1										1
Form	type:								Fla	igons								
Phase	F6.1	F6.2	F6.3	F6.4	F6.5 1	F6.6 I	7.1	F7.2	F8.1	F8.2	F8.3	F8.4	F8.5	F8.6	F8.7	F9.1 F	10.1 F11	.1 F11.2
1																1		
2																1		
2+																		
3																		
3B																		
Form	type:		Flage	ons								Co	onstri	cted no	ecke	d jars		
Phase	F12.1	F12.2	F12.3	F13.1	F14.1	F14.	2 F15	5.1 F1	6.1 CJ	1.1 CJ1	1.2 CJ	1.3 CJ	1.4CJ	2.1 CJ2	2.2 C	J2.3 CJ2	2.4 CJ2.	5 CJ2.6
1												1						
1 2									1			1						
2+									-					1				
3																		
3B																		
Form	type						Co	nstric	ted ne	ecked	jars							
Phase	CJ3.1	CJ3.2	CJ3.3	CJ3.4	CJ3.5	CJ3.6	CJ4	1.1 CJ	4.2 CJ4	l.3 CJ5	5.1 CJ5	5.2 CJ6	6.1 CJ7	.1 CJ8.	1 CJ9	9.1 CJ10	.1 CJ10.	2 CJ10.3
1		1																
2																		
2 +																		
3																		
3B																		
Form	type:						Co	nstric	ted ne	ecked	jars							
Phase	CJ11.	1 CJ12.	1 BE1.1	BE1.2	BE1.	3 BE1.	4 BE1	1.5 BE	1.6 BE	1.7 BE1	1.8 BE	2.1 BE	2.2BE	2.3 BE2	2.4 B	E3.1 BE	3.2 BE3.	3 BE3.4
1								1										
2																		
2+																		
3																		
3B									1									
Form	type:								Beake	rs								
Phase	BE3.5	BE3.6	BE3.7	BE3.8	BE3.	9 BE3.	10 BE	4.1BE	4.2 BE	4.3 BE4	4.4 BE	4.5 BE	5.1BE	5.2 BE5	5.3 B	E5.4 BE	6.1 BE6.	2 BE7.1
1																		
2																		
2+ 3							2											
3B							1											

Table 48 Catterick Racecourse (Site 273) – incidence of form types by phase

310

Table 48contd

Form t	type:									Beak	ers									
Phase	BE8	.1 BI	E8.2 BE	9.1 B	E9.2	BE	9.3 BE	E10.1 S	J1.1	SJ1.2	SJ2.1	SJ	2.2 S	J2.3	SJ2.4	SJ3.1	SJ4.	1	SJ5.1	
1 2 2+ 3 3B						1 1														
Form t	type:									Jars										
Phase	J1.1 J1	.2 J	1.3 J1	.4 J1	.5 .	J1.6	J1.7	J1.8	J2.	I J2.2	J2.3	J2.4	J2.5	J2.6	5 J2.7	J2.8	J2.9	J3	.1 J4.1	J5.1
1								1												
2 2+ 3 3B									1										1	
Form t	vne									Jars										
Phase		9 TG 9	3 J6.4 J	IG 5 TG	26 I	67 1	16.8 J	I71 I7	79 T		175	17.6	TQ 1	10.0	1Q9 T	Q / TO	1 10.9	T1	0.1 J10.2	T10.9
1 2 2+ 3 3B	1																			
Form t	type:									Jars										
Phase	J11.1 J	11.2	J11.3 J1	1.4 J	11.5	J11.6	J11.7	J12.1	J12	2 J12.3	J12.4	J12.	5 J12.	6 J12	2.7 J12	.8 J12.9	J 12.3	10	J12.11 J	12.12
1 2 2+ 3 3B				1										1						
Form t	type:									Jars										
Phase	J13.1	J13.2	2 J13.3	J13. 4	4 J1	3.5 J	13.6	J13.7	J13.8	3 J13.9	J14.1	J14.	2 J14	. 3J1 4	4.4 J1	5.1 J15	.2 J15	5.3	J15.4	
1	1			1													1		3	
$2 \\ 2+$	1	1				1														
3 3B	* = int	rusive		1		8			3										1	
Form t	type:									Jars										
Phase	J16.1	J16.2	2 J16.3	J16. 4	4 J1	6.5 J	17.1	J17.2	J17.8	8 J17.4	J18.1	J18.	2 J18	.3J18	8.4 J18	8.5 J18	.6 J18	3.7	J19.1	
1 2 2+ 3 3B	1				2					1						1				

Table 48 contd

Form type:			Jars	
Phase J19.2 J19.3 J19.4 J	19.5 J20.1 J20.2 J20.3 J	20.4 J20.5	J20.6 J20.7	7 J20.8 J20.9 J20.10 J20.11 J20.12 J20.13 J20.14 J21.1
1 2 2+ 3 3B	1	1		1
Form type:			Bowls	
Phase B1.1 B1.2 B1.3	B1.4 B2.1 B3.1 B3.2	B3.3 B4.	1 B4.2 B4.3	3 B4.4 B4.5 B4.6 B5.1 B5.2 B5.3 B6.1 B6.2 B7.1
1 2 2+ 3 3B		1		
Form type:			Bowls	
Phase B8.1 B8.2 B8.3 B	9.1 B9.2 B10.1 B10.2	B10.3 B1	0.4 B10.5 B10	10.6 B10.7 B10.8 B10.9 B10.10B10.11B11.1 B11.2 B11.3
1 2 2+ 3 3B	2 1			1
Form type:			Bowls	
Phase B11.4 B12.1 B12	2.2 B13.1 B14.1 B15.1	B15.2 B1	5.3 B15.4 B1	15.5 B15.6 B16.1 B16.2 B16.3 B16.4 B17.1 B17.2
1 2 2+ 3 3B	1 1			1 1
Form type:	Bowls			Dishes
Phase B17.3 B17.4 B17.5	B17.6 B17.7 B17.8	B17.9 B17.	10 B17.11 D1.	1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D2.1 D2.2 D2.3 D2.4 D2.5
1 2 2+ 3 3B * = intrusive	1 2 2	2	2 4	1 1 1 2

Table 48contd

Form	type:]	Dishe	s									
Phase	D2.6 D3	.1 D3.2	D3.3 D3.4	D3.5	D3.6 I	D3.7 D4	4.1 D	04.2	D4.3	D5.1	D5.2 I	D 5.3]	D6.1	D6.2	D6.3	D6.4	D6.5	D7.	1 D8.1
1	4					1	3			1									
$\frac{2}{2+}$						1													
$\frac{2}{3}$						1					1								
3B																			
Form	type:			Dis	hes					Lids									
Phase	D8.2	D9.	1 D10.1	D11.1	L1.1	L1.2	L1.	.3 I	L1.4	L2.]	l L3.	.1 I	.4.1	L4.2	L4.	3 L5	.1]	L 5.2	
1		1				3	2					1					1	L	
2																			
2+						1						1							
3B						-													
Form	type:		Oth	er							Amp	ohora	ie						
Phase	01.1	02.1	02.2	03.1	04	.1 A	M1.1	1	AM1	.2	AM1.3	B A	M2.1	L .	AM3.1	A	M3.2		M4.1
1 2 2+ 3 3B		1				1			1										

402) - the occurr			pes by	pnase	Phase	Fabric			
Phase Fabric									
Phase 1–4 A2	17.4	37.7	0	0		R07	0.6	0.5	0
A3	1.3	2.8	0	0		R09	0.1	0.1	0
A11	3.9	11.8	0	0		R10	14.7	7.9	6.1
BO1	5.9	5.2	17.2	9.8		R11	7.2	5.3	7.5
B10	0.9	0.6	0	0		R13	12.2	10.5	17.0
MB16	1.3	4.4	6.9	3.1		R131	0.4	0.4	0
MB17	1.3	1.9	3.5	2.4		R19	0.4	0.2	0.7
0181	0.4	0.3	0	0		R196	0.2	0.2	0.7
0182	0.4	0.1	0	0		R199	0.2	0.2	$\begin{array}{c} 0\\ 0 \end{array}$
Q01	0.4	0.1	0	0 0		R37	1.1	0.8	0.7
Q011	$\begin{array}{c} 2.1 \\ 9.3 \end{array}$	1.5	$\begin{array}{c} 0 \\ 3.5 \end{array}$			R39 R391	$\begin{array}{c} 0.2 \\ 0.1 \end{array}$	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	0 0
R06 R08		6.2	3.3 0	$\begin{array}{c} 19.1 \\ 0 \end{array}$		R43	18.8	16.1	21.1
R10	$\begin{array}{c} 0.4\\ 14.4\end{array}$	$\begin{array}{c} 1.5\\ 8.8\end{array}$	20.7	$0 \\ 21.7$		SOO	18.8	16.1 16.1	$21.1 \\ 21.1$
R10 R11	4.7	3.0	20.7 6.9	$\frac{21.7}{5.7}$		W01	0.1	0.0	
R13	4.7 3.0	$\frac{3.0}{2.1}$	0.9 3.5	$\frac{5.7}{2.4}$		WO1 WO3	0.1	0.0	0
R19	0.9	$1.5^{2.1}$	0 0	$\frac{2.4}{0}$		MED*	0.5	0.2	0
R19	0.9 1.7	0.3	$\frac{0}{3.5}$	0	POS	ST MED*	0.1	0.0 0.1	0
R190 R43	1.7	0.3 0.7	0 0	0	100	JI MILD		14352	147 1
SOO	28.4	0.7 9.5	34.5	35.8			000	14002	14/ 1
POST MED	0.4	0.2	0	0	Phase 11	A2	48.2	72.7	_
1001 MED		6704	29	419	I mase I	A3	1.4	7.7	
	200	0104	20	410		A11	1.4	0.8	
Phase 5–10 A2	3.3	14/9	0	0		BO1	9.4	3.1	
A3	0.5	2.8	0	0		B10	1.4	0.7	_
A11	0.3	0.2	0	0		F10	0.7	0.0	_
BO1	12.5	10.5	19.1	14.7		F11	5.0	1.0	_
BO1 BO2	0.7	1.8	2.0	2.4		F71	1.4	0.3	_
B10	1.8	2.0	4.8	2.1		G08	0.7	1.2	_
B10 B11	0.5	0.5	0	0		G105	0.7	0.3	_
F10	0.4	0.1	0.7	2.1		MB4	1.4	3.2	_
F11	3.9	2.0	4.1	$\frac{1}{5.0}$		MB6	0.7	1.4	_
F19	0.4	0.6	0	0		Q01	0.7	0.8	_
F30	0.6	0.3	0.7	0.6		\mathbf{Q}_{04}^{01}	0.7	0.1	_
F71	1.5	1.5	0	0		Q011	0.7	0.2	_
F81	0.1	0.1	0	0		R06	0.7	0.1	_
G01	0.1	0.1	0	0		R10	7.9	1.1	_
G08	0.7	1.1	1.4	1.6		R11	2.9	0.3	_
G102	0.5	0.1	0	0		R13	3.6	2.1	_
G105	0.4	0.3	0.7	0.4		R37	0.7	0.2	_
G107	0.3	0.3	0	0		R71	0.7	0.1	_
G20	1.9	0.8	1.4	1.7		SOO	8.6	2.4	_
MB4	0.9	6.0	2.0	2.2			139	6530	8
MB11	0.1	0.3	0.7	0					
MB16	0.2	0.6	0.7	0	Phase 12	2–14 A2	1.5	6.2	0
MC8	0.1	1.5	0.7	0.5		A3	2.0	15.3	0
MC9	0.2	0.3	0.7	0.6		A11	0.6	1.9	0
Q01	0.7	0.5	0	0		A31	0.3	0.2	0
O01	0.1	0.2	0	0		BO1	19.9	13.5	16.1
011	0.7	0.2	0.7	0.5		BO2	0.4	0.4	0.9
013	0.3	0.1	0	0		B10	0.5	0.6	2.5
0181	0.1	0.0	0	0		B11	0.4	0.1	0
O31	1.8	2.1	0.7	4.2		F10	0.1	0.0	0.8
Q011	0.1	0.0	0	0		F11	4.2	2.2	4.2
Q03	0.7	0.8	0	0		F30	1.8	0.6	0.
R06	5.3	4.3	5.4	6.6		F41	0.1	0.0	0
R061	0.1	0.5	0	0		F53	0.1	0.0	0.9
R062	0.1	0.1	0	0		F71	0.1	0.1	0

Table 70Thornbrough Farm (Sites 452 and482) - the occurrence of fabric types by phase

Table 70 contd

0 0 6.6 7.4

 $\begin{array}{c} 17.6\\ 0\end{array}$

0.6

0.8 0

 $0.8 \\ 0 \\ 0 \\ 21.0$

> 0 0 0

 $\begin{array}{c}
 0 \\
 0 \\
 0 \\
 12.0
 \end{array}$

0.9

2.1

1.0

6.0 0 0

 $\begin{array}{c} 1.2 \\ 0 \end{array}$

0

Table 70 contd

Table 70 contd

Phase	Fabric					Phase	Fabric				
	G01	0.9	0.9	0	0		F30	0.2	0.1	0	0
	G098	0.1	$0.0 \\ 0.1$	0 0	0		F61	0.2	0.9	1.4	2.3
	G099	0.1	0.0	ů 0	0 0		F70	0.4	0.6	1.4	0
	G296	0.1	0.2	Ő	ů 0		F71	0.4	0.1	0	Ő
	G105	1.2	0.2	0.8	0.5		F72	0.1	0.1	1.4	1.1
	G106	0.1	$0.0 \\ 0.1$	0.0	0.8		G01	7.1	5.6	4.1	$1.1 \\ 1.5$
	G20	1.6	1.2	2.5	1.9		G099	0.2	0.1	0	0
	MB04	0.5	4.7	$2.5 \\ 2.5$	3.0		G10	0.2	0.1	Ő	Ő
	MB6	0.1	1.8	0	0		G296	$0.2 \\ 0.1$	0.1	Ő	Ő
	MB12	0.1	0.4	ů 0	0		G51	0.2	0.1	0	0
	003	0.3	0.1	0.8	ů 0		G105	3.4	2.8	$\overset{\circ}{2.7}$	0.6
	O061	0.3	0.5	0.0	0 0		G106	0.2	0.2	0	0.0
	011	0.1	0.0	Ő	ů 0		G20	6.6	5.5	6.9	8.5
	013	0.4	$0.0 \\ 0.2$	0	0		MB1	0.9	1.4	1.4	1.6
	0191	0.4	$0.2 \\ 0.1$	0	0		MB4	0.4	0.8	1.4	0
	031	0.6	0.1	0.9	1.1		MB4 MB8	0.4	$0.0 \\ 0.5$	1. 4 0	0
	O32	0.9	0.4	0.0	0		MB0 MB9	0.2	1.2	1.4	3.9
	Q01	0.5	0.4	0	0		MC9	0.2	0.5	0	0.5
	Q04	0.1	0.0	0	0		MC12	0.2	0.3	1.4	0
	Q011	0.1	0.0	0	0		003	0.2	0.5	1. 4 0	0
	R06	4.2	4.2	9.3	9.9		005	0.2	0.1	0	0
	R062	4.2 0.1	0.1	5.5 0	0		013	0.2	0.4	0	0
	R07	0.1	0.1	0.9	0.5		Q03	0.0	0.2	0	0
	R09	0.4	0.4	0.9	0.5		Q03 Q04	0.2	0.1	0	0
	R10	10.4	5.8	6.8	0.0 7.6		Q04 Q06	0.0	0.2	0	0
	R10 R11	10.4 7.7	5.6	0.8 9.3	6.8		Q00 001	1.7	0.1	0 1.4	$\frac{0}{3.1}$
	R13	17.9	14.5	$\frac{9.3}{20.3}$	$\begin{array}{c} 0.8\\ 24.9\end{array}$		0181	0.8	1.0	1.4 0	0
	R15 R16	0.1	$14.3 \\ 0.2$		$ \begin{array}{c} 24.9\\ 0 \end{array} $		0181	0.8	0.0	0	0
	R196	0.1	0.2 0.1	0			019 041	0.2	0.0 0.4	0	0
	R190 R198	0.4 0.1	$0.1 \\ 0.2$	0	0 0		Q05	0.2	0.4	0	0
	R37	0.1 1.9	0.2 3.3	$\begin{array}{c} 0 \\ 1.7 \end{array}$	$\frac{0}{2.2}$		Q05 R06	0.2 1.9	1.2	0 4.1	$\frac{0}{5.1}$
	R39	0.8	0.4	0	$\frac{2.2}{0}$		R062	0.8		4.1 0	0.1
	R392			0	0		R02 R07		$\begin{array}{c} 0.5 \\ 1.1 \end{array}$	0 4.1	$\frac{0}{2.6}$
	SOO	0.1	$\begin{array}{c} 0.1 \\ 10.7 \end{array}$	17.0	0 16.8		R07 R08	$\begin{array}{c} 0.8\\ 0.2 \end{array}$	0.1	4.1 0	2.0 0
		13.0					R08 R09			12.3	
	WO1	0.1	0.1	0	0			12.6	8.4		12.0
	WO3 W22	0.3	0.1	0	0		R10 R11	$\begin{array}{c} 3.4\\ 3.4\end{array}$	1.5	$2.7 \\ 2.7$	$\begin{array}{c} 1.2 \\ 0 \end{array}$
DOST	vv 22 ۲ MED*	$\begin{array}{c} 1.1 \\ 0.1 \end{array}$	$\begin{array}{c} 0.3 \\ 0.1 \end{array}$	0	0		R11 R13		$\begin{array}{c} 1.6\\ 3.1 \end{array}$		
F051	I MED.			0	0			3.4		2.7	1.2
		795 1	1907	118 1	103		R19	0.4	0.7	0	0
Dhaga 14/	1 10	9.6	10.0	1 /	9.6		R196	0.4	0.2	0	0
Phase 14A		3.6	18.0	1.4	2.6		R197	0.2	0.1	0	0
	A3	1.1	5.3	0	0		R24	0.2	0.1	0	0
	A11	17	1.8	0	0		R39	1.5	1.6	0	0
	A31	0.2	0.9	0	0		R391	0.4	1.2	0	0
	BO1	11.2	9.8	13.7	4.8		R81	0.2	0.1	0	0
	BO2	2.2	1.2	4.1	6.2		SOO	8.2	4.1	5.5	8.4
	B10	1.7	2.4	1.4	7.5	1 <i>1</i> 7 7 7	W22	0.4	0.1	0	0
	B11	0.2	0.1	0	0	MEL	D/PMED*	1.1	1.5	2.7	_
	F10	0.8	0.1	0	0			534	7605	73	644
	F11	10.9	6.1	15.1	21.4	ψ Τ					
	F19	0.8	2.6	1.4	3.6	* – Intru	isive				
	F20	0.4	0.2	1.4	0.6						

Table 71 Thornbrough Farm (Sites 452 and 482) – the incidence of form types by phase group

Figures in parentheses (eg $(\times 2)$) indicate number of examples (by minimum numbers of rims per context) if this is greater than one. Numbers in square brackets indicate the percentage of rim (RE).

Phase	Fabric	Forms
Phase 1–4	B01	B15.2[10], B16.2[10], B17.?[0] D2.1[9], D4.1[12]
	MB16	M28[7];MS75 M4A[6];MS76
	MB17	M59A[10]
	R06	J18.3[80]
	R10	B15.2[0], J7.3[20], J13.4[0], J14.3[31], J18.1[15], L5.2[25]
	R11	D3.2[14], J1.9[10]
	R13	D2.1[10]
	R196	F??[0]
	S00	M–D–V; DR27(×2)[13, 7], CGS; DR??[9] DISH/BOWL[4] DR18/31/31[5], DR18/31R[3], DR31(×3)[3, 6, 6] DR33(×3)[11, 0, 6], DR30/37(×3)[4, 16, 7], ENCLOSED[23], EG; DR31R[5]
Phase 5–10	B01	B15.1(×3)[12, 12, 0], B15.2[7], B17.2[0], D1.1(×10)[7, 4, 7, 4, 3, 9, 5, 6, 7, 5], D2.1(×2)[7, 5], J??[0], J13.2(×3)[15, 12, 13], J13.4[14], J13.6(×5)[17, 15, 9, 24, 11], J13.7?[24]
	B02	B17.3(×2)[30, 12], B17.?[0]
	B10	B14.1(×2)[8, 7] (× JOINS 138, Ps 9 + 136 Ps 14A), B15.1[0], B15.6[9], D1.7[4], D3.4(×2)[4, 5]
	F10	BE5.5[36]
	F11	J20.13[24], BE1.4[10], BE1.7[18], BE5.1(×2)[18, 0], BE6.(1?)[17]
	F30	J20.15[11]
	G08	D3.5[15] (× JOINS 137 Ps 11), J11.7[12]
	G105	J11.2[7]
	G20	J11.5[10], J12.9[19]
	MB04	M71[30];MS73 M73[0] M76[8]
	MB11 MB16	M16[0];MS74
	MB16 MC08	M17[0] M116[9]
	MC08 MC09	M116[9] M116A[10]
	011	L1.3[8]
	031	CJ5.2[73]
	R06	B15.5[7], D3.2[10], J2.6[18], J7.2[8], J9.1[13], J13.2[12], J13.4[15], CJ2.3[30]
	R10	$D2.6[10], D3.7(\times 2)[7, 11], J13.2[13], J13.4(\times 2)[14, 8], J13.6[21], J20.5[5], J20.6[24]$
	R11	$D2.1(\times 2)[5, 0] D4.1[11], J13.3[8], J13.4(\times 2)[9, 12], J13.6[47], J13.6[0], J13.?[0], J20.5[19], J20.6[17]$
	R13	$\begin{array}{l} D2.1(\times 4)[7,8,9,8] \ D2.2[5] \ D3.2[15], \ D4.1(\times 2)[11,7], \ J13.1[11], \ J13.2(\times 5)[7,10,17,7,26], \ J13.3[5], \ J13.4(\times 5)[25,15,10,20,7], \ J13.6(\times 4)[16,12,21,15], \end{array}$
	D / a	CJ2.4[10]
	R19	D3.2[10]
	R196	J18.3[13]
	R37	$J_{13,2}[14]$
	S00	SG; DR29[11], CGS; DISH/BOWL[3], CU23[5], DR18/31[6], DR18/31/31(×2)[3, 2], DR18/31R/31R(×2)[12, 44], DR31(×16)[4,7,10,10,7,2,8,4,5,2,5,2,10,6,7,11], DR31R(×4)[3,6,6,8], DR33(×9)[0,18,11,8,7,3,12,12,6], DR36(×2)[12,3], DR30/37(×2)[6,5], DR37(×2)[24,10], DR40[3], DR38/44(×2)[2,12]
Phase 11	B01	J13.6[10]
	MB04	M83[12], M87[9]
	MB06	M64G[8]
	Q04	F6.5[0]
	R13	B15.2[17]
	S00	CGS; CU21[3] CU15[9], EG; DR31[8]
Phase 12–14	B01	$\begin{array}{l} B15.2(\times 3)[0,8,5],B17.1[4],D1.1(\times 2)[0,5],D2.1[5],D4.1(\times 3)[6,20,6],J??[0],\\ J13.2[11],J13.4[8],J13.6(\times 3)[9,10,10],J13.7[12],J13.9[7],J15.3[14] \end{array}$

Phase	Fabric	Forms
	DOO	D1 1[10]
	B02	D1.1[10]
	B10	D3.4?[8], D4.1[11], J13.1[6]
	F10	BE1.1[12] 190 19101 DE1 4(>20)[15 0] DE2 2[12] DE5 2[21] DE6 1[12]
	F11	J20.13[8], BE1.4(×2)[15, 9], BE2.3[13], BE5.2[21], BE6.1[13]
	F53	BE1.4[14]
	G105	J11.2[6]
	G106	J11.7[10]
	G20	J9.1[7], J11.5(×2)[7, 8]
	MB04	M??[0], M74[25], M78[10]
	O03	J20.2?[0]
	O31	
	R06	D1.1[0], D3.2[16], D3.3(\times 2)[0, 0], D3.4[0], D3.5[13], J9.1[13], J13.2[6], J13.4[25], CJ4.3[42]
	R09	D2.3[7]
	R10	J13.2(×2)[11, 13], J13.3(×2)[14, 10], J13.4(×2)[13, 15], J20.5[5], BE9.2[7]
	R11	D2.1(×2)[8, 0] D2.6[0], D4.1(×4)[0, 22, 0, 17], J13.2(×4)[0, 10, 10, 12]
	R13	BE9.1[20], B15.1[10], D2.1(×2)[0, 0], D3.2[12] D3.3(×2)[0, 15], D4.1[0], J??[0],
		J13.2(×5)[11, 11, 16, 13, 8], J13.3[18], J13.4(×7)[14, 7, 25, 8, 0, 16, 70],
	Dor	J13.5[0], L1.1[16]
	R37	J12.1[16], J12.3[10]
	S00	CGS; CU23[5] DR18/31/31[2], DR31(×11)[3, 6, 6, 11, 7, 4, 6, 0, 3, 5, 3],
		DR31R[2], DR33(×4)[6, 30, 12, 3], DR30/37[3] DR37[6], DR38[55], DR38/44[5],
		DR45[5], DR79[2], EG; DR31[5]
Phase 14A	A2	AM1.3[17]
	B01	B15.1[6], B17.2[6], B17.6[0], B17.?[0], D1.1(×3)[0, 5, 6], J??[0], J13.6[0],
		J13.7[8]
	B02	J13.4[6], J13.6[11], J14.4[23],
	B10	B14.1[48] (×, JOINS 138+157 Ps 9)
	F11	D1.1[6], F11.1[12], F11.3[22], BE1.4(×2)[9, 16], BE4.1(×3)[14, 18, 0],
		BE4.3[0], BE4.4[23], BE5.1[18]
	F19	$B4.1[23] (\times JOINS 631 Ps 9 + 632 Ps 9)$
	F20	B4.2[4]
	F61	B4.1[15]
	F70	D8.3[0]
	F72	B4.3[7]
	G01	$F15.2[0], J6.6(\times 2)[10, 0]$
	G105	J6.1?[0], J9.1[4]
	G20	J9.1[13], J11.7[15], J12.1[8], J12.7[9]
	MB01	YOUNG M22[10]
	MB04	M85[0]
	MB09	M47[25]
	MC12	M115[0]
	001	F1.?[20]
	R06	B15.6[9], J13.3[8], CJ2.2[16]
	R07	B18.1[5], J2.5[7], J9.1[5], J20.5[6]
	R09	B17.5[10], B17.7(×2)[8, 0], D1.1[0], D2.3[11], J9.1(×2)[10, 16], J12.1[11],
		J20.6[11]
	R10	$J13.4(\times 2)[0, 8]$
	R13	B15.2[8], BE9.1[0]
	R11	J??[0], J13.2[0]
	S00	CGS; DR18/31/31[2] DR27[5] DR31(×2)[4, 6], DR31R[8], DR33[6], DR36[6]
		DR30/37[0], EG; DR36[2] DR38[8]

Table 113 Catterick Bypass (Site 433) mortars: comparison of aggregate grading patterns

390: G V E–W wall in N of (Wall 12, B III.5c, Phase 5		S end of N–S wall o, Phase 1–3/4)	X=X 391: G V N–S wall in W of trench (Wall 9, B III.5c, Phase 5–6)
	~ 409: G XXVI/VI (Wall 2, B III.5b, 1	N–S wall N end E side Phase 3/4)	
391: G V N–S wall in W of t (Wall 9, B III.5c, Phase 5–			
<i>392</i> : G VII top of wall (con (Wall 8, B III.5b, Phase 3/		N–S wall S end E side Phase 3/4)	X=X 393: G VII middle of wall (Wall 8, B III.5b, Phase 3/4)
	= 405: G XXV/XV (Wall 25, B III.5b)	/II E-W wall top S end , Phase 3/4)	
<i>394</i> : GVII plinth (Wall 8, B III.5b, Phase 3/	(Wall 26, B III.5b, $= 406: G XXV mi$)		X=X <i>392</i> : G VII top of wall (Wall 8, B III.5b, Phase 3/4)
	= 407: G XXVI/X wall, N side (Wall 25, B III.5b,	VII lower part of E–W Phase 3/4)	X=X 409: G XXVI/VI N–S wall N end E side (Wall 2, B III.5b, Phase 3/4)
	~ 401: G XXIV up ning N–S under b (Wall 3, B III.5b, I		
	~ 408: G XXVI/V	/I N–S wall N end W	
	side (Wall 2, B III.5b, I	Phase 3/4)	
<i>397</i> : G XVII curved wall (Wall 1a, B III.5a, Phase 1	no grading B very	compact	no match X=X 936: G XVII E–W wall at S end of trench (Wall 1, B III.5a, Phase 1–2)
403: G XXIV E–W wall trench (Wall 21, B III.5b, Phase 3	in S of no grading B very 3/4)	compact	no match X=X 401: G XXIV upper stones of wall running N–S under baulk (Wall 3, B III.5b, Phase 3/4)
			X=X 402: G XXIV lower course of same wall (Wall 3, B III.5b, Phase 3/4)
398: G XX top of wall (Wall 5, B III.5c, 5–6)	= 399: G XXIII E (Wall 5, B III.5a, J		X=X 400: G XXIII S end of N–S wall (Wall 6, B III.5a–b, Phase 1–3/4)
418: G XIII floor (not late (Outside B III.5b to E, ?Pha	ase 3/4) XXV/XVII E-W w		
420: M VII W wall (Wall 17, B III.3, Phase 3/			
422: N V W wall (concrete (Wall 16, B III.3, Phase 3c			X=X 421: N V E wall (Wall 14, B III.3, Phase 3c)
KEY: = : equivalent	- : similar X=X : no	ot comparable	
Sample numbers AM 5903	90–590423 (cf CD Fig 381)	G V etc are trench n	umbers

Concordance

General Notes

The concordances are arranged in five columns. The first gives the context and the second the phase. In the third column there is a brief description of the context. If the description includes a number in brackets this is the feature which that context is closely associated with. Thus 'skeleton (426)' is the skeleton found in Grave 426, foundation trench (382) is the foundation trench for Wall 382, and 'fill (890)' is the fill of Pit 890. The fourth column gives the page number and plan and section figure number on which the context is described or illustrated (if appropriate).

The fifth column lists the finds found in the context and which can be located in this published report. It should be noted that for some categories of finds, most notably the coarse pottery, the material has not be catalogued at the level of context and so has not been included in this concordance. The precise page references for the appropriate catalogues will be found at the beginning of each individual concordance with the exception of the Graffiti which has a unified catalogue for all of Catterick (see I 505).

Contents

Site 433 Catterick Bypass 1958–9	CD 319
Site 434 Catterick 1972	CD 358
Site 46 Bainesse Farm	CD 365
Site 240 Catterick Bridge	CD 390
Site 251 Honey Pot Road	CD 402
Site 273 Catterick Racecourse	CD 404
Site 425 Catterick Triangle	CD 407
Site 452 Thornbrough Farm	CD 408
Site 482 Thornbrough Farm	CD 417
Catterick Camp 1966	CD 419
Cadbury-Schweppes Factory Sites	CD 420

Catterick Bypass 1958–9 (Site 433)

SD at the beginning of column 5 indicates there is information about the pottery spot date on CD 5. The presence in a context of one of the selected groups of pottery discussed on I p 251 is indicated by a page number and group number. A prefix SS relates to the catalogue of selected vessels of intrinsic merit on I p 264. Samian pottery relates to the catalogue on I p 281, a prefix of S indicates the number relates to the samian stamp catalogue (I p 305). A prefix MS indicates a mortarium stamp catalogued on I p 343. The prefix D indicates the Phichet 47 sequence, C indicates the Carrot sequence, G the Callic sequence, Ca the Campanian sequence, U is the undesignated sequence, D the Dressel 20 sequence, K the psuedo-Koan sequence and NA the non-amphora catalogued as part of the amphora.

For the brooch catalogues see II p 150, for the copper-alloy catalogue see II p 46, for the iron and lead catalogue see II p 82, for the jet and shale catalogue see II p 173, for the worked bone catalogue see II p 181, for the ceramic small finds see II p 200, for the stone artefacts see II p 286, for the quernstones see II p 267, for the vessel and Window glass see II p 220, for the beads see II p 259 and for the wall plaster see II p 308.

NB – the extensive group of leather from the site has not been included here because of the difficulties of attributing accurate contextual information to it – see II p 318.

Context	Phase	Description	Reference	Finds
AI	U/S			Coin A1–2
B II 1	U/S			Iron 197
B II 125	Unphased			Samian S202
B II clay rampart	3			Glass vessel 117b
B III 1	Unphased			Glass vessel 95q; 106f; 113b
B IV E end 4	Unphased			Samian S205; S225
B XXVI 1	U/S			Samian S140
C I clay rampart	Unphased	clay rampart		Samian S131; Graffito
				7; Brooch 13; Glass
				vessel 95t; 117c
C I grave III	8	grave		Glass vessel 112
C II 4	Unphased			Samian S4–5; S144
C II 5	Unphased			Samian S160; Coin
C II o	TT 1 1			308; Cu 252
CII8	Unphased			Coin 10; Cu 9
C II 10	Unphased			Iron 91; bone 42
C IV 2	Unphased	achhla faatin aa		Coin 352 Service S172, Bana 60
C VI 2	5–7	cobble footings		Samian S173; Bone 60; Glass vessel 56
C VI 3	5–7	cobble foundation?	I p 48; Fig 36c	Glass vessel 56
C VI 3 C VI 4	5–7 5–7	cobble foundation?	I p 48; Fig 36c	
C VI 5	9-7 4-5	cobble foundation?	I p 48; Fig 36c	
C VI 6	4-5	cobble foundation?	I p 48; Fig 36c	
C VI 7	3	dump	I p 48, (I p 94);	
0 12 1	J.		Fig 36c	
C VI 8	1	ditch fill	I p 48 Fig 36c	
C VI 9	1	ditch fill	I p 48; Fig 36c	
C VI 10	1	ditch fill	I p 48; Fig 36c	
C XXI 8	U/S			Cu 35
D I 2	5-6	layer		SD; Iron 24; 222; Glass
				vessel 70–1; 105a
D I 3	5-6	layer		SD
D I 4	5-6	layer		SD; Samian 16; Amp
	_			P12; Bone 12
DI5	7	floor Building VI.6	p I 115; Fig 57	
D I 10	5–6	layer		SD SD A DO
D I 12	5-4	layer		SD; Amp P8;
D I 14 D I 15	5-4	layer		SD SD Service 17
D I 15	5-4	layer		SD; Samian 17
D I 16 D I 17	3	layer		SD SD
D I 17 D I 18	3 3	layer		SD SD
0110	J	layer		L

320		
Context	Phase	Description
D I 21	1–2 or 3	layer
D I 22	1–2	layer layer

		I • • •		
D I 21	1–2 or 3	layer		SD; Samian 18, 19
D I 22	1 - 2	layer		SD; Samian 20
D II 2	5-6?	layer		SD; Cu 215
D II 2 D II 3	8 0. 7	floor Building VI.6	I p 115; Fig 57	5D, 0u 219
		e	1 p 110, 11g 01	C 200
D III 2	U/S	layer		Cu 309
D III 3	$\frac{7}{2}$	road	I p 115; Fig 57	SD
D III 4	7	road	I p 115; Fig 57	
D III 5	5–6	layer		SD; Samian 21–23, 99; Coin A22
D III 6	1–2	layer		SD; Samian 24; Glass vessel 95d
D III 9	1–2 or 3	layer		Pot SS121; SD; bead 5
D III 10	3	layer		SD
D III 10 D III 11	3	layer		SD; Samian 25, 26
D III 12	3	•		
		layer		SD; Samian 26–27
D IV 2	U/S	layer		Cu 106
D IV 3	7	layer		SD; Coin A21; Iron 101
D V 1	U/S	topsoil	Fig 46j	
D V 2	U/S	layer	Fig 46j	Bone 71; Glass vessel 134
D V 3	5-7	layer		SD
DV3 ext	5–7	layer		SD
DV4	8 . 7	layer	Fig 46j	SD
D V 4 D V 5	5 or 6a			
D V 0	o or oa	gravel layer Building VI.8a	I p 91; Fig 46j	
D T I A	_		& 51	Pot SS19; SD
D V 6	5	occupation layer Building VI.8a		
D V 7	5	floor Building VI.8a	I p 91; Fig 46j	
			& 51	SD
D V 8	3–4	layer		SD; Samian 28; Glass vessel 81
D V 9	6b	floor Building VI.8b	I p 109	
D V 10	4	layer	Fig 46j	SD
D V 10 D V 11	5–7	Apse wall/Wall VI	i ig toj	SD; Coin 330;
D V 12	3-4	layer	T 01 TY 40	Coin 378
D V 13	6b	floor Building VI.8b	I p 91; Fig 46j	
D V 14	5 or 6a	mortar spread Building VI.8a	I p 91; Fig 51	
D VI 2	U/S	layer		Window 154
D VI 3	7	floor Building VI.6	I p 115; Fig 57	
D VI 4	7	road	I p 115; Fig 57	
D VI 5	5-6	timber slot		SD; Cu 24
D VII 3	7	road	I p 115; Fig 57	,
D VII 4	7	floor Building VI.6	I p 115; Fig 57	
D VIII 2	, U/S	•	1 p 110, 1 lg 01	Coin 94, A57, Iron 165.
	0/6	layer		Coin 24; A57; Iron 165;
	7	Desthele I		Glass vessel 49k; 90
D VIII 3	7	Posthole I		SD; Cu 209
D VIII	2 or early 3	cremation	I p 57; Fig 34 & 43	
D IX 2	U/S	layer		Coin A23
D IX 3	6	layer		Pot SS126; SD; Coin
				A24
D IX 6	6	layer		SD
D X 2	Ŭ/S	layer		Coin A34–5; Iron 231
			T 100	-
D X 4	6b	loam layer Building VI.8b	I p 109	SD; Iron 178; Glass
				vessel 67a
D X 5	5–7	layer		SD
D X 7	7	Posthole II		SD
D X 8	5 - 7	road		SD; Samian S30, S87;
				Amp P10
D X 9	5-7	depression		SD
D X 10	6b	floor Building VI.8b	I p 109	
-		0	1 · · ·	

Reference

Finds

Context	Phase	Description	Reference	Finds
D X 11	6b	floor? Building VI.8b	I p 109	
D X 12	5–7	layer	1	SD
D X 13	5-7	layer		SD
D X 14	7	layer		SD; Samian 29
D X 15	$\frac{7}{2}$	layer		SD SD
D X 16	7	layer		SD; Glass vessel 136
D X 18 D X ext 2	5–7 U/S	layer layer		Coin 391 Coin 406; A29; A32
D X Posthole 1	7	Posthole Building VI.8c	I p 114; Fig 57	Com 400, A29, A32
D X Posthole 2	$\frac{1}{7}$	Posthole Building VI.8c	I p 114; Fig 57	
D XI 1	U/S	topsoil	Fig 39b	
D XI 2	U/S	layer	Fig 39b	Iron 89
D XI 3	7	layer	Fig 39b	SD; Glass vessel 15b
D XI 4	6b	layer Building VI.8b	I p 91, 109;	
	01		Fig 39b	SD
D XI 5 D XI 6	6b Ch	floor Building VI.8b	I p 109	Cu 116
D XI 7	6b 4	floor Building VI.8b layer	I p 109	SD; Glass vessel 116f
D XI 7 D XI 8	4 6b	occupation material		SD, Glass vessel 1101
DMO	00	Building VI.8b	Ip91;Ip109	
			Fig 39b	
D XI 9	6b	floor Building VI.8b	I p 91, I p 109;	
		-	Fig 39b	
D XI 10	6b	layer Building VI.8b	I p 91; Fig 39b	
D XI 11	5	occupation layer Building VI.8a		SD
D XI 12	5	floor Building VI.8a	I p 91; Fig 39b	
			& 51	SD; Samian 30; Graf-
D XI 13	4	layer		fito 40; Coin 21 SD; Iron 15; 70
D XI 15 D XI 14	5–7	layer		SD; Samian 31; Brooch
	0.	iaj or		31; Cu 67; Glass vessel
				141
D XI 15	5 - 7	layer	Fig 39b	SD; Samian 32; S41,
				S94, S118; Iron 179;
D VI 10	0	,	I 74 E' 901	Glass vessel 116a
D XI 16 D XI 17	3 5	layer floor bedding Building VI.8a	I p 74; Fig 396 I p 91; Fig 39b	SD; Cu 228, 244.
D XI 17 D XI 19	5 7	timber-slot	Fig 57	SD, Colli Z
D XI 21	3	layer	1 19 01	Pot p.440 Group 3; SD
	-			Samian 33; S145; S170;
				Brooch 9; Cu 325; Lead
				20; Iron 76; 137; Ce-
				ramic 8; Glass vessel
	7	Death als III		79; Crafitta 94
D XI 24 D XI 25	7 5–7	Posthole III Wall XIII		Grafitto 24 SD
D XI 25 D XI 26	5-7 7	Posthole IV		SD
D XI 30	5–7	layer	Fig 39b	
D XI 32	3	occupation layer	1 19 000	SD; Samian 34; Amp
		1 0		D1; Cu 99; Iron 105;
				bone 41
D XI 33	3	layer	I p 74; Fig 39b	SD; Samian 35; Coin
	0	h - h h ' 1 1	I - 74 E' 49	482; Cu 144
D XI 34	3	baby burial 1	I p 74; Fig 43	Cu 944, Don - 10
D XI 39	3	haby hurial 9	& 48 I p 74: Fig 43	Cu 244; Bone 19
D YI 92	J	baby burial 2	I p 74; Fig 43 & 48	
D XI 40	3	cobbled surface enclosure	I p 76; Fig 39b	SD
D XI 42	3	building level enclosure	I p 76; Fig 39b	
D XI 43	3	fill (Pit I)	Fig 39b	SD; Cu 120

322

Context	Phase	Description	Reference	Finds
		<u>_</u>		
D XI 44	3	layer sealing foundation		
D VI 44a	0	trench enclosure wall		SD; Amp D8; Cu 164
D XI 44a D XI 45	3 3 or earlier	layer layer	Fig 39b	Glass vessel 106j
D XI 45 D XI 46	3	?Pit III	Fig 39b	Class vessel 100j
D XI 47	3 or earlier	occupation layer	I p 56, I p 74;	
		1 0	Fig 39b	SD; Samian 36–7
D XI 4a	6b	floor? Building VI.8b	I p 109	
D XI Pit I	3	pit	Fig 39b	SD; Coin 509
D XI Pit II	3?	pit	Fig 39b	Class wasal 19, 77
D XII 1 D XII 2	U/S U/S	layer layer		Glass vessel 18; 77 Cu 225; 250; Iron 90
D XII 2 D XII 4	5	slot? Drain Building VI.8a	I p 91	Cu 225, 250, 11011 50 Cu 199
D XII 3	3 7	layer	1 0 0 1	SD
D XIII 1	U/S	layer		Coin A39
D XIII 3	7	layer		SD; Samian 38
D XIII 4	7	Posthole I		Pot SS31; SD; Amp
				P11
D XIV 2	U/S	layer		Coin A26–7
D XIV 3	7	slot Building VI.8c	I p 114; Fig 57	
D XIV 4	7	layer		SD; Ceramic 34
D XIV 5 D XIV 19	5–7 7	layer slot Building VI.8c	I p 114	SD
D XV 1 D XV 1	U/S	layer	1 þ 1 1 4	bead 29
D XV 2	U/S	layer		Ceramic 28
D XV 3	6	paving Building VI.5b	I p 109; Fig 56	SD; Coin 381; 417; 458;
			1 / 0	461; Cu 19; 207; 305;
				Iron 18; 28; 131; Glass
				vessel 124
D XV 4	6	layer		Coin 342
D XV 5	6a	floor	I p 105; Fig 55	
D XVI 1 D XVI 2	U/S U/S	topsoil	Fig 39b	
D XVI 2 D XVI 3	0/8 5–7	layer layer	Fig 39b Fig 39b	SD
D XVI 3 D XVI 4	5–7 5–7	layer	1 lg 000	SD
D XVI 5	5-7	layer		SD
D XVI 6	4	layer	Fig 39b	SD; Stone 63
D XVI 8	3	layer	Fig 39b	
D XVI 9	3	layer	Fig 39b	SD; Samian 39
D XVI 10	3 or earlier	layer	I p 74; Fig 39b	
D XVI 11	3	layer	Fig 39b	G : 400
D XVII 2	7	Posthole Building VI.8c	I p 114; Fig 57	Coin A28
D XVII 3 D XVII 4	7 7	Posthole Building VI.8c Posthole BunildingVI.8c	I p 114; Fig 57 I p 114; Fig 57	
D XVII 7	5-7	layer	1 p 114, 1 lg 07	SD; Cu 316; Iron 75
D XVIII 1	U/S	topsoil		Coin 543; Glass vessel
	-,	F		491
D XVIII 2	5-6	road		Coin 385
D XVIII 4	7	Wall XVIII		SD; Samian 40
D XVIII 7	5-7	Posthole	T . (a)	SD
D XIX 1	U/S	topsoil	Fig 46l	Coin 297; 345; 359;
D VIV O	5 0			532; Cu 34; 211
D XIX 2 D XIX 8	5-6 5-6	limestone slab floor	Fig 46l	Coin 332 SD
D XIX 8 D XIX 9	5–6 7+	layer stone layer	Fig 46l Fig 46l	UO UO
D XIX 9 D XIX 10	7 + 5–6	layer	Fig 461	SD
D XIX 10 D XIX 11	5-6	layer	Fig 46l	SD; Coin 38
D XIX 12	5-6	cobble floor	Fig 46l	,
D XIX 13	5-6	layer	Fig 46l	SD
D XIX 14	3–4	occupation layer	Fig 46l	SD

Context	Phase	Description	Reference	Finds
		<u>_</u>		
D XIX 15	3-4	sand floor	Fig 46l	
D XIX 16	3-4	gravel floor	Fig 46l	Glass vessel 27
D XIX 17	3-4	layer	Fig 46l	
D XIX 18	3-4	Floor	Fig 46l	Glass vessel 138
D XIX 19	1b–2 or 3/4	layer	I p 80; Fig 46l	SD; Samian 41; S190; Brooch 16; Glass vessel
		_		95g
D XIX 21	5–6	layer	Fig 46l	
D XX 1	U/S	topsoil		Coin 392; Glass vessel 35
D XX 5	5-6	footing?	Fig 46l	
D XX 7	6	occupation layer	Fig 46l	SD; Samian 42
D XX 8	3–4	layer	0	SD; Samian 43; Coin
		·		477; Brooch 29; Bone
				57
D XX 10	3–4	layer	Fig 46l	
D XXI 1	U/S	topsoil and rubble	Fig 46d	Cu 92; Glass vessel 93
D XXI 2	6	concrete floor	Fig 46d	Coin 435; Ceramic 23
D XXI 3	6	Wall XXI	Fig 46d	
D XXI 5	6	footing?	Fig 46d	
D XXI 6	6	floor Room 1 Building VII.3b		l SD; Samian 154
D XXI 7	5–6a	layer	Fig 46d	Bone 65
D XXI 8	5	occupation layer	Fig 46d	Pot SS109–10; SD;
			U	Samian S110; Iron 13; 225
D XXI 9	5	layer	Fig 46d	SD; Samian 44;
	0	149 01	119 104	Grafitto 74; Brooch 1;
				Cu 95; 286
D XXI 10	6a	floor Building VII.3a	I p 106, Fig 46d	
D XXI 11	5	make-up for floor	Fig 55	Cu 196
D XXI 12	6a	floor Building VII.3a	I p 106 Fig 46d	
D XXI 13	4a	layer	Fig 46d	SD; Glass vessel 94
D XXI 14	4a	floor	Fig 46d	
D XXI 15	3	layer	Fig 46d	SD; Cu 317
D XXI 17	3	gravel floor	Fig 46d	,
D XXI 18	1-2	occupation layer	Fig 46d	SD; Samian 45; Graf-
			-	fito 76
D XXI 19	1-2	peaty layer	Fig 46d	Samian 46; Cu 265
D XXI 20	1b–2	layer	Fig 46d	SD; Samian 47; Cu 245
D XXI 24	Unphased	layer		Samian 48
D XXI 25	1b–2	layer	Fig 46d	
D XXI 26	1–2 or 1b–2	layer	Fig 46d	
D XXIII 1	U/S	topsoil and rubble	Fig 46d	Coin 214
D XXIII 2	5-6	road	Fig 46d	
D XXIII 3	5-6	footing of Wall XX	Fig 46d	SD
D XXIII 5	6	tumble from wall XX	Fig 46d	
D XXIII 6	6b	floor Room 1 Building VII.3b	I p 117; Fig 46d	l SD
D XXIII 7	5	layer	-	SD; Iron 23
D XXIII 8	5	layer	Fig 46d	SD
D XXIII 9	6a	floor Building VII.3a	I p 106; Fig 46d	1
	9	lawan	& 26 Fig. 46d	
D XXIII 10	3	layer	Fig 46d	
D XXIII 13 D XXIII Death als 1	3	layer	Fig 46d	
D XXIII Posthole 1	3	posthole	Fig 46d	Coin E1, 202 E17 0
D XXIV 1	U/S	topsoil	Fig 46l	Coin 51; 393; 517–8;
				Cu 79; Glass vessel
DVVIU	C	a hhla man		128; 143d
D XXIV 2	6	cobble surface		Glass vessel 87
D XXIV 3	6	Wall XLIII		SD; Glass vessel 24

Context	Phase	Description	Reference	Finds
	1 11450	Peperipulon	INCLUI CHICE	- 1145
D XXIV 4	6	Wall XXXVI		Ceramic 52
D XXIV 5	6b	floor Room 5 Building VII.3b	I p 111 ; Fig 46	1
D XXIV 7	5–6a	occupation layer	Fig 46l	
D XXIV 8	5–6a	layer		SD
D XXIV 9a	Unphased	layer	Fig 46l	SD
				Det CC100, CD. Incr
D XXIV 10	3–4	occupation layer	Fig 46l	Pot SS122; SD; Iron 143; 162; 176; Glass vessel 74
D XXIV 11	3–4	layer	Fig 46l	
D XXIV 12	3–4	occupation layer	Fig 46l	SD; Bone 69
D XXIV 13	3–4	layer	Fig 46l	
D XXIV 14	3–4	layer	Fig 46l	
D XXIV 15	1b-2 or 3-4	occupation layer	Fig 46l	SD
D XXIV 16	3-4	layer	Fig 46l	SD
			$F_{1g} = 401$	
D XXIV 17	5–6a	layer	Fig 46l	
D XXIV 18	5–6a	layer	Fig 46l	
D XXV 1	U/S	topsoil and rubble		Cu 248 ; Glass vessel 7
D XXV 2	6	Wall XXIV		Coin 364; 437
D XXV 5	6	occupation layer		SD; Glass vessel 140
D XXVI 1	U/S	topsoil		Samian 49; Grafitto 3; Coin 365; Bone 88; Ce- ramic 53
D XXVII 2	6	layer		Glass vessel 139
D XXVII 2 D XXVII 4	6			Cu 193
		layer		
D XXVII 5	pre 6	layer		SD; Glass vessel 951
D XXVII 6	pre 6	layer		SD
D XXVIII 1	U/S	layer	Fig 46l	
D XXVIII 2	6	layer	Fig 46l	Window 150
D XXVIII 3	5	floor Building VII.10a	I p 93, (I p 111);	
		C	Fig 46l	SD; Samian 50
D XXVIII 4	6	layer	Fig 46l	SD
D XXVIII 5	3–4	layer	I p 93, (I p 80);	
DIMITIN	01	iayer	Fig 46l	SD; Samian 51; Iron
			1 ig 40i	68; 77
D XXVIII 7	5–6a	layer	Fig 46l	Iron 95; Bone 97
D XXVIII 8	6	layer	8	SD
D XXVIII 9	3–4	layer	Fig 46l	SD
D XXIX 1	U/S		1 lg 401	Glass vessel 129
		layer		
EI2	5-6	layer		SD; Coin A14–5
EI4	Unphased	layer		Coin A16
E I 5	Unphased	cobble layer		Coin A17–9
E I 8	5–6	layer		SD
E I 10	4b	Gravel surface		SD
E I 12	4	layer		SD
E I 14	3	layer		SD; Cu 194
E II 1	Ŭ/S	topsoil		Coin 199; Cu 13
E II 4	5-6	layer		SD; Coin 412
E II 5	5	floor Building VI.7a	I p 92	52, 0011 112
			1 p 32	SD. Coir 221. 415 442
E II 7	5–6	occupation layer		SD; Coin 331; 415; 443
E II 8	6b	floor Room 4 Building VI.4b	I p 108; Fig 56	
E II 9	6a	floor Rooms 3 and 4		
		Building VI.4a	I p 104; Fig. 52	c
E II 11	5–6	repair to Wall I	& 55	SD
E II 12	5–6			SD
		sleeper beam trench		
E II 13	6	fill of stakeholes		SD
E II 15	6	layer	-	SD
E II 16	5–6	layer	Fig 52c	
${ m E~II}~17$	6a	floor footing Rooms 3 and 4		
		Building VI.4a	I p 104; Fig 52a	e Iron 227
		-	- / 0	

Context	Phase	Description	Reference	Finds
E II 18	6a	aqueduct sealing		
		Building VI.4a	I p 103 Fig 52c	SD; Iron 34; Stone 7
E II 20	4	layer		SD
E II 22	3	layer	Fig 52c	
E II 32	3	layer	Fig 52c	SD; Window 148
E II 33	3	gravel floor	Fig 52c	
E II 34	3	pit	Fig 52c	
E II 36	1–2 or 3	floor	Fig 52c	
E II 37	1–2 or 3	layer	Fig 52c	
E II 38	2 or early 3	floor	I p 56; Fig 52c	
E II 40	2?	floor	I p 56; Fig 34 & 52c	
E II 41	1–2	oven pit	Fig 52c	
E II 42	3	layer	Fig 52c	
E II 42	6	layer	1 15 020	SD
E II 45	6	layer Building VI.4		SD; Samian 52–3
E III 2	U/S	layer		Pot SS38
E III 2 E III 3	U/S	layer		Grafitto 21
E III 4	6	layer		SD; Cu 18
E III 4 E III 6	6	layer		SD; Ur 18 SD; Iron 86
E III 8	3	layer		SD, Holl 60 SD
E III 9	5-6	occupation layer		Coin 380
E III 5 E III 10	6a	floor Rooms 3 and 4		0011 500
	0a	Building VI.4a	I p 104 Fig 55	
E III 14	6a	floor footing Rooms 3 and 4	1 p 104 F lg 55	
Ľ III 14	0a	Building VI.4a	I p 104	
E III 19	4b	layer	1 p 104	SD
E III 19 E III 20	40 4b			Glass vessel 62
E III 20 E III 21	40 5–6	layer layer		SD
E III 21 E III 22	4	layer		SD; Samian 54;
E 111 22	4	layer		Grafitto 35; Glass ves-
				sel 97
E III 23	4	layer		SD SD
E III 25 E III 25	4 Unphased	fill of drain		SD
E III 25 E IV 1	U/S	topsoil		Coin 459; A38; A46–7
E IV 1 E IV 5	6b	floor Room 1 Building VI.4b	In 108 · Fig 56	
	00	11001 ft001111 Dununig V1.40	1 p 100 , 1 lg 30	Bone 48
E IV 7	4	layer		Pot SS107; SD; Iron 42
	4	layer		FOUSSIO7, SD, 1101142
E IV 8	6b	layer Building VI.4b	I p 108	Glass object 9
E IV 11	4	floor	I p 80; Fig 52c	
E IV 13	4	layer	I p 80; Fig 52c	SD; Bone 47; 73
E IV 14	4	layer	I p 80; Fig 52c	SD; Glass vessel 37
E IV 15	4	layer		SD; Samian 56; Glass
E IV 16	4	lower	F ig. 59c	vessel 12a
E IV 16 F IV 17	$\frac{4}{3}$	layer	Fig 52c	
E IV 17 E IV 18		layer	Fig 52c	
E IV 18 F IV 10	4	floor	I p 80; Fig 52c	
E IV 19 E IV 20	3	layer	Fig 52c	
E IV 20 E IV 22	4	clay patching of floor E IV 11	Fig 52c	
E IV 22 E IV 22	4	layer	Fig 52c	
E IV 23	3	layer	Fig 52c	
E IV Wall 4	4	clay wall	I p 80	CD. Inor. 190
EV3	5-6	layer		SD; Iron 130
EV5	5–6	rough paved surface		Pot SS87; SD
E V 7	6	destruction debris	I = 100	
		Building VI.4b	I p 108	Pot SS135; SS142; SD
				Samian 55; Amp G1;

Context	Phase	Description	Reference	Finds
				Coin 409; Cu 44; Lead 3; Ceramic 54; Glass vessel 15a; 143b
E V 8	6	layer		SD; Coin 492–3; Bone 126
E V 9	5–6	fill of stoke-hole		SD; Amp P9; Coin 245–6; 354; 494; 553; Glass vessel 31c
E V 10	5-6	layer		SD
E V 12	5–6 6b	layer	I.m. 107	SD; quern 19
E V 13 E V 14	5–6	furnace base Building VI.4b layer	I p 107	Coin 37; Lead 1 SD; Jet 1; Bone 1
E V 15	3	layer		SD; Iron 67; Ceramic 3
E V 19	5-6	layer		SD; Iron 61; Glass ves- sel 48
E V 20 E V 23	6b 3	builders level Building VI.4b layer	I p 107	SD; Amp D6 SD; Amp D5
E V 24	6b	builders level VI.4b	Ip 107	SD; Samian 56
${ m E~V}~25$	4	layer	1	SD
E V 27	3	layer		SD; Samian 57; Iron 37
E V 29	1–2 1–2	layer		SD SD
E V 30 E V 35	1-2 1-2	layer layer		SD SD
E V 41	1-2 1-2	layer		SD; Samian S215
E V 45	1 - 2	layer		Pot p. 438 nos. G1.1–3
E V 46	1–2	layer		Pot p. 439 no. G1.4
E V 47	1-2	occupation layer		Pot p. 439 no. G1.5
E V 48 E VI 1	1 or 2 U/S	layer topsoil	I p 54; Fig 34	Pot SS21; SD Coin 174; A31; A33;
	0/6	topson		A40–43; A49–50; Cu
				230; Iron 148
E VI 2	U/S	layer		Coin A48
E VI 3	5-6	cobble layer		SD; Coin 470
E VI 4	(5–) 6	fill of north–south drain		Pot SS50; SD; Coin 56; 58; A61; A63; quern 18
E VI 5	6(-7)	layer		SD; Coin 387; A62; Lead 21;
E VI 6	5–6	fill of east–west drain I		SD; Stone 66
E VI 8	6	layer		Pot SS41; SD; Glass vessel 110
E VI 9	6b	floor Room 1 Building VI.4b	I p 108, Fig 56	SD; bead 28
E VI 10 E VI 11	$6-7 \\ 5-6$	fill of tank fill of tank		bead 24 SD
E VI 11 E VI 12	5–6	fill of tank		SD; Coin 315; 340; 351;
				356; 480; Glass vessel 125
E VI 13	5–6	fill of east–west gully		SD
E VI 14	4	layer		SD; Grafitto 18; Cu
				125; 145; 240
E VI 15	4	occupation layer		Pot SS118; SD Samian 58; Amp P6; Cu 161;
				Iron 27; 69
E VI 16	5–6	Road		SD; Samian 59; Coin 35–6; 125; Cu 201;
E VI 17	4	layer		SD
E VI 18	6-7	fill of east–west Drain II		SD
E VI 20	6-7	layer		SD SD Barra 199
E VI 21 E VI 24	$\frac{4}{3}$	layer layer		SD; Bone 128 SD
E VI 24 E VI 26	3 4	layer		Amp D13; D30
-		-		L - ,

Context	Phase	Description	Reference	Finds
E VI 38	4	layer		Samian 60
E VI 40	5–6	drain west of tank		Cu 69
E VII 1	U/S	topsoil	Fig 46g	
E VII 2	4	layer	Fig 46g	SD
E VII 3	4	layer	Fig 46g	SD
E VII 4	5–6	layer	Fig 46g	SD
E VII 5	6b	floor Room 1 Building VI.4b	I p 108; Fig 46g	
	00	1001 Room 1 Dunung VI.45	& 56	SD; Samian 61; Coin 411; Cu 181; Glass ves- sel 80
E VII 6	5–6	layer	$\operatorname{Fig} 46 \operatorname{g}$	
E VII 7	4	layer	Fig 46g	Pot SS44; SD, Samian 62; Cu 223
E VII 8	4	layer	Fig 46g	SD; Samian 63
E VII 9	- 6a	floor Room 1 Building VI.4a	I p 107; Fig 46	
E VII 10	6a	floor Room 1 Building VI.4a	I p 104, 107; Fig 55	2
E VII 11	6a	floor Room 1 Building VI.4a	I p 104; Fig 55	
E VII 12	4	layer	Fig 46g	
	4 3		Fig 46g	
E VII 13 E VII 17		layer	r 1g 40g	SD
E VII 17	3	layer	D' 40	SD
E VII 19	4b	layer	Fig 46g	SD
E VII 22	4	occupation layer	Fig 46g	
E VII 29	4	layer	Fig 46g	
E VII 30	4	layer	Fig 46g	
E VII 33	4b	?drain channel	Fig 46g	SD; Samian 64
E VII 34	4	layer	Fig 46g	
E VII 36	6a	floor Building VI.5a	I p 104; Fig 55	
E VII 37	6a	floor Building VI.5a	I p 104; Fig 55	
E VII 38	4b	layer	Fig 46g	
E VII 41	4b	layer	Fig 46g	
E VIII U/S	U/S			Stone 80
E VIII 4	6+	layer		SD; Coin 401; 507
E VIII 6	5–7	road surface		Cu 275; Iron 199; Glass object 11
E VIII 7	5 - 7	fill of drain		Iron 72
E VIII 8	6a	floor Room 1 Building VI.4a	I p 104; Fig 55	Cu 112
E VIII 9	4b	layer	1 / 0	SD
E VIII 11	5	occupation layer Building VI.2	Ip 91	
E IX 1	U/S	topsoil	r	Pot SS57; Tile 3; Coin
	2,12			407; A53–4; A56; A58–60; Cu 49; Lead 6; Ceramic 48
E IX 2	6–7	layer		SD; Coin 371
E IX 4	6	layer		SD, com svi SD
EX2	Ŭ/S	layer		Bone 32
EX4	5-6	burnt layer with beam-slot		SD; Samian 65–6; S4–5
EX7	6a	floor Building VI.5a	I p 104	5D, Sainan 65 0, 54 5
E XI 1	U/S	topsoil	1 b 104	Pot SS105; Coin 339;
E XI 2	U/S	layer		Stone 46 Coin 68
E XI 3	6a	floor Building VI.7b	I p 103; Fig 55	
E XI 5	5 or 6a	occupation layer Building VI.7a		
E XI 6	5 or 6a	floor Building VI.7a	I p 92; 103	
E XI 9	5 or 6a	paved surface Building VI.7a	I p 92; 103	
E XI J E XII 1	U/S	topsoil	- p 02, 100	Pot SS51; Cu 102
E XII 1 E XII 2	5-6	layer		Pot SS114; SD
E XII 2 E XIII 2	5–0 6	Road		SD
E XIII 2 E XIII 3	6			SD SD; Lead 26
E XIII 5 E XIV 1	o U/S	layer topsoil		Bone 145
LAIVI	0/0	lopson		DOILE 149

evt Phe	260

Context	Phase	Description	Reference	Finds
E XIV 2	6	layer		SD; Coin 161; 243; 344;
	-			418; 449; 471; 511–2;
				544–5; Cu 58; 117; 269;
				Iron 53; 169; Stone 67
E XIV 3	5-6	Road		Samian 67
E XIV 4	6	layer		SD; Coin 374; 419–20;
	-			450; 456; 465; 474; Cu
				100; 197; Ceramic 25;
				bead 33
E XIV 5	5-6	layer		Coin 69;
E XV 1	U/S	topsoil		Iron 40; bone 36
E XVII 1	U/S	topsoil		Ceramic 55
E XVII 2	6	layer		SD
E XVII 3	6	Building VII.5		SD; Ceramic 56; Iron
		-		237; Wall p 25
E XVII 5	6	Building VII.5		SD; Wall p 25
E XVII 6	6	layer		SD; Iron 83; Bone 75;
				Glass vessel 21a; 29a
E XVII ext 1	U/S	topsoil		Coin 203
${ m E}$ XVII ext 2	6	layer		Coin 151
E XVII ext N	1	layer		SD
E XVIII 2	6	layer		SD; Iron 20; Bone 103;
E XVIII 4	6	layer		SD; Coin 489;
E XVIII 5	6	layer		SD
E XVIII 6	6	layer		SD; Iron 42
E XIX 1	U/S	topsoil		Coin 92; Iron 21
E XIX 2	6	layer		SD; Lead 14; Glass ves-
				sel 49d; 67b; 127
E XIX 3	6	layer		SD
E XIX 4	6	fill of hypocaust flues		SD
E XIX 5	6	fill of hypocaust flues		SD
E XX 1	U/S	disturbed layer	Fig 39f	Iron 123
E XX 2	7	rubble layer Building VII.5b	I p 115; Fig 39f	Pot SS101; SD; Coin
				150; 349; Iron 203; Jet 7
E XX 3	6b	courtyard surface		•
		Building VII.5a	I p 112; Fig 39f	
E XX 4	6	layer	Fig 39f	SD; Jet 3
E XX 5	6-7	layer	Fig 39f	Coin 127
E XX 6	6	layer	Fig 39f	SD
E XX 7	6	foundation of north–south wall		SD
E XX 8	6	layer	Fig 39f	SD
E XX 9	6b	floor Room 1 Building VII.5a	I p 112; Fig 39f	SD
E XX 10	6	layer	Fig 39f	Pot SS145; SD; Glass
			-	vessel 53
E XX 11	5	gravel yard surface	I p 92; Fig 39f	SD; Glass vessel 19; 26
E XX 12	5	cobble floor	Fig 39f	SD
E XX 13	5	occupation layer	Fig 39f	SD
E XX 14	5	layer	Fig 39f	
E XX 15	5	layer	Fig 39f	SD; Samian 68
E XX 16	5	layer	Fig 39f	
E XX 18	5	layer	Fig 39f	SD; Samian 68–70; Cu
				142; 243; Lead 13
E XX 19	4	occupation layer	Fig 39f	
E XX 21	4	layer	-	SD; Glass vessel 59;
		-		95f; 116g, h; 119; Win-
				dow 131–47
E XX 22	4	layer	Fig 39f	
E XX 23	4	deposit over Wall 5 footing	I p 74; Fig 39f	
E XX 24	4	deposit over Wall 5 footing	I p 74; Fig 39f	

Context	Phase	Description	Reference	Finds
E XX 25	4	deposit over Wall 5 footing	I p 74; Fig 39f	
E XX 28	3	deposit over Wall 5 footing	I p 74; Fig 39f	SD; Samian 69, S74;
	0	deposit over wan o rooting	1 p 1 1, 1 1g 001	Coin 15; Bone 80
E XX 29	1b–2	peaty layer	Fig 39f	Pot SS30; SD; Samian
LI 101 20	10 2	pearly layer	115 001	S141; Iron 210
E XX 30	3	layer	Fig 39f	5141, 11011 210
E XX 31	3	fill foundation trench Wall 5	I p 74 Fig 39f	
E XX 32	3	fill foundation trench Wall 5	I p 74 Fig 39f	
E XXI 1	U/S	disturbed layer	1 p 74 F ig 55i	Coin 348; Glass vessel
	0/6	distui bed layer		85
E XXI 2	6	Gravel layer		Iron 191
E XXI 3	6	layer		SD
E XXI 4	6	layer		SD
E XX–XXI 1	U/S	disturbed layer		SD
E XXII 2	5–7	layer		SD; Coin 29; 43
FI2	6	layer		SD; Grafitto 38
FI2 FI4	Unphased	line of stones		Coin A20
FI8				
F I 25	3/4 Upphagod	occupation layer		SD; Coin 3 Samian 72
F II 1	Unphased	layer		
F II 2	U/S	topsoil		Coin A37;
	3-4	stone layer		Coin 491; A36
F VI 2	8	layer		SD; Samian 74; Cu 53
F VI 4	5	layer		Coin 46; Jet 14
F VI 5	5	layer		SD; Coin 47; 108; 217;
				247; 264–5; 281; 287–8;
DIT 0	_			500 Cu 52; Stone 61
F VI 6	5	occupation layer		Pot SS58; SS85; SD;
				Amp D25; Coin 48; 60;
				63; 105; 114; 135; 176;
				209; 219-21; 237;
				285-6; 289; 292; 502-4;
				Cu 28; Bone 89
F VI 8	5	occupation layer		SD; Coin 107; 172;
				Bone 104
F VI 9	5	floor		SD; Cu 285;
F VII 1	U/S	topsoil		Iron 10; 46; Bone 118;
				Glass vessel 143a
F VII 2	U/S	layer		SD; Coin 350; Cu 2; 37;
				213; Jet 10; 30
F VII 3	6	floor		SD
F VII 4	5 or 6	layer		Pot SS6; SD;
F VII 5	5 or 6	layer		SD; Coin 61; 140; 157;
				218; 262; 323; Cu 151;
				bead 19
F VII 5a	5 or 6	layer		Pot SS99; SD
F VII 6	5	layer		SD; Coin 62; 86; 112;
				136; 266; 290; 314; 436;
				488; 554; Cu 63; 159;
				Iron 133; Glass object
				4; bead 4
F VII 7	5	layer		SD; Coin 87; 137; 307;
		-		318; Cu 152; Iron 71
F VII 8	5	layer		Coin 180
F VII 10	5?	layer		SD
F VII 11	(1 or) 2 - 3/4	layer		SD; Lead 12;
F VII 12	5	stone surface		Coin 121;
F VII pit 1	6	pit		SD
F VIII 2	U/S	ploughsoil		Coin 460;
F VIII 4	5 or 6	layer		SD
F VIII 4a	6	layer		SD
- , III IU	0	14,01		

Context	Phase	Description	Reference	Finds
F VIII 5	5–6	layer		Coin 400; Cu 74; Bone 122
F XI 1 F XI 2	U/S 6	topsoil layer		Samian S81; Lead 22; SD; Coin 59; 175; 402; 439
F XI 5a F XIII 1	U/S U/S	layer topsoil	Fig 46f	Coin 304 Coin A44–5; Iron 128; 161
F XIII 2 F XIII 5	U/S 6	layer layer	Fig 46f Fig 46f	Bead 23 Pot SS100; SD; Glass vessel 121b
F XIII 5a	6	layer		Pot SS123; SD; Amp D2; Coin 259; 284; Cu 51; 59; 103; bead 18; 22
F XIII 6 F XIII 7 F XIII 8	6 5 5 or 6	layer collapsed oven? layer	Fig 46f Fig 46f	SD Pot SS62; SS78; SS85; SD; Coin 85; 134; 138; 173; 177–8; 228; 263; 267; 291; 299–301; 306; 499; 505; 541; 548. Hoard – appendix 13.2.1; Cu 76–7; 97; 156; 185; 234; Lead 9; Iron 104; Bead 37
F XIII 9 F XIII 10 F XIII 11 F XIII 12 F XIII 15 F XIII 17 F XIII 18 F XIII 20 F XIII 21	555(5-) 65-65-665	layer layer occupation layer cement floor layer occupation layer layer layer Building III.5c layer	Fig 46f Fig 46f Fig 46f Fig 46f I p 89 Fig 46f Fig 46f	SD SD; Brooch 15; SD SD; Coin 88; 320; 539 SD Pot SS115; SD. Coin 160; Brooch 20
F XIII 22 F XIII 23 F XIII 24 F XIV 2	2–3/4? 2–3/4? 3/ 4 U/S	layer stone floor layer layer	Fig 46f Fig 46f Fig 46f	160; Brooch 20 Amp D14; D27; Iron
F XIV 2 F XIV 4 F XV 2 F XVI 2 F XVI 3 F XVI 4	2? U/S 6? Unphased Unphased	layer layer layer layer layer layer		181; bone 34 SD; Coin 1 SD; Cu 47; SD SD; Bone 138 SD; Coin 57; 156; Bone 79; 100
F XVII 2 F XX 2	U/S U/S	layer layer		SD; Coin 14; SD; Coin 498; quern
F XX 5	6–7	gully at edge of road		10; Glass vessel 12b; 39 SD; Samian 75; Cu 176; Ceramic 57; Glass vessel 42; 57
F XX 6 F XX 8 F XX 18 F XXI 2 F XXI 7 F XXII 8	6 Unphased U/S Unphased 5(6)	layer layer layer ploughsoil layer layer Building III.5c	I p 83	Pot SS125; SD Pot SS14; Amp P1; P5; bone 93 Coin 146; 363; Cu 60 SD
F XXIV 2	U/S	layer	Fig 39d	Coin 66; 239; Ceramic 58; bead 20

Context	Phase	Description	Reference	Finds
F XXIV 3	6–7	layer		SD; Coin 148; 183; Cu
F XXIV 4	6–7	layer		128 SD; Coin 49; 89; 106;
F XXIV 6	6-7	layer		Iron 43; Bone 116 SD
F XXIV 7	5	•		Cu 50;
		layer		
F XXIV 8	6-7	layer	D : 00.1	SD SD SL 54
F XXIV 11	6-7	layer	Fig 39d	SD; Stone 74
F XXIV 12	6 - 7	layer	Fig 39d	
F XXIV 13	6–7	layer	Fig 39d	SD; Coin 513
F XXIV 15	6–7	layer		Pot SS1; SD; Coin 515;
F XXIV 16	6–7	putlog hole		Coin 514
F XXIV 18	5–6	layer	Fig 39d	00111 0111
F XXIV 10 F XXIV 19	5-6	-		
		layer	Fig 39d	
F XXIV 20	5	layer	Fig 39d	
F XXIV 21	5	layer	Fig 39d	
F XXV 1	U/S	topsoil		Coin 328; Iron 226; Jet
				2; Stone 51
F XXV 2	U/S	layer		SD
F XXV 3	6	layer		SD; Coin 229;
F XXV 8	5?			
ΓΛΛΥΟ	01	layer		SD; Coin 115–6; Bone
				98; 110; Glass vessel
				126
F XXV 9	5?	layer		SD; Coin 40
F XXV 10	?5–6	layer		Jet 21; 29
F XXV 13	5?	layer		SD; Cu 190
F XXV 14	2–5	drain		Lead 23
F XXVI 2	U/S			Coin 75–6; 94–5; 153;
Γ ΛΛΥΙ Ζ	0/5	layer		
				165–6; 204; 225; 231;
				242; 309; 527 Cu 26;
				36; 41; 169; 174; 249;
				256; 288; 304 Iron 32;
				84; 180 ; Bone 92;
				Glass vessel 132
E VVVI 9	IImphaged	lowon		
F XXVI 3	Unphased	layer		Pot SS47; SD; Coin
				131; Cu 32; Glass ves-
				sel 143f
F XXVI 4	Unphased	?layer		SD; Window 155
G II 3	$6-7^{-1}$	layer		SD;
G II 4	6-7	layer		SD; Samian 76; Coin
	0 1	layer		170; 319; 453; Bone
	a -	1		127;
G II 5	6–7	layer		SD; Coin 268; 433; 475;
				Ceramic 59
G II 6	6–7	layer		SD
G II 7	6 - 7	layer		SD; Coin 487; Cu 55;
				Iron 88; Glass vessel
				103
CIIO	6 7	lovon		
G II 8	6-7	layer		SD; Coin 126
G II 9	6-7	layer		Coin 158; 210; Cu 38
G II 10	6-7	layer		Pot SS7; SS55; SD;
G II ext 4	6–7	layer		SD
G IV 1	U/S	topsoil		Coin A55
G IV 2	U/S	layer		
G IV 3	6 (-7)	stone surface?	Fig 36e	Pot SS86
G IV 4	6(-7)	layer	Fig 36e	SD; Iron 196
G IV 4a	6(-7)	layer		\mathbf{SD}
G IV 5	6(-7)	layer	Fig 36e	SD; Ceramic 29
G IV 7	6(-7)	layer		Pot SS73; SD; Cu 175
G IV 17	5	layer		Stone 62; 75
	-			,

Context	Phase	Description	Reference	Finds
O IV 10	C (7)	1	F: 96-	
G IV 18	6(-7)	layer	Fig 36e	ab a : 145 ac1
G IV 19	6(-7)	mortar spread	Fig 36e	SD; Coin 147; 261
G IV 20	6 (-7)	layer	Fig 36e	
G IV 23	2-3/4	layer	Fig 36e	
G IV 24	1	layer	Fig 36e	
G IV 25	1	gravel floor	Fig 36e	
G IV 26	2-3/4	layer	Fig 36e	
G IV 27	1	layer	Fig 36e	
G IV 29	3	floor Room 8 Buildings III.5b	I p 69; Fig 36e	
G IV 30	3	floor make-up Room 8	1 / 0	
		Building III.5b	I p 70; Fig 36e	
G IV 31	2 - 3/4	foundation trench for Wall II	Fig 36e	
G IV 32	$\frac{1}{3}$	floor make-up Room 8	1 19 000	
01102	0	Building III.5b	Ip 70	
G IV 35	5			
	5	layer	Fig 36e	
G IV 36	5	fill of foundation trench for	D' 00	
0.777.00		Wall I	Fig 36e	
G IV 38	1	layer	Fig 36e	
G IV 39	1	layer	Fig 36e	
G IV 40	1	sub-floor Room 5		
		Building III.5a	I p 49; Fig 36e	
G IV ext 16	3	floor Room 8 building III.5b	I p 69	
G V 1	U/S	topsoil	1	Pot SS79
GV2	6(-7)	layer		SD; Coin 280; A65;
u 1 2	0(1)	layor		Iron 107
G V 3	6(-7)	stone layer		Coin 317; Cu 124;
GV4	?6–7	stone layer		SD; Samian 78
GV5	?6–7	layer	D ' 00	SD; Coin 547
GV6	6 (-7)	stone layer	Fig 39c	
G V 9	6 (-7)	layer	Fig 39c	
G V 10	6(-7)	layer	Fig 39c	Iron 85
G V 11	6(-7)	layer	Fig 39c	SD; Bone 21
m G~V~12	6(-7)	layer	Fig 39c	SD; Samian 79
G V 13	6(-7)	layer		Pot SS45; SD; Iron 45
G V 14	6 (-7)	layer	Fig 39c	
G V 15	6(-7)	occupation layer	Fig 39c	SD; Cu 323
G V 16	6(-7)	layer	8	Coin 133; 215; 282–3;
61 1 20	0(1)			Ceramic 35
G V 18	6 (-7)	gravel and mortar floor	Fig 39c	eeranne so
G V 19	6(-7)	•	Fig 39c	SD; Samian 80; Tile 2;
G V 19	0(-1)	layer	rig 590	
C V OO	$C(\overline{D})$	1		bead 13
G V 20	6(-7)	layer		SD Cl 11051
G V 23	6(-7)	layer		SD; Glass vessel 105b
G V 25	6 (-7)	make-up for floor G V 18	Fig 39c	
G V 26	6 (-7)	layer	Fig 39c	
G V 29	5	mortar layer	Fig 39c	
G V 30	5	mortar layer	Fig 39c	
G V 31	3	floor Room 8 Building III.5b	I p 69; Fig 39c	
G V 32	5	layer	Fig 39c	
G V 33	2 - 3/4	layer	Fig 39c	
G V 34	$\frac{1}{1}$	floor Room 1 Building III.5a	I p 48, (69);	
	-		Fig 39c	
G V 35	1	floor make-up (GV34, GXIV4)	1 lg 000	
G V 30	T		In 19	
C II oo	0.0/4	Building III.5a	I p 48	
G V 36	2-3/4	foundation trench for	TI <i>i i i</i>	
		north wall	Fig 39c	
G V 38	2 - 3/4	filling of drain	Fig 39c	
G V 39	1	floor make-up (GV34, GXIV4)		
		Building III.5a	I p 48; Fig 39c	
G V 41	6 (-7)	layer	Fig 39c	
		-	-	

Context	Phase	Description	Reference	Finds
G V 42	6 (-7)	layer	Fig 39c	
G V 43	6 (-7)	layer	Fig 39c	
G V 44	6 (-7)	layer	Fig 39c	
G V 46	3	floor make-up Room 8	8	
		Building III.5b	I p 70; Fig 39c	
G V ext 1	U/S	topsoil	- F,8	Coin 390; Iron 96
G V ext 2	6 (-7)	layer		Coin 184; 372; Cu 39;
	• • • • •	iuj oi		Lead 11 Iron 97
G V ext 3	6 (-7)	stone layer		Pot SS69; SD; Samian
G V CAU	0(1)	stone layer		77; Cu 191
GV ext 4	6-7?	stone layer		Coin 111; 302
G V ext 6	6(-7)	stone layer		SD; Coin 230; 549
G V ext 9	3	floor Room 7 Building III.5b	I p 69	51, 0011 200, 049
G V ext 5 G V ext 10	3	floor make-up Room 7	1 p 05	
U V EAU IU	0	Building III.5b	I p 69	
G V ext 11	3	floor Room 8 building III.5b		
			I p 69	SD. +10 4. Cy 202. Co
G VI 4	6(-7)	pit fill		SD; tile 4; Cu 303; Ce-
O MI C	1			ramic 45
G VI 6	1	concrete patching	T 10	
A 111 A		Building III.5a	I p 48	~~
G VI 8	6 (-7)	pit fill		SD
G VI 5a	3	floor room 2 Building III.5b	I p 68	
G VI 5b	1	floor Room 1 Building III.5a	I p 48	
G VI 10	5	layer		SD
G VII 1	U/S	topsoil		Iron 232
G VII 2	U/S	layer		Pot SS127; Coin 83;
				Iron 100; Ceramic 36
G VII 3	6–7	layer		SD; Coin 506; Bone 2;
G VII 4	6-7	layer		Pot SS42; SD; Coin
		-		238; Glass vessel 116j
G VII 6	6–7	stone paving		SD; Coin 144;
G VII 7	6–7	layer		Pot SS74; SD; Cu 153;
G VII 8	6–7	layer		SD
G VII 10	5	layer		Pot SS82; SD; Glass
				vessel 31b
G VII 12	1	floor Room 7		
0, 11111	-	BuildingIII.5a	I p 50	
G VIII 1	U/S	topsoil	1 p 00	Coin A51; Cu 104;
G VIII 2	U/S	layer		Pot SS61; Coin 244; Cu
G VIII 2	0/0	layer		98; 131; Iron 44; Bone
				86; Stone 64
G VIII 3	6-7	layer		Cu 148
G VIII 5 G VIII 5	6	mortar floor		SD; Coin 179; Cu 242;
G VIII 5 G VIII 6	о З	floor Room 9		5D, 0011 175, 0u 242;
G VIII 0	0		I = 70	Coin 65. Cu 210.
G VIII 13	6 7	Building III.5b	I p 70	Coin 65; Cu 219;
	6–7 6	layer		SD; Iron 115 Coin 216
G VIII 15	6	layer		
G VIII ext 9	6-7	layer		SD; Iron 57; Stone 60
G VIII ext 13	6-7	layer		Pot SS71; SD;
G VIII ext 15	6	layer		Pot SS43; SD; Cu 57
G VIII ext 16	3	floor Room 9	T = 0	
a	_	Building III.5b	I p 70	
G VIII ext 17	1	burning Room 6	T F A	
		Building III.5a	I p 50	
G VIII ext 18	1	sub-floor room 6		
		Building III.5a	I p 50	
G IX 2	U/S	layer		Coin 84 ; Stone 48;
				Window 153
G IX 5	6-7	layer		Pot SS86; SD; Cu 82;
				Lead 4; bead 3

Context	Phase	Description	Reference	Finds
G IX 7	6–7	fill of flue of oven		SD
G IX 9	2-3/4	gravel and sand floors		SD
G IX 11	Unphased	layer		SD; Samian 81 ; Glass
	-	-		vessel 99
G IX ext 1	U/S	topsoil		bead 12
G XI 2	6(-7)	layer		SD
G XI 3	2-3/4	layer		SD; Coin 248; Cu 300
G XI 4	2-3/4 or 6(-7)	wall (?)		Samian 82
G XII 2 G XII 3	U/S 2–3/4	layer floor		Coin 413; Bone 142 Samian S62
G XII S G XII 8	Unphased	unrecorded		Bead 35
G XIII 1	U/S	topsoil		Coin 540; A52
G XIII 2	U/S	layer		Cu 25; Stone 69
G XIII 8	U/S	layer		querns 16 & 17
G XIV 2	6(-7)	layer		ŜD
G XIV 3	3	floor Room 2 Building III.5b	I p 68	Cu 127; bead 15
G XIV 4	1	floor Room 1 Building III.5a	I p 48	
G XV 2	6(-7)	layer		SD; Coin 208; 260; 303;
	-	1 . 011		333; 395; Bone 85
G XV 4	5	drain fill		SD SD Coin 21 Jat 22
G XV 5	2-3/4	layer		SD; Coin 31; Jet 28;
G XV/XVI 2	6(-7)	layer		Bone 109; Ceramic 60 SD; Coin 388
G XVI 2 G XVI 2	6(-7) 6(-7)	layer		SD, Colli 388 SD
G XVI 2 G XVI 3	5	rubble layer		SD; Stone 24
G XVI 4	3	floor Room 2 Building III.5b	I p 68	SD, Stone 21 SD
G XVI 5	2-3/4	foundation? and gravel floor	1	Ceramic 61
G XVI 6	5-6	drain fill Room 2		
		Building III.5c	I p 68	SD; Samian S15,
				S31–2; Bone 20; glass
				vessel 44; 72a; 120;
G XVII 1	U/S	topsoil		bead 31 Coin 90; 416; 431
G XVII 1 G XVII 2	6(-7)	mortar		Coin 50; Cu 128; Stone
0 11 12	0(1)	mortar		76
G XVII 3	6 (-7)	layer		Pot SS124; SD; Coin
		- 0 -		389
G XVII 7	6 (-7)	layer		SD
G XVII 8	2-3/4	layer	Fig 36f	
G XVII 9	1	floor Room 3 Building III.5a	I p 50; Fig 36f	
G XVII 10	2-3/4	foundation	Fig 36f	SD; Coin 19;
G XVII 11	3a	floor Room 3 Building III.5b	I p 71; Fig 36f	
G XVII 12	1	burnt layer Room 3	I = 50, E' = 900	
G XVII 13	1	Building III.5a	I p 50; Fig 36f	
G XVII 15 G XVIII 1	U/S	layer topsoil	Fig 36f	Iron 173
G XVIII 2	6(-7)	layer		SD; Brooch 23; Cu 29
G XVIII 3	6(-7)	layer		SD, Droton 20, ou 20 SD
G XVIII 4	6(-7)	layer		SD
G XVIII 6	6(-7)	layer		SD
G XVIII 7	6(-7)	layer		SD
G XVIII 9	5	mortar and flagstones		SD
G XVIII 13	2-3/4	layer		SD
G XVIII 14	Unphased	layer	E: 90 1	SD Gaine 500, Grand Strange
G XX 1	U/S	topsoil	Fig 39d	Coin 508; Cu 4; Stone
G XX 2	6(-7)	layer		71 SD; Samian S28; Bone
U 1111 4		14701		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
G XX 4	6 (-7)	layer	Fig 36e	Pot SS26; SS40; SS48;
				SS83; SD

Context	Phase	Description	Reference	Finds
G XX 5	6a or 7	floor Room 2 Building III.5c	I p 100, 118;	
0 111 0			Fig 36e	quern 25
G XX 8	6(-7)	layer	Fig 39d	quein 20
G XX 9	6 (-7)	layer	Fig 36e	
G XX 10	6(-7)	layer	Fig 36e	SD; Coin 293
G XX 10 G XX 11	6a or 7	mortar layer Building III.5c	I p 118	5 D , Colli 255
G XX 12	6a or 7	floor Room 2 Building III.5c	I p 100, 118;	
G AA 12	0a 01 7	11001 1100111 2 Dununing 111.50	Fig 36e; 39d	
G XX 13	6a or 7	layer	Fig 36e; 39d	
G XX 13 G XX 14	6a 01 7	floor foundation Room 2	r 1g 50e, 59u	
G AA 14	0a		In 100, Eig 20	J
O VV 15	6	Building III.5c	I p 100; Fig 39	u
G XX 15	6a	floor or occupation	I = 100	
O VV 10	C.	Building III.5c	I p 100	
G XX 16	6a	layer Room 4 Building III.5c	I p 89, 100;	
0.3737.45		,	Fig 39d	
G XX 17	6(-7)	layer	Fig 36e	SD
G XX 18	6(-7)	layer	Fig 36e	Pot SS65–6; SS75–6;
		-		SD
G XX 19	2-3/4	mortar floor	Fig 36e	SD; Samian 83 ; Coin
				185
G XX 20	2-3/4	layer	Fig 36e	
G XX 21	3	floor Room 8 Building III.5b	I p 69; Fig 36e	
G XX 22	2 - 3/4	fill of posthole		Coin 213
G XX 23	3	floor make-up Room 8		
		Building III.5b	I p 70, Fig 36e	
G XX 24	1	mortar layer	Fig 36e	
m G~XX~25	2-3/4	Drain	Fig 36e	
G XX 26	2-3/4	fill of drain G XX 25	Fig 36e	
G XX 27	3–4	drain fill	Fig 36e	
G XX 28	3–4	layer	Fig 36e	
G XX 29	2-3/4	layer	Fig 36e	
G XX 30	3	floor Room 8 Building III.5b	I p 69; Fig 39d	
G XX 32	5-6	layer	Fig 36e	
G XX 33	1 or 2–3/4	layer	Fig 36e	
G XX 34	1 or 2-3/4	layer	Fig 36e	
G XX 35	3	floor make-up Room 8	0	
		Building III.5b	I p 70; Fig 39d	
G XX 36	6a or 7	mortar floor	Fig 39d	
G XX 37	3	layer	Fig 39d	
G XX 38	3	floor make-up Room 8	8	
	-	Building III.5b	I p 70; Fig 39d	
G XX 39	5	layer	Fig 39d	
G XX 40	5	foundation trench for B III.5c	Fig 36e; 39d	
G XX 41	1–2	hypocaust fill Room 5		
	—	Building III.5a	Fig 36e; 39d	
G XX 42	1–2	hypocaust fill Room 5		
		Building III.5a	Fig 36e	
G XX 43	1–2	hypocaust fill Room 5	1 19 000	
G 111 10	1 4	Building III.5a	Fig 36e	
G XX 44	1	sub-floor Room 5	1 lg 000	
U AA 44	T	Building III.5a	I p 49; Fig 36e	
G XX ext 1	U/S	topsoil	тр т а, г ig обе	Coin 463; Cu 214
G XX ext 1 G XX ext 6	6 (-7)	layer		SD
G XX ext 7	6 (-7) 6 (-7)			SD SD
		stone paving		
G XX ext 8 C XX ext 14	6(-7)	layer		SD; Lead 5; Ceramic 27
G XX ext 14 C XX ext 15	6(-7)	layer		SD Det SS69, SD, Class
G XX ext 15	6 (-7)	layer		Pot SS68; SD; Glass
$O \mathbf{V} \mathbf{V} = 10$	C (T)	lawan		vessel 95m
G XX ext 16	6(-7)	layer		PotSS86; SS88; SD
G XX ext 18	6(-7)	layer		SD

Context	Phase	Description	Reference	Finds
G XXI 2	Unphased	layer	Fig 39d	SD
G XXI 3	6a	floor Room 1 Building III.5c	I p 100; Fig 39d	
G XXI 3 G XXI 4	6a	dump or floor Room 1	r p 100, r ig 590	
0 2221 4	0a	Building III.5c	I p 100; Fig 39d	SD; Coin 329; 367; 446; 510; Cu 86
G XXI 5	6a	dump or occupation Room 1 Building III.5c	I p 100; Fig 39d	
G XXI 6	6a	dump or occupation Room 1	In 100, Fig 20d	
G XXI 7	9	Building III.5c floor Room 9 Building III.5b	I p 100; Fig 39d I p 70; Fig 39d	SD; Cu 27; 130
G XXI 8	3 2–3/4	layer	Fig 39d	
G XXI 9	2-3/4 5	foundation trench	Fig 39d	
G XXI 5 G XXI 12	3	floor make-up Room 9	rig 55u	
		Building III.5b	I p 70; Fig 39d	
G XXI 13	1	sub-floor Room 6 Building III.5a	I p 50; Fig 39d	
G XXI 14	1	sub-floor Room 6		
		Building III.5a	I p 50; Fig 39d	
G XXI 15	1	floor Room 7 Building III.5a	I p 50; Fig 39d	
G XXI 16	5	foundation trench for		
	2	north-east-west wall	Fig 39d	T ¹
G XXI 17	3	drain Building III.5b		Tile 1
G XXI 21	3	floor make-up Room 9	T F 0	
C THE OD	2	Building III.5b	I p 70	
G XXI 23	3	floor make-up Room 9	T F 0	
	_	Building III.5b	I p 70	
G XXI Drain 17	1	drain	Fig 39d	G · 100
G XXII 1	U/S	topsoil		Coin 182
G XXII 2	6 (-7)	layer		SD; bead 21
G XXII 3	6 (-7)	layer		Pot SS70; SS80; SD; Cu 81; 268; Iron 33
G XXII 4	6 (-7)	layer		SD; Iron 25; Jet 32;
G XXII 5	5	occupation deposit Room 6		
		Building III.5c	I p 89	SD; Coin 117; hoard –
G XXII 6	6(-7)	layer		appendix 13.2.2 Pot SS56; Coin 334; Cu 78; Jet 16
G XXII 7	3–5	floor Room 4 Building III.5b	I p 68	10,00010
G XXII 8	5	layer	1 0 00	SD
G XXII 11	1 or 2–3/4	layer		SD; Amp D9; D28
G XXIII 1	U/S	topsoil		Coin 17 ; bead 16
G XXIV 1	U/S	topsoil		Coin 341; Ceramic 26
G XXIV 2	6(-7)	layer		SD; Coin 240
G XXIV 4	6(-7)	layer		SD; Coin 295; Cu 320;
G XXIV 7	5?	layer		Bone 99
G XXIV 9	2-3/4	mortar floor	I p 69	Coin 550
G XXIV 10	3	floor make-up Room 5	- F	
		Building III.5b	I p 69	
G XXIV 20	3	floor Room 9 Building III.5b	I p 70	
G XXV 1	U/S	topsoil		Coin 52; 422; bead 30
G XXV 2	6(-7)	cobble layer		SD; Samian 84, Bone 121
G XXV 4	6a	floor Building III.5c	I p 99; Fig 36f	
G XXV 5	6(-7)	layer	- / 0	Coin 6
G XXV 6	6 (-7)	layer	Fig 36f	
G XXV 7	3c	floor Room 1 Building III.5b	I p 72, 74; Fig 36f	
G XXV 8	3a	floor Room 1 Building III.5b	I p 71; Fig 36f	
G XXV 9	3a 2–3/4	fallen plaster	Fig 36f	
U 1111 V U	4 0/T		1 16 001	

Context	Phase	Description	Reference	Finds
Context	Phase	Description	Reference	rinas
G XXV 10	3c	Building III.5b	I p 74; Fig 36f	SD; Pot SS156; Iron 172; Bone 24, 105
G XXV 11	3c	floor Room 1 Building III.5b	I p 74; Fig 36f	
G XXV 12	3c	floor Room 1 Building III.5b	I p 72; Fig 36f	
G XXV 13	3c	floor Room 1 Building III.5b	I p 72; Fig 36f	
G XXV 14	3c	floor Room 1 Building III.5b	Fig 36f	
G XXV 15	2 - 3/4	cobble and stone layer	Fig 36f	
G XXV 16	3b	floor Room 1 Building III.5b	I p 71; Fig 36f	
G XXV 17	3b	floor make-up Room 15 Building III.5b	I p 71; Fig 36f	
G XXV 18	2-3/4	mortar floor	Fig 36f	
G XXV 19	2-3/4	layer	Fig 36f	
G XXV 21	Unphased	pit	1 19 001	
G XXV 23	2-3/4	layer	Fig 36f	
G XXV 24	6 (-7)	layer	Fig 36f	
		floor Room 1 & 3	1 lg 501	
G XXV 25	3	Building III.5b	I p 67; Fig 36f	G : 100
G XXV ext 1	U/S	topsoil		Coin 139
G XXV ext 23	2-3/4	layer		Iron 186
G XXVI 1	U/S	topsoil		Bone 90
G XXVI 2	6(-7)	layer		Coin 25
G XXVI 9	2-3/4	layer		Cu 73
G XXVII 1	U/S	unrecorded		Coin 162; 271
G XXVIII 4	6 or later	floor Building III.5c	I p 99	
G XXIX 1	U/S	topsoil	-	Coin 190; 249; 524; Cu 23; 48; 65; Lead 24; bead 25
G XXIX 2	6(-7)	layer		SD; Samian S116; Jet 12; 19; Window 151
G XXIX 3	6(-7)	layer		Samian 85; Cu 119; 331; Bone 91; Window 152
G XXIX 5	5	layer		SD
G XXIX 6	5	layer		SD
G XXIX 0 G XXIX 7	3 2(-3/4)	•		Coin 23
		layer		SD
G XXIX 8	Unphased	layer	I CO	SD
G XXIX 14 G XXIX 16	3 3	floor Room 4 Building III.5b floor patching Room 4	I p 68	
G XXIX 17	3	Building III.5b floor patching Room 4	I p 68	
G XXIX 18	3	Building III.5b floor bedding Room 4	I p 68	
G XXIX 19	3	Building III.5b floor patching Room 4	I p 68	
o	12:	Building III.5b	I p 68	
G XXX 1	U/S	topsoil		Cu 255
G XXX 2	U/S	layer		Coin 122; 202; 206; 241; 296; 423; 434; 457; Cu 75 Iron 26; 145; Jet 26
C XXX 2	6 7	louron		
G XXX 3 G XXX 4	6–7 6–7	layer layer		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel
G XXX 4	6–7	layer		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel 40; 73a
G XXX 4 G XXX 5	6–7 6–7	layer		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel 40; 73a Coin 163;
G XXX 4 G XXX 5 G XXX 7	6–7 6–7 5	layer layer layer		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel 40; 73a Coin 163; SD
G XXX 4 G XXX 5 G XXX 7 G XXXI 1	6–7 6–7 5 U/S	layer layer layer topsoil		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel 40; 73a Coin 163; SD Samian 86;
G XXX 4 G XXX 5 G XXX 7	6–7 6–7 5	layer layer layer		Cu 168 Coin 72; 186; 223–4; 425; 521; Glass vessel 40; 73a Coin 163; SD

Context	Phase	Description	Reference	Finds
G XXXI 8	2-3/4	layer		SD; Samian 87;
0	a a//			Grafitto 77
G XXXI 13	2-3/4	layer		SD
G XXX1 17	2-3/4	layer		Bead 36
G XXXII 2	6(-7)	layer		SD; Samian 88
G XXXII 8	5	layer		Iron 224; Glass vessel 116k; 131; Window 1–95
G XXXII 13	2-3/4	layer		SD
G XXXII 27	2-3/4	layer		Window 96–130
G XXXIV 2	2-3/4	layer		SD
G XXXIV 3	6(-7)	layer		SD
HI1	U/S	topsoil		Pot SS52; SS128; Coin
		-		305; 410; 495–6
HI2	4–7	layer		SD SD Cain 407 Due al
H I 3	6	layer		SD; Coin 497; Brooch 25
H I 5	6	layer		SD
ΗΙ7	6–7	layer		Pot SS116; SD; Coin 143; 396–7; 440
H I 10	4–5	layer		SD
H I 21	Unphased	unrecorded		Samian 89
H II 1	U/Ŝ	topsoil	Fig 39j; 41c	Samian 155, S33, S51, S88, S209; grafitto 11;
				Coin 445; 501; Bone 30; 66; Ceramic 62–3; Glass vessel 5; 66; 950;
				111
H II 2	U/S	layer	Fig 39j	Brooch 19; Ceramic 9; bead 8
HII3	6-7	layer	Fig 39j	Soud o
H II 4	4–6	destruction debris; fill Channel 7 Building III.4b	I p 82; Fig 41c	SD; Samian S155, S183; Cu 101
H II 5	6a	sleeper-beam	I p 102; Fig 41c	
			& 54	SD
H II 6	6a	floor	I p 102;	~~
			Fig 41c & 54	SD
H II 7	6a	occupation material	I p 102; Fig 41c	
H II 8	6a	hearth	I p 102	Coin 22;
H II 9	5	town wall rampart	Fig 39j	
H II 10	5	levelling associated with		
	/- · - / ·	town wall	I p 95; Fig 39j	
H II 11	(2–) 3/4	floor layer	Fig 39j	
H II 12	1	layer	Fig 39j	
H II 14	5	levelling associated with town wall	I p 95; Fig 39j	SD Samian 90; Cu 139;
				158
H II 17	3	verandah floor Building III.4b	I p 63	Samian 91
H II 19	5	make-up? Building III.4b	I p 74; Fig 39j	
H II 21	1 (-2)	layer	I p 95; Fig 39j	Pot SS5; SD Samian 92–4; Cu 251; 291; Lead 25; Glass vessel 6c; 30; bead 2, 7
H II 22	1–2	layer	I p 95; Fig 39j	Samian 93, 95
H II 23		layer	- r 00, 1 - 5 00J	SD
H II 23 H II 24	6a	floor	I p 102; Fig 41c	
H II 24 H II 26	6	oven	I p 102, I ig 410 I p 102	~ 01
H II 20 H II 27	$\frac{1}{2}$	floor Building III.4a	I p 54; Fig 41c	
H II 28	2 (2–) 3/4	floor/occupation level	Fig 39j	
11 11 40	(<u></u>	noor, occupation rever	115 09J	

Context	Phase	Description	Reference	Finds
H II 29	5	town wall foundation trench or	I 05. Et 20;	
TT TT 91	Ga	robbing trench	I p 95; Fig 39j	
H II 31	6a	occupation material	I p 102; Fig 41c	•
H II 32	(4-) 6a-7	clay floor	Fig 41c	
H II 33	(4–) 6a–7	occupation layer	Fig 41c	
H II 34	3/4	clay floor	Fig 41c	
H II 35	2(-3/4)	occupation layer	Fig 41c	
H II 37	2(-3/4)	clay floor	Fig 41c	
H II 38	2(-3/4)	layer	Fig 41c	
H II 39	1	layer	Fig 41c	
H II 41	1	layer	Fig 41c	Cu 173; 206
H II 42	(4–) 6a–7	occupation layer	Fig 41c	
H II 43	3/4	layer	Fig 41c	
H II 44	2(-3/4)	layer	Fig 41c	
H II 45	1	layer	Fig 41c	
H II 47	1	hearth	Fig 41c	
H II 48	6–7	layer	Fig 41c	
H II 49	Unphased	unrecorded	Fig 39j	
H II Channel l 7	4	water channel	Fig 41c	
H III 1	U/S	topsoil	Fig 52a	Bone 7; 8
H III 2	U/S	plough soil	Fig 52a	Iron 49
H III 3	6–7	layer	Fig 52a	SD; Amp D4; Cu 273; 293; Glass vessel 95n;
TT TTT 4	C T	1	E: 50 -	109 SD Amer D2
H III 4	6-7	layer	Fig 52a	SD; Amp D3
H III 5	6-7	layer	Fig 52a	SD
H III 6	6-7	layer		SD
H III 7	5	layer	Fig 52a	
H III 8	6–7	layer		SD; Glass vessel 49g
H III 9	6–7	layer	Fig 52a	SD; Samian 96
H III 10	6–7	layer		SD
H III 11	5	layer	Fig 52a	SD
H III 12	5	layer	0	SD
H III 14	5	layer		querns 11e1r3
H III 16	6–7	layer	Fig 52a	SD; Samian 97
H III 17	6–7	layer	1 15 024	Glass vessel 49h
H III 18	6-7		Fig 59a	
		layer	Fig 52a	SD; Samian 98
H III 19	6-7	Drain II	D' F 0	SD
H III 20	6-7	layer	Fig 52a	SD
H III 21	6-7	layer		SD; Cu 198; Glass ves- sel 36
H III 22	6-7	fill of Drain I		SD; Coin 464; 472; Lead 16 ;
H III 23	6-7	layer		SD; Bone 64
H III 24	6–7	layer	Fig 52a	
H III 25	6–7	layer	Fig 52a	Pot SS89; SD; Cu 326
H III 26	6–7	layer	<u> </u>	Bone 76
H III 27	6–7	fill of Drain I		SD; Coin 91; Iron 126; Bone 111; Glass vessel 49I
H III 28	6–7	layer		SD; Bone 94
H III 20 H III 31	5	fill of Drain I		Pot SS37; SD; Glass
				vessel 31a
H III 32	5	fill of Drain 1		Pot SS89; SS138; SD; Glass vessel 49c
H III 36	6–7	layer	Fig 52a	
H III Drain 1	5 or earlier	drain	I p 95	
H III Drain 2	5 or earlier	drain	I p 95	
			-	a
H IV 1	U/S	topsoil/plough soil		Coin 421

Context	Phase	Description	Reference	Finds
H V 4	5	layer		SD
H VI 1	J U/S	ploughsoil	Fig 41h	SD
H VI 2	0/3 4–7	layer	1 ig 4111	SD
H VI 3	4-7	fill of drain		SD Samian S179; Iron
				159; Bone 62
H VI 4	(2)3/4	opus signinum floor	Fig 41h	SD
H VI 5	4–7	fill Channel 7	I p 83	SD
H VI 6	(2)3/4	layer	Fig 41h	SD
H VI 7	4–5	layer		SD
H VI 8	(2)3/4	Wall 56?		SD
H VI 9	3	floor Room 16 Building III.4b	I p 64; Fig 41h	
H VI 10	2(-3/4)	Clay wall (Epsilon)		bead 1
H VI 12	(2–) 3/4	layer	Fig 41h	
H VI 13	2(-3/4)	clay floor	Fig 41h	
H VI 14	2(-3-4)	Wall 53	Fig 41h	
H VII 1	U/S	topsoil	Fig 41h	
H VII 2	(4–)6a–7	layer	Fig 41a	SD
H VII 3	(4–)6a–7	layer		SD
H VII 4	(4)6a-7	layer	Fig 41a; 41h	SD
H VII 5	4	layer	Fig 41a; 41h	
H VII 7	3	floor Room 16 Building III.4b	I p 64; Fig 41a; 41h	
H VII 8	3	demolition wall 57		
	0	Building III.4b	I p 64; Fig 41a;	
	(0) $0/4$		41h	
H VII 9	(2-) 3/4	fallen plaster	Fig 41a; 41h	
H VII 10	2(-3/4)	layer	Fig 41h	CD
H VII 11	4-5	paved floor	Fig 41h	SD
H VII 16	2-3/4	opus signinum	Fig 41h	GD
H VII 17	Unphased	layer	D: (1)	SD
H VII 18	4	layer	Fig 41h	SD
H VII 19	2(-3/4)	layer	Fig 41a	
H VII 20	2(-3/4)	mortar floor	Fig 41a	
H VII 21	2(-3/4)	layer	Fig 41a	
H VII 22	1	layer	Fig 41a	
H VII 23	1	occupation layer	Fig 41a	
H VII 24	1	clay floor	Fig 41a	
H VII 25	(2–)3/4	layer	Fig 41a	
H VII Channel 1b	3	water pipe	Fig 41a	G : 00 G 100
H VIII 2	U/S	layer	Fig 41a	Samian 99; Cu 108
H VIII 4	(4) 6a–7	layer	Fig 41a	Cu 297
H VIII 6	Unphased	layer	Fig 41a	
H VIII 8	1 - 2	demolition deposit	I p 51; Fig 34	CD
	9/4	1	& 41a	SD SD
H VIII 9	3/4	layer	T3' . 41	SD SD
H VIII 10	3/4	layer	Fig 41a	SD
H VIII 11	3/4	layer	Fig 41a	
H VIII 12	(2-) 3/4	foundation	Fig 41a	
H VIII 16	6a–7	layer		SD
H VIII 19	1	floor	I p 51; Fig 34 & 41a	
H VIII 20	(4) 6a–7	layer	Fig 41a	
H IX 1	U/S	topsoil	Fig 41k	Pot SS98 Samian 107, S229; Cu 107; 178; 200
H IX 2	(4)6a–7	layer		SD; Cu 195;
H IX 3	(4–) 6a–7	layer	Fig 41k	bone 35
H IX 4	(4)6a-7	layer	Fig 41k	SD
H IX 5	(4)6a-7	layer	0	SD
H IX 6	(4-)6a-7	layer	Fig 41k	SD
H IX 7	2-3/4	clay wall	I p 76	SD; Cu 126
	-, -	· · · · ·	T	,

Context	Phase	Description	Reference	Finds
H IX 8	3	floor Room 15 Building III.4b	I p 56, 72; Fig 4	41k
H IX 9	3	layer Building III.4b		
H IX 10	3/4	layer		SD; Wall p 26
H IX 12	3	floor make-up Room 15		
		Building III.4b	I p 56	Stone 16
H IX 13	2-3/4	layer	Fig 41k	
H IX 14	2-3/4	gravel floor	Fig 41k	
H IX 15	3	courtyard surface		
		Building III.4b	I p 61; Fig 41k	
H IX 16	2-3/4	water channel		SD
H IX 17	2-3/4	layer	Fig 41k	
H IX 18	3	trample Corridor 1		
		Building III.4b	I p 76; Fig 41k	
H IX 19	2-3/4	layer corridor 1		
		Building III.4b	I p 76; Fig 41k	
H IX 20	(4–)6a–7	layer		SD Amp P7
H IX 25	2-3/4	gravel floor		SD
H IX 27	2-3/4	layer	Fig 41k	Samian 100; Glass ves- sel 116e
H IX Channel 1a	3	water pipe channel	Fig 41k	
H IX Channel 2a	3–4	water pipe channel	Fig 41k	
HX1	U/S	topsoil	0	Cu 113; Iron 230; Bone
		-		16; Glass vessel 91
H X 3	(4–) 6a–7	layer	Fig 41g	
HX4	3/4	layer		Samian 101–2
H X 5	3	floor Room 15 Building III.4b	I p 63; Fig 41g	SD
H X 6	(4a) 6a–7	Building III.4b	Fig 41g	Iron 74; Wall p 16
H X 7	(4–) 6a–7	channel		SD
H X 9	3/4	layer		SD
H X 10	2	gravel floor	I p 63; Fig 35	
TT TT 4 4			& 41g	
H X 11	2-3/4	layer	Fig 41g	
H X 13	2	floor Building III.4a	I p 54; Fig 35	
TT 37 4 4	0 1 0	1 (1	& 41g	
H X 14	2 or early 3	burnt layer	I p 63; Fig 41g	
H X 17	$\frac{3}{4}$	layer	Fig 41g	
H XI 1	U/S	topsoil	Fig 41f & 41k	Cu 88; 217; 295; Iron 2;
	0			17; Ceramic 37
H XI 2	6	Courtyard 10 fountain fill	T 64 161	
		Building III.4b	I p 74; 151;	
II VI O	0.0/4		m Fig41fSD	
H XI 3	2-3/4	Courtyard 10 fountain fill	T 74 171	
		Building III.4b	I p 74; 151;	
	0.0/4	fill fountain Countriand 10	$\operatorname{Fig}41f\operatorname{SD}$	
H XI 4	2-3/4	fill fountain Courtyard 10	I = 74. E' = 41f	Det m 427 mag 1 5.
		Building III.4b	1 p 74; F1g 411	Pot p. 437 nos. 1–5;
	(\mathbf{A}) $\mathbf{G}_{\mathbf{a}}$ $\mathbf{\nabla}$	lower	E: 41£ 101-	Glass vessel 8
H XI 5	(4-) 6a-7	layer	Fig 41f; 12k	
H XI 6	(4–) 6a–7	collapse	Fig 41k	$D_{24} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
H XI 7	4–7	layer	Fig 41k	Pot SS111; SD;
				Grafitto 26; Iron 106;
				Stone 53; Glass vessel
цvιρ	9/ /	$\mathbf{W}_{\text{oll}} = \mathbf{W}_{\text{oll}}$		68; 86
H XI 8	$\frac{3}{4}$	Wall = Wall 31	Fig 41k	
H XI 9	(4-) 6a-7	layer	Fig 41k	
H XI 10	2-3/4	fill channel 7	Fig 41k	SD; Glass vessel 107a
H XI 11	2-3/4	fill of channel	D' . 411	SD SD WILL 14
H XI 13	$\frac{3}{4}$	Building III.4b	Fig 41k	SD; Wall p 14
H XI 14	$\frac{3}{4}$	layer	Fig 41f	SD. Dom - 07
H XI 15	3/4	layer	Fig 41f & 41k	SD; Bone 87

Context	Phase	Description	Reference	Finds
H XI 17	3/4	layer	Fig 41k	
H XI 18	3	courtyard surface	1 lg +1K	
11 111 10	0	Building III.4b	I p 61; Fig 41f	
		Dunuing III. IS	& 41f	SD
H XI 19	2-3/4	clay foundation Building III.4b		~
H XI 20	$\frac{1}{3}/4$	layer	Fig 41k	
H XI 21	2-3/4	layer	Fig 41k	
H XI 22	2-3/4	occupation layer	Fig 41k	
H XI 23	2-3/4	clay floor	Fig 41k	
H XI 24	2-3/4	layer	8	SD
H XI 25	2-3/4	layer	Fig 41k	
H XI 26	2-3/4	layer	Fig 41k	
H XI 27	2-3/4	layer	Fig 41k	
H XI 28	2-3/4	layer	Fig 41k	
H XI 29	3/4	fallen plaster	Fig 41k	
H XI 30	3/4	layer	Fig 41k	
H XI 31	(2-) 3/4	layer	Fig 41k	
H XI Channel 7	3–4	water channel	Fig 41k	
H XII 1	U/S	topsoil	-	Samian S100, S158,
		-		S191; Grafitto 48; bone
				39; bead 11
H XII 2	6a	occupation material	I p 102	Samian 103; Cu 298;
				336;
H XII 3	6a	occupation	I p 102	
H XII 4	6a	posthole	I p 102	
H XII 5	6a	posthole	I p 102	
H XII 7	(4–)6	water channel + fill		SD; Samian 104; Glass
				vessel 64
H XII 8	(4)6a-7	Building III.4b		Wall p 18
H XII 9	(4–)6a–7	layer		Samian S45
H XII 16	3	floor Corridor 2 Building III.4b		
H XII 17	6a	posthole	I p 102	
H XII 18	Unphased	layer		SD
H XII 20	3	foundation floor Corridor 2	T 00	
	<i></i>	Building III.4b	I p 60	
H XII 21	3/4	layer	T 00	SD Samian 105–6
H XII 22	3	floor Corridor 2 Building III.4b	I p 60	
H XII 24	4-7	layer		SD
H XIII 1	U/S		T! (4	Samian S124
H XIV 3	3/4(6)	layer	Fig 41a	SD Samian S194
H XIV 4	2-3/4	layer		SD; Ceramic 38; bead
	0.0/4	1	T: 41	26 SD Or 17
H XIV 5	2-3/4	layer	Fig 41a	SD; Cu 17;
H XIV 6	U/S	layer	Fig 41a	
H XIV 7	2-3/4	layer	Fig 41a	
H XIV Culvert 2a	3–4 U/S	t	Fig 41a	
H XV 1	U/S	topsoil		Glass vessel 116c
H XV 5	(4)-6a-7	layer		SD Samian 107; Glass
	9/4	1		vessel 49j
H XV 6	$\frac{3}{4}$	layer		SD SD
H XV 7	2-3/4	layer		SD. Bong 95
H XVI 2	(4-)6a-7	layer		SD; Bone 25
H XVI 4	(4-)6a-7	layer		SD Samian 108
H XVI 5	2–3/4 Upphagod	water channel fill		SD; Cu 308 Bone 14
H XVII 1	Unphased	layer		SD; Coin 316
H XVII 2	5	layer		SD; Coin 20; 428;
H XVII 3	3/4 11/S	layer		SD Iron 25, 117, Stone 55
H XVIII 1	U/S	topsoil	In 109	Iron 35; 117; Stone 55
H XVIII 2 H XVIII 5	6a 6a	cobble spread posthole	I p 102 I p 102; Fig 54	SD Samian S7
11 / 111 0	Ja	positione	1 p 102, 1 lg 04	

Context	Phase	Description	Reference	Finds
H XVIII 8	Unphased	unrecorded		SD
H XIX 1	U/S	topsoil		Brooch 11
H XIX 1 H XIX 2	4-7	fill of water channel		SD
	4-7 4-7			
H XIX 4		topsoil		SD Samian 109, S121, S217
H XIX 6	4–7	layer		SD Samian 110; Glass vessel 14
H XX 1	U/S	topsoil	Fig 41d	Cu 333; Lead 10; Iron 48; Stone 81
H XX 2	6a	cobble spread	I p 102; Fig 41d	Samian S104; Grafitto 12; Coin 533; Iron 118;
H XX 3	(4–)6a–7	layer		Bone 3 SD Samian S16 ; Iron 3; 6; Glass vessel 118
H XX 4	(4–)6a–7	layer	Fig 41d	SD Samian 111, S13; Bone 63
H XX 5	(4–)6a–7	layer		SD Cu 96; Lead 2; bone 45
H XX 6	U/S	topsoil		SD
H XX 7	(4–) 6a–7	layer	Fig 41d	
H XX 8	(4–) 6a–7	layer	Fig 41d	
H XX 9	(4-)6a-7	layer	Fig 41d	SD; Iron 233
H XX 10	Unphased	layer	Fig 41d	
H XX 11	3/4	layer	Fig 41d	
H XX 13	3/4	Building III.4b	Fig 41d	Wall p 15
H XX 14	3	floor Courtyard 6	115 114	Wall p 10
11 / 11	0	Building III.4b	Fig 41d	
H XX 15	(4–)6a–7	wall plaster	Fig 41d	SD Amp D7
H XX 16	(4-)0a-7 3/4	-		SD Allip D7
		layer	Fig 41d	
H XX 17	2-3/4	layer	Fig 41d	
H XX 18	2-3/4	layer	Fig 41d	
H XX 19	2-3/4	layer	Fig 41d	
H XX 20	2-3/4	concrete floor	Fig 41d	
H XX 21	(4–) 6a–7	layer	Fig 41d	
H XX 22	Unphased	layer	Fig 41d	
H XX channel D	2-3/4	water pipe channel	Fig 41d	
H XXI 4	2-3/4	layer		SD Samian 112
H XXII 1	U/S	topsoil		Samian S128
H XXII 3	6(-7)	layer		Samian 113
H XXIII 1	U/S	topsoil		Samian S218; Iron 31;
H XXIII 2	6	layer		87; Glass vessel 95p SD Samian S123, S137; Iron 120; 132; 220;
H XXIII 3	5–4	layer		Bone 13 Glass vessel 116b Pot SS143; SD Samian S26, S78, S137; Cu 166; 210; 263; Iron
H XXIII 4	(4)6a–7	drain		149; 177 ; Ceramic 47 SD Samian 114; Cu 301; Iron 113; Glass vessel 60
H XXIII 5	Unphased	unrecorded		SD
H XXIV 1	U/S	topsoil		Brooch 27
		-		
H XXIV 2	³ / ₄	layer		Cu 290
H XXIV 4	2-3/4	concrete floor	I 60	SD
H XXIV 5	3	floor Corridor 2 Building III.4b	1 h on	CD
H XXIV 6	1	layer		SD Amer NA1, Coin 484
H XXIV 7	1	layer		SD Amp NA1; Coin 484

Context	Phase	Description	Reference	Finds
H XXV 1	U/S	tongoil		Samian 8124, Cu 80
H XXV 1 H XXV 2	2-3/4	topsoil Building III.4b		Samian S134; Cu 89 Pot SS120; SD; Tile 8;
	0.9/4	1		Iron 223; Wall p 1–7
H XXV 3 H XXV 4	2-3/4	layer floor Room 4 Building III.4b	I p 60	SD
H XXV 5	4	posthole	Ip 77	
H XXV 6	3/4	layer	r	SD
H XXV 8	1	layer		Pot SS10; SD Samian
H XXVI 1	U/S	topsoil	Fig 41a	115 Cu 264
H XXVI 2	6–7	layer	Fig 41a	SD; Coin 27; Cu 31
H XXVI 3	5	layer	Fig 41a	
H XXVI 4	Unphased	layer	Fig 41a	
H XXVI 8	2-3/4	layer	Fig 41a	
H XXVI 9	5	layer	Fig 41a	
H XXVI 10	2-3/4	layer	Fig 41a	
H XXVII 2	6	cobble spread	I p 102	SD Samian 116–7, S75, S228; Coin 481; Iron 11; 129; Bone 108
H XXVII 3	6a	stone and daub	I p 102; Fig 54	SD
H XXVII 4	(4)6a-7	layer	1 / 0	Cu 327
H XXVII 5	(4–)6a–7	robber trench		SD; Samian S93; Glass
				object 2
H XXVII 6	2-3/4	thin clay floors		SD
H XXIX 1	U/S	topsoil	Fig 41e	
H XXIX 2	6/7	layer	Fig 41e	SD
H XXIX 3	7+	collapse of town wall	Fig 41e	
H XXIX 4	5	layer	Fig 41e	SD
H XXIX 6	3	verandah floor Building III.4b	I p 63; Fig 41e	
H XXIX 7	7	layer		SD
H XXIX 8	2-3/4	layer	Fig 41e	
H XXIX 10	5	layer	Fig 41e	
H XXIX 11	7+	layer	Fig 41e	
H XXX 1	U/S	topsoil	T 100	Iron 19; Bone 31
H XXX 2	6a	cobble spread	I p 102	
H XXX 3	2-3/4	layer	T 100	SD
H XXX 4	6a	floor?	I p 102	Ceramic 4
H XXXI 1	U/S	topsoil		Cu 318; Iron 64 ;
H XXXI 2	6	layer		SD
H XXXIII 3	Unphased	unrecorded		SD Sh 1148
H XXXIV 1	U/S	topsoil		Glass vessel 143e
H XXXV 1	U/S	topsoil	T 100	Iron 102
H XXXV 2	6 (4) $C = 7$	cobble spread	I p 102	Pot SS20; SD; Cu 90
H XXXV 3	(4)6a–7	layer		Cu 94; Ceramic 20; Glass vessel 9; 130
H XXXV 4	(4) 6a–7	layer		Cu 296; Bone 33; 78
JI1	6a	floor Room 23 Building VII.3a	I p 106; Fig 39h	
J I 2	6	layer	r) 8	SD Coin 70; 442; 519
JI3	6	layer		SD SD
J I 10	6b	floor Room 7 Building VII.3b	I p 111; Fig 39h	
J I 12	6a	layer	I p 93	Pot SS92; SD Coin 399;
		-	-	432
J I 13	6	concrete and stone floor	Fig 39h	SD
J I 14	6a or earlier	layer	I p 80, 179; Fig 39h	SD; Coin 118; 375; Iron
TT 15	5	lavor		156 SD
J I 15 I I 16	5 4b	layer	$I = 20. E_{-}^{+} = 20^{+}$	
J I 16 J I 17	4b 4a	occupation level	I p 80; Fig 39h	
9111	4 a	occupation level	I p 80; Fig 39h	vessel 38

Context	Phase	Description	Reference	Finds
TT 1 0	4	(] 2	L 00 E: 90h	
J I 18	4	floor ?	I p 80; Fig 39h	CD Comion 119, Incr
J I 19	4a	levelling deposit	1 p 80; F 1g 39n	SD Samian 118; Iron
1190	9	floor	In 72 80.	111; Glass vessel 88
J I 20	3	floor	I p 73, 80;	SD Semier S56.
			Fig 39h	SD Samian S56;
J I 21	ი	laman	$\mathbf{E}_{\mathbf{a}}$ 20h	Grafitto 15
	3 3	layer	Fig 39h	SD SD: Class massel 61.
J I 22	J	midden sealing layer	I p 73; Fig 39h	SD; Glass vessel 61;
TTOO	0	h	L FC	95a
J I 23	2	bronzeworking trays	I p 56; Fig 34	
J I 24	1b-2	layer	Fig 39h	GD G · 110 G ·
J I 25	1b–2	midden	I p 56; Fig 39h	SD Samian 119 ; Coin
TTOO	41.		E: 90l-	5; Glass vessel 75
J I 28	4b	occupation layer	Fig 39h	Pot SS23; SD
JI10a	6b	?floor make-up Building VII.3b		
J II 1	U/S	layer	Fig 39h	Samian 120; Cu 43;
T II O	0	1	D: 001	Iron 153
J II 2	6	layer	Fig 39h	SD Samian 121 ; Coin
				93; Cu 146; Stone 28;
TILO	5 0	1		Glass vessel 25; 49e
JII 3	5–6a	layer		SD Samian S102, S168
JII 4	5–6a	layer	D: 001	SD Samian 122
JII 5	4b	layer	Fig 39h	SD
JII 6	6b	floor Room 7 Building VII.3b	I p 111; Fig 39h	SD
J II 12	6a or earlier	layer	I p 80, 106;	
			Fig 39h	SD; Cu 232; 311; Iron
				147; Glass vessel 41;
T II 10		1		46a
J II 13	4a	layer	D : 001	SD Grafitto 20
J II 14	4a	occupation layer	Fig 39h	
J II 15	5–6a	layer		SD SD Cl L (d)
J II 16	4a	layer		SD; Glass vessel 46b
J II 17	4a	layer	D' 001	SD
J II 18	3	floor	Fig 39h	SD
J II 19	3	pebble floor	E. 001	SD
J II 20	3	layer	Fig 39h	SD
J II 21	3	layer	Fig 39h	Pot SS16; SD; Iron 36;
J III 1	U/S	topsoil and rubble		Pot SS95; Coin 312;
TITTO	FC	laman		398; 536; Cu 334
J III 2 J III 4	5-6 5-6	layer occupation layer		SD; Brooch 34
J 111 4	9-0	occupation layer		SD; Coin 71; 120; 326;
T III 10	Timebagad	alam fla an		Jet 18; Glass vessel 20 SD
J III 12 J IV 1	Unphased U/S	clay floor topsoil and rubble		
J I V I	0/5	topson and rubble		Stone 72; Glass vessel 47
τπγο	FC	laman		
J IV 2	5–6	layer		SD; Coin 149; 250; 424;
J IV 4	5–6	lovor		520; 542 SD; Coin 426
		layer		
J IV 5 J IV 7	5-6 5-6	layer		SD; Coin 73; 522
J IV 7 J IV 8	о-6 4a	layer		SD; Brooch 22 SD
J IV 8 J IV 12	4a 3–4a	occupation layer		
J V 12 J V 1	3–4a U/S	layer topsoil and rubble		SD; Glass vessel 28 Coin 473
J V 1 J V 5				
9 8 9	5–6	Building VII.3		Pot SS141; SD; Wall p 22
IVG	5 6	stope 2floor		
J V 6	5–6	stone ?floor		Pot SS2; SD Samian
T VT 1	TT/S	tongoil and within		S175; Glass vessel 58 Bot SS102, 4: Coin 45:
J VI 1	U/S	topsoil and rubble		Pot SS103–4; Coin 45;
I VI 9	6–7	lovor		451; 551 SD Samian S132
J VI 3	0-1	layer		SD Saiman S132

Context	Phase	Description	Reference	Finds
J VI 5	5–6	layer		SD; Iron 112
J VII 1	U/S	topsoil and rubble		Coin 357; 403
J VII 2	5–6	occupation layer		SD; Coin 523; Brooch 28; Glass vessel 133;
	E C	a a sum officer larger		Glass object 12
J VIII 2	5-6	occupation layer		Coin 324
J VIII 6	5-6	occupation layer		SD
J VIII 7	5-6	Wall XXXIX		SD
J IX 1	U/S	topsoil and rubble		Samian 123; Cu 221
J IX 2	6	layer		Pot SS96; SD; Cu 42
J X 1	U/S	topsoil and rubble	Fig 46l	
J X 2	6	Wall XXV	Fig 46l	
J XI 1	U/S	topsoil		Samian 120; Grafitto 86
J XI 2	Unphased	unrecorded		SD
J XII 2	3/4	layer		Pot SS72; SD; Coin 128
5 IIII 2	0, 1			100 00.12, 52, 0011 120
J XIII 1	U/S	topsoil	Fig 36a	Amp P2 ; Bone 101; Glass vessel 84
J XIII 2	7	layer	Fig 36a	
J XIII 3	7	layer	Fig 36a	
J XIII 4	$\frac{1}{7}$	layer	Fig 36a	
J XIII 5	7	layer	Fig 36a	
J XIII 7	6	occupation layer	Fig 36a	SD Samian 124–5, S52,
	0	occupation layer	r 1g 30a	SD Sannan 124–5, 552, S219; Cu 11; 93; Iron 8; 73; 228
J XIII 7a	5–6	same as 69 – occupation layer	Fig 36a	
J XIII 8	5–6	layer	Fig 36a	SD; bone 37
J XIII 9	5–6	layer	Fig 36a	SD; grafitto 46
J XIII 10	6	cobble footings	Ip94	, 0
J XIII 11	5	occupation layer	Fig 36a	SD; samian 126, S221; Coin 479
J XIII 12	4–5	layer	Fig 36a	
J XIII 13	4–5	floor	Fig 36a	SD; Cu170
J XIII 14	4	layer	Fig 36a	SD; Cu163
J XIII 15	5–6	occupation layer	Fig 36a	SD, Curos
				SD
J XIII 16	5	layer	Fig 36a	
J XIII 17	5	occupation layer	Fig 36a	SD; Samian S29 ; Cu 239
J XIII 18	4	layer	Fig 36a	Cu 203 ; Iron 22
J XIII 19	4+	layer	Fig 36a	
J XIII 21	3	floor	I p 74; Fig 36a	SD; Samian S166; Cu 123
J XIII 22	5	floor	I p 94; Fig 36a; 49	
J XIII 23	4–5	layer	Fig 36a	SD; Glass vessel 116I
J XIII 24	4–5	layer	Fig 36a	
J XIII 25	4–5	layer		SD; Glass vessel 95i; 107b;
J XIII 26	4	layer	I p 58, 73; Fig 36a	SD; Samian 127
J XIII 27	2	road surface	I p 54; Fig 34 & 36a	,
J XIII 28	2	road surface	Fig 36a	
J XIII 29	$\frac{1}{2}$	road surface	I p 54; Fig 34	
-			& 36a	
J XIII 30	4–5	layer	Fig 36a	
J XIII 31	4	?fort ditch fill	Fig 36a	
J XIII 32	4 3–4	ditch fill – peat	I p 58; Fig 36a	
J XIII 33	3-4 3-4	ditch fill	I p 58, (77);	
5 1111 00	J I		- p 50, (11),	

Context	Phase	Description	Reference	Finds
			Fig 26a	
J XIII 34	3	Antonine fort ditch fill	Fig 36a I p 58; Fig 36a	
J XIII 35	3	Antonine fort ditch fill	I p 58, 76;	
	-		Fig 36a	
J XIII 36	1	Flavian fort ditch fill	I p 48; Fig 36a	
J XIII 37	1 or 2	Flavian fort ditch fill	Fig 36a	
J XIII 39	2	road	I p 54; Fig 36a	
J XIII 40	2	road	I p 54; Fig 36a	
J XIII 41 J XIII 42	$5 \\ 4-5$	layer layer	Fig 36a Fig 36a	
J XIII 42 J XIII 43	4-5	layer	Fig 36a	
J XIII 44	4-5	layer	Fig 36a	
J XIII 45	4–5	layer	Fig 36a	
J XIII 48	4–5	layer	Fig 36a	
J XIII 49	4	layer	Fig 36a	
J XIII 51	4	layer	Fig 36a	
J XIII 52	1	Flavian fort ditch fill	I p 48; Fig 36a	Samian 128
J XIII 53	5	layer	Fig 36a	
J XIII 54	4-5	layer	Fig 36a	
J XIII 55	4-5	layer	Fig 36a	
J XIII 56 J XIII 57	4-5 4-5	floor	Fig 36a Fig 36a	
J XIII 57 J XIII 58	4-5	layer layer	Fig 36a	
J XIII 59	(3–) 4	layer	Fig 36a	
J XIII 60	(3-) 4	layer	Fig 36a	
J XIII 61	(3–) 4	layer	Fig 36a	
J XIII 62	(3–) 4	layer	Fig 36a	
J XIII 63	4	ash layer Building VII.4	I p 82; Fig 36a	
J XIII 64	(3–) 4	layer	Fig 36a	
J XIII 65	4	ash layer BuildingVII.4	I p 82; Fig 36a	
J XIII 66	4	floor or trample Building VII.4		
J XIII 67	3	trample Building VII.4	I p 74, 82;	
I VIII 60	5 6	same as 7a equipation layor	Fig 36a	
J XIII 69 J XIII 70	5–6 5–6	same as 7a occupation layer layer	Fig 36a Fig 36a	
J XIII 71	5	same as 11a – occupation layer	0	
J XIII 72	5	same as 16a	Fig 36a	
J XIII 73	4	same as 18a	Fig 36a	
J XIII 74	2	layer	Fig 36a	
J XIII 75	3–4	fort ditch fill	Fig 36a	
J XIII 76	3	Antonine fort ditch fill	Fig 36a	
J XIII 77	2	Flavian fort ditch fill	Fig 36a	
J XIII 78	1	Flavian fort ditch fill	I p 48; Fig 36a	
J XIII 81	2	Proad surface	Fig 36a	
J XIII 82 J XIII 83	3 1	Antonine fort ditch fill Flavian fort ditch fill	Fig 36a I p 48; Fig 36a	
J XIII 85 J XIII 84	1 5–6	layer	Fig 36a	
J XIII 85	5-0 5	layer	Fig 36a	
J XIII Timber Slot 1	-	beam slot Building VII.4	I p 81 ; Fig 36a	
J XIII Timber Slot 2		beam slot Building VII.4	I p 81	SD
J XIII Timber Slot 3		beam slot Building VII.4	I p 81	
J XIII Pit 1	6	pit	Fig 36a	SD; Iron 47
J XIII Posthole II	7	posthole		SD
J XIV 1	U/S	topsoil		Pot SS102; Samian
				S92, S216; Cu 315;
	IImphasad	lower		Iron 55; Bone 81
J XIV 2	Unphased	layer		SD; Samian 129, S127; Class vessel 52
J XIV 3	Unphased	layer		Glass vessel 52 SD
5 111 7 5	Chiphaboa	, or		

J XIV 5UnphasedlayerJ XIV 7UnphasedlayerJ XIV 8UnphasedlayerJ XIV 9UnphasedlayerK I 1U/Slayer	Fig 46k Fig 46k	SD; Brooch 5; Cu 278–9; Iron 174 Samian 130 SD Samian 131–3 SD Samian 131, S37 Coin 207; Cu 329; Iron
J XIV 7 Unphased layer J XIV 8 Unphased layer J XIV 9 Unphased layer	-	278–9; Iron 174 Samian 130 SD Samian 131–3 SD Samian 131, S37 Coin 207; Cu 329; Iron
J XIV 8 Unphased layer J XIV 9 Unphased layer	-	Samian 130 SD Samian 131–3 SD Samian 131, S37 Coin 207; Cu 329; Iron
J XIV 8 Unphased layer J XIV 9 Unphased layer	-	SD Samian 131–3 SD Samian 131, S37 Coin 207; Cu 329; Iron
J XIV 9 Unphased layer	-	SD Samian 131, S37 Coin 207; Cu 329; Iron
1 0	-	Coin 207; Cu 329; Iron
	-	
	Fig 46k	142; Bone 114
KI2 Unphased layer		Pot SS97; SD; Glass vessel 17
KI 3 5 plaster layer Building VII.1	I p 92; Fig 46k	SD; Coin 42; Wall p 20
KI4 6 layer	1 / 0	Coin 155; Cu 150
KI5 5 occupation layer	Fig 46k	Glass vessel 49a
KI6 5 floor Building VII.1	I p 92; Fig 46k	
	Fig 46k	SD
	Fig 46k	
•	I p 80	
K I 15 6b courtyard surface	-	
<i>v</i>	I p 112; Fig 46k	C C C C C C C C C C C C C C C C C C C
	Fig 46k	
K II 1 U/S layer	0	Ceramic 24
K II 2 6 layer		SD Samian 135; Cu 68
·		; Glass vessel 43
K IV 1 U/S layer		Coin 98; Jet 35
K IV 9 Unphased unrecorded		Amp D15; D31
K V 1 U/S layer		Samian S47; Coin 394;
		Bone 49;
K V 2 6–7 layer		SD; Samian 136; Coin 197; 535
K V 3 6 layer		Glass vessel 143c
	Fig 46k	Pot SS28; Coin 103; 272
K VII 2 6–7 layer	Fig 46k	SD
K VII 3 5 Building VII.1	115 101	Coin 485; Wall p 21
8	Fig 46k	SD; Cu 30
	Fig 46k	Glass vessel 95j
	Fig 46k	
J J	I p 80; Fig 46k	SD
	Fig 46h	Iron 140; 166
	Fig 46h	SD
	F ig 46h	SD; Bone 124; Glass
	1 19 1011	vessel 63;
K VIII 4 5 layer	Fig 46h	Coin 82 ; Cu 287; bead 34
K VIII 4a 5 occupation layer	Fig 46h	
1 0	I p 92; Fig 46h	
K VIII 6a 5 layer	Fig 46h	SD
K VIII 8 5 concrete patch	0	Bone 96
	Fig 46h	
	Fig 46h	SD; Cu 162; 182; 253; 280; Ceramic 64; Glass vessel 23; 5k
K VIII 11 4 floor	I p 80	
	I p 80	
	Fig 46e	Pot SS28; Jet 4; 8; Ce- ramic 14;
K IX 2 6–7 layer	Fig 46e	SD
•	Fig 46e	SD; Coin 298
	Fig 46e	SD; Coin 278; Iron 78;
is in a securation layer	1 18 100	Bone 50; Glass vessel 106h

Context	Phase	Description	Reference	Finds
		•		1
KIX5	5	layer	Fig 46e	
K IX 6	5	occupation layer	Fig 46e	
KIX7	5	floor Room 4 Building VII.1	I p 92; Fig 46e	
K IX 8	5	layer	Fig 46e	D
K IX 9	5	hearth	Fig 46e	Brooch 35;
K IX 10	4	ash layer	I p 80; Fig 46e	SD
K IX 11	4	ash layer	I p 80; Fig 46e	
K IX 12	4	ash layer	I p 80; Fig 46e	Cu 143; enamelled flask
K IX 14	6b	floor portico Building VII.5a	I p 112	
K IX 15	6	wall trench	Fig 46e	
K IX 16	5	layer	-	SD
K IX 17	5	occupation layer	Fig 46e	
K IX 18	5	layer	Fig 46e	
K IX 19	(1b–) 2	layer	Fig 46e	
K IX 20	$(1b)^{2}$ (1b-)2	layer	Fig 46e	SD Samian S20, S71;
			C	Graffito1; Glass vessel 95b
K IX 21	(1b–) 2	gravel	Fig 46e	
K IX 22	1b–2	peaty layer	Fig 46e	Stone 56; Glass object 1, 8
K X 1	U/S	layer		Coin 366; 448; Glass
K X 22	Unphased	unrecorded		vessel 121a SD; Samian S10; Glass
VVI 1	TT/O	1		vessel 10
K XI 1	U/S	layer		Coin 360
K XII 1	U/S	layer		Coin 74; 123; 141; 274; Lead 18; Iron 38; Jet 23; 34
K XII 2	6–7	layer		SD; Amp D18; Coin 53; 152; Cu 33; Iron 98; Bone 115; Glass vessel 123; 137
K XII 4	5	occupation layer		SD
K XII 5	5	layer		SD
K XIII 1	Ŭ/S	layer		Coin 386; Iron 229;
	0/0	layei		Bone 117; 144
K XIII 2	6	layer		Pot SS11; SD; Jet 13; Stone 22;
K XIII 3	6	laver		SD; Cu 84;
K XIII 6	6b	floor Room 2 Building VII.6a	I p 112; Fig 56	, ,
K XIV 1	Ŭ/S	layer	Fig 46e	Iron 138; Bone 6;
K XIV 2	6–7	layer	Fig 46e	SD; Coin 525
K XIV 2 K XIV 3	6-7	layer	1 18 100	Pot SS60; SD; Jet 17
K XIV 3 K XIV 4	6b	occupation Room 1		100 0000, DD, 9et 17
K AIV 4	00		I 110 E. 40	G 109
K XIV 5	5	Building VII.6a pit & fill	I p 112; Fig 46e Fig 46e	SD Samian 137, S25,
K XIV 6	6	cobble and gravel floor		S48–9 Jet 15
			Fighte	960 10
K XIV 7	5	wall collapse	Fig 46e	
K XIV 7a	5	occupation layer	Fig 46e	
K XIV 8	5	floor Building VII.2	I p 93; Fig 46e	
K XIV 9	5	occupation deposit Building VII.2	I p 93; Fig 46e	Pot p. 437 nos. 6–12;
VIV 10	F		D : 40	Grafitto 34, 37
K XIV 10	5	wall trench	Fig 46e	
K XIV 11	5	floor Building VII.2	I p 93	
K XIV 12	5	floor Building VII.2	I p 82; Fig 46e	
K XIV 13	4	ash layer		SD; Ceramic 65
K XIV 14	5	layer	Fig 46e	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Context	Phase	Description	Reference	Finds																																																																																																																																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K XIV 15	(1b–)2	occupation	Fig 46e																																																																																																																																																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K XIV 16	(1b–) 2	pit?	Fig 46e																																																																																																																																																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					SD; Coin 8																																																																																																																																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																																																																																																																																																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																																																																																																																																																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-																																																																																																																																																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																																																																																																																																																					
K XV 1 U/S layer Pot SS136; Iron 110; 136; 155; Coramic 17 K XV 2 6 layer Coramic 18 K XV1 1 U/S layer Coin 200; 528-30 K XV1 15 Unphased unrecorded Grafitto 9 K XV1 1 U/S layer Coin 101; 130; 273; 358; Cu 137; Iron 93; 116; 183; 207; Ceramic 7 K XVII 2 6 layer SD; Coin 167; 187-9; 211; 252; Bone 148 K XVII 1 U/S layer ron 144; Ceramic 14 K XVIII 2 6 layer SD; Coin 167; 187-9; 211; 252; Bone 148 K XVIII 2 6 layer SD; Coin 167; 187-9; 211; 252; Bone 148 K XVIII 3 6 layer ron 144; Ceramic 14 K XVIII 4 6 layer SD K XVIII 5 6 layer SD K XXI 1 U/S layer Fig 52b SD K XXI 1 0 6 fill of sleeper beam trench SD; Coin 193; Bone 130 K XIX 1 U/S layer Fig 52b SD K XIX 2 6 cocupation Room 1 D 112; Fig 52b SD <	IX XIV 4a	00	noor noom i Dununig vii.oa		,																																																																																																																																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K XV 1	U/S	layer																																																																																																																																																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K XV 2	6	laver		Ceramic 18																																																																																																																																																
K XVI 2 5 layer SD; Coin 200; 528-30 K XVI 15 Unphased unrecorded Grafito 9 K XVI 1 U/S layer Coin 101; 130; 273; 358; Cu 137; Iron 93; 116; 133; 207; Ceramic K XVII 2 6 layer SD; Coin 167; 187-9; 211; 252; Bone 148 K XVIII 1 U/S layer Iron 144; Ceramic 14 K XVIII 2 6 Building VII.6 Pot S554; SD; Coin 44; 77; 124; 191-2; 201; 226; 253-4; 275-6; Iron 208; Jet 24; Bone 132-7; 139-40 Stone 68; Wall p 23 K XVIII 3 6 layer SD K XVIII 4 6 layer SD K XVIII 5 6 layer SD K XVIII 6 6 layer SD K XIX 1 U/S layer SD K XIX 2 6-7 layer Fig 52b K XIX 1 U/S layer SD K XIX 2 6-7 layer SD K XIX 5 5					Coin 526																																																																																																																																																
K XVI 15 Unphased unrecorded Grafitto 9 K XVII 1 U/S layer Coin 101; 130; 273; 358; Cu 137; Iron 93; 116; 183; 207; Ceramic 7 K XVII 2 6 layer SD; Coin 167; 187–9; 211; 252; Bone 148 K XVII 1 U/S layer Iron 144; Ceramic 14 K XVII 2 6 Building VII.6 Pot SS54; SD; Coin 44; 191–2; 201; 226; 253–4; 275–6; Iron 208; Jet 24; Bone 132–7; 139–40 Stone 68; Wall p 23 K XVIII 3 6 layer SD K XVIII 4 6 layer SD K XVIII 5 6 layer SD K XVII 4 6 layer SD K XVII 5 6 layer SD K XIX 1 U/S layer Fig 52b K XIX 1 U/S layer SD K XIX 2 6-7 layer Fig 52b Pot SS67; SD; bead 32 K XIX 3 6 occupation Room 1 p112; Fig 52b SD; Coin 198; Cu 307 K XIX 4 6 road Fig 52b SD; Coin 531 K XIX 4 6 occupation Room 1 p112; Fig 52b SD; Coin 198; Cu 307																																																																																																																																																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																																																																																																																																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																																																																																																																																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0/5	layei		358; Cu 137; Iron 93; 116; 183; 207; Ceramic																																																																																																																																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K XVII 2	6	layer		SD; Coin 167; 187–9;																																																																																																																																																
K XVIII 2 6 Building VII.6 Pot SS54; SD; Coin 44; 77; 124; 191–2; 201; 226; 253–4; 275–6; Iron 208; Jet 24; Bone 132–7; 139–40 Stone 68; Wall p 23 K XVIII 3 6 layer SD K XVIII 4 6 layer SD K XVIII 5 6 layer SD K XVII 6 6 flip sleeper beam trench SD; Coin 193; Bone 130 K XIX 1 U/S layer Fig 52b Silver 1 K XIX 2 6-7 layer Fig 52b Silver 1 K XIX 3 6 occupation Room 1 building VII.6a I p 112; Fig 52b K XIX 4 6 road Fig 52b SD; Coin 531 K XIX 5 5 layer Fig 52b SD Samian 140; Coin 30; Brooch 2; Cu 160; 310; K XIX 6 4–5 layer Fig 52b SD quern 2 K XIX 7 5 layer Fig 52b SD quern 2 K XIX 10 5 occupation layer Fig 52b SD quern 2 K XIX 6 4–5 layer Fig 52b SD quern 2 K XIX 7 5 layer Fig 52b SD quern 2	K XVIII 1	U/S	laver																																																																																																																																																		
$\begin{array}{llllllllllllllllllllllllllllllllllll$					Pot SS54; SD; Coin 44; 77; 124; 191–2; 201;																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					208; Jet 24; Bone 132–7; 139–40 Stone																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K XVIII 3	6	layer		SD																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K XVIII 4	6	layer		Coin 325																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K XVIII 5		•		SD																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					SD: Coin 193: Bone 130																																																																																																																																																
K XIX 26-7layerFig 52bPot SS67; SD; bead 32K XIX 36occupation Room 1I p 112; Fig 52bBuilding VII.6aI p 112; Fig 52bK XIX 46roadFig 52bSD; Coin 531K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64-5layerK XIX 75layerK XIX 96bhearth Building VII.6aK XIX 105occupation layerFig 52bSD; quern 2K XIX 114-5gravel floorK XIX 136floor Building VII.6aK XIX 144occupation layerK XIX 153-4H earthFig 52bK XIX 164K XIX 173GorsFig 52bK XIX 184occupation layerFig 52bSD Samian 141K XIX 173BoorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 18K Aoccupation layerFig 52bK XIX 19Sgravel floorFig 52bK XIX 20Soccupation layerFig 52bK XIX 21BdoorK XIX 22Soccupation layerFig 52bK XIX 21S <tr< td=""><td></td><td></td><td></td><td>Fig 52b</td><td></td></tr<>				Fig 52b																																																																																																																																																	
K XIX 36occupation Room 1 Building VII.6aI p 112; Fig 52b & 56SD; Coin 531 SD; Coin 198; Cu 307 Fig 52bK XIX 46roadFig 52bSD; Coin 198; Cu 307 Fig 52bK XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64-5layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114-5gravel floorFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 153-4hearthFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 211b-2clay floorFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 241b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XI																																																																																																																																																					
K XIX 46I p 112; Fig 52b & 56SD; Coin 531K XIX 55layerFig 52bSD; Coin 198; Cu 307K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64–5layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114–5gravel floorFig 52bK XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 153–4hearthFig 52bK XIX 163floorsFig 52bK XIX 173floorsFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b–2clay floorFig 52bK XIX 211b–2clay floorFig 52bK XIX 213hearthFig 52bK XIX 211b–2clay floorFig 52bK XIX 223occupation layerFig 52bK XIX 241b–2occupation layerFig 52bK XIX 241b–2occupation layerFig 52bK XIX 251b–2clay floorFig 52bK XIX 251b–2clay floorFig 52b <td< td=""><td></td><td></td><td></td><td>1 19 020</td><td>100 0001, 02, 0000 02</td></td<>				1 19 020	100 0001, 02, 0000 02																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 1111 0	0		I n 112 · Fig 52	h																																																																																																																																																
K XIX 46roadFig 52bSD; Coin 198; Cu 307K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64–5layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114–5gravel floorFig 52bK XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 173floorsFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b–2clay floorFig 52bK XIX 213hearthFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b–2occupation layerFig 52bK XIX 241b–2occupation layerFig 52bK XIX 241b–2occupation layerFig 52bK XIX 251b–2clay floorFig 52b <tr <td="">SD Samian 142<td></td><td></td><td>Dunung vii.oa</td><td></td><td></td></tr> <tr><td>K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64–5layerFig 52b$310;$K XIX 75layerFig 52b$10;$K XIX 96bhearth Building VII.6aI p 112; Fig 52bGlass vessel 4K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD Samian 141K XIX 173floorsFig 52bSD; coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td>K VIV A</td><td>6</td><td>road</td><td></td><td></td></tr> <tr><td>K XIX 64-5layerFig 52bK XIX 75layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114-5gravel floorFig 52bK XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 153-4hearthFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 114occupation layerFig 52bK XIX 123floorsFig 52bK XIX 144occupation layerFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XI</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>K VIV 9</td><td>9</td><td>layer</td><td>r 1g 520</td><td></td></tr> <tr><td>K XIX 6$4-5$layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 11$4-5$gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bKK XIX 193gravel floorFig 52bKK XIX 203occupation layerFig 52bKK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD Samian 142</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSD; Coin 257K XIX 193gravel floorFig 52bSD; Coin 257K XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142</td><td>K XIX 6</td><td>4-5</td><td>laver</td><td>Fig 52h</td><td>510,</td></tr> <tr><td>K XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bFig 52bK XIX 193gravel floorFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b–2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142</td><td></td><td></td><td>•</td><td></td><td></td></tr> <tr><td>K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD;K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142</td><td></td><td></td><td></td><td>0</td><td></td></tr> <tr><td>K XIX 114-5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52b SD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD;K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSDK XIX 21a3hearthFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td></td><td></td><td></td><td></td><td>SD; quern 2</td></tr> <tr><td>K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bKK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td></td><td></td><td>GD G : 141</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td></td><td></td><td></td><td></td><td>SD; Coin 257</td></tr> <tr><td>K XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b</td><td></td><td></td><td>5</td><td></td><td></td></tr> <tr><td>K XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD; Iron 234; GlassK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td>K XIX 21</td><td>1b–2</td><td>clay floor</td><td>Fig 52b</td><td></td></tr> <tr><td>K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td>K XIX 21a</td><td></td><td>hearth</td><td>Fig 52b</td><td></td></tr> <tr><td>K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass</td><td>K XIX 22</td><td>3</td><td>occupation layer</td><td>Fig 52b</td><td>SD Samian 142</td></tr> <tr><td>K XIX 25 1b–2 clay floor Fig 52b SD; Iron 234; Glass</td><td>K XIX 24</td><td>1b–2</td><td></td><td>Fig 52b</td><td></td></tr> <tr><td></td><td>K XIX 25</td><td>1b–2</td><td>clay floor</td><td>Fig 52b</td><td>SD; Iron 234; Glass</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>vessel 73b</td></tr>			Dunung vii.oa			K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64–5layerFig 52b $310;$ K XIX 75layerFig 52b $10;$ K XIX 96bhearth Building VII.6aI p 112; Fig 52bGlass vessel 4K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD Samian 141K XIX 173floorsFig 52bSD; coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K VIV A	6	road			K XIX 64-5layerFig 52bK XIX 75layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114-5gravel floorFig 52bK XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 153-4hearthFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 114occupation layerFig 52bK XIX 123floorsFig 52bK XIX 144occupation layerFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XI						$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K VIV 9	9	layer	r 1g 520		K XIX 6 $4-5$ layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 11 $4-5$ gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bKK XIX 193gravel floorFig 52bKK XIX 203occupation layerFig 52bKK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD Samian 142						K XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSD; Coin 257K XIX 193gravel floorFig 52bSD; Coin 257K XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142	K XIX 6	4-5	laver	Fig 52h	510,	K XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bFig 52bK XIX 193gravel floorFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b–2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142			•			K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD;K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142				0		K XIX 114-5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass						K XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52b SD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD;K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b						K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSDK XIX 21a3hearthFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass					SD; quern 2	K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bKK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b					GD G : 141	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass					SD; Coin 257	K XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b						K XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b						K XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b						K XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b			5			K XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD; Iron 234; GlassK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass						K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 21	1b–2	clay floor	Fig 52b		K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 21a		hearth	Fig 52b		K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 22	3	occupation layer	Fig 52b	SD Samian 142	K XIX 25 1b–2 clay floor Fig 52b SD; Iron 234; Glass	K XIX 24	1b–2		Fig 52b			K XIX 25	1b–2	clay floor	Fig 52b	SD; Iron 234; Glass						vessel 73b
		Dunung vii.oa																																																																																																																																																			
K XIX 55layerFig 52bSD Samian 140; Coin 30; Brooch 2; Cu 160; 310;K XIX 64–5layerFig 52b $310;$ K XIX 75layerFig 52b $10;$ K XIX 96bhearth Building VII.6aI p 112; Fig 52bGlass vessel 4K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD Samian 141K XIX 173floorsFig 52bSD; coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K VIV A	6	road																																																																																																																																																		
K XIX 64-5layerFig 52bK XIX 75layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bK XIX 114-5gravel floorFig 52bK XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52bK XIX 144occupation layerFig 52bK XIX 153-4hearthFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 114occupation layerFig 52bK XIX 123floorsFig 52bK XIX 144occupation layerFig 52bK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XI																																																																																																																																																					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K VIV 9	9	layer	r 1g 520																																																																																																																																																	
K XIX 6 $4-5$ layerFig 52bK XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 11 $4-5$ gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bKK XIX 193gravel floorFig 52bKK XIX 203occupation layerFig 52bKK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD Samian 142																																																																																																																																																					
K XIX 75layerFig 52bK XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSD; Coin 257K XIX 193gravel floorFig 52bSD; Coin 257K XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142	K XIX 6	4-5	laver	Fig 52h	510,																																																																																																																																																
K XIX 96bhearth Building VII.6aI p 112; Fig 52bK XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bFig 52bK XIX 193gravel floorFig 52bFig 52bK XIX 203occupation layerFig 52bFig 52bK XIX 211b–2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142			•																																																																																																																																																		
K XIX 105occupation layerFig 52bGlass vessel 4K XIX 114–5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153–4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD;K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b–2clay floorFig 52bSDK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b–2occupation layerFig 52bSD Samian 142K XIX 251b–2clay floorFig 52bSD Samian 142				0																																																																																																																																																	
K XIX 114-5gravel floorFig 52bSD; quern 2K XIX 123layer includes a hearthFig 52bSD Samian 141K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSD; Coin 257K XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass																																																																																																																																																					
K XIX 123layer includes a hearthFig 52bK XIX 136floor Building VII.6aI p 112; Fig 52b SD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD;K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2clay floorFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b																																																																																																																																																					
K XIX 136floor Building VII.6aI p 112; Fig 52bSD Samian 141K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bSD; Coin 257K XIX 173floorsFig 52bSDK XIX 184occupation layerFig 52bSDK XIX 193gravel floorFig 52bSDK XIX 203occupation layerFig 52bSDK XIX 211b-2clay floorFig 52bSDK XIX 21a3hearthFig 52bSD Samian 142K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD Samian 142K XIX 251b-2clay floorFig 52bSD; Iron 234; Glass					SD; quern 2																																																																																																																																																
K XIX 144occupation layerFig 52bSD; Coin 257K XIX 153-4hearthFig 52bKK XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b					GD G : 141																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																																																																																																																																					
K XIX 173floorsFig 52bK XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass					SD; Coin 257																																																																																																																																																
K XIX 184occupation layerFig 52bK XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b																																																																																																																																																					
K XIX 193gravel floorFig 52bK XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b																																																																																																																																																					
K XIX 203occupation layerFig 52bK XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b																																																																																																																																																					
K XIX 211b-2clay floorFig 52bK XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bK XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bK XIX 251b-2clay floorFig 52b			5																																																																																																																																																		
K XIX 21a3hearthFig 52bK XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bSD; Iron 234; GlassK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass																																																																																																																																																					
K XIX 223occupation layerFig 52bSD Samian 142K XIX 241b-2occupation layerFig 52bFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 21	1b–2	clay floor	Fig 52b																																																																																																																																																	
K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 21a		hearth	Fig 52b																																																																																																																																																	
K XIX 241b-2occupation layerFig 52bK XIX 251b-2clay floorFig 52bSD; Iron 234; Glass	K XIX 22	3	occupation layer	Fig 52b	SD Samian 142																																																																																																																																																
K XIX 25 1b–2 clay floor Fig 52b SD; Iron 234; Glass	K XIX 24	1b–2		Fig 52b																																																																																																																																																	
	K XIX 25	1b–2	clay floor	Fig 52b	SD; Iron 234; Glass																																																																																																																																																
					vessel 73b																																																																																																																																																

Context	Phase	Description	Reference	Finds
K XIX 26	1b–2	gravel layer	Fig 59h	
			Fig 52b	
K XIX 27	1b–2	occupation layer	Fig 52b	
K XIX 28	3	layer	Fig 52b	
K XIX 29	1b-2	layer	Fig 52b	
K XIX 30	1b–2	layer	Fig 52b	
K XIX 31	1b–2	occupation layer	Fig 52b	SD Samian 143–5; Glass vessel 95c; 102; 106b; 106e; 117a
K XIX 32	1b–2	layer	Fig 52b	1000, 1000, 117a
K XIX 33	1b-2 1b-2	layer	Fig 52b	
K XX 1	U/S	layer	1 ig 020	Pot SS84; Coin 327;
		-		355; Glass vessel 50
K XX 2	6	layer		SD; Iron 50
K XX 3	6	layer		Pot SS59; SD; Coin 96; 142
K XXI 1	U/S	layer		Coin 343; Lead 7; Iron
K XXII 1	U/S	layer		134; Jet 27 Cu 56; Iron 167; Jet 9;
K XXII 2	6	layer		Glass vessel 89 SD; Coin 337; 377; Cu
	Ũ	10,01		155; Lead 15; Bone 84; Ceramic 39
K XXII 4	6	tile floor		SD; Coin 41; 78; 233;
K XXII 5	Ŭ/S	unrecorded		Coin 132
K XXIII 1	U/S	layer	Fig 36d	Coin 469; Iron 139;
	0/5	layei	r 1g 50u	quern 21; Glass vessel 45
K XXIII 2	6	occupation layer	Fig 36d	Coin 154; 205; 255;
				534; Iron 108; Bone 112
K XXIII 3	6	layer	Fig 36d	SD; Coin 12;
K XXIII 4	6	floor Building VII.8	I p 106; Fig 36d	
К ААШ 4	0	noor bunning vii.o		
	C	1	& 55	SD; Ceramic 21
K XXIII 5	6	layer	Fig 36d	Coin 368
K XXIII 6	6a	floor Building VII.2	I p 106; Fig 36d & 55	1
K XXIII 6a	6a	floor Building VII.2	I p 106; Fig 366 & 55	l
K XXIII 7	6	layer	Fig 36d	SD; Iron 109
K XXIII 9	6	layer	Fig 36d	52, 11011 100
K XXIII 10	6	layer	Fig 36d	SD; Samian S19
K XXIII 10	6	layer	Fig 36d	SD, Sainan S15
K XXIII 11 K XXIII 12				
	5	layer	Fig 36d	
K XXIII 14	4–5	layer	Fig 36d	G : 140
K XXIII 15	4	layer	Fig 36d	Samian 146
K XXIII 16	4–5	layer	Fig 36d	
K XXIII 17	3–4	layer	Fig 36d	Brooch 4
K XXIII 18	3-4	layer	Fig 36d	SD; Samian 147;
K XXIII 18b	3-4	layer		SD Amp D11; D29
K XXIII 19	1b–2	Flavian fort ditch fill	Fig 36d	
K XXIII 20	3–4	layer	Fig 36d	
K XXIII 21	3-4	layer	Fig 36d	SD; Glass vessel 95h
K XXIII 22	3–5	layer	Fig 36d	,
K XXIII 22 K XXIII 23	3–5	layer	Fig 36d	
K XXIII 23 K XXIII 24	3-4	layer	Fig 36d	
K XXIII 25 K XXIV 2	3–4 U/S	layer	Fig 36d	Coin 252
K XXIV 2	U/S	unrecorded		Coin 353
K XXIV ext 1	U/S	layer		Jet 22
K XXV 1	U/S	layer		Coin 196

Context	Phase	Description	Reference	Finds
K XXV 2	6	layer		Pot SS113; SD; Glass
K XXV 3	6b	floor & occupation deposit		vessel 22
		Room 3 Building VII.7–9	I p 113	
K XXVI 1	U/S	unrecorded	-	SD
K XXVII 1	U/S	layer		Iron 51
K XXVII 2	4+	layer		Coin 54; Glass object 3
K XXVII ext1	U/S	layer		Glass vessel 16
K XXIX 1	U/S	unrecorded		Coin 119
L II 1	U/S	topsoil		Cu 204
L II 2	6	stone layer		
L II 2 L II 4	6	•		Coin 145; Cu 208; Jet 6 SD
		layer		
L II 11	1b-2	peaty layer		Cu 246
L II 25	Unphased	unrecorded		SD
L III 2	6	layer		Pot SS39; SS139–40;
				SD Samian S40; Coin
				55; Cu 140 Glass vessel
				142b
L III 3	6	layer		SD
$L \operatorname{III} 4$	6	layer		SD
L III 5	6a	floor Room 1 Building III.8	I p 100	
L III 6	6a	burnt layer below floor	- F	
	ou	Building III.8	I p 102	Iron 114
L III 7	pre 6	pit	I p 102 I p 102	SD; Iron 163
LV1	U/S	topsoil	1 p 102	Cu 61; Bone 72
	(2-)3/4	layer		Pot SS33; SD
LV3	(2–)3/4	layer		Cu 71; Stone 54
L VI 2	Unphased	unrecorded		G : 00 070 D 60
L VII 1	U/S	topsoil		Coin 80; 379; Bone 68
LIX1	U/S	topsoil		Pot SS77; Iron 150
L IX 3	2-3/4	layer		Samian S69
L X 1	U/S	topsoil		Coin 277
L XI 1	U/S	topsoil		Bone 120
L XIV 5	4	demolition deposit		
		Building III.3	I p 83	
L XIX 1	U/S	topsoil	Fig 42b	Bead 17
L XIX 2	6a	floor Building III.1–2a	I p 103; Fig 42b)
L XIX 3	3-5	layer	Fig 42b	SD; Glass vessel 65
L XIX 4	3–5	flagstone floor	Fig 42b	Bone 95
L XIX 5	4	levelling Building III.2	I p 77; Fig 42b	
L XIX 6	3–5	wall	- F · · ·,8 -=	Coin 28
L XIX 7	4	road surface	I p 77; Fig 42b	
L XIX 9	4	road make-up	I p 77; Fig 42b	
L XIX 10	3	gravel surface Building III.4b	I p 76; Fig 42b	
L XIX 10 L XIX 11	3–5	layer	Fig 42b	
L XIX 11 L XIX 12	3	layer	Fig 42b	
L XIX 12 L XIX 13	3	layer	Fig 42b	
	3		0	
L XIX 14		layer	Fig 42b	
L XIX 15	4-5	layer	Fig 42b	
L XIX 16	3?	demolition layer	I p 73; Fig 42b	
L XIX 17	3?	floor	I p 73; Fig 42b	
			& 44	
L XIX 18	2 or early 3	clay midden sealing	I p 58; Fig 42b	
L XIX 19	2 or early 3	clay midden sealing	I p 58; Fig 42b	
L XIX 20	3	layer	Fig 42b	
L XIX 21	3	layer	Fig 42b	
L XIX 23	1	annexe ditch and fill (midden?)	I p 52; Fig 42b	Pot p. 439 Group 2;
			-	SS3; SS15 Samian
				-

Context	Phase	Description	Reference	Finds
				155–63, S60, S195 Amp P3; Coin 7; 9; Iron1 Bone 107; Glass vessel 82; 95e; 106l; 114
L XIX 27 L XIX 28 L XIX Channel A	4-5 4-5 4	layer layer water pipe channel	Fig 42b Fig 42b Fig 42b	
L XIX Channel C L XVI 1 L XVI 2	3 U/S Unphased	water pipe channel topsoil layer	Fig 42b	Amp D16; D26 SD
L XVI 3 L XVI 5	U/S 2–3/4	layer layer		Cu 80; 283 Pot p. 443 group 4; SS66, 129–30; SS137; Samian 152–4; Amp D17; Grafitto 17; 55; Glass vessel 33; 106a;
L XVI/XXIV 5	4	layer		142a Stone 6
L XVI/XXIV J	u/S	topsoil		Pot SS157
L XVIII 1	U/S	topsoil	Fig 46b	
L XVIII 2	6	layer	Fig 46b	SD
L XVIII 3 L XVIII 5	(2-3/)4 (2-) 3/4	layer layer	Fig 46b	Pot SS34; SD; Grafitto 50 SD
L XVIII 6	(2-) 5/4 2-3/4	layer	Fig 46b	Coin 26; Brooch 17
L XVIII 7	2-3/4	occupation material	Fig 46b	, ,
L XVIII 8	2-3/4	gravel floor	Fig 46b	
L XVIII 9	2-3/4	layer	Fig 46b	
L XX 2 L XX 4	6 6	layer layer		Quern 5 SD; Cu 337;
L XXI 2	6a	road		D, Cu 357, Pot SS131; SD; Bone 67
L XXII 3	6	layer		SD
L XXIII 1	U/S	topsoil	Fig 46b	Stone 50
L XXIII 2	6	layer	Fig 46b	SD; Iron 52; Stone 42 SD: Coin 490; Cu 129;
L XXIII 3	(2–) 3/4	layer	Fig 46b	SD; Coin 429; Cu 132; Iron 66; Bone 15 SD: Samian S08, S161
L XXIII 4 L XXIII 5	$\begin{array}{c} 6 \\ 5-6 \end{array}$	layer layer	Fig 46b Fig 46b	SD; Samian S98, S161 SD; Iron 12
L XXIII 6	2-3/4	layer	Fig 46b	50, 11011 12
L XXIII 7	2-3/4	gravel floor	Fig 46b	
L XXIV 1	U/S	topsoil	Fig 46a	Samian 165–6, S65, S80
L XXIV 2		,	Fig 46a	
L XXIV 5 L XXIV 6	4 Unphased	layer layer	Fig 46a Fig 46a	
L XXV 2	6	metalling	r 1g 40a	SD; Bone 61
L XXV 3	3	layer		Pot SS24; SD Samian 167; Iron 119
L XXVII 1	U/S	topsoil		Samian S82; Coin 104; Cu188
L XXVII 2	6a	floor Room 1 Building III.7	I p 100	Cu 138 ; Bone 59;
L XXIX 2 M II 1	6 11/S	layer	Fire 41:	Cu 294; Stone 35 Creditte 8
M II 1 M II 2	U/S 4–7	topsoil layer	Fig 41j Fig 41j	Grafitto 8
MII 2 MII 3	4-7	stone paving	Fig 41j	Brooch 32
M II 4	2-3/4	layer	Fig 41j	Samian S125
M II 5	2-3/4	layer	Fig 41j	SD
M II 6	2-3/4	layer	Fig 41j	SD

Context	Phase	Description	Reference	Finds
M II 7	2-3/4	layer	Fig 41j	SD Samian 168 Amp C1; K1; Glass vessel 54
M II 8	2-3/4	layer	Fig 41j	
M II 9	2-3/4	layer	Fig 41j	
M II 10	1 - 2	layer	Fig 41j	
M II 11	1 - 2	layer	Fig 41j	
M II 12	1 - 2	layer	Fig 41j	
M III 1	U/S	topsoil		Cu 165
M III 2	4–7	layer		SD Samian S156
M IV 4	(2-) 3/4	layer		SD
M V 2	4–7	layer		SD Samian 169
M V 3	(2-) 3/4	layer		Pot SS108; SD Samian 68
M V 5	2-3/4	layer		SD; Bone 113; Glass vessel 106i
MV7	2-3/4	layer		SD; Samian 105
M V 10	2-3/4	layer		SD
M VII 2	6a	oven Building III.10	I p 102; Fig 41k)
	0	,	& 54	
M VII 5	6	layer	Fig 41b	GD
M VII 6	4-5	pit fill	Fig 41b	SD
M VII 7	4-5	layer	Fig 41b	
M VII 9	4–7	layer	Fig 41b	
M VII 10	3	floor Room 19 Building III.4b	I p 64; Fig 41b	
M VII 12	(2-) 3/4	layer	Fig 41b	
M VII 13	(2-) 3/4	layer	Fig 41b	
M VII 14	(2–) 3/4	foundation for E wall of	T1' . 411	
N/I X/TTT 1	TT/C	channel	Fig 41b	Samian S199
M VIII 1	U/S	layer	Fig 39a	Samian S122
M VIII 2	4–7	layer	Fig 39a	SD; Samian 170, S139;
				Cu 262; Iron 54; Bone
M VIII 3	(2–) 3/4	lovon		52; Glass vessel 6b SD Samian S95
M IX 2	$(2-) \ 3/4$ 4-7	layer layer		Grafitto 43; Jet 31
MIX 2 MIX 4	$(2) \frac{4-7}{3/4}$	Building III.4b		Wall p 8–13
MIX 4 MIX 3	$(2) \ 5/4$ 4-7			SD; MS51 Samian
MIX 5	4-7	layer		S120; Grafitto 47;
				Glass vessel 106c
M IX 6	(2–) 3/4	layer		SD
MIX 0 MIX 7	6	layer		SD; bead 9
MX3	4–7	layer		SD; Bone 143
MX5	2-3/4	layer		SD, Done 115 SD
M XI 1	U/S	topsoil		Brooch 10
M XI 2	4-7	layer		SD
M XI 4	Unphased	unrecorded		Brooch 18
M XIII 2	6	mortar layer		Glass vessel 49f
M XIII 3	4–7	layer		Pot SS112; SS132–4;
-				SS144 Samian S23,
M XIX 4	Unphased	unrecorded		S113 Samian S8
M XX 3	Unphased	unrecorded		Grafitto 16
NIII NII	U/S	topsoil	Fig 39g	Coin 408; Brooch 33;
-1	0,0	topour		Cu 6; 271
N I 2	6	fill of slot?		SD
NI3	6	road	Fig 39g	Samian 172
NI4	3	layer Building III.3	I p 65; Fig 39g	Salman 172 SD
NI5	(3–)4	layer	Fig 39g	Pot SS17; SD Samian
	(0)1	14,01		S171; Coin 486
N I 6	6a	gravel floor or surface	I p 102; Fig 39g	
		graver moor or surface	& 54	quern 3
				-1

Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	SD; Samian S184; Grafitto 51 SD Samian S75, S206, S227 Pot SS106; SD Samian 173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead 14
Fig 39g I p 65; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g I p 67; Fig 39g Fig 39g	SD Samian S75, S206, S227 Pot SS106; SD Samian 173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead
Fig 39g I p 65; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g I p 67; Fig 39g Fig 39g	S227 Pot SS106; SD Samian 173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead
I p 65; Fig 39g Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	S227 Pot SS106; SD Samian 173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead
Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	S227 Pot SS106; SD Samian 173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead
Fig 39g Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	173, S162, S224; Ce- ramic 67 SD; Ceramic 14 SD; Samian S138; bead
Fig 39g I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	SD; Ceramic 14 SD; Samian S138; bead
I p 67; Fig 39g Fig 39g I p 67; Fig 39g Fig 39g	SD; Samian S138; bead
Fig 39g I p 67; Fig 39g Fig 39g	
I p 67; Fig 39g Fig 39g	
Fig 39g	
<u> </u>	
I p 65; Fig 39g	Pot SS22; SD; Samian 174, S117
Fig 39g	
Fig 39g	
	GD
I F1g 39g	SD SD
	SD SD; Bone 70; Ceramic 10; Glass vessel 49b; 108
Fig 46c	Pot SS91; Coin 81; 100; 336; Iron 99
Fig 46c	
Fig 46c	SD; Samian 175
Fig 46c	
Fig 46c	SD Samian 176; Coin 256
Fig 46c	
Fig 46c	SD
-	
Fig 46c	(ID
	SD Coin 335; 404; Cu 177; Ceramic 40; Glass ves-
	sel 76
I p 102	
	Pot SS36; SD Samian 177
	SD
I p 65	Pot SS4; SS8; SS117; SS119; MS52 Samian 178, S11–2, S86, S101,
	Fig 39g Fig 39g I p 65; Fig 39g Fig 46c Fig 46c <tr td="" td<=""></tr>

Context	Phase	Description	Reference	Finds
				S112, S146, S163–4 Grafitto 32; Bone 77; Ceramic 22
N VI 1	U/S	topsoil	D ' 40	
N IX 1	U/S	topsoil	Fig 46a	Somian 170
N IX 2 N IX 3	U/S 6	cobble/gravel layer	Fig 46a Fig 46a	Samian 179 SD: Samian 170, 80
N IX 4	0 4b	occupation layer flagstone floor Building III.3	Fig 46a	SD; Samian 179–80
N IX 4 N IX 7	3/4	layer	Fig 46a	
N IX 8	3/4	layer	Fig 46a	
N IX 9	pre 3	layer	Fig 46a	
N X 3	5	occupation material	0	SD; Amp U1
N X 4	4–5	collapse from Wall B		SD; Ceramic 11
N X 9	3b	entrance courtyard surface BuildingIII.4b	I p 65	
N X 10	3b	entrance courtyard surface	- P	
		Building III.4b	I p 65	SD Amp D10; D32
N XI 1	U/S	topsoil	Fig 41b	
N XI 2	6a	floor Room 3 Building III.10	I p 102; Fig 41k	
N XI 3	5–6	occupation material	Fig 41b	SD Samian S14; Amp Ca 1; Ceramic 68; Win- dow 149
N XI 4	4–5	layer	Fig 41b	
N XI 5	(3–)4	flagstone floor	Fig 41b	
N XI 6	(3–)4	layer	Fig 41b	
N XI 7	(3–)4	layer	Fig 41b	
N XI 8	3	layer	Fig 41b	G 101
N XI 9 N XI 10	3 2–3	layer layer	Fig 41b Fig 41b	Samian 181
N XI 10 N XI 11	2-3	gravel floor	Fig 41b	
N XI 12	1-2	gravel floor	Fig 41b	
N XI 12 N XI 13	2 or early 3	floor	I p 56, 57; Fig 3	35
			& 41b	SD; Cu 5; 313
N XI Timber slot 2	2–3	beam slot	Fig 41b	
N XI Timber slot 3	2–3	beam slot	Fig 41b	
N XI Timber slot 4	2	beam slot	Fig 41b	
N XII 1	Unphased	unrecorded		Samian S142
N XII 6	3-4	unrecorded	D ' 00 0 00	Stone 25
N XIII 1 N XIII 2	U/S 4+	topsoil destruction debris	Fig 39a & 39e	Samian 99, 182–3, S91, S101, S167, S207, S226; Coin 102; Cu 114; 330; Iron 205; Bone 44; Ceramic 41; Glass vessel 29b; 116l; Window 156
11 / / / / /	T	Building III.4b	I p 82	Pot p. 450 Group 7; Samian 184–5, 189, S46, S185, S22 Grafitto 33; Glass vessel 34
N XIII 3 N XIII 4	(2–) 3/4 (2–) 3/4	flagstone floor make-up for floor N XIII 3	Fig 39a & 39e Fig 39a & 39e	SD; Bone 17
N XIII 5	(2-) 3/4 (2-) 3/4	flagstone floor	Fig 39a & 55e	
N XIII 6	(2-) 3/4 (2-) 3/4	make-up for floor N XIII 5	Fig 39a & 39e	SD; Stone 26; 27
N XIII 8	3d	floor Room 23 Building III.3	I p 66	, ,
N XIII 9	3d	flagstone floor Building III.3	I p 66; Fig 39a & 39e	
N XIII 10	2-3/4	layer	-	SD
N XIII 11	5	layer	Fig 39a	
N XIII 13	2(-3/4)	gravel floor	Fig 39a	

Context	Phase	Description	Reference	Finds
N XIII 14	2-3/4	layer	Fig 39e	
N XIII 15	$\frac{2}{2-3/4}$	layer	Fig 39e	
N XIII 16	$\frac{1}{3c}$	flagstone floor Building III.3	I p 65; Fig 39e	
N XIII 17	2(-3/4)	layer	Fig 39a & 39e	
N XIII 18	2-3/4	layer	Fig 39e	
N XIII 19	2-3/4	layer	Fig 39e	
N XIII 20	2-3/4	layer	Fig 39e	
N XIII 21	2 - 3/4	occupation later	Fig 39e	
N XIII 22	2 - 3/4	layer	Fig 39e	
N XIII 23	2-3/4?	fill channel 1	Fig 39e	
N XIII Channel 1	3	water pipe channel	Fig 39e	
N XIII Channel 7	4	water pipe channel	Fig 39e	
N XIV 1	U/S	topsoil	0	Iron 171; Bone 58
N XV 1	U/S	topsoil		Samian 184, S111; Ce- ramic 46
N XV 2	5–4	ditch fill		Pot SS12; SS111; SD Samian 187–8, S107
N XVI 1	U/S	unrecorded		Samian 182

Site 434: Catterick 1972

SD at the beginning of column 5 indicates there is information about the pottery spot date on CD 5. The presence in a context of one of the selected groups of pottery discussed on I p 251 is indicated by a page number and group number. A prefix SS relates to the catalogue of selected vessels of intrinsic merit on I p 264. Samian pottery relates to the catalogue on I p 316, a prefix of S indicates the number relates to the samian stamp catalogue (I p 321). A prefix MS indicates a mortarium stamp catalogued on I p 338. Amp indicates the presence of amphorae catalogued on I

p 347. The prefix D the Dressel 20 sequence, U the undesignated sequence.

For the brooch catalogues see II p 150, for the copper alloy catalogue see II p 46, for the iron and lead catalogue see II p 99, for the jet and shale catalogue see II p 173, for the worked bone catalogue see II p 181, for the ceramic small finds see II p 200, for the stone artefacts see II p 286, for the quernstones see II p 267, for the vessel and window glass see II p 233, for the beads see II p 261.

Context	Phase	Description	Reference	Finds
P I 2	U/S	layer		Pot C113; Samian 1–2;
				Tile 3; Coin75; Iron 46;
D.I. (4	1		50; 79;Glass V. 11; 13p
PI4	4a	layer		Pot C12; Coin 88; 92;
PI2&4	U/S	lower		Brooch 26; Cu 111;
PI5	0/8 4a	layer road surface	I p 133	bead 7
PI6	u/S	layer	1 h 199	Coin 34; 104
PI7	4b	layer		Pot C6, C10–11, C13,
	10	14901		C18; C52, C55, C58,
				C69, C70,C88–9, C104,
				C108; Coin 7; 11; 13;
				26; 44; 58–9; 64; 70;73;
				79; 83–4; 89; 91; 93; 96;
				103; Brooch 6;Cu 15;
				54; 282; 299; Iron 3;
	17 / /	,		86; Glass V. 9b
PI7&8	4b/4a	layer	L 199 Et CC	Ceramic 6
PI8	4a	wall Building 1	I p 132; Fig 66	
				C94; Coin 42; Brooch 8; Iron 97;Glass V. 4a
PI8a	4a	layer		Iron 7
PI9	4b	layer		Pot C23; Bone 106
P I 10	4b	posthole Building 1	I p 135: Fig 67	Pot C13, C19, C59,
		1 0	1 / 0	C61, C112; Samian 3;
				S6;Coin 25; 52; 56–7;
				65–6; 69; 77; 102; Iron
				44; Glass V. 13e–f; 16e
DIA	(1	,		Glass object 6
P I 11	4b	layer		
P I 12	4b	layer		Pot C57; C118; coin 90;
P I 14	4b	paved floor	Fig 61	Cu 235; 281 Pot C53; Coin 46; 94–5
P I 15	40 4a	floor	I p 132; Fig 61	
P I 15a	3b	cobble foundation	1 p 102, 1 g 01	Iron 89; 94
P I 17	4a	floor Rooms A & B Building 1	I p 133; Fig 61	
			& 65	
P I 17a	4a	layer	Fig 61	Pot C73, C101; Coin
			-	14; Iron 26
P I 18	4b	wall Building 1	I p 133; Fig 61	
D. 1.0	11.0		& 66	Cu 91
PI18a	4b?	layer		Coin 106
P I 20	4b	floor		Jet 11; quern 29
P I 21	3	road surface		Pot C107; Samian S5;
P I 22	4b	wall Building 1	I p 133; Fig 67	Glass V.6
1 1 44	UL	wan Dunung 1	1 p 100, 1 ig 07	

Context	Phase	Description	Reference	Finds
P I 25	Unphased	unrecorded		Pot C16; C80; C96;
D I 91	TT 1	······································		Samian 4–5
P I 31	Unphased	unrecorded	T 100 D' 01	bead 4
PI15a	4a	wall foundation Building 1	I p 132; Fig 61	Pot C101
PI4a	4a	floor Building 1	I p 132	
PI4b	4a	yard surface Building 1	I p 132	
P II 2	modern	layer		Pot C81; C84; C102; C109; C114; Samian 6–7; Tile 2;Coin 10; 24; 43; 71; 87; 101; 109; Iron 28; Glass V.16m
P II 4	4a/b	cobbling		Pot C14; C49; C83; Coin 20; 53; 86; Cu 105; Jet 25; Glass V.9a
P I/III 7,4	4b	layer		Iron 12; 23; 108
P III 1	U/S	topsoil		Coin 82; 108; Iron 70;
P III 2	U/S	layer		Pot C26; C72; C90; Tile 1; Coin 8; 97; 105; Iron 40;
P III 3	?4	Road		Pot C75; Amp D5
P III 4	4b	layer		Pot C91; Coin 22; 23; 99; Brooch 14
P III 6	4b	wall Building 1	I p 133; Fig 67	Cu 270
P III 7	40 4b	cobbled surface		
			Fig 61	Pot C24; Coin 37
P III 7a	4a	cobbled surface	I p 133	Iron 33; Glass V.16a
P III 8	2b	rampart foundation/rampart	I p 128; Fig 62b	
P III 8a	Unphased	unrecorded		Pot C65
P III 9	1 - 2 or 3	layer		Pot MS62; Coin 1
P III 11	3a	ditch fill	I p 130; Fig 61	Pot 436; C79, Amp P4; Iron 48
P III 12	4a	flat slabs		quern 31
P III 13	4a	floor Room C	I p 133	-
P III 14	3b	layer	Fig 61	Pot C4, C15, C20, C34–5; Samian 8; S8
P III 15	4a	wall	I p 132	, , , ,
P III 15a	Unphased	unrecorded	- P	Pot C5
P III 16	4a	floor	I p 132	10000
P III 16a	4a	layer	1 p 102	Iron 37; 43
P III 17	3b	ditch fill	I p 132; Fig 61	Pot C2, C9, C17; C28; C29; C41; C45; C48, C7; Samian 9, 10; Coin
				4; Cu 20; 83; 167; Glass V.1; 12a; 13d
P III/I 17	4a	paving		quern 33
P III 18	2	layer		Pot C25; Samian 11; Glass V.13c
P III 20	2b	intervallum road ?		206; Fig 61 & 61b
P III 20 P III 21	20 3b		Fig 61	
	3b 3b	ditch fill	Fig 61	Pot C24; C29; C39–40
P III 22 D III 22		ditch fill	Fig 61	Somian 19. Coin 9
P III 23 D III 24	3a or 3b	ditch fill	I = 100 Et = 01	Samian 12; Coin 2
P III 24	2b	berm/rampart foundation	I p 126; Fig 61, 61b & 62	Pot C62, C64
P III 28	3b	ditch fill	I p 130; Fig 61	Pot C44; Samian 13
P III 29	3a	ditch fill	I p 130; Fig 61	Pot 436
P III 30	3a	ditch fill		Pot 436; C37, C63, C98, C105; Samian 14–5;
P III 31	3a	ditch fill	I p 130; Fig 61	Bone 82 Samian 19–20; S2; Grafitto 39; Iron 19; bead 1–2

Context	Phase	Description	Reference	Finds
P III 37	3b	ditch fill		Pot C66; C105 Samian 14
P III 38	1a	old ground surface	I p 126; Fig 60a & 60	
P III 39	*3a	ditch fill	Fig 61	Pot C1; C30; C78
P III 40	*3a	ditch fill	Fig 61	D 49
P III 41 P III 42	3a *3a	ditch fill ditch cleaning slot fill	Fig 61	Bone 43
P III 44	1b	road	I p 126	Samian 21; Amp D14
P III 45	1b 1b	road ditch		Pot C31; Samian 22; S9
P III 45	2b	layer	Fig 61 & 61b	100 001, Dannan 22, 00
P III 48	1b	road surface (44)	I p 126; Fig 60k & 60)
P III 49	1b	road surface (44)	I p 126; Fig 60 & 60)
P III 50	1b	road surface (44)	I p 126; Fig 60 & 60)
P III 53	1a	fill (55)	I p 125; Fig 60a & 60	à
P III 54	1b	road surface (44)	I p 126; Fig 601 & 60	
P III 55	1a	beam slot	I p 125; Fig 60a & 60	1
P III 7a	4a	floor Room C	I p 133	
P IV 2	U/S	layer		Pot C67; C106
P IV 4	2b	rampart	I p 135	Pot C54, C60, C68; C86–7, C103, C111; Samian 23Coin 19; 62; 85; Glass V.16f
P IV 6 P IV 7	2b 2b	rampart foundation layer	I p 128; Fig 62b	
P IV 8	2a	burnt layer	I p 126	Pot C27; C33; C110; C115; Bone 29
P IV 9	1a or 2a	pit	I p 126; Fig 60a	Iron 21
P V 1	U/S	topsoil		Coin 28; Cu 312; Iron 5; 93
P V 4	4b	layer		Pot C7–8, C74; Samian 24; Coin 18; 45; 72; 80;Iron 4; 62; 77Glass V.12b
P V 5	U/S	layer		Pot C74; C82; C100; Samian 25; Amp D3
P V 6	2b	rampart	I p 128	Pot C21; C32; C43; C93; Samian 25–7; Amp D7; D15; P2Grafitto 57; 64; Iron
				51; Glass V.2; bead 3
P V 7	2b	rampart foundation		Pot C92; Samian 28;
PV8	2b	intervallum road ?	I p 129; Fig 62	
PV9	4b	wall Building 1	I p 133; Fig 67	Samian 29
P V 11	3b	layer	I 100	$\mathbf{D} \neq \mathbf{O}\mathbf{O}1$
P V 12 P V 12	2b 2b	rampart	I p 128 I p 128	Pot C21
P V 13 P V 14	2b 2b	rampart	I p 128	Iron 80 Pot C20: C47: C07:
T V T 7	4U	rampart		Pot C29; C47; C97; Samian 30; Amp P3
P VI 3	p3–4	Road		Samian 30, Amp 13 Samian 31; Iron 34; 39
P VI 4	2b	rampart foundation	I p 128; Fig 62	
P VI 5	2b	rampart	I p 128	
P VI 6	2b	road – Dere Street	I p 128	

Context	Phase	Description	Reference	Finds
P VII 1	U/S	layer		Pot C46; Coin 15
P VII 2	U/S	layer		Coin 31; Iron 18; Glass
	TT (0)			V.13r
P VII 1,2,3	U/S	layers	I 100	Samian 32–4; S3
P VII 4	2b	road – Dere Street	I p 128	Iron 15; 61
P VII 5 P VII 6	2b 2b	rampart	I p 128	Amp D8
P VII 7	2b 2b	rampart foundation gate posthole	I p 128; Fig 62k I p 129; Fig 63)
P VII 8	2b 2b	gate posthole	I p 129; Fig 63	
P VII 9	2b 2b	gate posthole	Fig 63	
P VIII 3	2b	road – Dere Street	I p 128	Iron 68
P VIII 9	2b	gate posthole	I p 129; Fig 63	
P VIII 10	$2\mathrm{b}$	gate posthole	I p 129; Fig 63	
P VIII 11	2b	gate posthole	I p 129; Fig 63	
P X 1	U/S	unrecorded	-	Cu 266
QI1	U/S	topsoil		Cu 237; Iron 90; Bone
				27; 141; 147; Glass
				V.15b; 16n–o; bead 6
Q I 3	4–5	layer		Pot C1–10; Samian
				35–7; Brooch 30; Cu 3;
0.7.4	2.4	,		Iron 20; 24; 56; 8; 92
QI4	2–4	road	I p 133; Fig 66	Pot C11–4; Samian
015	4(941)	1		38-9 Det C15 95 Semieur
Q I 5	4(?4b)	layer		Pot C15–25; Samian
Q I 8	4–5	pit		40; Coin 67 ; Bone 18 Pot C26–31
QI9	4-5 4 (-5)	layer		Pot C32–3; Glass V.14c
Q I 10	1-2	intervallum road ?	In 199. Fig 69h	Pot C34–42; Samian 41
Q I IV	1-2	intervalium roau :	1 p 125, 1 lg 020	; Iron 42; 58; 88
Q I 11	2–3	road make-up	I p 133	Pot C43–5; Samian 42
Q II 1	U/S	ploughsoil	r	Coin 68
Q II 7	3	layer		Pot C46–8
Q III 1	U/S	topsoil		Samian 44–6; Cu 179;
				bead 5
Q III 3	4 (4b)	layer		Pot C49; Samian 48;
				Iron 95; bone 129;
0 7774	T T/Q			Glass V. 14e
Q IV 1	U/S	topsoil		Samian 45–6; 49; Cu
O IV O	TT/O	1		202 Det 050 64 Semieur
Q IV 2	U/S	layer		Pot C50–64; Samian
Q IV 3	4 (4b)	wall foundation		50; Glass V. 8b Pot C65–79; Samian
Q I V J	4 (40)	wall foundation		51; S7; Stone 77; Glass
				V. 8a
Q IV 4	4(?4b)	layer		Iron 11
Q IV 5	(3 or) 4 (4b)	layer		Pot C80–101; Samian
U		0		46; 52–4; Iron 47;
				109;Glass V. 13m, n
Q IV 6	(3 or) 4 (4b)	pebble surface		Pot C102–6
Q IV 8	(3 or) 4 (4b)	layer		Pot C107–13
Q IV 10	Unphased	unrecorded		Cu 16; 324; Glass V.15a
Q V 1	U/S	topsoil		Coin 16; 21; 27; Iron 41
Q V 2	4	layer		Pot C114–29; Samian
				55; Iron 17; 27; 65–6;
0.11.4	TT 1 1	1 1		69; 74; 84Bone 28
QV4	Unphased	unrecorded		Pot C130–31
Q V ext 1	U/S	topsoil		Iron 91
Q VI 1	U/S	topsoil		Pot C132–40; Glass
Q VI 2	?4	lovor		V.9e Glass V.13a; 16d
Q, V I ∠	:4	layer		JIASS 1.13a, 100

Context	Phase	Description	Reference	Finds
Q VII 1	U/S	topsoil		Samian S11 Iron 38
Q VII 3	4 (?b)	paving	I p 133; Fig B.3	5 Pot C143–49; Iron 53; 55; Glass V.16l
Q VII 4	4a or earlier	daub layer	I p 129, 133; Fig 62b & 65	Pot C150; Samian 56;
	01-4-		I 190 E: Col	Iron 30
Q VII 5 Q VIII 1	2b–4a U/S	paved area topsoil	I p 129; Fig 62b	Samian 57
Q VIII 2	U/S	layer		Pot C151–3
RI4	U/S	unrecorded		Cu 267
R II 1	U/S	topsoil		Coin 63 ; Glass V.13b
R II 2	?4b	layer		Coin 51; 78
R II 3	4b	layer		Pot C154–79; Samian 59
R II 4	?4b	stone layer		Pot SS53; C180–93; Samian 60; Coin 30; 32; 74; 7; Cu 7; Iron 25;
R II C4	?4b	?fill		36 Pot C194–9
R II 5	4b	layer		Pot C200–212; Iron 32;
R II 6	4b	robbing trench	I p 136	63; 96; Glass V.13g, t Pot SS9; SS27; SS146; SS149; C213–35;
				Brooch 24; Iron 10; Ce- ramic 12–3; Glass V.13h
R II 6b	?4b	layer		Pot C236–50; Samian 61–2; S1;
R II 6c	?4b	layer		Pot C251–54
R II 7	4b	floor Building 3	I p 136; Fig 67	Pot 446 Group 5; SS27; SS93; SS147–9; Samian 62; Amp D2; Grafitto 42; Iron 45;
R II 7	5	robbing trench	I p 136	49; 52; Ceramic 1; 12–3 Stone 58; Glass V.4b; 5; 13I
R II 7b	?4b	layer		Pot C255–66; Coin 47; 60; Glass V.12c; 13j; 16j–k
R II 7c	?4b	layer		Pot C267–78
R II 8	5	robbing trench	I p 136	Pot 449 Group 6; SS29; SS149; Ceramic 12–3;
R II 9	1–2	layer		Iron 22
R II 10	?4b	layer		Pot SS32; C279–88; Amp D9; Iron 87; 107; Bone 74; Ceramic 44
R II D2	?4b	layer		Pot C289–99
R III 1	U/S	ploughsoil		Coin 35
R III 2	5	layer		Pot SS150; C300–25; Samian 63; Coin 54–5; Iron 57;quern 30; Glass V9c
R III 3	4b or 5	grave	I p 135; Fig 67	Pot SS90; Iron 59; 67;
R III 2B	5	layer		Glass V.13o Pot C326–29; Coin
R III 3	5	layer		48–9 Pot C330–44; Coin 6; Iron 31; 54
R III 4 R III B	2b–4c Unphased	layer removal of balk		Iron 1; 106; Bone 123 Pot SS151; C345–54

Context	Phase	Description	Reference	Finds
R III 5	3	layer		Pot C355–8; Iron 71;
				81; 99
R IV 1	U/S	layer		Pot C359; Glass V.13s
R IV 2	U/S	layer		Pot C360–64; Coin 61;
				107; Lead 17; Iron 6;
	TT/O	1		75; Ceramic 42
R IV 2B R IV 3	${ m U/S} {4b}$	layer	In 195. Fig 67	Pot C365–70; Coin 29
ΓΙΛ Ο	40	cobbling	I p 135; Fig 67	Pot C371–94; Amp P5; Coin 9; Iron 16; 73; 76;
				Com 9, 1101 10, 73, 70, Ceramic 12quern 32;
				Glass V. 13k; 16I
R IV 4	4b	wall	I p 135; Fig 67	,
			r , 8	41; Stone 32
R IV 4B	4b	wall		PotC395-404; Coin 98;
				Glass V.16g
R V 5	4b	Grubenhaus fill/postholes		Pot C405–11; Amp P1
R IV 6	4b	cobble layer		Pot C412–20; Amp D6;
				Brooch 7; Glass V.16h
R IV 17a	Unphased	unrecorded		Coin 50
RV1	U/S	ploughsoil		Pot C421–7
R V 2 R V 3	4b 4b	flagstones cobble surface	I p 133	Pot C428–34; Amp U1 Pot C435; Amp U2;
RV4	40 6	flagstones	1 p 155	Pot C436–41; Coin 36;
RV5	4b	Grubenhaus fill/postholes		Pot C442–58; Tile 6;
10 0 0	-10	Grubennaus mi, positiores		Coin 3; Bone 9; Ce-
				ramic 12; Stone 44; 78;
				Glass V.16b
R V 6	4b	layer		Pot SS152–3; C459–66;
				Coin 100
R VB 1	U/S	ploughsoil		Samian 65–6
R VI 1	U/S	ploughsoil		Pot C467–77
R VI 2	4b	layer		Pot SS154; C478–86;
				Coin 38; Iron 13; Glass V.13l
R VI 3	4b	wall/soft pit		Pot C487–90; Samian
10 11 0	40	wail/solt plt		S12; Tile 7; Coin 40;
				81;Iron 9; 14; 35; 85;
				Bone 51
R VII 2	4b	layer		Pot SS155; C491–515;
		-		Cu 62
R VII 3	modern	hedge ditch		Pot C516–26; Samian
				67; Ceramic 69; Glass
	0			V.7
R VIII 3	6	Grubenhaus fill		Pot C527–33; Bone
R VIII 6	6	floor		131; Glass V.9d Pot C534–43; Bone 22;
	0	11001		23
R VIII 7	4a?	layer	I p 133	Pot C544–58; Iron 2; 8;
		149 01	- p 100	Glass V.3
R IX 1	U/S	layer		Pot C559–60; Samian
		-		68; S4; S10; Amp D11;
				Grafitto 54
RX1	U/S	layer		Glass V.10
R X 2	?4b	layer		Pot C561–2; Samian
				69; Amp D1; Grafitto
SI2	Unphased	layer		60; Glass V.14a Pot C563–69; Samian
014	Onphaseu	1ay CI		70; Amp D13; Tile 4;
				Coin 5;Cu 187; Iron 60;
				Ceramic 43; Glass V.14f

364	
-----	--

Context	Phase	Description	Reference	Finds
SI4	Unphased	layer		Pot C570–76; Amp D4; Tile 5; Iron 82; Glass V.14d
SI5	Unphased	layer		Amp D10
S I 10	modern	layer	I p 137	
S II 2 S III 4	Unphased Unphased	layer layer		Pot C576 Pot C577

Bainesse Farm (Site 46)

The samian pottery relates to the catalogue on I 418, a prefix of S indicates the number relates to the samian stamp catalogue (I 438) and a prefix of P to the plainware catalogue (I 441). For the brooch catalogues see II 159, for the copper alloy catalogue see II 109, for the iron and lead catalogue see II 117, for the jet and shale catalogue see II 176, for the worked bone catalogue see II 192, for the ceramic small finds see II 210, for the stone artefacts see II 303, for the quernstones see II 281, for the vessel and window glass see II 245, for the beads see II 262 and for the intaglio see II 264.

Context	Phase	Description	Reference	Finds
5	Roman	oven	I p 180; Fig 96	
35	U/S	initial trowelling		Samian 174; 180–81;
				186; 199; 202; 218.
				S43. P6–7. Brooch 14.
				Copper alloy 33; 41.
				Iron 64; 70; 83; 107.
37	6-7	fill (38)		Stone 11 Samian 75
50	0-7 U/S	layer		Samian 169; 178; 211;
00	0/0	ityoi		214
51	7	layer		Samian 99–100. S19;
		·		S23; S25;Vessel glass
				32b; 38f, g
52	7	layer		Samian 97. S20; S26.
				Iron 48. Vessel glass
- 4	-	1		26ah; 38w
54	7	layer		Samian 101–2; 104–5;
				115; 120. S24. Coin 4. Copper alloy 53. Iron
				13; 16; 20; 33.Vessel
				glass 26ai; 32a; window
				39g
56	7	layer		Vessel glass 38h
58 7	layer		Samian 106–8; S27.	
				Copper alloy 9; 52; 54.
				Stone 20. Vessel glass
-	_			26l; 30h; window 39f
59	7	layer		Samian 109. Brooch 8.
				Stone 17; 19. Quern 5. Vessel glass 30a
63	7	layer		Samian 95; 98. Coin 3.
00	•	layer		Iron 51. Ceramic 1.
				Vessel glass 3; 38y
68	6	fill (310)		Vessel glass 26i
69	6-7	fill (309)		Samian 88. Stone 18
72	6	fill (310)		Samian 57. Iron 9
73	6–7	fill (309)	T (F0 T1 0 (Iron 11
75	pre-7	gully Building 720	I p 158; Fig 81	Brooch 13. Copper al-
				loy 11. Jet 11. Vessel
76	U/S	finds		glass 38z Somion 168, 189, 220,
70	0/8	imus		Samian 168; 182; 220; 222. S53. Vessel glass
				38k
77	6	gully Building 720	I p 158; Fig 81	
80	7 (8)	ditch	I p 164, (172);	
			Fig 92 & 95	
84	6	pit	I p 163; Fig 85	
85	6-7	fill (84)		Vessel glass 26w
87	6-7	fill (84)		Samian 76
88	6	pit	I p 163; Fig 85	Q79 4 Q
90	6-7	fill (84)		Samian 73–4. Copper
				alloy 51. Lead 2.

Context	Phase	Description	Reference	Finds
95	6–7	fill (84)		Brooch 18. Vessel glass
				4a; 26x;
99	6-7	fill (84)		window 39l
100	6-7	fill (84)		Coin 5
102	Unphased	fill (101)		Copper alloy 46
103	$7(\bar{8})$	field ditch	I p 170, (174);	
			Fig 92 & 95	
104	6	ditch	I p 164; Fig 85	
105	6	ditch	I p 164; Fig 85	
132	3	ditch	I p 146; Fig 74	
162	4	fill (196)		Copper alloy 36
168	7	field ditch	I p 172	
174	3	fill (132)	-	Coin 6
184	6-7	fill (104)		Stone 8
187	3	ditch	I p 146; Fig 74	
196	4(5)	ditch	I p 148, (164);	
			Figs 76 & 79	
206	6	ditch	I p 164; Fig 85	
216	6	ditch	I p 164; Fig 85	
233	6-7	fill (104)	. , 8	Samian 77
242	6	ditch	I p 164; Fig 85	
251	4	fill (196)	1 / 0	Samian S1. Graffito 85
259	6-7	grave	I p 172; Fig 92	
265	6	ditch	I p 164; Fig 85	
269	6-7	fill (265)	1 / 0	Glass vessel 26v;
274	7	fill (168)		Samian 110
275	7	fill (168)		Stone 9
278	6	ditch	I p 164; Fig 85	
279	6-7	fill (278)	F -) 8	Samian 89. Iron 53; 62
282	Roman	skeleton (426)	I p 180	,
287	7	field ditch	I p 172; Fig 92	
291	6/7	fill (287)	r , 8	Samian 78
301	U/S	initial trowelling		Samian 195; 197; 200.
		0		Coin 2. Copper alloy
				29; Iron 27. Ceramic 4.
				Stone 22. Glass vessel
				9; 16f; 19a
302	5	gully	I p 151; Fig 79	0, 101, 100
308	U/S	initial trowelling	- F,8 ···	Samian S48. Iron 38.
	0,0			Jet 10. Glass vessel 16g
309	6	pit	I p 158; Fig 85	
310	6	pit	I p 158; Fig 85	
328	Ŭ/S	initial trowelling	1 p 100, 1 ig 00	Samian 192–3. Coin 7.
020	0/0	initial browening		Bone 12. Stone 16;
				Glass vessel 260; 30f
329	6-7	fill (309)		Samian 79. S17
338	U/S	initial trowelling		Copper alloy 56; Iron
000	0/0	initial trowening		82; 124. Bone 35. Glass
				Vessel 26n;
339	U/S	layer		Coin 9, 10. Copper al-
009	0/6	layer		
				loy 13; 31; 32. Iron 43;
				100; 112. Bone 34; 50,
249	TT/Q	initial transling		Glass vessel 26q; Samian 170, 108, 208
348	U/S	initial trowelling		Samian 179; 198; 208.
				Iron 15; 56. Bone 2; 8;
				39. Vessel glass 10;
050	0 7	C11 (200)		26p;
353	6–7	fill (309)		Samian 80
360	6	fill (358)		Samian 60

Context	Phase	Description	Reference	Finds
361	7–9	layer		Samian 138–42; 147; 150–52. S34–8. Coin 8. Brooch 6. Copper alloy 55. Iron 1; 2; 45; 67–8; 73; 92; 123. Ceramic 5; 8. Vessel glass 16b; 26b, h; 30i, n; 38s; window 39c, e;
363	7–9	layer		Samian 143. Iron 66.
368	6	fill (310)		Samian 63. Bone 6
370	6	fill (310)		Samian 24
371	6 or later	fill (310)		Samian 160; 161. Bone 7
372	6	fill (310)		Quern 3
374	6	fill (310)		Brooch 15
379	U/S	initial trowelling		Samian 173. Coin 12. Vessel glass 38av
381	8	wall Building 387	Fig 93	
382	5	wall Building 388	I p 149; Fig 79 & 86	
383	8	wall Building 387	Fig 93	
391	9	layer	8	Bone 13
394	9	layer		Samian 153. Vessel
399	9	layer		glass 26c Bone 18. Vessel glass 38ae
406	7	fill (168)		Copper alloy 39
418	6–7	fill (287)		Vessel glass 5
426	Roman	grave	I p 180; Fig 96	Vessel glass o
458	modern	topsoil	- p 200, 1 g 00	Vessel glass 17
499	6	fill (497)		Iron 10
501	5	ditch	I p 151; Fig 79	
504	4	ditch	I p 148; Fig 76	
509	3	ditch	I p 146; Fig 74	
526	6–7	fill (459)		Samian 81
535	6–7	fill (278)		Coin 11
540	4 or later	fill (539)		Samian 157
551	5	fill (242)		Stone 10
560	6	fill (88)		Samian 27
563	6	fill (88)		Vessel glass 30r; 38ag
564	6	fill (88)		Samian 30. S3
565	6	fill (88)		Samian 32
598 601	modern U/S	finds layer		Samian 162 Brooch 21. Copper al-
603	3+	road	I p 145; Fig 74, 76, 80, 85, 92	loy 37
605	6	road surface (603)	I p 155; Fig 71a	ι
606	5 (6)	road surface (603)	I p 149, (155); Fig 71a, b	
607	6	post pit Building 1448	Fig 86	
609	3	fill (612)	Fig 71a	
610	6	layer		Bone 22. Vessel glass 18
612	3	road ditch (603)	I p 225; Fig 71a b, 74	
615	6	fill (790)	I p 225	Iron 57–8
618	7–9	fill (617)	-	Samian 148
622	U/S	topsoil		Coin 18. Iron 4
626	7	hearth	I p 170; Fig 92	

Context	Phase	Description	Reference	Finds
		r		
632	5	gravel surface Building 721	& 93 I p 151; Fig 81	
637	5	surface	Fig 81	
639	8	floor Building 387	I p 174; Fig 71b	
		-	& 93	
641	8	layer	Fig 71a	
642	8	floor make-up Building 387	1 p 174; Fig 71b	Samian P5. Copper al- loy 60. Vessel glass 38r
643	8	floor Building 387	I p 174; Fig 71b & 93	Quern 14
648	6	layer		Bone 3
649	5	foundation trench (382)		
		Building 388	I p 149; Figs 71a, b	
650	6	layer		Samian 34. Coin 14
657	5	layer		Samian 10
661	8	layer	Fig 71a	Saiman 10
663	6	soil mark Building 1448	I p 155; Fig 86	
665	6	e		
667	8	pit	Fig 81 Fig 71a	Samian 194, 190 Bana
007		layer	Fig 71a	Samian 124; 130. Bone 44
669	8	foundation trench (702)	I p 156; Fig 71a, b	
674	6–9	layer	-	Samian 132–6. S31. Iron 105; 122. Vessel glass 30d
676	5	road surface	I p 149	5
677	5	layer	Fig 71a	
680	5	layer	8	Bone 1
682	U/S	layer		Samian 176; 187; 207; 217. S46–7; S54. Coin 19. Copper alloy 24; 40; 44.Iron 46; 55; 86; 125; Vessel glass 12; 26u; 31; 38j, af; window 39k
683	5	layer	Fig 71a	
684	6	layer	-	Samian 47
690	7	fill (689)		Samian 103
693	8	fill (1917)		Samian 125
695	U/S	layer		Samian S50
697	8	floor or make–up Building 387	I p 174; Fig 71b & 93	
699	6	layer	Fig 71b	Quern 6
701	U/S	initial trowelling	U	Samian 212; 223–4. S51. Vessel glass 26r; 38aa
702	8	wall Building 387	Fig 71a, b & 93	
711	5	wall Building 720	I p 151; Fig 71a, b & 81	
713	7–9	layer		Coin 13. Copper alloy 18; lead 1. Bone 28. Vessel glass 11; 26d; window 39d
714	9	accumulation layer	I p 178	
718	8	collapsed wall Building 387	I p 173; Fig 71a & 93	
722	5	wall Building 720	Fig 81	
723	5	wall Building 721	Fig 81	
724	5	wall Building 721	Fig 81	
. = -	2			

Context	Phase	Description	Reference	Finds
725	5	wall Building 721	Fig 81	
730	7–9	layer		Copper alloy 7Iron 101.
		0		Bone 16
731	7 - 9	layer		Copper alloy 14. Ce-
500	0	,		ramic 3
732	6	layer		Samian 48; 71. Brooch 19. Bone 40
733	6	layer		Iron 72. Vessel glass
100	0	layer		26e; 35
738	5	wall Building 720	Fig 71b & 81)
744	7 - 9	layer		Samian 144
763	U/S	initial trowelling		Samian 171; 190; 194.
				Iron 71. Vessel glass
766	7.0	lawan		16a; 26k; 38e, ab
766	7–9	layer		Samian 137; 145–6; 149. S32. Iron 14Vessel
				glass 38u
771	9	layer		Ceramic 2; 12
773	6	layer		Samian 36; 39; 41–6;
		-		70. S15. Coin 15. Cop-
				per alloy 19. Iron 28;
				61; 78. Quern 22. Ves-
				sel glass 16c; 26f; 36; 38t
777	7	layer		Samian 111; 117–9.
	•	layer		S21. Iron 29–30. Quern
				13. Vessel glass 23b
780	6	layer		Samian 55–6; 67. Bone
		-		42. Vessel glass 38d
781	6–9	layer		Samian S33
782	7–9	layer	Fig 71b	
785 786	8 8	foundation trench (383) fill (1917)	Fig 71b	Quern 11
788	U/S	initial trowelling		coin 17
790	6	pit	Fig 81	
791	7	layer	U	Vessel glass 29
792	6	pit	Fig 81	
794	6	pit	Fig 81	a
795	6	fill (794)	D ' 7 1 l	Samian 65
796 798	6 5 (6)	layer road surface (606)	Fig 71a, b I p 149	
800	5 (0) 6	road surface (603)	I p 149 I p 155	
801	6–7	finds	1 p 100	Copper alloy 61
807	7–8	fill (802)		Bone 32
808	6-7	fill (810)		Samian 82. Vessel glass
	_			38aj
809	5	fill (811)		Samian 12
811	?5 6	pit ditab	I p 155; Fig 78	
832 838	8	ditch ditch	I p 164; Fig 84 I p 175; Fig 94	
841	8	ditch	I p 175; Fig 94	
843	C	ditch	I p 175; Fig 94	
845	7	road ditch (2553)	I p 172; Fig 91	
848	6	road ditch (2553)	I p 164; Fig 84	
864	7	road ditch (2553)	I p 172; Fig 91	
866	6	road ditch (2553)	I p 164; Fig 84	
868 870	6 6	road ditch (2553) ditch	I p 164; Fig 84 I p 164; Fig 84	
871	6	finds (870)	1 p 104, F1g 04	Samian S6
890	0 7	pit	I p 170; Fig 92	Summer NV
		1		

Context	Phase	Description	Reference	Finds
891	6	fill (890)	Fig 82f	Samian 49. S9. Vessel glass 22
892	6	fill (890)	Fig 82f	Samian 50–3. Copper alloy 23. Vessel glass
894	U/S	finds		26a Copper alloy 25. Vessel glass 1
896	4	gully	I p 148; Fig 76 & 82f	Stapp 1
897	4	?fill (896)	Fig 82f	Samian 1. Vessel glass 38m
899	6	fill (1751)	Fig 82a	Samian 54. S12
900	6	fill (1751)	Fig 82a	
901	Roman	skull (907)	I p 180	
907	Roman	robber trench	I p 180; Fig 96	
909	Roman	robber trench	I p 180; Fig 96	
913	Roman	drain	I p 180; Fig 96	
928	Roman	ditch	I p 180; Fig 96	
937	6–7	fill (999)	Fig 82c	
938	7	revetment (2186)	I p 173; Figs 82 & 89	2e
940	6	skeleton (1713)	I p 166	
941	9	skeleton (1743)	I p 178	
942	6–7	grave	I p 165; Fig 89	Iron 79: 98
943	6–7	fill (942)	1 , 5	Iron 103–4; 108–9. Ves- sel glass 38ai
944	6	pit	I p 166; Fig 89	0
946	8 or 9	grave	I p 175; Fig 89	Iron 79; 98
948	8 or 9	skeleton (946)	I p 176	,
950	7–8	fill (3027)	Fig 82b	Coin 22
951	8	grave	I p 176	Iron 79
952	8	skeleton (951)	I p 176; Fig 90	
953	8	grave good (951)	1 / 0	Copper alloy 8. Silver 1. Jet 1–3. Vessel glass
954	8	gully	I p 178; Fig 82	23c c
050	0	1. 1	& 89	
959	6	ditch	I p 165; Fig 89	
960	late 7 or 8	ditch	I p 175; Figs	
0.00	TT/O	<u> </u>	82b,c, e & 89	C 11 00
962	U/S	finds		Copper alloy 28
964	U/S	finds		Copper alloy 47
970	U/S	finds		Coin 16
975	late 7 or 8	revetment (3027)	I p 175;	
0.50	-	(11 (0.20))	Fig 82b, c & 89	
976	7-8	fill (960)		Samian 121
977	7-8	fill (3027)		Bone 14
978	7-8	fill (3027)		Bone 33
981	7	field gully	I p 173; Fig 89	
990	6	ditch	I p 165; Fig 15 & 22	
995	U/S	finds		Coin 20
996	U/S	finds		Samian 188
997	U/S	finds		Samian S52. Iron 85
999	7	field ditch	I p 173; Fig 82 & 89	с
1033	6–7	skeleton (259)	I p 172	
1044	6	pit	I p 163; Fig 85	
1053	7	fill (80)		Samian 96
1084	7	fill (80)		Graffito 22

Context	Phase	Description	Reference	Finds
1151	6	pit	I p 163; Fig 85	
1153	6	ditch	I p 164; Fig 85	
1186	0 7	fill (80)	1 p 104, 1 lg 00	Samian 112. Vessel
1100	1	IIII (80)		glass 38l
1202	6–7	fill (287)		Samian S18
1202		pit	I p 164; Fig 85	Saman 516
1215	6 5		I p 164, Fig 85 I p 151; Fig 79	
	5	pit 511 (1915)	1 p 151; r ig 79	Samian 14 Common al
1216	0	fill (1215)		Samian 14. Copper al-
1010	0.7			loy 27
1219	6–7	fill (1151)	T 170	Quern 4
1359	7 11/0	skeleton (1153)	I p 172	
1366	U/S	ploughsoil		Coin 1. Iron 74. Vessel
	0			glass 26z; 30s
1367	3+	stone layer		Iron 113.
1380	6+	fill (1379)		Vessel glass 19b; 26.
1403	8	floor layer	_	Samian P4
1409	8	pit Building 387	I p 174	
1410	8	layer	Fig 71a	
1411	8	hearth Building 387	I p 174; Fig 93	
1412	6	fill (1868)	Fig 71a	
1413	7	fill (1871, 1921, 1922)		Samian 113
1415	5	occupation layer Building 388	I p 151; Fig 71a	
1421	8	fill (1549)		Iron 81
1428	5	layer	Fig 71b	
1429	5	layer	Fig 71b	Coin 21. Copper alloy
1430	7	layer	0	Samian S22
1431	5	floor layer	Fig 71a	
1434	7	wall Building 2023	Fig 93	
1438	8	layer	Fig 71a	
1441	5	wall core (1856)	8	Samian 9
1444	Unphased	fill		Quern 12
1445	6	feature	Fig 86	quoin 12
1446	6	road surface (603)	I p 155; Fig	
	0	1044 5411400 (000)	71a, b	Samian 58
1447	5	cobble layer	Fig 71b	Sumun 60
1449	6	foundation trench (1457)	I p 155; Fig 71a	
1110	0	Building 1448	1 p 100, 1 ig / ia	
1450	6	layer	Fig 71a	
1452	5	layer	Fig 71a	
1453	5 5–6	layer	Fig 71a	
1455	6	floor layer	Fig 71a	
1455	6	post pit Building 1448	I p 156; Fig 86	
1455	6			
1407	0	wall Building 1448	I p 156; Fig 71a	
1450	Drug C	lower	& 86	
1459	Pre 6	layer	Fig 71a	
1462	7	pit	I p 170; Fig 71b,	
1.400	_		92 & 93	
1463	$\frac{7}{2}$	fill (1462)	Fig 71b	
1465	7	pit	I p 170; Fig 71b,	
	_		92 & 93	
1467	6	post pit Building 1448	Fig 86	
1468	6	fill (1467)		Intaglio1
1469	7	fill (1827)		Quern 8
1470	7	wall Building 2023	Fig 93	
1473	7	layer		Samian 114
1475	6	layer		Bone 48
1476	6	layer	Fig 71b	
1479	7	fill (1465)	Fig 71b	
	6	pit	Fig 81	
1482	0	510		

Context	Phase	Description	Reference	Finds
1487	5+	post pit Building 1448	Fig 86	
1489	6	post pit Building 1448	Fig 86	
1491	6	layer	0	Samian 59; 64; 72. Copper alloy 10; 57Iron 111. Ceramic 10. Vessel glass 26ag
1504	5	foundation (382)	Fig 71a	8
1506	9	robbing pit or grave	I p 178; Fig 96	
1507	5	fill (1504)	Fig 71a	
1512	8	layer	0	Iron 117
1513	7	fill (1465)	Fig 71b	
1516	7	pit	I p 170; Fig 92, 93	
1520	8	fill (1915)		Copper alloy 59
1521	8	wall foundation Building 4182	I p 174; Fig 93	
1523	5	fill (1524)		Samian 15. Vessel glass 30k; 38q
1524	5	pit Building 388	I p 151	-
1527	5	pit Building 388	I p 151; Fig 80	
1529	6	beam slot Building 1448	I p 156; Fig 71a & 86	
1531	7	pit	I p 170; Fig 71a 92 & 93	ı,
1535	6	pit	Fig 71a	
1542	5	floor (2021) Building 388	I p 150; Fig 71a	a
1544	6	hearth Building 1448	I p 157; Fig 86	
1546	5	occupation layer Building 388	I p 151; Fig 71a	a
1548	6	pit Building 1448	I p 158; Fig 86	
1561	8	fill (1915)		Samian 123; 129. P3. Ceramic 7
1576	7	pit	I p 170; Fig 71a 92 & 93	1 ,
1577	6	layer	Fig 71b	
1578	5	layer	Fig 71b	
1579	6	pit	Fig 71b	
1582	6	pit Building 1448	I p 158; Fig 86	
1586	5+	pit Building 388	I p 151; Fig 80	
1588	6	pit Building 1448	I p 158; Fig 71b & 86	
1589	5	floor (2022)	Fig 71b	
1592	5	layer	Fig 71b	
1594	6	beam slot Building 1448	I p 156; Fig 711 & 86)
1595	6	fill 1596	Fig 71b	
1596	6	pit Building 1448	I p 158; Fig 71b & 86	
1598	6	pit Building 1448	I p 158; Fig 86	
1599	5	layer	Fig 71a	Coin 26
1604	10	fill (1603)		Samian 154–6. S39–40. window 39p
1608	6	post pit Building 1448	I p 156; Fig 86	
1610	7	post pit	I p 170; Fig 92	
1614	5	post pit 3976 Building 388	I p 149; Fig 80	a , a.a.
1616	7	fill (1827)	D ' 64	Samian S28
1621	6	pit	Fig 81	
1627	6	wall Building 4104	I p 158; Fig 86	
1649	6	pit	Fig 81	G : 00
1650	6	fill (1649)	T 4 (0 TH 4 -	Coin 23
1651	5	post pit (3976) Building 388	I p 149; Fig 80	
1653	7	foundation trench	I p 151	

Context	Phase	Description	Reference	Finds
1654	7	wall Building 2023	I p 170; Fig 93	
1663	6	road surface (603)	I p 155; Fig	
2000	Ū		71a, b	Window 39b
1664	6	layer	Fig 71b	Samian S4. Coin 24.
1001	Ŭ		119 110	Bone 26. Window 39a
1665	4	layer	Fig 71b	Done 20: Window obd
1666	5	cobble layer	Fig 71b	
1670	5	post pit (3976) Building 388	I p 149; Fig 80	
1684	8+	fill (1683)	1 p 145, 1 lg 00	Stone 4
1685	7	layer		Iron 32
1686	7	floor Building (2023)	I p 170	11011 52
1687	7	walling (1654)	1 p 170	Voggol glagg 28p
1702	modern	test pit	In 165, Fig 80	Vessel glass 38p
	6–7		I p 165; Fig 89	Domo 17
1704		fill (2186)	Fig 82c	Bone 17
1705	modern	field drain	I p 166; Fig 82b)
1 500	0		& 89	
1708	6	fill (2187)	Fig 82c	I 40
1709	6	fill (2187)	Fig 82c	Iron 42
1710	6	gully	I p 166; Fig 89	T 00
1713	6	grave	I p 166; Fig 89	Iron 98
1714	6–9	fill (1713)		Iron 60
1718	Roman	pit	I p 182; Fig 89	
1719	6–7	fill (1718)		Samian 87. Copper al-
				loy 21
1720	6	gully	I p 166; Fig 89	
1723	6	fill (2187)	Fig 82c	
1730	8	grave	I p 178; Fig 89	
1732	8	skeleton (1730)	Ip 178	
1733	modern	pipe trench	I p 178; Fig 89	
1738	6	grave	I p 166; Fig 89	Iron 98
1740	9	grave	I p 166; Fig 89	
1741	9	fill (1740)	1 / 0	Copper alloy 5
1742	9	skeleton (1740)	I p 179	
1743	9	grave	I p 179; Fig 89	
1745	6	depression	I p 165; Fig 89	
1748	6–7	fill (2186)	Fig 82e	Samian 83; 90
1749	7–8	?fill (960)	Fig, 82e	Copper alloy 15
1751	$\frac{1}{7}$	pit	I p 170; Fig 82a	
1101	•	pro	& 92	
1752	6	fill (890)	Fig 82f	
1753	6	fill (1767)	Fig 82f	
1754	6	fill (890)	Fig 82f	
1755	6	fill (890)	Fig 82f	
1756	6	fill (890)	Fig 82f	
1757	6	fill (890)	Fig 82f	
1759	6	fill (890)	Fig 82f	
1760	6	fill (890)	Fig 82f	
1761	8	fill (890)	Fig 82f	
1762	6	fill (890)	Fig 82f	
1763	6	fill (890)	Fig 82f	
1764	6	fill (890)	Fig 82f	
1765	6	fill (890)	Fig 82f	
1766	6	fill (890)	Fig 82f	
1767	6	pit	Fig 82f	
1768	6	fill (1751)	Fig 82a	
1771	?5	pit	I p 151; Fig 79	
1773	3	ditch	I p 146; Fig 74	
1775	4	gully	I p 148; Fig 76	
			& 82a	
			Fig 82a	

374		
Context	Phase	D
1777	6	fil
1778	6	fi1

Context	Phase	Description	Reference	Finds
1000	0		D : 00	
1777	6	fill (1751)	Fig 82a	
1778	6	fill (1751)	Fig 82a	G
1779	6	fill (1751)	Fig 82a	Samian 61
1780	6	fill (1751)	Fig 82a	
1781	6	fill (1751)	Fig 82a	
1782	6	fill (1751)	Fig 82a	
1783	6	fill (1751)	Fig 82a	
1784	4	fill (896)	Fig 82f	
1785	4	foundation trench (383)	Fig 71a	
1786	5	pit	I p 151; Fig 79	
			& 82d	
1787	5	fill (1786)	Fig 82d	Samian 19, 20
1788	5	fill (1786)	Fig 82d	
1789	5	fill (1786)	Fig 82d	
1790	5	fill (1786)	Fig 82d	Samian 21
1792	5	fill (1786)	Fig 82d	
1794	3–5	fill (2125)	Fig 82d	
1795	7–8	pit	I p 170; Fig 92	
1810	7	floor make-up Building 2023	I p 170	
1811	6	layer	I p 170	Samian S5
1819	U/S	layer	1	Samian 201; 204; 209.
	-,	- 0 -		S49. P8; Coin 25; 28;
				29; 31. Brooch 12; 16.
				Copper alloy 2; 3; 16;
				26; 35; 42–3; 45;
				VulcanIron 69. Bone
				19. Quern 7. Vessel
				-
				glass 7; 26t; 29; 30e, l;
1090	TT/Q	lovon		38i, ad; window 39j"
1820	U/S	layer		Iron 59. Vessel glass
1000	7	(l l D: l. l	T 170	38ac
1829	7	floor make-up Building 2023	I p 170	Vessel glass 14; 380
1831	6	layer		Samian 62; 68Graffito
				28. Iron 89. Bone 23;
1000	0			27 Vessel glass 38au
1836	6	fill (1841)		Iron 80
1837	6	fill (1842)		Bone 43
1839	U/S	finds		Samian 172. Iron 84
1840	6	post pit (3972) Building 1448	Fig 86	
1841	6	post pit (3972) Building 1448	Fig 86	
1842	6	post pit (3972) Building 1448	Fig 86	
1843	6	post pit (3972) Building 1448	Fig 86	
1844	5	post pit (3972) Building 1448	Fig 86	
1853	6	pit	Fig 81	
1856	5	wall Building 3793	I p 151	
1859	5	walling (1856)		Samian 11
1868	6	foundation (1868)	Fig 71a	
1870	8	layer	Fig 71a	
1871	7	robber trench Building 1448	I p 170	
1872	4	stone drain Building 3971	I p 146; Fig 76	
		5	& 77	
1873	5	post pit (3976) Building 388	I p 149; Fig 80	
1888	9	robbing pit or grave	I p 178; Fig 96	
1889	6	hearth Building 1448	I p 157; Fig 86	
1893	8	wall Building 4182	Fig 93	
1904	8–9	fill (1905)		Graffito. 23; 36. Quern
		(1000)		16
1917	8	foundation (383)	Fig 71a, b	
1919	8	foundation (702)	Fig 71a, b	
1913	5–6	layer		Coin 35
	5 0			

1934				
	5	layer	Fig 71a	
1935	7	fill (1465)	Fig 71b	
1938	6	floor layer	Fig 71a	
1955	5	floor (2021) Building 388	I p 150; Fig 71a	1
1957	4	post trench (3966)	I p 147; Fig 77	
1958	5	layer	Fig 71a	
1959	Pre 6	layer	Fig 71a	
1960	6	wall Building 1448	I p 156; Fig 86	
1962	6		1 , O	
		wall Building 1448	I p 156; Fig 86	i do 20i
1971	U/S	finds	T	window 39i
1975	4	post pit (3966)	Fig 77	
1977	4	post pit (3966)	Fig 77	
1979	4	post pit (3966)	Fig 77	
1982	4	post pit (3966)	Fig 77	
1986	5 +	pit Building 388	I p 151; Fig 80	
1987	5	levelling, pre-construction		
		(2021) Building 388	I p 150; Fig 71a	Samian 3. Vessel glass 25
1988	5	layer		Samian 8
1990	3	layer	Fig 71a	
1991	5	layer		Brooch 4
1992	5	finds		Brooch 7
1993	5	layer	Fig 71b	Brobell 7
1999	5	layer	Fig 71a	
2000	3	layer	Fig 71a	
2001	5	cobble layer	Fig 71a	
2002	6	post pits Building 721	I p 158	
2004	3–4	road surface (603)	I p 143; Fig 4a, b	
2006	5	foundation trench (711)		
2010	6	pit	Fig 81	
2020	5+	fill (2019)	Fig 01	Bone 24
			I. 150. E. 71.	
2021	5	floor Building 388	I p 150; Fig 71a	
0000	-		& 80	
2022	5	floor Building 388	I p 151; Fig 71b	
2023	7	Building	Fig 71b	
2024	7	wall Building 2023	Fig 93	
2031	6	post pit (3972) Building 1448	Fig 86	
2035	7	fill (1465)		
2044	6–7	layer		Vessel glass 8; 30b
2054	6	fill (2053)		Samian 23
2055	6	fill (2232)		Samian 25
2059	$\ddot{5}$	post pit (3969)	Fig 80	
2061	6	layer	1 1g 00	Samian S7–8. Graffito 53. Iron 36. Quern 9.
2062	5	lowon		Vessel glass 26g; 33; 38v Copper alloy 50Iron 5;
2002	5	layer		6
2064	5	accumulation Building 4104	I p 158	Samian 13. Iron 21; 99
2065	5	layer	-	Coin 32
2066	5	layer		Bone 20; 38
2071	6	floor Building 4104	I p 158	
2074	U/S	initial trowelling	1 p 100	Samian 189; 205; 215. S44; S55. Graffito . 53; 56 Coin 33, 34. Copper alloy 49. Bone 10; Ves- sel glass 2; 4b; 21; 26s; 20g ouvindou 20b.
2075	5	floor Building 3793	I p 151; Fig 80	30g, o;window 39h;

Context	Phase	Description	Reference	Finds
			& 86	
2076	10	layer		Graffito 27
2079	5	floor make-up Building 3793	I p 151	
2082	5	finds	•	Quern 17
2084	5	stone floor		Querns 1 & 17
2100	5	finds		Stone 21
2101	5	fill (1786)	Fig 82d	
2102	5	fill (1786)	Fig 82d	
2103	5	fill (1786)	I p 151; Fig 82d	
2117	6	grave	I p 180; Fig 96	-
2118	6	fill (2117)	- F,8	
2119	6	skeleton (2117)	I p 180	
2120	7 or later	pit	I p 170; Fig 92	
2125	3–5	gully	Fig 82d	
2127	0.0	layer	Fig 82f	
2152	7–8	fill (954)	Fig 82c	Copper alloy 22
2152	6-7	fill (990)	Fig 82c	Coin 27
2154	U =1	fill (990)	Fig 82c	00111 21
2155 2156	7–8	fill (3027)	Fig 82b	
2150	7-8	fill (960)	Fig 82b	
2159	$\begin{array}{c} 6 \\ 6-7 \end{array}$	skeleton (1738)	I p 166	Inon 76
2160		$ \operatorname{coffin}(1738) $	T 175	Iron 76
2161	8 or 9	coffin (946)	I p 175	
2163	late 7 or 8	revetment (960)	I p 175; Fig 82b	,
	-		c & 89	
2164	7–8	fill (960)	Fig 82c	
2165	6-7	fill (2186)	Fig 82c	
2167	7–8	fill (960)	Fig 82c	
2168	6	fill (2187)	Fig 82c	
2171	6–7	fill (2186)	Fig 82e	Samian 84
2172	6 - 7	fill (2186)	Fig 82e	
2174	6 - 7	skeleton (942)	I p 165	
2175	6	soil mark	I p 166; Fig 89	
2181	6	grave	I p 166; Fig 89	
2183	6	skeleton (2181)	I p 166	
2185	7–8	fill (960)	Fig 82b	
2186	6 (7)	ditch	I p 173, (201);	
			Fig 82b, c, e	
			& 89	
2187	6	ditch	I p 201; Figs 15	b,
			c, e & 89	
2191	6–7	fill (999)	Fig 15c	
2198	6	fill (2187)	-	Vessel glass 38ah
2201	5	layer		Brooch 5
2226	5	hearth Building 388	I p 151; Fig 80	
2239	6	oven Building 1448	I p 157; Fig 86	
2247	6		Fig 86	
2249	6	flue Building 1448	I p 158; Fig 86	
2257	8	layer	r =30, 1 1 8 00	Samian 126. Vessel
	-			glass 24; 38c
2259	5	layer		Vessel glass 34
2260	5	layer	Fig 71a	Samian 7
2260 2261	4	paving Building 3971	I p 146; Fig 77	
2270	4 - 5	fill (4198)	тр 140, 1 lg //	Samian P1
2270 2272			Fig 71a	
	4	layer	Fig 71a	Vessel glass 30c
2273	4	layer	Fig 71a	Coin 38 Veggel glagg 20m
2278	6	fill (2276)		Vessel glass 30m
2280	5+	fill (2281)		Bone 41. Vessel glass
				26j
2282	5	layer		Iron 8

Context	Phase	Description	Reference Finds
Context	1 Hase	Description	Reference Finus
2284	4	cobble layer	Fig 71a
2287	4	floor Building 3971	I p 146; Fig 77
2295	3	cobble layer	I p 145; Fig 74
			& 75
2296	1	buried soil	I p 139; Fig 71a
2297	4	beamslot Building 3971	I p 146; Fig 77
2299	3	charcoal deposit	I p 145; Fig 4a
2300	2	occupation spread	I p 143; Fig 71a
2303	3	layer	Fig 71a
2305	3	floor (2367) Building 2374	I p 144; Fig 71a & 75
2311	5	pre-floor layer (2021)	
		Building 388	I p 150; Fig 71a Samian 4
2314	3	pit	Fig 75
2316	4	post pit (3966)	I p 147; Fig 77
2321	4	gully	I p 146; Fig 75
			& 77
2324	4	fill (2321)	Coin 37
2328	4	fill (2389)	Fig 71a
2329	4	fill (2389)	Fig 71a
2330	3–4	layer	Fig 71a
2331	3	floor (2305)	Fig 71a
2333	3	eavesdrip gully Building 2374	I p 144; Fig 71a
			& 75
2338	5	post pit (3969) Building 388	Fig 80
2341	5	post pit (3969) Building 388	Fig 71a & 80
2344	5	post pit (3969) Building 388	Fig 80
2346	5	beamslot (3969) Building 388	Fig 80
2347	3	occupation layer	Fig 71a
2352	3	floor layer (2305)	Quern 2
2354	3	post pit Building 2374	I p 145; Fig 75
2356	3	post pit	Fig 75
2359	3	post pit Building 2374	I p 145; Fig 75
2363	3	post pit	Fig 75
2365	3	post pit	Fig 75
2367	3	floor (2305) Building 2374	I p 144; Fig 71a & 75
2368	3	post pit	Fig 75
2379	3	occupation layer	Fig 71a
2380	3	occupation layer	Fig 71a
2381	3	layer	Fig 71a
2382	3	occupation layer	Fig 71a
2386	5	layer (2397)	Samian 16
2387	3	layer (2397)	Fig 71a
2389	4	road ditch (603)	I p 146; Fig 71a,
2005	т		76 & 77
2393	5	post pit (3969) Building 388	Fig 80
2396	5	post pit (3969) Building 388	Fig 80
2398	3	post pit	Fig 75
2399	3	post pits Building 2374	I p 144; Fig 75
2400	1	buried soil	I p 139; Fig 71a
2401	$\overline{5}$	layer	Fig 71a Bone 49
2402	4	layer	Fig 71a
2403	3	fill (612)	Fig 71a
2404	3	road make-up (603)	I p 146; Fig 71a
2405	5	layer	Fig 71a
2406	6	fill (1843)	Coin 36
2409	5	layer	Fig 71a
2410	3	fill (612)	Fig 71a
2410	3	fill (612)	Fig 71a
	0		

Context	Phase	Description	Reference	Finds
2412	5	layer	Fig 71a	
2413	4	layer	Fig 71a	
2415	1	buried soil	I p 139; Fig 71a	L
2416	4	road foundation (603)	I p 146; Fig 71a	L
2419	4	layer	Fig 71a	
2420	5	fill (2006)	Fig 71a	
2421	6	layer	Fig 71a	
2422	6	layer	Fig 71a	
2428	3–5	layer		
2430	7	accumulation layer	I p 170	Brooch 3
2431	6	layer		Samian 66
2439	4	gully	I p 146; Fig 76 & 77	
2441	7	accumulation layer	ал Ір170	
2449	2	pit	I p 143; Fig 71a	L .
		1	& 72	
2450	4	? oven	I p 147; Fig 71a	L
			& 76	
2451	2	fill (2449)	Fig 71a	
2452	4	layer	Fig 71a	
2453	4	layer	Fig 71a	
2454	4	layer	Fig 71a	
2455	4	layer	Fig 71a	
2456	4	layer	Fig 71a	
2457	4	layer	Fig 71a	
2458	4	layer	Fig 71a	
2459	4	layer	Fig 71a	
2460	5	layer	Fig 71a	
2461	Pre 4	layer	Fig 71a	
2462	4	cobble layer	Fig 71a	
2463	4	layer	Fig 71a	
2464	4	cobble layer	Fig 71a	
2465	5	layer	Fig 71a	
2466	6	layer	Fig 71a	
2467	4	layer	Fig 71a	
2468	4	layer	Fig 71a	
2469	6	layer	Fig 71a	
2470	4	layer	Fig 71a	
2471	4	layer	Fig 71a	
2472	4	post pit Building 3971	I p 146; Fig 77	Stars 7
2473	4	fill (2473)	I	Stone 7
$2474 \\ 2476$	3 3	gully / beamslot	I p 145; Fig 74	
2476 2482	3 4	post pit layer – building 3971	I p 145; Fig 74	
2492	$\frac{4}{2}$	soil mark	I p 146 I p 143; Fig 72	
2490 2498	4	hearth Building 3971	I p 145, Fig 72 I p 146; Fig 77	
2498 2501	u/S	initial trowelling	1 p 140, Fig 77	Samian 164; 166; 170;
2001	0,0	initial trowening		175; 177; 184; 191; 203; 206; 210; 216; 219; 221. S56. Graffito. 2. Coin 30. Iron 35; 106. Quern 23. Vessel glass 23a; 26ae; 38b, n, ap.
2502	U/S	initial trowelling		Samian 183; 196. Bone 46
2507	7	pit	I p 173; Fig 91	.
2508	7	fill (2507)	_	Jet 6–7
2509	7	pit	I p 173; Fig 91	
2514	Roman	ditch	I p 181; Fig 97	
2520	Roman	grave	I p 181; Fig 97	

Context	Phase	Description	Reference	Finds
2530	Roman	skeleton (2520)	I p 181	
2533	8	ditch	I p 175; Fig 94	
2538	8	road ditch (2553)	I p 175; Fig 94	
2546	8	pit	I p 175; Fig 94	
2550	6	gravel surface	I p 164; Fig 84	
2552	7	stone spread	I p 173; Fig 91	Samian 116. Vessel
2002	•	stone spread	1 p 110, 1 g 01	glass 30q
2553	?5 (6)	road	I p 164, (175);	Brass and
2000		1000	Fig 77, 84, 91	
			& 94	
2554	8	road ditch (2553)	I p 175; Fig 71c	d
2004	0	10au ultell (2000)	& 94	, u
9556	4	fill (2685)		Graffito 81
2556	4		Fig 71c	Granno 81
2557	8	road ditch (2553)	I p 175; Fig 71d	
0550	TLO	C* 1	& 94	G : 105
2558	U/S	finds		Samian 185
2560	6	layer		Samian 26. S10
2561	8	layer		Iron 12
2562	7	pit	I p 173; Fig 91	
2564	6	layer		Samian 28. Bone 30.
		-		Vessel glass 26ad; 38a;
2565	6	road make-up (2550)	I p 164: Fig 71c	Samian 29, 31. S11.
	-	o r ()	- F,8 ·	Iron 17. Vessel glass
				26ac; 38an
2567	Roman	grave	I p 181; Fig 97	2000, 0000
2569	8	fill (2698)	Fig 71c	
2570				Samian S13
	6	layer	Fig 71c	
2571	4–5	layer	Fig 71c, d	Samian 2
2572	6	ditch	Fig 71c	
2575	6	layer	Fig 71c	
2576	6	cobble layer	I p 164; Fig 83	
2577	8	road surface (2553)	I p 175	
2578	6	layer	Fig 71c	Quern 19
2581	Roman	skeleton (2567)	I p 181	
2584	Unphased	ditch	Fig 97	
2587	8	pit	I p 175; Fig 94	
2589	6	stone spread	Fig 71c & 91	Samian 69. Copper al-
	-			loy 48
2590	Roman	fill (2567)	Fig 71c	5
2596	6	fill (4276)	Fig 71c	
2598	6	ditch	Fig 71c	
2599	6	fill (2599)	Fig 71c	
2601	6	fill (2599)	Fig 71c	17 1 1 00
2604	6	fill (2646)	Fig 71c	Vessel glass 38am
2605	6	feature	Fig 71c	
2606	6	fill (2605)	Fig 71c	Samian S14
2607	7	pit	I p 173; Fig 71c	
			& 91	
2608	7	fill (2607)	Fig 71c	
2609	7	fill (2607)	Fig 71c	Copper alloy 58. Iron
		· ·	0	54
2610	3–4	layer	Fig 71c	
2611	3-4	layer	Fig 71c	
2612	3-4	layer	Fig 71c	
2614		•	-	
2615 2615	6	fill (4276)	Fig 71c	Samian 00. 05 Warmal
2n10	5	smithing waste – Building 4263		Samian 22; 35. Vessel
2010				
	-			glass 16d
2616 2618	5 7	smithing waste – Building 4263 oven	I p 154; Fig 83 I p 172; Fig 91	glass 16d

Context	Phase	Description	Reference	Finds
2619	7	smithing waste		Iron 44. Vessel glass
		0		38ao
2620	7	smithing waste	I p 173	Samian 122. Iron 118. Bone 37
2622	7	clay surface	I p 173	
2626	7	layer	-	Iron 40
2627	7	smithing waste	I p 173	
2628	7	smithing waste	I p 173	Vessel glass 26ab
2629	6	fill (2662)	1	Iron 52
2630	6	layer		Samian 33. Quern 18
2631	7	wall	I p 172; Fig 91	
2632	6	ditch	I p 164; Fig 710 & 84	2
2633	6	fill (2632)	Fig 71c	
2646	6	foundation trench	I p 164; Fig 710 & 84	2
2647	6	layer		Vessel glass 26aa
2648	6	layer	Fig 71c	<u> </u>
2649	6	layer	I p 164; Fig 710 & 84	2
2651	?4	pit	I p 148; Fig 78	
2653	?4	pit	I p 148; Fig 78	
2656	5	post pit Building 4263	Fig 83	
2658	6	layer	Fig 71c	
2660	5	floor make-up Building 3793	I p 151	Samian 158–9. S41. Iron 47. Quern 20
2661	Roman	skeleton	I p 180; Fig 97	non 41. quein 20
2662	6	hearth	I p 164; Fig 84	
2663	6	layer	Fig 71c	
2665	6	fill (2785)	Fig 71c, d	
2666	7	road surface (2553)	I p 172; Figs 71	.c, d
2667	7	layer	Fig 71c, d	
2668	7	pit	I p 173; Fig 91	
2670	U/S	topsoil	Fig 71c	
2671	U/S	layer ?ploughsoil	Fig 71c	
2672	U/S	layer ?ploughsoil	Fig 71c	
2673	6	fill (2605)	Fig 71c	
2674	7	layer	Fig 71c	
2675	$\frac{1}{7}$	feature	Fig 71c	
2677	•	layer	Fig 71c	
2679	U/S	finds	119,110	Samian 167. S42
2680	?4	ditch	I p 148	Sumun 101. 512
2684	8	layer	Fig 71c	
2685	7	road ditch (2553)	I p 172; Fig 710 & 91	2
2687	7	?fill (2685)	Fig 71c	
2688	$\frac{1}{7}$	fill (2685)	Fig 71c	
2689	$\frac{7}{7}$	fill (2685)	Fig 71c	
2690	$\frac{7}{7}$	fill (2685)	Fig 71c	
2691	6	road ditch (2553)	I p 164; Fig 710	•
			& 84	·
2696	6 6	fill (2691) fill (2691)	Fig 71c Fig 71c	
2697		fill (2691) read ditab (2552)		
2698	8	road ditch (2553)	I p 175; Fig 710 d & 94	
2700	8	fill (2698)	Fig 71c	
2701	8	fill (2698)	Fig 71c	
2702	8	fill (2698)	Fig 71c	
2703	8	fill (2698)	Fig 71c	

Context	Phase	Description	Reference	Finds
2704	U/S	finds		Samian S45
2706	5	post pit Building 4263	Fig 83	
2711	?4	pit	I p 148; Fig 78	
2713	?4	pit	I p 148; Fig 78	
2715	5	post pit Building 4263	Fig 83	
	5			
2717		post pit Building 4263	Fig 83	
2719	3–5	fill (2825)		Graffito 61
2720	3–5	finds		Iron 18
2722	6	road ditch (2553)	I p 164; Fig 71c, d & 83	
2723	6	fill (2722)	Fig 71c, d	
2724	6	fill (2722)	Fig 71c, d	
2725	3-5	ground surface?	I p 164; Fig 71d	Iron 91
2727	6	layer	1 / 0	
2729	5	post pit Building 4263	Fig 83	
2733	6	fill (2732)	119.00	Iron 114
2734	5	post pit Building 4263	I p 154; Fig 83	11011 114
			r h 194' r 18 09	Somiar 165
2736	U/S	finds		Samian 165
2737	U/S	finds	D : 62	Iron 19
2739	5	post pit Building 4263	Fig 83	_
2742	5	smithing waste Building 4263	I p 154	Iron 77
2745	8	layer	Fig 71c, d	
2746	8	layer	Fig 71d	
2747	8	layer	Fig 71d	
2748	3–5	layer	Fig 71d	
2749	1	layer	Fig 71d	
2750	$\frac{1}{7}$	layer	Fig 71d	
2750 2751		-	0	
2752	7	layer	Fig 71c, d	
	1	layer	Fig 71c	
2753	6	road surface (2553)	I p 164; Fig 71c	,
	-		d & 83	
2754	7	road ditch (2553)	I p 172; Fig 71d & 94	1
0755	Q	lovon		
2755	8	layer	Fig 71d	
2756	8	layer	Fig 71d	
2758	3–5	fill (2757)	Fig 71d	
2759	3–5	fill (2757)	Fig 71d	
2760	3-5	layer	Fig 71d	
2761	8	road ditch (2553)	I p 175; Fig 71d	l
			& 94	
2763	8	?fill (2763)	Fig 71d	
2764	8	fill (2764)	Fig 71d	
2765	7	road ditch (2553)	I p 172; Fig 71d	l
	*		& 91	
2767	7	fill (2765)	Fig 71d	
2768	6	road ditch (2553)	I p 164; Fig 71d	1
2100	0	10au undii (2000)	& 84	L
2770	2	stakehole Building 3750	I p 140; Fig 71d	1
2771	6	fill (2768)	Fig 71d	•
2772	6	fill (2768) fill (2557)	Fig 71d	
2775	8	fill (2557)	Fig 71d	
2776	8	layer	Fig 71d	
2778	8	fill (2698)	Fig 71d	
2779	8	fill (2698)	Fig 71d	
2780	8	fill (2698)	Fig 71d	
2781	8	fill (2698)	Fig 71d	
2783	8	fill (2698)	Fig 71d	
2784	8	fill (2698)	Fig 71d	
	6	road ditch (2553)	I p 164; Fig 71d	1
2785				

Context	Phase	Description	Reference	Finds
2787	6	fill (2785)	Fig 71d	
2788	6	fill (2785)	Fig 71d	
2792	6	fill (2785)	Fig 71d	
2793	6	fill (2785)	Fig 71d	
2794	6	fill (2785)	Fig 71d	
2795	6	fill (2785)	Fig 71d	
2797	8	fill (2554)	Fig 71d	
2798	8	fill (2554)	Fig 71d	
2800	8	fill (2754)	Fig 71d	
2801	7	fill (2754)	Fig 71d	
2802	$\frac{1}{7}$	fill (2754)	Fig 71d	
2804	6–7	pit	Fig 71d	
2805	6-7	fill (2804)	Fig 71d	
2806	6	feature	Fig 71d	
2807	6	fill (2806)	Fig 71d	
2808	6	feature	Fig 71d	
2809	6	fill (2808)	Fig 71d	
2810	3–5	fill (2825)	Fig 71d	
2818	5	oven	Fig 71c	
2820	8	layer	118,110	
2821	8	layer	Fig 71c	
2822	7	layer	Fig 71c	
2824	6	road make-up (2553)	I p 164; Fig 710	2
2825	3–5	oven	Fig 71d	
2826	3–5	fill (2825)	Fig 71c	
2833	5	fill (2832)	119,110	Copper alloy 30. Vessel
2000	0	(2002)		glass 38al
2834	7	?fill (2607)	Fig 71c	Siddi Oodi
2835	5	fill (4207)	118,110	Samian 5, 6
2836	5	fill (2832)		Copper alloy 12. Vessel glass 38ak
2846	3–5	fill (2813)	Fig 71d	9
2848	3–5	fill (2813)	Fig 71d	
2851	U/S	topsoil	Fig 88a	
2856	Unphased	pit	I p 180; Fig 97	
2863	Unphased	pit	Fig 88a	
2865	Unphased	layer	Fig 88a	
2866	Unphased	fill (2867)	Fig 88a	
2867	Unphased	ditch	Fig 88a, 97	
	I I		& 98	
2868	Unphased	fill (2869)	Fig 88a	
2869	Unphased	ditch	Fig 88a	
2870	Unphased	pit	Fig 88a	
2873	Unphased	layer	Fig 88a	
2874	Unphased	culvert	I p 180; Fig 88a 97 & 98	а,
2876	Unphased	fill (2874)	Fig 88a	
2877	Unphased	bedding layer	I p 180	
2878	Unphased	ditch	I p 180; Fig 21a	3
2879	Unphased	fill 2878	Fig 88a	~
2880	Unphased	fill 2881	Fig 88a	
2881	Unphased	ditch	I p 180; Fig 88a	a
2882	Unphased	layer	Fig 88a	
2883	Unphased	layer	Fig 88a	
2884	Unphased	layer	Fig 88a	
2885	Unphased	layer	Fig 88a	
2886	Unphased	layer	Fig 88a	
2887	Unphased	layer	Fig 88a	
2888	Unphased	layer	Fig 88a	
2890	Unphased	layer	Fig 88a	
_000	Chphasea	14,01	1 15 00u	

Context	Phase	Description	Reference	Finds
2891	Unphased	layer	Fig 88a	
2892	Unphased	layer	Fig 88a	
2902	6	pila Building 4572	I p 162; Fig 87	
2903	7c	hypocaust infill Building 4572	Fig 88c	
2904	7c	hypocaust infill Building 4572	Fig 88c	
2906	6	wall Building 4572	Fig 87 & 88c	
2907	6	wall Building 4572	I p 162; Fig 87	
2908	6	wall Building 4572	Fig 88c	
2910	Unphased	?structure	Fig 96	
2916	6	wall-flue Building 4572	I p 162; Fig 87	
2920	Roman	surface	I p 180; Fig 96	
3002	U/S	finds	I	Jet 9
3012	Unphased	pit	Fig 89	
3014	$6-7^{-1}$	pit	I p 182; Fig 89	
3021	6/7	fill (999)	1 / 0	Bone 31
3024	6/7	fill (2186)		Quern 21
3027	8	ditch (=960)	I p 175; Figs 82 & 89	
3036	7–8	fill (960)	Fig 82c	
3037	7–8	fill (960)	Fig 82c	
3038	6	skeleton (1713)	I p 166	
3039	Roman	pit	I p 182; Fig 89	
3040	6–7	fill (3039)	Fig 82e	
3041	6-7	fill (3039)	Fig 82e	
3044	6-7	fill (2186)	Fig 82e	
3046	0-1 7-8	fill (960)	Fig 82e	
3047	7–8	fill (960)	Fig 82e	
3048	7–8	fill (960)	Fig 82e	
3049	7–8	fill (960)	Fig 82e	
3050	7–8	fill (960)	Fig 82b	
3053	6-7	fill (2186)	Fig 82b	
3054	6	fill (2187)	Fig 82b	
3055	6-7	fill (2186)	Fig 82b	
3056	6	fill (2187)	Fig 82b	
3057	6	fill (2187)	Fig 82b	
3059	6	ditch	I p 164	
3060	6	pit	I p 166; Fig 89	
3065	Modern	conduit	Fig 89	
3219	Roman	foundation	I p 180; Fig 96	
3222	Roman	foundation	I p 180; Fig 96	
3243	Roman	road	I p 180; Fig 96	
3246	Roman	oven	I p 180	
3250	Unphased	fill (3249)		Copper alloy 20
3251	Roman	oven	I p 180	
3282	Roman	road	I p 180; Fig 96	
3317	6	layer	Fig 88c	
3318	Unphased	layer	Fig 88c	
3320	Unphased	layer	Fig 88c	
3321	Unphased	layer	Fig 88c	
3323	?6	wall Building 4572	Fig 87 & 88c	
3329 3336	7c 7c	layer layer		Samian 92. Brooch 11. Ceramic 9 Iron 23; 24; 25. window
3341	6	wall Building 4572	Fig 87	39m
3348	6–7	layer	Fig 88c	
3351	6	fill (3871)		Samian 38
3353	4	ditch	I p 147; Fig 76	
3363	5	fill (3362)	- r ,g 10	Samian 17
3364	5	fill (3362)		Samian 18

Context	Phase	Description	Reference	Finds
3366	4	fill (3353)		Samian S2
3368	pre-6	layer		Copper alloy 17
3376	6-7	fill (3349)	Fig 88c	copper anoy 17
3377	6-7	fill (3687)	Fig 88c	
	6–7 6–7		rig ooc	Stone 6
3397		layer	T 140 E' 70	Stone 6
3404	2	post pit Building 3750	I p 140; Fig 73	
3406	2	beam slot Building 3750	I p 140; Fig 73	
3409	2	post pit Building 3750	I p 140; Fig 73	
3411	2	beam slot Building 3750	Fig 73	
3497	5 (6)	posthole Building 3793	I p 151, (158);	
			Fig 80 & 86	
3498	5 (6)	posthole Building 3793	I p 151, (158);	
			Fig 80 & 86	
3499	5 (6)	posthole Building 3793	I p 151, (158);	
			Fig 80 & 86	
3503	3	eavesdrip gully Building 2374	I p 144; Fig 71a	
0000	0	cavesarip gany Dunung 2014	& 75	L
3509	3+	layer	a 10	Iron 90
3511	3+ 4	pit	Fig 77	11011.00
			rig //	Coin 20 Dama 15
3512	4	fill (3511)	T 140	Coin 39. Bone 45
3532	2	post pit Building 3567	I p 143	
3533	2	beam slot Building 3568	I p 143	
3534	2	beam slot Building 3568	I p 143	
3535	2	post pit Building 3568	I p 143	
3536	4	layer		Graffito 83
3553	2	eavesdrip gully Building 3568	I p 143	
3554	3	buried soil	I p 146; Fig 74	
3555	2	? pit /posthole Building 3568	I p 143; Fig 71b	
3556	$\overline{5}$	pit	Fig 71b	-
3564	5	pit	Fig 71b	
3565	4	pit	Fig 71b	
3566	4	pit	Fig 71b	
3569	2	pit	I p 143; Fig 72	
3573	4	post pit	Fig 77	
3574	4	post pit	Fig 77	
3579	4	beam slot Building 3971	I p 146; Fig 77	
3580	3	post pit	I p 146; Fig 71b)
			& 74	
3589	4	layer	Fig 71b	
3590	4	layer	Fig 71b	
3591	4	layer	Fig 71b	
3592	5	layer	Fig 71b	
3596	4	layer	Fig 71b	
3597	2	layer	Fig 71b	
3599	3	burnt clay layer	I p 146; Fig 71b	
3613	Roman	surface	I p 180; Fig 96	
3621			I p 162; Fig 87	Stope 19
3622	6	pila Building 4572		DIDITE 19
	6	pila Building 4572	I p 162; Fig 87	
3623	6	pila Building 4572	Fig 88c	0, 1,
3624	6	pila Building 4572	I p 163; Fig 87	Stone 14
3626	7c	finds		Iron 7. Vessel glass
	_			27-8; 37
3634	6	pila Building 4572	Fig 88c	
3635	6	pila Building 4572	I p 162; Figs 87	
			& 88c	
3639	U/S	ploughsoil		window 39o
3641	6	gravel spread	I p 163	Stone 5
		fill (3644)	- r -00	
3645	n_ (
3645 3647	$6-7 \\ 6-7$	layer		Samian 85. Vessel glass

Context	Phase	Description	Reference	Finds
3651	7c	layer		Samian 93. Copper al- loy 62. Iron 34
3655	6	wall Building 4572	Fig 87	-9
3656	6	pila Building 4572	I p 158; Fig 87	
3657	6	pila Building 4572	I p 158; Fig 87	
3660	6	<i>pila</i> Building 4572	I p 158; Fig 87	
3667	U/S	topsoil	Fig 88c	
3668	U/S	ploughsoil	Fig 88c	
3675	6-7	fill (3644)		Samian 86
3687	?5	hearth	I p 151; Fig 79	Saman 00
3695	6	oven ? Building 720/1	I p 151, I g 10 I p 158	
3703	3	post pit (2399)	Fig 75	
3706	3	post pit (2399)	Fig 75	
	$\frac{5}{2}$		-	
3709	Z	post pit Building 3750	I p 141; Fig 73	
0510	0		& 75	
3712	3	stakehole (3713)	Fig 75	
3713	3	post pits Building 2374	I p 145; Fig 75	
3715	4	post pit (3966)	I p 147; Fig 77	
3719	Roman	foundation	I p 180; Fig 96	
3731	2	beam slot Building 3750	Fig 73	
3733	2	beam slot Building 3750	Fig 73	
3735	2	beam slot Building 3750	Fig 73	
3739	2	posthole building 3750	I p 141; Fig 73	
3741	2	charcoal spread Building 3750	I p 141; Fig 73	
3743	2	wall trench Building 3750	Fig 73	
3762	2	pit	I p 143; Fig 72	
3764	2	pit	I p 143; Fig 72	
3767	$\frac{1}{2}$	stakehole Building 3750	I p 140	
3768	$\frac{2}{2}$	stakehole Building 3750	I p 140	
3769	$\frac{1}{2}$	stakehole Building 3750	I p 140	
3774	$\frac{2}{6}$	oven ? Building 720	I p 158; Fig 81	
3795	6	oven ? Building 720	I p 158; Fig 81	
3796	1	buried soil	Fig 71b	
3797	3 (7a) (8)	road	I p 146, (167),	
			(174); Fig 74, 9	,
0000	0	11	12, 18; 25; 28	
3800	9	robbing pit	I p 178; Fig 96	
3801	3	occupation layer	I p 146; Fig 71k	
3802	3	occupation layer	I p 146; Fig 71k)
3803	4	layer	Fig 71b	
3804	4	layer	Fig 71b	
3805	4	layer	Fig 71b	
3806	4	layer	Fig 71b	
3807	4	layer	Fig 71b	
3808	3	layer	Fig 71b	
3809	3	occupation layer	I p 146; Fig 71k)
3810	4	fill 3566	Fig 71b	
3811	4	fill 3565	Fig 71b	
3813	4	pit	Fig 71b	
3814	4	layer	Fig 71b	
3816	4	layer	Fig 71b	
3817	4	layer	Fig 71b	
3818	4 3			
		layer fill (2564)	Fig 71b	
3820	5	fill (3564)	Fig 71b	
3821	3	layer	Fig 71b	
3822	5	layer	Fig 71b	
3823	5	layer	Fig 71b	
3824	3	layer	Fig 71b	
3826	4	cobble layer	I p 147; Fig 76	
3830	5	layer	Fig 71b	

Context	Phase	Description	Reference Finds
3831	5	layer	Fig 71b
3832	3	fill (612)	Fig 71b
3833	3	fill (612)	Fig 71b
3834	3	fill (612)	Fig 71b
3836	4	pit	Fig 71b
3837	5	layer	Fig 71b
3839	$\frac{5}{2}$	stakeholes	I p 143; Fig 72
3844	4	post pit	Fig 77
3871	6	gully	Fig 86
3900	3	road ditch (3797)	I p 146; Fig 74,
0000	0		76 & 79
3910	8	pit Building 4182	I p 174; Fig 93
3922	6	wall Building 1448	I p 155; Fig 86
3944	7	floor Building 2023	I p 170; Fig 93
3945	4	post trench (3966)	I p 147; Fig 77
3946	7	robber trench Building 1448	(I p 155), 170;
			Fig 92
3947	6	flue Building 1448	I p 158
3950	4	post pit Building 3966	Fig 77
3951	6	floor Building 1448	I p 157; Fig 86
3957	6	flue Building 1448	I p 158; Fig 86
3962	5	foundation trench Building 388	I p 149; Fig 100
3964	3	post pit (2399)	Fig 75
3966	4	structural line	I p 147; Fig76
3969	5	structural line Building 388	Fig 80
3970	5	beam slot (3969) Building 388	Fig 80
3972	6	structural line Building 1448	I p 156
3973	5	wall line Building 388	Fig 80
4012	Roman	surface	I p 180; Fig 96
4014	Roman	ditch	I p 180; Fig 96
4023	Roman	oven	I p 180; Fig 96
4025	Roman	surface	I p 180; Fig 96
4042	Roman	foundation	I p 180; Fig 96
4054	Roman	ditch	I p 180; Fig 96
4059	Roman	robber trench	I p 180; Fig 96
4068	Roman	road	I p 180; Fig 96
4082	Roman	road	I p 180; Fig 96
4108	5	layer	Fig 71b
4115	6	post pit Building 1448	Fig 86
4119	6	post pit Building 1448	Fig 86
4121	6	pit	Fig 81
4123	6	pit	Fig 81
4138	6	pit	Fig 81
4140	6	pit	Fig 81
4141	6	pit	Fig 81
4164	8	hearth Building 387	I p 174; Fig 93
4165	8	hearth Building 387	I p 174; Fig 93
4167	5	beamslot Building 3793	I p 151; Fig 80
4173	2	layer	Fig 71a
4192	3	hearth Building 2374	I p 145; Fig 75
4193	3	hearth Building 2374	I p 145; Fig 75
4195	4	cobble layer	Fig 71a
4201	?4	layer	I p 148;
4007	٣		Fig 71a, c
4207	5	hearth Building 4263	I p 154; Fig 83
4214	5	hearth Building 4263	I p 154; Fig 83
4010	5	post pit Building 4263	Fig 83
4218			D' 71
4219	8	layer	Fig 71c
			Fig 71c Fig 71c Fig 71c

<u> </u>			
Context	Phase	Description	Reference Finds
4224	7	fill (2607)	Fig 71c
4225	3–5	pit	Fig 71c
4228	3–5	fill (4225)	Fig 71c
4229	6	layer	Fig 71c
4230	7	foundation trench	I p 172; Fig 71c
			& 91
4232	6	layer	Fig 71c
4235		layer	Fig 71c
4236	6	feature	Fig 71c
4238	?4	pit	I p 148; Fig 71c
			& 78
4240	6	layer	Fig 71c
4241	5	feature	Fig 71c
4242	5	fill (4241)	Fig 71c
4243	6	road surface 2550	I p 164
4246	?4	pit	I p 148; Fig 78
4251	?4	hearth	I p 148; Fig 78
4255	?4	pit	I p 148; Fig 78
4257	5	post pit Building 4263	Fig 83
4274	7	road ditch 2553	I p 172; Fig 71c
			& 91
4276	6	road ditch 2553	I p 164; Figs 71c
			& 84
4281	Unphased	pit	Fig 97
4282	Unphased	pit	Fig 97
4283	Unphased	pit	Fig 97
4284	Unphased	ditch	Fig 97
4285	Unphased	ditch	Fig 97
4286	Unphased	pit	Fig 97
4287	Unphased	ditch	Fig 97
4288	Unphased	ditch	Fig 97
4289	Unphased	ditch	Fig 97
4291	Unphased	ditch	Fig 97
4292	Unphased	feature	Fig 97
4293	Unphased	ditch	Fig 97
4294	Unphased	ditch	Fig 97
4295	Unphased	?pit	Fig 97
4296	Unphased	pit	Fig 97
4298	Unphased	pit	Fig 97
4299	Unphased	ditch	Fig 97
4300	Unphased	feature	Fig 97
4301	5	post pit Building 4263	Fig 83
4302	5	post pit Building 4263	Fig 83
4324	Roman	soil mark	I p 181; Fig 97
4328	Roman	soil mark	I p 181; Fig 97
4332	7	hearth	I p 173
4336	Unphased	pit	Fig 97
4337	Unphased	pit	Fig 97
4338	Unphased	pit	Fig 97
4339	Unphased	feature	Fig 97
4348	Unphased	layer	Fig 71c
4364	6	bank	Fig 71c
4369	8 11/S	ditch	Fig 71c
4403	U/S	topsoil	Vessel glass 19c; 20
4404	8	layer	Fig 88b
4405	8	layer	Fig 88b Samian 127–8; 131
4406	8	layer well Building 4572	Vessel glass 15
4408 4409	6 7c	wall Building 4572 blocking Building 4572	I p 163; Fig 87
11 0 <i>3</i>	10	blocking Building 4572	I p 168; Fig 87

Context	Phase	Description	Reference	Finds
			& 88b	Vessel glass 38as; win-
	_			dow 39n
4411	7a	wall Building 4572	I p 167; Fig 87	
4412	7a	wall Building 4572	Fig 87	
4413	7c	layer	Fig 88b	
4415	7c	layer	Fig 88b	
4416	8	fill (4417)		Samian S30. Iron 22; 26; 119–20
4418	6–7	fill (4418)		Iron 65
4420	8	fill (4417)		Iron 121
4425	8	layer	Fig 88b	
4428	8	layer	Fig 88b	Vessel glass 6; 16e
4432	7–8	layer	Fig 88b	
4433	7c	layer	Fig 88b	
1434	7c	floor Building 4572	I p 168; Fig 87	
1101		noor bunning 4012	& 88b	
4435	7c	burnt layer Building 4572	I p 168; Fig 87	
1100		burnt layer Dunding 4572	& 88b	Vessel glass 38aq
4496	7.	floor Duilding 4579		
4436	7a	floor Building 4572	I p 167; Fig 88b	
4437	6	layer	Fig 88b	Samian 40. Vessel glass 26af. Bead 5
4438	8	layer	Fig 88b	
4439	8	post pit Building 4572?	I p 174; Fig 95	
4445	7c	fill (4453)		Samian 94. Iron 116.
				Vessel glass 38at
4446	7c	layer		Vessel glass 38ar
1447	7c	layer		Iron 39; 50
4448	6–7	layer	Fig 88b	
4453	7a	flue Building 4572	I p 167; Fig 87	
1100	Ta	nue Dunanig 1972	& 88b	
4454	7c	fill (4453)	a 000	Samian S29. Iron 63
4457	7C 7	wall Building 4572	Fig 87	Saiman 525. If on 05
4458	7 7a	wall Building 4572	-	
4459			I p 174; Fig 87	
	7c 7c	burnt layer Building 4572	I p 168	
4460	7c	floor Building 4572	I p 169; Fig 87	0, 10
4467	6	pila Building 4572	I p 163; Fig 87	Stone 12
4472	6	wall Building 4572	Fig 87	
4473	7c	hearth Building 4572	I p 168; Fig 87	
			& 88b	
4474	7b	fill (4473)	Fig 88b	Samian 91
4475	7b	foundation (4453)	Fig 88b	
4476	7	wall Building 4572	Fig 87 & 88b	
4478	7	wall Building 4572	Fig 87 & 88b	
4479	7a	wall Building 4572	I p 167; Fig 87	
			& 88b	
4480	7a	wall Building 4572	I p 174	
4481	6	blocked gap 4576 Building 4572		
4482	6	pila Building 4572	I p 163; Fig 87	
4483	6	pila Building 4572	I p 163; Fig 87	
4484	8	post pit Building 4572?	I p 174; Fig 88b	
	5	Post Pro Danang 1012.	& 95	
4489	7a	layer	Fig 88b	
4493	7a 7a	foundation trench	Fig 88b	
1493 1494	7a 7a	fill (4493)	Fig 88b	
1494 1495		foundation trench		
	8		Fig 88b	
4496	8	fill (4495)	Fig 88b	
4499	8	fill (4495)	Fig 88b	
4500	7a	pit	Fig 88b	a 11 <i>i</i>
4501	7a	fill (4501)		Copper alloy 4
4505	6	layer	Fig 88b	

Context	Phase	Description	Reference	Finds
4508	6	foundation trench (4408)		
	-	Building 4572	I p 163; Fig 87	
		8 1 8 1	& 88b	
4509	7a	fill (4508)	Fig 88b	
4510		layer	Fig 88b	
4514	6	feature	Fig 88b	
4515	6	fill (4514)	Fig 88b	
4516	2-5	layer	Fig 88b	Brooch 17
4517	natural	subsoil	Fig 88b	
4519	6	foundation trench	Fig 88b	
4523	7a	fill (4493)	Fig 88b	
4538	7b	fill (4473)	-	Copper alloy 38
4539	7c	arch Building 4572	I p 168; Fig 87	
4543	7b	door sill Building 4572	I p 168	
4545	6	hole Building 4572	I p 158; Fig 87	
4549	7b	fill (4473)		Iron 31; 115
4551	7a	door sill Building 4572	I p 167	
4552		layer	Fig 88b	
4559	7a	layer	Fig 88b	Samian P2
4567	6	wall Building 4572	Fig 87	
4568	6	wall-flue Building 4572	I p 163; Fig 87	
4569	6	wall-flue Building 4572	I p 163; Fig 87	
4576	6	flue Building 4572	Fig 87	
4578	U/S	finds		Samian 163

Catterick Bridge (Site 240)

For this site some categories of finds have been catalogued in two sequences, those from the CfA excavations and those from Site Sub-Division 7 excavated by the Richmondshire Excavation Group. This has been done in the case of the metalwork, the jet, the bone and antler, the ceramic objects, the stone objects other than querns and the beads. In these cases catalogue numbers with a prefix 7/ relate to the REG excavations. The samian pottery, quernstones and glass vessels and window glass have integrated catalogues.

The samian pottery relates to the catalogue on I p 462, a prefix of S indicates that the number relates to the samian stamp catalogue (I p 464) and a prefix

of P to the plainware catalogue (I p 465). For the brooch catalogues see II p 159 and II p 162; for the copper alloy catalogues see II pp 126 and 143; for the ironwork and lead catalogues see II p 131 and II p 145. For the jet and shale catalogue see II p 176 and II p 180. For the worked bone catalogues see II p 192 and II p 198. For the ceramic small finds see II p 210 and II p 211. For the stone artefacts see II p 303 and II p 307. For the quernstones see II p 284, for the vessel and window glass see II p 251. For the beads see II p 263.

Context	Phase	Description	Reference	Finds
4	7	fill (8)		Glass vessel 10a
10	U/S	U/S finds		Coin 9
60	Unphased	fill (59)		Jet 8
65	7 or later	finds from initial trowelling		Samian 19; Grafitto 73; Coin 1; 3; 5; 6; 11; 21; Cu 9
66	U/S	finds from machining		Coin 2; 13; 16; 24–5; Cu 3; 25; Jet 7/5
67	7+	finds from initial trowelling		Coin 18–20; 36; Ce- ramic 6;
69	7 or later	finds from initial trowelling		Samian P3; Coin 15; 17; 22–3; 27; 28–35; 37; 190;Iron 9; 35; Glass vessel 18g
71	6	gully	(I p 190), 193; Fig 103	vesser reg
73	Unstratified	finds from initial trowelling	1.8 100	Coin 38–9
75	Unstratified	finds from initial trowelling		Coin 40; 41
79	Unstratified	finds from initial trowelling		Coin 47-8; 56-62
80	?5	layer	I p 196	
81	Unstratified	finds from initial trowelling	-	Coin 118; 123; 133
83	7	grave	I p 202; Fig 105	Iron 29
84	7	skeleton (83)	I p 202	
85	7	grave good (83)		Cu 4, 5; Jet 4, 5, 7/3
86	7+	finds from initial trowelling		Coin 191; Iron 16
88	6	grave	I p 196; Fig 103	
89	6	skeleton (88)	I p 196	
94	U/S	finds from initial trowelling		Coin 51; 53–5; 67; 72; Iron 18; 36; Glass ves- sel 14f
96	5	gully	I p 190; Fig 102	
97	5	fill (96)		Iron 10
98	Unstratified	finds from initial trowelling		Coin 63
100	Unstratified	from backfill of earlier		
		excavation		Coin 65
101	7 or later	finds from initial trowelling		Samian 20; Coin 4, 7, 12; Iron 32
102	7	layer	Fig 101h	Coin 119–20; Cu 8
103	6	layer	Fig 101h	Coin 121
104	3-4	layer	Fig 101h	Samian P1
105	3-4	layer	Fig 101h	T 00
106	3-4	layer $(=2125)$	Fig 101h	Iron 30
107	3-4	layer $(=2133)$	Fig 101h	
108 109	6 ?7	fill (188) gully (=2227)	Fig 101h Fig 101h	
103	: (guily (-2227)	Fig 101h	

Context	Phase	Description	Reference	Finds
110	3–4	layer	Fig 101h	
113	6	grave	I p 193; Fig 103	
114	6	fill (113)		Coin 14; 26
119	7	grave	(I p 197), 199;	
			Fig 105	
121	7	skeleton (119)	I p 201	
124	9	layer		Iron 19
126	9	fill (125)	I 100 D. 100	Coin 66
127	3–5	pit	I p 189; Fig 102	
132	6	skeleton (113)	I p 195 I n 202	
133	8	collapse	I p 203; Fig 101h	Coin 116
134	8	collapse	I p 203;	Com 110
104	0	conapse	Fig 101h	Coin 109
138	6	gully	I p 193; Fig 103	
140	0 7	skeleton	I p 199; Fig 105	
145	6	layer	1 p 100, 11g 100	, Coin 43–5; 49; 64; 71;
110	0	layor		74–5; 78; 80
151	6	grave	I p 193; Fig 103	
152	6	skeleton (151)	I p 195	
156	7	grave	I p 199; Fig 105	Iron 29
157	6	layer	1 / 0	Coin 69; 101
159	6	fill (138)		Coin 104
161	6	fill (188)		Coin 70
163	6	grave	I p 195; Fig 103	Iron 29
164	6	fill (163)		Iron 6
166	7	grave	I p 199; Fig 105	5
167	7	skeleton (166)	I p 201	
171	6	skeleton (163)	I p 195	
173	6	grave	I p 195; Fig 103	B Iron 29
175	6	skeleton (173)	I p 195	
176	5	gully	I p 197; Fig 102	2
179	7	skeleton (156)	I p 201	
188	6	foundation trench (198)	I p 193; Fig 101	h
101	0		& 103	
191	6	grave	I p 193; Fig 103	Fron 29
192 193	6 6	skeleton (191)70 fill (191)		Iron 23
198	5	revetment $(=2144)$	I p 193, (197);	11011 25
190	0	1 eventient (-2144)	Fig101h, 103	
			& 105	
199	7	grave	I p 199	
200	6	grave?	I p 195; Fig 103	8
204	7	layer	- F,8	Cu 39
205	7	hearth?	I p 198; Fig 105	
207	7	gully/slot	I p 203; Fig 105	
209	7	gully (=2227)	I p 189; Fig 105	
214	7	fill (207)		Coin 77
221	7	layer		Cu 38
222	7	layer		Iron 17
229	7	stone surface	I p 198; Fig 105	5
230	6	gully	I p 189, 192; Fig 103	
233	7	layer	5	Samian 17; Coin 157; Cu 21; 42; Iron 5; 33
235	7	fill (234)		Coin 87; 159
239	, U/S	layer		Coin 97; 137; Cu 35
200		/		, , ,
245	7	stone surface	I p 198; Fig 105	5

251				
	8	fill (257)		Coin 102; Glass vessel
				14e
255	7	layer		Coin 103; 108; 111–2
256	7	flue/hearth	I p 199; Fig 10	5;
258	7	layer	39	Coin 113
260	6	cobble layer	I n 193 Fig 10	Samian 12; Brooch 22;
	0	0000101000	- p 100, 1 8 100	Cu 10;
262	7	fill (268)		Cu 31
265	7	pit	I p 199; Fig 10	
		-	39	
267	6	loam layer	I p 190, 192	Samian S2; Coin 176; Cu 1; 24; 43; Glass ves- sel 18a
268	7	pit	I p 199; Fig 10	
270	$\frac{1}{7}$	layer	I p 198	-
272	7	pit	I p 199; Fig 10	6
274	6	pit	I p 193; Fig 10	
282	7	fill (209)	1 / 0	Bone 15
285	7	pit	I p 199; Fig 10	6
286	7	pit	I p 199; Fig 10 106	5;
288	7	post hole	I p 199; Fig 10	5.
200	•	post noie	39	ο,
292	7	part of layer 233		Coin 153
294	(6)7	flue/hearth	I p 198; Fig 10	
			39	,
295	7	flue/hearth	I p 199	
300	7	fill (209)	1	Coin 154
302	7	revetment $(=1814)$	I p 193; 199;	
			Fig 101a, 105	
303	7	layer	Fig 101a	Samian P2; Coin 50;
				Iron 2; 14
304	$\frac{7}{2}$	layer	Fig 101a	Coin 52
305	7	layer	Fig 101a	Iron 25; Glass vessel 13b
306	7	layer	Fig 101a	
307	5 - 7	layer	Fig 101a	
308	7	collapse	Fig 101a	
309	7	layer	Fig 101a	
310	1	river deposited layer	I p 186; Fig 101	la
313	7	part of 302	Fig 101a	
314	7	part of 302	Fig 101a	-
315	8	stone line	I p 203; Fig 10	
316	8	stone line	I p 203; Fig 10	5
318	1 Due 7	layer	Fig 101a	
319	Pre 7	layer	Fig 101a	
321	Pre 7	layer	Fig 101a	
322	7	part of 302	Fig 101a	
323	5	skeleton (343)	I p 190	
324	7	skeleton (338)	I p 201 Fig 101a	
326 327	7 7	part of 302 fill (338)	Fig 101a	Samian 16; Coin 79;
200	1 7	lawan	E_{101}	Glass vessel 22
328	4–7 Dro 5	layer	Fig 101a	
329 331	Pre 5 Pre 5	layer stone within 329	Fig 101a Fig 101a	
331	Pre 5 Pre 7	stone within 329 stone layer	Fig 101a Fig 101a	
999	FTP /	stone laver	r 19 101a	
332 334	6	grave	I p 195; Fig 10	1.

Context	Phase	Description	Reference	Finds
336	6	skeleton (334)	I p 195	
338	$\frac{1}{7}$	grave	I p 195, 76;	
	·	8-000	Fig 101a, 105	
339	6	fill 343	Fig 101a	
341	6	fill 343	8	
343	5	grave	I p 197; Fig 101	а
010	0	8-000	& 102	
344	7	layer	Fig 101f	Coin 88; 96; 98; 100; 105; 136; 152; Iron 12; Glass vessel 19
345	6	revetment	I p 193, (197); Fig 101f, 103,	
	-	11	105	
347	7	collapse	Fig 101f	
349	6	fill 354	Fig 101a	
350	5	skeleton (354)	I p 190	
351	6	skeleton (356)	I p 195	
354	5	grave	I p 197;	T 00
	_		Fig 101a, 102	Iron 29
355	7	fill (354)		Glass vessel 18k
356	6	grave	I p 195; Fig 103	
361	7	layer	Fig 101f	Coin 155
363	$\frac{7}{2}$	layer	Fig 101f	Coin 177
367	7	skeleton (368)	I p 202	_
368	7	grave	I p 202; Fig 105	Iron 8
370	7	layer	Fig 101f	
373	7	layer	Fig 101f	
374	Pre 7	layer	Fig 101f	
375	3	layer	Fig 101a	
376	2	river deposited layer	I p 186; Fig 101a	
377	2	river deposited layer	I p 186; Fig 101a	
379	4–5	layer	Fig 101f	Graffiti 72; Coin 163; 165–8
380	3–7	part of 345	Fig 101f	105-0
381	5-1 7	layer	Fig 1011	
382	Pre 7	layer	Fig 101f	
383	Pre 7	layer	Fig 1011	
384	3	layer	Fig 1011	
385	3–7	foundation trench (345)	Fig 1011	
387	3-7 7	layer	Fig 1011	
389	4	•	Fig 1011 Fig 101f	
390	3–4	layer layer	Fig 1011 Fig 101f	
402	3–4 7	÷	-	
402	1	grave	I p 196, 201; Fig 105	
409	7	abolaton (409)	Fig 105	
403		skeleton (402) finda from initial travelling	I p 201	Coin 69. Proach 10
405 407	Unstratified	finds from initial trowelling	I 100	Coin 68; Brooch 10
	6	skeleton (408)	I p 196	
408	6	grave	I p 196; Fig 103	
413	3	fill (489)	I = 107. $E = 100$	Cu 16; quern 25
416	3	gully	I p 187; Fig 100	
418	3–4 Umphagad	gully fill (1055)	I p 187; Fig 100	1
419	Unphased	fill (1055)	I p 189	
431	5	gully	I p 190; Fig 102	
432 440	5 6	fill (431) hearth (=1887)	I p 193; Fig 103	Brooch 20 ;
480	6	hearth (=1889)	104 I p 193; Fig 103	;
400	0		104 L = 106, Eig 100	
489	3 5	gully gully	I p 196; Fig 100 I p 190; Fig 102	
492				

Context	Phase	Description	Reference	Finds
493	5	gully	I p 190; Fig 10	2
495	5	gully	I p 190; Fig 10	
502	U/S	topsoil	Fig 101c	Stone 23
502	5	surface	I p 192; Fig 10	
			102	10,
507	Natural	undisturbed subsoil	Fig 101c	
508	8	layer	Fig 101c	Coin 90; 106–7
509	5	make-up Road 789	I p 190;	
			Fig 101c	Coin 172
510	5	layer	Fig 101c	
511	2	layer	Fig 101c	
513	5	layer	0	Coin 81
516	7 or later	finds from initial trowelling		Samian 18; Coin 42
521	6	foundation trench (522)	Fig 101c; d	,
522	6	wall	Fig 101c; d	
524	3–4	layer	Fig 101c; d	
525	7+	finds from initial trowelling	1 ig 1010, u	Coin 76
526	7+	finds from initial trowelling		Coin 46
520 527		6	Fig 101a	0011 40
	5 F	fill (521)	Fig 101c	
529 520	5	feature	Fig 101c	G : 11
530	5	fill 529	Fig 101c	Samian 11
532	6	road surface (789)	I p 193	
533	6	layer	Fig 101c	
535	3–5	?fill (582)	Fig 101c	
538	3-5	?fill (582)	Fig 101c	
540	9–10	layer	Fig 101c	
542	7	layer		Coin 82–6; 91–2; 132; 134; 138; Iron 3; Glass vessel 5
546	6	oven	I p 193; Fig 10	
549	7+	finds from machine-dug trench		Iron 31
551	6	stone line	I p 193; Fig 10 d & 103	
553	6	stone line	I p 193; Fig 10	3
555	5 7	layer	1 p 100, 1 lg 10	Iron 11; quern 24
556	6	foundation (521)		Coin 173; Cu 30; Glass vessel 18I
557	6	fill (521)	Fig 101c; d	
559	5	layer	Fig 101c; d	
561	$\frac{3}{2}$	layer	Fig 101c; d	
562	$\frac{1}{6}$	layer	1 ig 1010, u	Samian 13; coin 73; Cu 7; 12
565	3–5	?fill (582)	Fig 101c	•, ±4
568	3–5 3–5		11g 1010	Iron 20
		layer	Fig 101	11011 20
569 570	3-5	layer	Fig 101c	
570 571	$4-6 \\ 3-5$	layer layer		Glass vessel 14j; 18c Samian 7; Iron 21;
579	9 F	finds (571)		Glass vessel 8
572	3–5	finds (571)	T: 101	Samian 8, S1
575	3	fill (582)	Fig 101c	0.15
576	3	layer	D ! 101	Cu 17
579	3-4	fill (582)	Fig 101c	
580	4–5	layer		Glass vessel 18h
582	2	channel	I p 186; Fig 101c	
583	2	revetment	I p 186; Fig 10 & 101c	0
585	5	layer	Fig 101c	Coin 93–5; Cu 34
586	5	layer	0	Iron 27
588	$\frac{3}{2}$	layer	Fig 101c	
	-			

Context	Phase	Description	Reference	Finds
589	2	layer		Samian 1
592	$\frac{2}{3-4}$	gravel bank	I p 192; Fig 101c	
595			1 p 192, Fig 1010	Cu 40
	9–10	layer	T 100 107	Cu 40
596	6	road (789)	I p 193, 197	
597	6	road surface (789)	I p 197; Fig 101c	
598	7	layer	Fig 101c	Coin 148; 174
300	6	finds (453)		Stone 15
301	7	layer	Fig 101c; d	Samian 21; Coin 99
604	5	foundation (792)	Fig 101c; d	,
307	6	layer	1 ig 1010, u	Coin 114; 124–5
610	6	stone road border (789)	I p 193; Fig 101d	
010	0	stolle foau border (783)	& 103	L
614	6	layer		Coin 149; Brooch 23;
				Cu 13
616	6	layer		Coin 131
518	7	layer		Coin 126–9; 145; Glass
510	•	luyer		vessel 18l; bead 2
210	G	stone read hander (780)	In 109	vessel 101, beau 2
519 301	6	stone road border (789)	I p 193	G.:
621	6	layer		Coin 130
622	7	layer		Coin 156; 169; 170–1;
				bead 4
623	5	foundations		Coin 180
632	7	layer		Coin 139–40; 143; cu.
		- 0 -		14
633	7	layer		Coin 135
535 535	7–8	stone line		
				75; Fig 105; Stone 1
640	3–4	layer		Samian 4; Grafitto 82
648	6	fill (696)		bone 3
653	7	grave	I p 202; Fig 105	5 Iron 29
657	3–4	layer		Samian 5
670	6	gravel surface	I p 193	
672	6	stone line	I p 193; Fig 103	8
375	6	layer	1 p 100, 11g 100	, Samian 15
		•		
678	7	grave good (679)	I 000 D' 10	Coin 141; Stone 2
679	7	grave	I p 202; Fig 105	
680	7	fill (757)		Glass vessel 14d
685	6	layer		Coin 146
687	5	layer	Fig 101c	Coin 144; Cu 28
688	5	layer	0	Coin 164; Cu 44; Glass
	0			vessel 18j
390	5	lovon		Coin 142
	5	layer	I 000	00111 142
391 202	7	skeleton (653)	I p 202	
696	6	linear feature	I p 193; Fig 103	
701	5	layer	Fig 101d	Coin 179; Cu 19
702	5	layer	Fig 101d	
705	6	fill 788	Fig 101c	Glass vessel 13c
710	3–5	gravel layer		Samian 9
711	5	layer	Fig 101c	
	5 7			
713		skeleton (679)	I p 202	
715	Unphased	grave	I p 202; Fig 105	
716	Unphased	skeleton (715)	I p 202	
719	3–4	layer		Samian 3
720	6	fill (783)		Coin 178
724	6	fill (783)		Iron 13; Glass vessel
	÷	(100)		18t
796	6 I	novetment	In 100, Et 105	
726	6+	revetment	I p 199; Fig 105	UU 33; 37
727	7	foundation trench (726)	I p 199	
729	5	fill (731)	Fig 101c	
732	5	revetment	I p 189, 192;	
104	0	revenuente	1 p 100, 102,	

Context	Phase	Description	Reference Finds
			A. 36
738	5	layer	Fig 101d Coin 181; 185
739	6	finds (533; 701; 738)	Coin 182–3
739 749	0 7+	finds	Lead 1
749 751	7+ 5	layer	Fig 101d
752	5 7	skeleton (754)	I p 201 Cu 6
752 753	7	fill (754)	Coin 189
754	7	grave	I p 201; Fig 105 Iron 29
754	7	ditch	I p 203; Fig 105 Holl 25
776	, Unphased		I p 203; Fig 105 I p 202; Fig 105
783	6	grave road ditch (789)	I p 193; Fig 103
785	1	road ditch (789)	I p 193; Fig 103 I p 193; Fig 100
786	$\frac{1}{7}$	destruction debris	I p 199; Fig 105
788	5		
100	0	road ditch (789)	I p 192; Fig
790	1?–5	maad	101c; d & 102
789	1:-0	road	I p 190, 193; Fig 100, 109;
			Fig 100; 102;
700	٣	·····	103; 105
790	5	gravel surface	I p 192; Fig 102;
709	٣	·····	103 E:- 1014
793	5	gravel surface	Fig 101d
794 705	5	layer	Fig 101d
795	5-7	gravel surface	Fig 101d
885	3-4	gully	I p 189; Fig 100
887	3-4	gully	I p 189; Fig 100
914	5	fill (493)	Coin 122
923	5	gully	I p 190; Fig 102
939	3-4	fill (1314)	Glass vessel 18e
948	5	gully	I p 190; Fig 102;
1001	0 5		103
1001	6–7	grave	I p 195, 197; Fin 102
1000	0 5		Fig 103 Iron 29
1003	6–7	grave	I p 195, 197;
1000	0		Fig 103 Iron 29
1006	6	skeleton (1001)	I p 195
1008	6	skeleton (1003)	I p 195
1011	6	skeleton (1012)	I p 196
1012	6	grave	I p 196; Fig 103
1017	3	fill (489)	Cu 2
1018	3-4	gully	I p 189; Fig 100
1021	5	gully	I p 190; Fig 102 Cu 23
1031	5	fill (96)	Samian 6; Iron 34
1033	3-5	fill (1034)	L = 100 E = 109
1034	3–5	gully	I p 196; Fig 102
1035	5	fill (96)	Iron 24
1038	5	gully	I p 190, 193; Fin 102
1040	0	C11 (400)	Fig 103 Cu 26
1048	3	fill (489)	Coin 160
1051	3	gully	I p 187; Fig 100
1055	3-4	gully	I p 189
1059	3-4	gully	I p 189; Fig 100
1063	3-4	fill (1059)	Coin 162
1067	1+	fill (1066)	Glass vessel 14i
1089	6	fill (1038)	Coin 161
1096	9	fill (1095)	Cu 20
1101	6	fill (200)	Coin 158
1102	5	gully	I p 190; Fig 102;
	_		103
1108	3	fill (92)	Samian 2
1109	3–4	gully	I p 187; Fig 100

Context	Phase	Description	Reference Finds	
1116	3–5	gully	I p 189; Fig 102	
1119	5	gully	I p 189; Fig 102	
1121	3–5	gully	I p 189; Fig 102	
1124	pre-6	layer	Glass vessel 7b; 18	f
1127	4–6	fill (1116)	Glass vessel 14g	
1136	3–5	fill (1116)	Iron 7	
1200	5	sealing layer	I p 190	
1202	6	fill (230)	Samian 14	
1217	6	cobble layer	I p 193; Fig 103	
1241	6–7	fill (1239)	Samian S3	
1245	5	layer	Iron 1; Glass vesse	l 14h
1247	7	fill (1246)	Glass vessel 18b	
1249	6	fill (1248)	Iron 4	
1264	7	pit	I p 199	
1276	6	pit	I p 193; Fig 103	
1210	6	gully	I p 193; Fig 103	
1284	5	finds (1283)	Iron 22	
1290	6	fill (1281)	Cu 29	
1290	$\frac{1}{7}$	fill (1276; 1281)	Glass vessel 7c	
1291 1294	6	?fill		174
			Cu 36; Glass vesse	170
1296	5	loam layer	I p 190 Samian 10	
1314	3	gully	I p 187; Fig 100	
1402	5-7	fill (1401)	Iron 26	
1439	3-4	gully	I p 189; Fig 100	-
1469	6	fill (?1276)	Cu 11; Bone 4–5, 2 29.	1,
1470	6	fill (?1276)	Cu 32; Glass vesse	l 10b
1576	5	pit/posthole	I p 190; Fig 102	
1579	5	pit/posthole	I p 190; Fig 102	
1597	5	pit/posthole	I p 190; Fig 102	
1615	?3–4	gully	I p 189; Fig 100	
1701	natural	undisturbed subsoil	I p 189	
1801	U/S	topsoil	Coin 192–3	
1802	U/S	topsoil	Coin 203; 207; 213	-4:
		Ĩ	222; 226–7; 236; 24	
			Cu 7/10, 7/16, 7/34	
1803	U/S	topsoil	Coin 206	
1804	$\widetilde{\mathbf{U}}/\widetilde{\mathbf{S}}$	topsoil	Fig 101e Coin 216; 218; 249	-53:
1001	0,2	top.on	255–7; 262; 279; 29	
			293–300; 303–7; 32	
			334; 339–41; 343–7	
			350–1; Cu 7/19, 7/3	
1808	7–9	layer	Glass vessel 12	<i>b</i> 0,
1810	7-3 7	-	I p 201; Fig 105 Coin 194; Glass ve	معما
1010	1	grave	16	5501
1811	7	(T101)	I p 201; Fig 105	
	7 7	grave	1 / 0	
1812		layer	Glass vessel 7e; 15	
1813	8	layer	Glass vessel 13d	
1814	7	revetment $(=302)$	I p 199; Fig 105	
1816	8	layer	Coin 208–10; 247	
1817	7	stone surface	I p 199; Fig 105 Coin 211	
1818	7	post pipe	I p 199; Fig 105	
1820	$\frac{7}{2}$	post pipe	I p 199; Fig 105	
1821	7	post pipe	I p 199; Fig 105	
1822	7	post pipe	I p 199; Fig 105	
1823	6	gully	Coin 225	
1824	7	post pipe	I p 199; Fig 105	
1826	7	hearth/oven	I p 199; Fig 105	

Context	Phase	Description	Reference	Finds
1827	8	layer		Coin 199; 201; 212; 223; 229; 245; 248; Cu 7/24; Bone 7/8
1828	7	stone alignment	I p 199; Fig 105	
1829	6	finds (1826)	- p 100, 1 % 100	Coin 228
1830	7	hearth/oven	I p 199; Fig 105	
1831	7	hearth/oven	I p 199; Fig 105	
1832	7	layer	1 / 0	Coin 215; 217; 235;
				239; 242; 244
1835	U/S	layer		Coin 233–4; Glass ves- sel 11; 180
1836	6	gully	I p 190, 193; Fig 102	
1838	6	gully	I p 193; Fig 103	
1839	6	fill (1838)		Coin 241; jet 7/8
1840	7	gully		Coin 237–8
1841	7	fill (1840)		Graffito 87; Coin 240
1842	6	gully	I p 187, 193; Fig 103	
1845	6	fill (1842)		Cu 7/22, 7/36; Bone 7/10–11; Glass vessel 13e; 14a–b
1848	6	fill (1842)		Cu 7/15
1849	6	fill (?1842)		Bone 7/4
1850	6	fill (1842)		Glass vessel 2
1851	$\frac{3}{7}$	feature	I p 199; Fig 105	
1852	$\frac{1}{7}$	feature	I p 199; Fig 105	
1853	$\frac{1}{7}$	feature	I p 199; Fig 105	
1855	$\frac{1}{7}$	stone surface	I p 199; Fig 105	
1857	U/S	layer	- F,8	Coin 220–1; 224; Glass vessel 18p
1858	6	layer		window 23a
1864	Unphased	fill (1863)		Bone 7/9
1868	7	stone spread		
1873	6	fill $(18\overline{7}2)$		Coin 243
1874	6	stakeholes	I p 193; Fig 103	
1875	6	stakehole	I p 193	Brooch 7/1
1877	6	layer		Graffito 71; Glass ves- sel 9; 13h
1878	3	gully	I p 187; Fig 100	
1887	6	hearth $(=440)$	I p 193	
1889	6	hearth $(=480)$	I p 193	
1893	6–7	cobble layer	I p 193; Fig 103 105	,
1898	7	layer		Coin 365–7; 382–3
1899	U/S	layer		Coin 195–8; 200; 202; 359–60; 362–4 368–73; Cu 7/29
1900	8	layer		Glass vessel 18q; Coin 219; 232
2050	7+	finds from metal detecting		Coin 186–8; Brooch 1; 2; Cu 27; 41
2052	8	layer		Coin 204–5; Stone 7/1
2056	p7	stone spread	I p 199; Fig 105	· · ·
2000	_	stone spread		Coin 380–1; Cu 7/21
2050	p7		- / 0	
	р7 6	layer		Coin 384; 391; Cu 7/18; Ceramic 7/1
2057	-	-		
2057 2058	6	layer	I p 189; Fig 102	Ceramic 7/1 Glass vessel 13a

Context	Phase	Description	Reference	Finds
2075	6–7	cobble layer	I p 193, 199; Fig 103, 105	
2076	6	foundation trench (198)	I p 193; Fig 103 105	3,
2078	6	fill (2076)		Coin 378
2079	6	fill (2076)		Coin 409; 429; Cu 7/30
2085	7	stone surface	I p 198; Fig 105	Coin 392
2092	7	finds		Coin 376; 379; 389; 400; Cu 7/9, 7/25; Glass vessel 21; bead 7/5
2100	9(?)	grave	I p 204	
2107	9(?)	grave	I p 204	
2112	5	revetment	I p 190; Fig 102	2
2114	8	collapse	Fig 101g	Coin 263–5; 268; 273; 281; 324–5; 335–6;
2115	7–9	layer	Fig 101g	Coin 258–61; 266–7; 269–72; 274–78; 308; 316–23; 326; 333; Cu 7/6, 7/14, 7/35, 7/40; Bead 7/1, 7/3–4, 7/9
2116	6–8	layer	Fig 101g	Coin 254; 338
2117	5	layer	Fig 101g	
2118	6	layer	0 0	Coin 282; 301–2; Cu 7/8; Iron 7/43
2119	8	layer	Fig 101g	Coin 280; 287; 292; Cu 7/3, 7/5, 7/11; Glass vessel 1b
2120	8	gully	I p 203; Fig 101g, 105	
2121	8	fill (2120)		Coin 283–5
2122	3-5	layer		Brooch 7/5; cu. 7/20
2125	9	layer (=106)	I p 190; Fig 101e; g; h	Coin 348; 353; Cu 7/2, 7/17; Lead 7/51; Iron 7/46, 7/47; Ceramic 7/3; Glass vessel 4; 13g; 14l; 18m
2127	5	layer		Cu 7/27
2128	5	layer		Cu 7/4, 7/12
2131	8	layer	Fig 101g	
2132	8	layer		Coin 286
2133	8	layer (=107)	I p 197; Fig 101e; g; h	Coin 356–8; Cu 7/26, 7/31, Lead 7/49; Iron 7/42, 7/44, 7/48; Bone 7/2, 7/5–7; Ceramic 7/2; Glass vessel 3; 6; 7a, f; 14c; 17; 18r
2134	3–4	layer	Fig 101g	
2135	5	stone (part of 2139)	Fig 101g	
2136	5	stone (part of 2139)	Fig 101g	
2137	3–5	river deposited layer	I p 189	
2138	3–5	river deposited layer	I p 189	
2139	5	blocking/revetment	I p 190; Fig 101g	
2140	3–5	revetment	& 102 I p 189, 190; Fig 101g; 102;	
			103; 105	
$2142 \\ 2144$	3–5 3–5	cremation revetment (=198)	,	2 Brooch 7/4; Cu 7/7 ,

Context	Phase	Description	Reference	Finds
			h; 102; 103; 1	05
2145	9	wall	Fig 101e	
2146	7	stone layer	-	Coin 312; 327–8; 332
2147	7	layer	Fig 101e	Coin 288; 309; 311; 330; 342; 349; 352; 354; Cu 7/37; Glass vessel 7g; 18s; window 23b
2148	7	layer		Coin 313; 315; 331; 337; Bone 7/3
2149	6–8	layer		Coin 329
2156	pre-7	layer		Cu 7/39
2157	8	layer	Fig 101e	
2158	8	layer	Fig 101e	
2159	7	collapse	Fig 101e	Coin 289–90
2160	Unphased	layer/fill?	Fig 101e	Cu 7/13
2161	5–6	layer	Fig 101e	
2162	5–6	layer	Fig 101e	
2163	4–6	layer	Fig 101e	Cu 7/38
2164	4–6	layer	Fig 101e	
2165	4–6	layer	Fig 101e	
2166	3–6	layer	Fig 101e	Coin 314
2167	U/S	topsoil		Coin 385–7; 432
2168	9	layer		Coin 393–6; 403; 408; Cu 7/32; Glass vessel 1a; 13f; 18d
2169	9	layer		Coin 397; 399; 401; 404–7; 426–7; 433
2171	7	layer		Coin 428; Brooch 7/3
2172	6	fill (2076)		Coin 411
2175	10	fill (2174)		bead 7/2
2176	7	layer		Coin 413–4; bead 7/10
2177	7	line of stones		Coin 402
2179	7 or earlier	cremation	I p 201; Fig 10	
2182	6	stone (166)		Cu 7/23
2184	7	layer		Coin 416–7; 419
2186	7	grave	I p 165; Fig 10	05
2187	7	skeleton (2186)	I p 165	
2191	6	stone layer		Coin 89; 410; 415; bead 7/6
2192	6	layer		Coin 422
2193	5–7	layer	T 000	Coin 423
2195	7	collapse	I p 203	Coin 418; 420–1
2199	$\mathrm{U/S}$	topsoil	I 100 D' 14	Stone 7/2
2200	7	post pipe	I p 199; Fig 10	J5
2206	3–5 11/0	river deposited layer	I p 189	
2207	U/S	topsoil		Coin 374; 430–1; Lead 7/50; Glass vessel 20; bead 7/8
2208	7 - 9	layer		gemstone1
2210 2211	7 7	finds layer		Coin 361; 375; 377; 388; 390; Brooch 7/2; Glass vessel 14k Coin 398
2212	10	layer		Coin 424–5
2212	10 7	stone spread	I p 199; Fig 10	
2210	Unphased	road	I p 199, Fig I p 203; Fig 101b & 105	
2218	5–7	layer	Fig 101b	
2219	2	fill (2223)	Fig 101b	
2221	1	ditch	Fig 101b	
			-	

2223	2	ditch	Fig 101b
2224	7	post pipe	I p 199; Fig 105
2227	7	(=109)	Fig 101e; h
2229	6	grave in 138	Cu 7/1; Bone 7/1

Honey Pot Road (Site 251)

For the coin catalogue see CD 151, copper alloy catalogue see II p 135; for the ironwork catalogue see

II p 135, for the lead see II p 136 and for the worked bone and antler see II p 192.

Context	Phase Description	Reference F	inds	
2	Unphased	layer		Coin 1–13; 15–7; 21; Cu 2; 4; Iron 2–4, 6–7; 9
3	2	ditch	I p 207; Fig 108 109a; b; c; d	
4	2	layer		Coin 22–3
8	2	layer	Fig 109c	
20	2	grave	I p 207; Fig 108	
21	2	skeleton (20)	I p 207	
22	2	fill (20)	-	Cu 1. Iron 1; 12
26	3	ditch	I p 208; Fig 108	
29	2	fill (3)	Fig 109c	
30	2	skeleton (20)	I p 207	
32	2	fill (3)	I p 207; Fig 1090	Bone 25
34	2	layer/fill?		
36	2	fill (3)	Fig 109b	
37	3	layer	I p 208;	
		-	Fig 109b	Coin 18–9
41	2	fill (3)	Fig 109a	
42	2	fill (3)	Fig 109a	
44	3	fill (3)	6	Coin 20
48	1	fill (480)	Fig 109a	
49	2	fill (3)	Fig 109a	
51	U/S	topsoil	0	Cu 3; Iron 5
201	U/S	topsoil		Coin 14; Iron 10
223	U/S	topsoil		Iron 8
302	1a	gully	I p 205; Fig 108 & 109c	
305	Natural	undisturbed subso		
306	Natural	undisturbed subso	0	
307	Natural	undisturbed subso	8	
308	Natural	undisturbed subso	6	
309	Mabura	fill (302)	Fig 109c	
310	1	fill (464)	Fig 109c	
311	$\frac{1}{2}$	revetment (477)	Fig 109c	
312	1b	fill (480)	I p 206; Fig 109c	
313	1	fill (464)	Fig 109c	, ,
314	1	fill (464)	Fig 109c	
315	1	fill (464)	Fig 109c	
316	$\frac{1}{2}$	pit	I p 208; Fig 108	
324	- 1	revetment (475)	Fig 109b	
325	$\frac{1}{2}$	revetment (477)	Fig 109b	
326	$\frac{1}{2}$	collapse	Fig 109b	
327	Unphased	layer	Fig 109b	
328	Unphased	layer	Fig 109b	
329	1	fill (475)	Fig 109b	
330	1	fill (480)	Fig 109b	
331	1	fill (480)	Fig 109b	
332	1	fill (464)	Fig 109b	
333	1	fill (464)	Fig 109b	
338	2	revetment (477)	Fig 109d	
340	$\frac{2}{2}$	fill (3)	Fig 109d	
341	2 Unphased	layer	Fig 109d	
444	2	pit	I p 208; Fig 108	
450	2	ditch	I p 208; Fig 108	
	-		- p =00, 1 g 100	

Context	Phase	Description	Reference Finds	
453	2	fill (3)	I p 207; Fig 109b	
463	1	fill (464)	Fig 109c	
464	1a	ditch	I p 205; Fig 109a;	
			b; c	
l 66	2	layer	Fig 109a	
67	1	fill (480)	Fig 109a	
68	1	fill (480)	Fig 109a	
69	1	fill (475)	Fig 109a	
70	1	fill (464)	Fig 109a	
171	1	fill (464)	Fig 109a	
72	1	fill (464)	Fig 109a	
73	2	fill (3)	Fig 109b	
74	2	revetment (477)	Fig 109a	
75	1b	revetment	I p 206; Fig	
			109a; b	
76	1	revetment (475)	Fig 109a	
77	2	revetment	I p 206; Fig 108	
			& 109b; c; d	
80	1b	ditch	I p 206; Fig 108	
			& 109a; b; d	
83	1	fill (480)	Fig 109b	
84	2	fill (477)	Fig 109c Lead 1	
85	2	gully	I p 208; Fig 108	
87	3	gully	I p 208; Fig 108	
90	1	fill (480)	Fig 109d	
95	1	fill (480)	Fig 109d	
96	2	layer	Fig 109b	
98	1b	fill (480)	I p 206; Fig 109d	
199	2	fill (3)	Fig 109b	

Catterick Racecourse (Site 273)

The samian pottery relates to the catalogue on I 474, a prefix of S indicates the number relates to the samian stamp catalogue (I p 476).

For the brooch catalogues see II p 159, for the copper alloy catalogue see II p 136, for the iron and lead

catalogue see II p 138, for the jet and shale catalogue see II p 000, for the worked bone catalogue see II p 192, for the ceramic small finds see II p 210, for the stone artefacts see II p 000, for the quernstones see II p 284, for the vessel and window glass see II p 253, for the beads see II p 262.

Context	Phase	Description	Reference	Finds
4	Unphased	ditch	I p 209	Glass vessel 6b
10	U/S	finds	- p =00	Samian 18–21; 23–32;
				Graffito 75; Coin 1–2;
				Cu 3; 8–9; Iron 2;Glass
				vessel 4; 6a; 7d; 8b–d;
	01		T 015	window 10; bead1
11	3b	fill (38)	I p 215	Cu 16
12 15	1	gully	I p 211; Fig 11	
15 18	1 1	gully ditch	I p 211; Fig 11 I p 211; Fig 11	
22	1	fill (18)	1 p 211, Fig 11.	Glass vessel 7c; 9h
23	2 or later	layer	I p 214	Samian 14–6, 23. S5;
20	2 01 10001	iujei	19211	Cu 1; 10; 12; 14; Bone
				47; Glass vessel 1–2;
				3c, f; 6c; 7a; 8a; 9b
24	2a	gravel surface	I p 213;	
			Fig 111d	Glass vessel 9e
25	2 or later	layer		Samian 13; 17; Coin
				5–8; Cu 11; Iron 1;
				Glass vessel 3a
27	1	fill (18)		Samian 1
29	1	fill (12)		Samian 2, 9–10; Ce-
20	1		L. 011 E. 11	ramic 11
32 36	1 1	gully	I p 211; Fig 11	
30	1	layer		Lead 1; Glass vessel 3e; 7b
37	1	layer		Glass vessel 9d
38	2–3	well	I p 211, 213;	
			Fig 111d	
39	1	layer	0	Samian 3–5. S1; Glass
		-		vessel 9a
43	3b	fill (38)	I p 215	Samian S4; Glass ves-
			_	sel 9g
45	1	ditch	I p 211;	
4.0			Fig 111b	a : a
46	1	fill (45)	In 914 Exa 11	Samian 8
47 48	2a 1	stone surface fill (45)	1 p 214; Fig 11.	ld Glass vessel 3b; 9f
49	U/S	finds		Samian 33–4
4 <i>5</i> 50	1	ditch	I p 211; Fig 11	
52	1	fill (50)	- p ===,g ==	Iron 5
53	- 2a	layer	I p 214	Samian 11; Iron 3
56	1	layer	Г	Cu 2
57	1	layer		Glass vessel 7e
58	1	fill (12)		Cu 5; Bone 36
61	1	ditch	I p 211; Fig 111	
65	1	layer		Samian 6. S2
68	1	fill (61)	• • • · · ·	Iron 6
80	1	feature in section	I p 211; Fig 11	1b
83	1	feature in section	Fig 111b	
86	1	feature in section	Fig 111b	

Context	Phase	Description	Reference	Finds
89	1	feature in section	Fig 111b	
91	1	feature in section	Fig 111b	
93	1	feature in section	Fig 111b	
99	1	layer	8	Samian 7
100	1	fill (45)	I p 211	Quern 26; Glass vessel 3c
101	U/S	topsoil		Samian 22. S6; Coin 3; Brooch 9; Cu 7; Iron 4; 7
102	?3a	posthole/pit	I p 215; Fig 11	1c
106	1	posthole/pit	I p 211; Fig 11	
109	3a	pit	I p 215; Fig 11	
111	3a	pit (?grave)	I p 214; Fig 11	
113	3a	grave	I p 214; Fig 11	
114	3	fill (113)	_	Glass vessel 5
115	3a	skeleton (113)	I p 214	Coin 9
116	?3a	Posthole/pit	I p 215	
119	3a	ditch	I p 214; Fig 11	
120	3a	ditch	I p 214; Fig 11	
121	3	layer		Cu 13; 17
129	3	fill (pit)		Bone 11
130	U/S	finds		Cu 6
135	1	gully	I p 211; Fig 111	
138	3a	pit (?grave)	I p 214; Fig 11	
139	3	fill (138)		Samian 12
179	1	ditch	I p 211; Fig 11	
181	?3a	posthole/pit	I p 215; Fig 11	
183	?3a	posthole/pit	I p 215; Fig 11	
185	1	posthole/pit	I p 211; Fig 11	
187	1	posthole/pit	I p 211; Fig 11	
189	3a	grave	I p 214; Fig 11	
199	3a	ditch	I p 214; Fig 11	
201	1–2	roundhouse gully	I p 213; Fig 11	12
209	1-2	fill (201)	I p 213	
211	1-2	posthole	Fig 112	
213	1-2	posthole	Fig 112	
215	1-2	posthole	Fig 112	
217	1-2	posthole	Fig 112	
219	1-2	posthole	Fig 112	
221	1-2	posthole	Fig 112	
223	1-2	posthole	Fig 112	
226	1–2	posthole	I p 213; Fig 11	
259	1	fill (179)	T a (1) T (1) (1)	Glass vessel 9c
263	3a	grave	I p 214; Fig 11	
264	3a	skeleton (263)	I p 214	Samian S3
265	3a	grave	I p 214; Fig 11	lc
266	3a	skeleton (265)	I p 214	
267	3a	skeleton (263)	I p 214	
269	3a	skeleton (263)	I p 214	
270	3a	skeleton (265)	I p 214	
283	3a	ditch	I p 214; Fig 11	
287	0	fill (299)		Coin 4
297	3a	skeleton (283)	I p 215; Fig 11	10
298	3a	skeleton (113)	I p 214	
299	3	ditch	I p 211, 215;	
			Fig 111c	-
303	1	pit	I p 211; Fig 11	
306	3a	revetment (299)	I p 214; Fig 11	11c
308	1	ditch	I p 211; Fig 11	la
324	1	ditch	I p 211; Fig 11	
J= 1	±		- p , - 15 11	~~

327	2	pit	Fig 111d
329	1	ditch	I p 211; Fig 111b
332	1	ditch	I p 211; Fig 111b
335	3a	grave	(I p 215), 215;
			Fig 111d
336	3a	skeleton (335)	I p 215
345	1	ditch	I p 211; Fig 111b
354	1	ditch	I p 211; Fig 111b
357	1	pit	I p 211; Fig 111b
354	1 1 1	ditch	I p 211; Fig 111b

Catterick Triangle (Site 425)

The glass is catalogued on II p 254.

Context	Phase	Description	Reference Finds
4	Unstratified	finds	Glass 1
7	1b	ditch	I p 219; Fig
_			116a, b
9	1b–1c	fill (26)	Fig 116c
26	1b	kiln	I p 219; Fig 116a,
00	11.	FII (96)	b, c
28 45	1b 1b	fill (26) ditch	I p 219; Fig 116c
45 113	10 1c	cobbled causeway	I p 219; Fig 116a I p 222; Fig 116a
116	1b	boundary	I p 219; Fig 116a
364	1c	metalling road 430	I p 222; Fig 115b
367	1–3	layer	Fig 115b
368	1–3	layer	Fig 115b
369	1a or b	metalling road 430	I p 217; Fig 115b
372	1b	metalling road 430	I p 219; Fig 115b
377	1c	metalling road 430	I p 222
380	1b	ditch road 430	I p 219; Fig 116a
381	1b	metalling road 430	I p 219; Fig 115b
382	1–3	metalling road 430	Fig 115b
384	1a	agger road 430	I p 217; Fig 115b
385	1b	road widening	I p 219; Fig 115b
388	1c	gully road 430	I p 222; Fig 115b
			& 116b
401	Natural	subsoil	I p 217; Fig 115a
403	1b	ditch road 430	I p 219; Fig 115a
			& 116a
404	1b	fill (403)	Fig 115a
406	1c	ditch	Fig 115a
407		fill (406)	Fig 115a
409	U/S	topsoil	Fig 115a
411	1b	agger road 431	I p 219; Fig 115a
412	1b	surface road 430	I p 219; Fig 115a
413 414	1a 1a	metalling road 430 agger road 430	I p 217; Fig 115a
415	la	metalling road 430	I p 217; Fig 115a I p 217; Fig 115a
416	la	metalling road 430	I p 217, Fig 115a I p 217; Fig 115a
417	la	layer	Fig 115a
418	Unphased	layer	Fig 115a
419	Roman	pit	I p 222; Fig 115a
110	Homan	pit	& 116a
420	2	fill (419)	Fig 115a
421	1b	ditch road 430	I p 219; Fig 115a
			& 116a
423	Natural	subsoil	I p 217; Fig 115a
424	1b	layer	I p 217; Fig 115a
425	1c	layer	Fig 115a
426	1b	metalling road 431	I p 219; Fig 115a
427	1c	fill (428)	Fig 115a
428	1c	ditch	I p 222; Fig 115a
			& 116a
429	1a–1b	layer	Fig 115a
430	1a	road	I p 217; Fig 115a
			& 116a
431	1b	road	I p 219; Fig 115a
			& 116a
434	1c	pit	I p 222; Fig 116a
502	Roman	gully road 430	I p 222; Fig 116a
509	1c	ditch	I p 222; Fig 116a

Thornbrough Farm (Site 452)

A prefix MS refers to the mortaria stamp catalogue on I p 484. The samian pottery relates to the catalogue on I p 485, a prefix of S indicates the number relates to the samian stamp catalogue (I p 488).

For the brooch catalogues see II p 162, for the copper alloy catalogue see II p 140, for the iron and lead

catalogue see II p 141, for the jet and shale catalogue see II p 180, for the worked bone catalogue see II p 197, for the ceramic small finds see II 000, for the stone artefacts see II p 307, for the quern stones see II p 285, for the vessel and window glass see II p 256, for the beads see II p 262.

Context	Phase	Description	Reference	Finds
1	15	layer	Fig 118a	Samian 13; Coin 22; Cu 21; Iron 16
8	14	wall fabric (39)		
9	15	collapse	Fig 118a	
10	15	layer	8	Iron 21
11	15	layer		Glass V.2b
13	15	layer	Fig 118a	Samian 10
14	15	layer	Fig 118a	Saman 10
15	8	metalled surface		80
10	0	metaneu surface	I p 229; Fig 118	
16	13	dump	& Fig 120d; e I p 230	Coin 20; Cu 6; Iron 10 Samian S1; Graffito 45, 49; Coin 12; Lead 2; Iron 15; Bone 3; 10–13;
				Glass V.10f
17	12	levelling	I p 230	Lead 1
18	12 12	levelling	I p 230 I p 230	2000 I
19	15	layer	1 p 200	Glass V.10g
20	15	layer	Fig 118a	Glass V.10g
21	15	layer	Fig 118a	Lever F. Develo
22	12	levelling	I p 230	Iron 5; Bone 2
23	14	fill (28)	TI 1 1 1	Cu 13
27	15	post pad	Fig 118a	
29	12	levelling	I p 230	
30	15	layer	Fig 118a	
31	15	layer	Fig 118a	
32	15	fill (47)		window
33	15	fill (48)		Bone 7
37	14	wall	I p 230; Fig 118 & 120f	8a
38	14			∩£
		wall	I p 230; Fig 120	01
39	14	wall	Fig 118a & 120f	
40	15	layer	Fig 118a	Coin 18; Iron 8; 11; Glass V.11b; window
42	12	levelling	I p 230	Cu 24
44	14	wall	I p 230; Fig 12	Of
49	12	levelling	I p 230	
50	12	levelling	I p 230	Cu 25; 35; Bone 5; quern 2; Glass V.10h
51	12	levelling	I p 230	Samian S6
52	10	levelling	I p 230	Samian 10; Brooch 1;
		-	-	Stone 1
53	12	levelling	I p 230	Samian 10
54	12	levelling	I p 230	
55	12	levelling	I p 230	
56	12	levelling	I p 230	
60	15	layer	Fig 118a, b	
61	11	accumulation deposit	I p 230;	
			Fig 118a	Graffito 68–9
62	11	accumulation deposit	I p 230	
63	11	accumulation deposit	I p 230	Iron 13
	11	accumulation acposit	- p 200	1011 10

65	11	accumulation deposit	I p 230;	
		•		ass V.5
66	11	accumulation deposit	I p 230	
70	11	accumulation deposit		ass V. 11c; 14a
71	11	accumulation deposit	I p 230	155 V. 110, 11a
72	9			om 9
		layer		ern 2
73	8	levelling	I p 229;	
				n 12; Bone 9; Glass
			V. 9	9b
74	8	levelling	I p 229;	
			Fig 118a Bea	ad 1
75	6	dump	I p 229; Fig 118a	
76	6	dump	I p 229;	
	-	F	Fig 118a Cu	16
78	1b	layer	I p 224	
81	1b 1b	•		
		layer	I p 224	
83	8	levelling	I p 229; Fig 118a	
84	8	levelling		in 19; Iron 3; Glass
				0a, c
85	9	stone layer	Fig 118a	
88	7	fill (87)	Cu	28
94	10	levelling	I p 230 Sar	mian S3; S5; window
95	10	levelling	I p 230	
96	1b	layer	I p 224	
97	6		I p 224 I p 229; Fig 118a	
		dump		- ff:+ - F9 [];] - 1
98	1b	layer		affito 52; Tile 1
100	8	levelling	I p 229; Fig 118a	
101	14	layer	Fig 118b	
102	14	layer	I p 230;	
			Fig 118b Tile	e 3; Coin 4; 7–8; 13;
			16-	-7; Brooch 3; Iron 4;
				Jet 1; Glass V. 1–2;
				9e; 10i; 11d; Window
103	14	layer		in 9; Jet 2; Bone 4;
100	14	layer		ass V.10d; 14b
104	14	wall	I p 231; Fig 120f	ass v.100, 140
104	14		1 / 0	
105	14	floor ?	I p 230; Fig	
				in 6; 14; Cu 14; 19;
				ern 1; Glass V.6;
			Bea	ad 6
107	14	posthole	I p 231; Fig 120f	
108	14	fill (107)	Bea	ad 3; 5
114	14	layer		affito 78; Tile 3– 4;
				in 11; Iron 6; win-
			dov	
115	14	stone surface	I p 231; Fig 120f	ΥΥ Υ
116	14	corn dryer ?	I p 231; Fig 120f	,
117	14	wall	I p 231; Fig 120f wir	
118	14	fill (120)		18; Stone 5; win-
			dov	w; Bead 2
119	14	fill (121)	Fig 118b wir	ndow
120	14	pit	I p 224; Fig 120f	
121	14	pit	I p 224; Fig 120f	
122	14	layer		in 10; 15; Iron 24
123	14	dog grave	I p 231; Fig 120f	
125	12	wall	I p 230; Fig 120e	
				277 V102
127	14	layer		ass V.10e
128	13	dump	I p 230;	
				mian S2; Graffito 70;
				Brooch 2; window
129	14	foundation (703)	I p 230;	
	11			
	11			ndow

Context	Phase	Description	Reference	Finds
130	14	fill (132)		Tile 2
132	14	pit	I p 230; Fig 12	
133	8	cobbling	I p 229; Fig 12	
134	14	hearth	I p 231; Fig 12	
		_		
135	14	pit	Fig 118b	
136	14	fill (135)	Fig 118b	window
137	11	accumulation deposit	I p 230;	
			Fig 118b	Cu 20; Bone 8; Stone 3; Glass V.2c; 3
138	9	layer	Fig 118b	Samian 11; Coin 5;
100	Ū		119 1100	Iron 14; Glass V. 8; 11a,
				e; window
139	14	dump	I p 230;	-,
200		uump	Fig 120f	Cu 9; 11; 15; 29; Stone
			119 1201	4; Glass V. 2d;Bead 4
140	12	fill (141; 144)	Fig 118b	i, clube il 24,2044 i
141	12	post pit	Fig 118b	
142	13	dump	I p 230	
143	14	layer	1 p 2 00	Glass V. 9d; 11f
144	12	post pipe (141)	Fig 118b	
145	12	post packing (146)	Fig 118b	
146	12	pit/posthole	I p 230; Fig 12	l0e
147	9	layer	1 p 200, 1 ig 12	Samian 4
148	14	layer	I p 230	Cu 27
149	4	dump	I p 200 I p 226;	0421
110	1	dump	Fig 118b	Samian 8; S9
150	3	fill (151)	119 1100	Glass V. 11g
151	3	pit	I p 225	
152	5	fill (153)	Fig 118b	Samian 7
153	5	foundation trench (156)	(I p 224);	
100	0		Fig 118b	
156	5	foundation	(I p 224), 226;	
100	0	Touridation	Fig 118b	,
			& 119b	
157	9	layer	Fig 118b	Coin 1; Cu 26
158	9	layer	Fig 118b	Graffito 84; window
159	8	layer	Fig 118b	Granito o i, window
160	7	dump	I p 229; Fig 11	8h
161	8	floor (191)	I p 229	
162	8	fill (163)	Fig 118b	Cu 4; Glass V.11h
163	8	cut (191)	I p 229; Fig 11	
166	8	element of 166	I p 229	
168	8	flue wall 191	I p 229	
169	8	flue floor	I p 229	
171	7	dump	I p 229;	
111	•	uump	Fig 118b	Glass V.10j
174	8	stone surface	I p 229; Fig	
	U U		118b & 120d	
175	8	stone surface	I p 229;	
110	0	stone surface	Fig 118b	Tile 7
176	8	stone surface	I p 229; Fig 11	
177	7	dump	I p 229; Fig 11 I p 229;	
±11	'	aump	Fig 118b	Samian 9; S8; Iron 2
180	8	clay bonding wall 335	Fig 118b	Saman 9, 50, 11011 2
181	8 7	dump	I p 229; Fig 11	8b
182	8	fill (163)	Fig 118b	Glass V. 9a
183	8 7		-	U1255 V. Ja
183 184		dump	I p 229 Fig 118b	
	$\frac{12}{12}$	ditch fill (184)	Fig 118b	
185	14	fill (184)	Fig 118b	

Context	Phase	Description	Reference	Finds
186	7	dump	I p 229; Fig 11	8h
188	12	cobbling	I p 220; Hg 11 I p 230;	00
100	12	cobbillig	Fig 120e	Cu 1; 12
189	12	aphling		
		cobbling	I p 230; Fig 12	
.91	8	oven	I p 229; Fig 12	Ud
.92	8	layer	Fig 118b	0
.93	9	post hole	I p 230; Fig 12	
95	9	post hole	I p 230; Fig 12	
97	9	post hole	I p 230; Fig 12	
.99	10	pit	I p 230; Fig 11 & 120e	8a
00	15	layer	a 120e	Iron 7; 22; Stone 2
01	8	levelling	I p 229; Fig 11	
08	8	scorched layer	I p 229	0u
15	11	accumulation deposit	-	
			I p 230 L = 220	
16	8	scorched layer	I p 229	$C_{\rm eff} = 01$
17	8	scorched layer	I p 229	Coin 21
25	8	fill (224)		Cu 31
26	9	layer	D . 110	Samian 10
28	8	fill hearth 255	Fig 118a	
29	2	tiles	I p 225;	
			Fig 119b	Samian 2
34	3	tile		Tile 10
35	3	tile		Tile 9
36	3	tile		Tile 11a
37	3	tile		Tile 11b
38	3	tile		Tile 11c
39	3	tile		Tile 11d
40	3	tile		Tile 11e
41	3	tile		Tile 11f
42	3	tile		Tile 11g
43	3	tile		Tile 8, 11h"
45	3	tile		Tile 11i
48				Samian 12
	9 3	layer	\mathbf{E}_{in} 110	
51		layer	Fig 118a	Glass V. 10k
52	2	layer	Fig 118a	
65	3	hearth	Fig 118a	
67	1b	rampart	I p 224; Fig 11	
68	1b	rampart	I p 224; Fig 11	
69	1b	rampart	I p 224; Fig 11	8a
270	1b-8	multiple layers from sondage		
		removed by machine		Mortaria S73
71	2	layer	Fig 118a	
72	7	dump	I p 229; Fig 11	8a
75	15	fill (276)	-	Iron 17
77	1b	rampart	I p 224; Fig 11	
78	1b	rampart revetment	I p 224;	
-			Fig 118a	Graffito 59
80	1b	fill (284)	Fig 118a	
81	10 1a	layer	Fig 118a	
82	1a 1b	beam slot	I p 224; Fig 11	8a
02	TO		& 119b	ou
22	1ե	fill (999)		
83	1b 1b	fill (282)	Fig 118a	
84	1b	cut	Fig 118a	
85	$\frac{1}{2}$	fill (284)	Fig 118a	0
86	7	gully	I p 229; Fig 11	8a
87	7	fill (286)	Fig 118a	
88	7	dump	I p 229; Fig 11	8a
	41		Fig 1180	
90 94	1b 6	cut cobbling	Fig 118a	

Context	Phase	Description	Reference Finds
300	1a	layer	Fig 118a
301	7	dump	I p 229; Fig 118b
303	10	fill (199)	Fig 118b
305	10	pit	I p 230; Fig 120e
306	14	fill (135)	Fig 118b
307	14	layer	Fig 118b
309	$\frac{14}{7}$		I p 229; Fig 118b
		dump	
311	15	layer	Fig 118b
312	15	layer	Fig 118b
313	10	levelling	I p 230; Fig 118b
314	11	accumulation deposit	I p 230; Fig 118b
315	7	dump	I p 229; Fig 118b
316	12	pit/posthole	I p 230; Fig 118b & 120e
317	12	fill (316)	Fig 118b
318	12	accumulation deposit	I p 230; Fig 118b
319	10		
		levelling	I p 230; Fig 118b
320	8	clay bonding (167)	Fig 118b
321	10	levelling	I p 230; Fig 118b
322	8	flue wall (191)	I p 229; Fig 118b
323	7	dump	I p 229; Fig 118b
325	10	pit	I p 230; Fig 118b
			& 120e
326	10	fill (325)	Fig 118b
327	5	layer	I p 226;
021	0	layer	Fig 118b
330	5	layer	I p 226;
	-		Fig 118b
331	5	layer	Fig 118b
332	4	dump	I p 226;
002	Ŧ	dump	
იიი	1	and a model AFF	Fig 118b
333	1a	surface road 455	I p 224; Fig 118b
	0		& 119a
339	6	layer	Fig 118b Cu 22
340	10	levelling	I p 230
343	10	pit	I p 230; Fig 120e
348	12	layer	Glass V. 11i
349	13	dump	I p 230
350	13	dump	I p 230
352	14	fill (457)	Fig 118b Samian S12
355	5	metalled surface	I p 226;
	-		Fig 119b
356	11	accumulation deposit	I p 230;
000	11	accumulation deposit	Fig 118b Tile 6; Glass V. 11j
250	10	nit	e
358	10	pit	I p 230; Fig 120e
359	6	layer	I p 229; Fig 118b
361	11	cobbling	I p 230; Fig 120e
362	Unphased	layer	Samian S7
363	7	dump	I p 229
364	7	dump	I p 229 Mortaria S74–5; Cu 17
370	5	posthole	I p 226;
		-	Fig 119b
372	6	posthole	I p 229; Fig 119c
374	4	dump	I p 226;
- • =	-	I -	Fig 118b Samian 5–6; Glass V. 2e
377	5	posthole	I p 226;
	0	positione	Fig 119b
379	5	fill (980)	
	5 F	fill (380)	Fig 118b
380	5	posthole	I p 226; Fig
			118b & 119b

Context	Phase	Description	Reference	Finds
381	5	layer	I p 226;	
301	9	layer	Fig 118b	Iron 19
200	C	aabblin a	8	
382	6	cobbling	I p 229; Fig 119	С
384	6	posthole	I p 229;	0 10
	0		Fig 119c	Cu 10
386	6	posthole	I p 229; Fig 119	c
390	8	layer	Fig 118b	
391	6	layer		Iron 23
392	14	fill (400)	Fig 118b	
395	10	fill (396)	-	Iron 1; 9
396	10	pit	I p 230; Fig 120	
400	14	posthole?	I p 230; Fig 118	
100		poblicio	& 120f	
402	5	posthole	I p 226;	
402	0	postnole		
10.1	_		Fig 119b	
404	5	posthole	I p 226;	
			Fig 119b	
406	5	posthole	I p 226;	
			Fig 119b	
408	5	posthole	I p 226;	
	-	I the second second	Fig 119b	
410	5	layer	Fig 118b	Samian 8
412	6		I p 229; Fig 119	
		posthole	1 p 229, Fig 119	
414	4	fill (469)	T 00 T	Glass V. 13
417	3	layer	I p 225;	
			Fig 118b	Cu 23
430	6	hearth	I p 229; Fig	
			118b & 119c	
433	6	posthole	I p 229; Fig 119	с
434	3	layer	I p 225;	
101	0	iujei	Fig 118b	
436	6	posthole	I p 229; Fig 119	
		-		C
438	3	layer	Fig 118b	
439	1a	mortar layer	I p 224; Fig 118	b
			& 119a	
441	3	layer	I p 225	
443	8	layer	Fig 118b	
444	8	layer	Fig 118b	
446	3	pit	I p 225	
447	3	fill (448)	- r ==0	Bone 1
448	3	pit	I p 225	
450	3			
		pit	I p 225	
451	3	layer	I p 225	
452	1a	layer	I p 223;	~ .
			Fig 118b	Samian 1
453	1	fill (454)	Fig 118b	
454	1	pit	Fig 118b	
455	1a	road	I p 224; Fig 118	b
			& 119a	
456	7	dump	I p 229; Fig 118	h
457	14			N .
		pit	Fig 118b	
458	8	layer	Fig 118b	
459	6	fill (460)	Fig 118b	
460	6	pit	Fig 118b	
461	5	layer	Fig 118b	
462	8	fill (463)	Fig 118b	
463	8	pit	Fig 118b	
464	6	terrace	I p 229	
466				
+00	6	tree root hole	Fig 118b	
469	6	posthole	I p 229; Fig 119	

Context	Phase	Description	Reference Finds
472	8	pit	I p 229; Fig 120d
475	8		
		posthole	I p 229; Fig 120d
478	$\frac{12}{2}$	pit/posthole	I p 230; Fig 120e
479	7	dump	I p 229
480	1a	posthole	I p 223; Fig 118b
			& 119b
481	1	fill (480)	Fig 118b
482	1a	layer	I p 223; Fig 118b
485	12	pit/posthole	I p 230; Fig 120e
486	12 12	pit/posthole	I p 230; Fig 120e
488	6	posthole	I p 229; Fig 119c
490	1	fill (491)	Fig 118b
491	1	posthole	Fig 118b
492	12	pit/posthole	I p 230; Fig 120e
494	3	fill (495)	I p 225; Fig 118b
495	1b	fort ditch	(I p 224), 224;
100	10	fort alteri	Fig 118b
100	2		& 119b
496	3	fill (495)	Fig 118b
497	5	fill (495)	Fig 118b Samian 8;
498	3	fill (495)	Fig 118b
499	3	fill (495)	I p 225;
	-		Fig 118b Tile 5
500	3	fill (495)	I p 225;
000	0	IIII (455)	
	-	,	Fig 118b Samian 3; S4; window
501	1a	layer	Fig 118a
502	1a	layer	Fig 118a
503	1b	beam slot	I p 224; Fig 118a
			& 119b
504	1a	fill (503)	Fig 118a
505	0	buried soil	I p 223; Fig 118a
506			
	1a	layer	Fig 118a
508	0	layer	Fig 118a
509	0	natural	I p 223; Fig 118a
513	2	pit	Fig 118a
301	6	posthole	I p 229; Fig 118b
		1	& 119c
602	6	fill (601)	Fig 118b
603	4	dump	I p 226;
			Fig 118b
504	4	dump	I p 226;
			Fig 118b
606	0	natural	I p 223; Fig 118b
607	14	layer	Fig 118b
508 508	1	layer	Fig 118b
		v v	
309 31 9	5	bedding trench	I p 226; Fig 118b
610	5	fill (609)	Fig 118b Graffito 80
512	3	fill (495)	I p 225;
			Fig 118b
613	3	layer	Fig 118b
614	0 0	layer	Fig 118b
514 515	3	fill (495)	I p 225;
010	บ	1111 (430)	
01.0	C C		Fig 118b
616	3	fill (495)	I p 225;
			Fig 118b
617	3	fill (495)	Fig 118b
618	3	layer	Fig 118b
		•	
519	6	stones (601)	Fig 118b
200	.,	lovor	
620 621	3 5	layer layer	Fig 118b Fig 118b

Context	Phase	Description	Reference	Finds
625	3	fill (495)	Fig 118b	
628	14	layer		Cu 30; Lead 3; Glass V 2f; 11k; 12
629	14	posthole	I p 231; Fig 120	
631	9	gully	I p 230; Fig 120	
635	5	wall Building 643	I p 226;	
		8	Fig 119b, c	
636	5	wall Building 643	I p 226; Fig	
		5	119b, c; 120d	
642	6	floor Building 643	I p 229; Fig 119	С
646	5	foundation trench (635)	1 / 0	
		Building 643	I p 226	
647	8	wall	I p 229; Fig 120	d
651	8	wall	I p 230; Fig 120	
655	14	posthole	I p 231; Fig 120	
657	14	posthole	I p 231; Fig 120	
658	14	fill (657)	- p =01, 1 - g ==0.	window
659	7	pit	I p 229	
664	6	levelling (642) Building 643	I p 229	
666	6	levelling (642) Building 643	I p 229	
667	5	floor bedding Building 643	I p 226	
668	5	posthole	I p 226;	
000	0	postitole	Fig 119b	
670	5	posthole	I p 226;	
010	0	postitole	Fig 119b	
672	5	posthole	I p 226;	
012	0	postitole	Fig 119b	
682	7	pit	I p 229	
686	7 5	posthole	I p 226;	
000	0	postitole	Fig 119b	
688	7	dump	I p 229	
690	$\frac{7}{7}$	dump	I p 229 I p 229	
693	14	posthole	-	ç
695			I p 231; Fig 120	L
696	5 5	floor bedding Building 643	I p 226	
090	9	posthole	I p 226; Fig 110b	
709	7		Fig 119b	
702	7	dump	I p 229	
703	$\frac{14}{7}$	foundation trench	I p 230	
704	7	dump	I p 229	
705	7	dump	I p 229	
706	14	foundation (703)	I p 230	
707	14	foundation (703)	I p 230	
710	0	natural	Fig 118b	
711	1a	surface	I p 223; Fig 118	0
715	0	layer	Fig 118b	
716	0	layer	Fig 118b	
719	11	cobbling	I p 230	
720	13	dump	I p 230	
723	6	posthole	I p 229; Fig 119	
724	6	post pad	I p 229; Fig 119	
725	6	post pad	I p 229; Fig 119	
726	6	post pad	I p 229; Fig 119	2
727	1	fill (728)	Fig 118b	_
728	1a	?ditch	I p 223; Fig 118	Bb
			& 119b	
729	1	layer	Fig 118b	
730	1	layer	Fig 118b	
732	1	layer	Fig 118b	
752	9	posthole	I p 230; Fig 120	e
758	14	posthole	I p 231; Fig 120	_

Context	Phase	Description	Reference	Finds
763	14	fill (761)		Glass V. 9c
764	14	cow burial	I p 231; Fig 12	
765	14	fill (764)	1 p 201, 1 ig 12	Samian S10; Graffito
				79
767	9	fill (752)		Bone 6; Glass V. 7
771	14	posthole	I p 231; Fig 12	-
776	14	posthole	I p 231; Fig 12	
782	4	dump	I p 226;	
			Fig 118b	
785	9	fill (631)	0	Glass V. 10b
787	4	layer		Samian 4; Coin 3; Cu 8
790	10	fill (789)	Fig 118b	
791	5	posthole (609)	I p 226;	
		-	Fig 119b	
796	5	postholes	I p 226;	
		-	Fig 119b	
798	5	postholes	I p 226;	
		-	Fig 119b	
800	4	layer	-	Mortaria S76; Coin 2
808	13	dump	I p 230	
809	13	dump	I p 230	
813	5	foundation trench (635)	-	
		Building 643	I p 226	
817	3	fill (495)	I p 225	
818	3	fill (495)	I p 225	

Thornbrough Farm (Site 482)

The samian stamp is catalogued on I p 488, the tile on I p 523, the copper alloy on II p 140, the window and vessel glass on II p 254.

Context	Phase	Description	Reference Finds
3	6	layer	Fig 118c
8	5	clay dump	I p 226 Tile 1; Glass V. 2a; 3
10	5	posthole	I p 226; Fig 119b
12	5	posthole	I p 226; Fig 119b
13	6	fill (14)	Fig 118c
16	5	posthole	I p 226; Fig 119b
18	5	stakehole	I p 226
20	5	stakehole	I p 226; Fig 119b
22	5	posthole	I p 229; Fig 119b
26	5	stakehole	I p 226; Fig 119b
28	5	stakehole	I p 226; Fig 119b
30	5	stakehole	I p 226; Fig 119b
32	5	layer	Samian S11
34	5	posthole	I p 226; Fig 119b
40	5	posthole	I p 229; Fig 119b
44	5	posthole	I p 229; Fig 119b
45	5	clay dump	I p 226;
			Fig 118c Glass V. 1
47	5	stakehole	I p 226; Fig 119b
49	5	stakehole	I p 226; Fig 119b
51	5	stakehole	I p 226; Fig 119b
52	4	dump	I p 226; Fig 118c
53	5	stakehole	I p 226; Fig 119b
55	5	stakehole	I p 226; Fig 119b
57	5	stakehole	I p 226; Fig 119b
59	5	stakehole	I p 226; Fig 119b
61	5	stakehole	I p 226; Fig 119b
63	5	stakehole	I p 226; Fig 119b
68	3	fill (87)	Cu 2; 5
69	4	layer	Glass V. 2b
70	4	fill (71)	Cu 3
80	2	layer	window
81	1b	levelling dump	I p 224
83	1b	levelling dump	I p 224
84	1b	levelling dump	I p 224
85	2	layer	Fig 118c
86	3	layer	Fig 118c
88	1b	levelling dump	I p 224
89	5	stakehole	I p 226;
			Fig 119b
92	1b	levelling dump	I p 224
93	1b	levelling dump	I p 224
94	1b	levelling dump	I p 224
99	1b	levelling dump	I p 224 Glass V. 4
100	1b	levelling dump	I p 224
101	1a or b	layer	I p 224; Fig 118c
102	2	wall	I p 224; Fig 119a
105	5	posthole	I p 229; Fig 119b
106	2	clay layer	I p 225
107	4	robber trench (102)	I p 226
108	2	foundation (102)	I p 224; Fig 118c
109	2	fill (110)	Fig 118c
110	2	foundation trench (102)	I p 224
111	2	fill (110)	I p 225
		· · ·	1

Context	Phase	Description	Reference Finds
112	2	fill (110)	I p 225
113	2	fill (110)	I p 225
114	2	fill (110)	I p 225
116	1b	pit	I p 224; Fig 119a
118	1a or b	cut	I p 224; Fig 119a
119	1a or b	layer	I p 224
120	1a or b	layer	I p 224; Fig 118c
121	1a or b	layer	I p 224

Catterick RAF Camp 1966

The pottery is catalogued on I p 497 and the metal-work on II p 148.

Context	Phase	Description	Reference	Finds
3	0/1	gully	I p 232	
4	Unphased	layer	-	Pot 5
7	2	occupation layer ?	I p 232	Pot 6–8
9	6	dereliction deposit	I p 234	Pot 4, 9
10	Unphased	layer	-	Pot 10–11
11	0/1	humic layer	I p 232; Fig 121b	Pot 12
14	5	roofing slates	I p 233	Pot 1, 2, 13
15	0/1-2	original ground surface	I p 232;	
			Fig 121b	Pot 1, 14–7
16	4	dark soil	I p 233	Pot 1–4, 18–25; Iron 1–3, 8
16a	3	ash layer	I p 233	Pot 1–4, 18–25
17	Unphased	layer	-	Iron 4, 7, 10
19	Unphased	layer		Pot 1, 27–8
21	2	occupation	I p 233	Pot 1, 4, 29–36; Iron 6
23	2	flue cavity	I p 232	Pot 37–8
24	2	occupation	I p 233	
25	2	occupation	I p 233	Pot 39–43
26	Unphased	layer	-	Pot 44
27	0/1	burnt level	I p 232; Fig 121b	
28	natural	subsoil	I p 232; Fig 121b	

Context	Phase	Description	Reference Finds
1968 Excavat		•	
	_	road	I p 235; Fig 122
	-	well	I p 235 Pot 48
	-	lime pit	I p 235; Fig 122
	-	flagged floor	I p 235; Fig 122
	-	ditch 7	I p 235; Fig 122
1	-	ditch fill (3b)	I p 235;
2		ditch fill (3b)	Fig 123a Pot 49–51 I p 235;
2	_	ditch III (50)	Fig 123a Pot 52–4; Coin (uncata
			logued see p 220)
3	_	ditch fill (3b)	I p 235;
-			Fig 123a Pot 55
1	_	ditch fill (3b)	I p 235;
			Fig 123a Pot 56–8
5	-	ditch fill (3b)	I p 235;
			Fig 123a
5	_	ditch fill (3b)	I p 235;
_			Fig 123a
7	-	ditch fill (3b)	I p 235;
2			Fig 123a
8	-	ditch fill (3b)	I p 235; Fim 1925
			Fig 123a
1969 Excavat	tions		
1	_	cobble spread	I p 235; Fig 124 Pot 59
2	-	paved area	I p 235; Fig 124
3	_	hearth	I p 235; Fig 124
4	-	wall footings	I p 235; Fig 124
5	_	cobbles	I p 235; Fig 124
6	-	sandy layer	I p 237; Fig 124
7	-	pathway	I p 237; Fig 124
8	-	sandy soil	I p 237; Fig 124 Pot 60–3
9 10	-	ditch	I p 237; Fig 124 I p 235; Fig 124 Pot 64
10	_	layer	1 p 235; Fig 124 Fot 64
1970 Excavat	tions		
1	_		Fig 123c
2	_		Fig 123c Pot 65
3	-	road resurface	I p 238;
			Fig 123b–c Pot 66–77; Samian
1	-	road resurface	I p 238;
-			Fig 123b-c
5	-	road resurface road resurface	I p 239; Fig 123b I p 238:
6	-	Toau resurface	I p 238; Fig 123b–c
_	_	road resurface	I p 239; Fig 123b
1	-	ditch fill	I p 238; Fig 123b I p 238; Fig 123b
	_		
8	_		
7 8 9	_	road surface	I p 238;
8	-		

Cadbury-Schweppes Factory site 1968–70

The pottery and samian is catalogued on I p 499; the brooches on II p 163 and the stone on II p 307.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Context	Phase	Description	Reference Finds
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19		road surface	I n 938.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	_	Toad Surface	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	_	road surface	8
15 - ditch fill I p 238 Samian 16 - ditch fill I p 238; Fig 123b 17 - ditch fill I p 238; 17 - ditch fill I p 238; 18 - ditch fill I p 238; 19 - road surface I p 239; 20 - road surface I p 239; 21 - road agger I p 239; 22 - road agger I p 239; 23 - road agger I p 239; 24 - road cobbling I p 239; 25 - road cobbling I p 238; 26 - clearance I p 238; 27 - road cobbling I p 238; 28 - road agger I p 238; 29 - road cobbling I p 238; 28 - road cobbling I p 238; 29 - road agger I p 238; 30 - road agger I p 238;		_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	_	ditch fill	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
22-road aggerI p 239; Fig 123b23-road aggerI p 239; Fig 123b24-road cobblingI p 238;25-road cobblingI p 238;26-clearanceI p 238;27-road cobblingI p 238; Fig 123b28-road aggerI p 239;29-road aggerI p 239;29-road aggerI p 238; Fig 123b28-road aggerI p 239;30-road aggerI p 239; Fig 123b31-charcoalI p 238; Fig 123b32-burnt layerI p 238;33-road make-upI p 238;34-road cobblingI p 238; Fig 123b35-road cobblingI p 238;36-road cobblingI p 238;37-road cobblingI p 238;38-road cobblingI p 238;38-road cobblingI p 238;38-road cobblingI p 238;37-road cobblingI p 238;38-road cobblingI p 238;39-road cobblingI p 238;39-road cobblingI p 238; <t< td=""><td></td><td>_</td><td></td><td></td></t<>		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10000 00000000g	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	_	road cobbling	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	_	clearance	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	_	road cobbling	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	_	road agger	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		
$\begin{array}{ccccccc} & & & & & & & & & & & \\ 33 & & - & & & & & & & & & & & \\ 34 & & - & & & & & & & & & & & \\ 55 & & - & & & & & & & & & & & \\ 35 & & - & & & & & & & & & & & \\ 76 & & & & & & & & & & & & \\ 87 & & & & & & & & & & & & \\ 37 & & - & & & & & & & & & & & \\ 38 & & - & & & & & & & & & & & \\ 88 & & - & & & & & & & & & & \\ \end{array}$		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. <i>i</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	_	road make-up	
34 - road cobbling I p 238; Fig 123b 35 - road cobbling I p 238; 5 - Fig 123b Pot 87-8 37 - Fig 123c 38 - Fig 123c				
35 - road cobbling I p 238; Fig 123b Pot 87-8 37 - Fig 123c 38 - Fig 123c	34	_	road cobbling	8
Fig 123b Pot 87–8 37 - Fig 123c 38 - Fig 123c	35	_		1 / 0
37 - Fig 123c 38 - Fig 123c			0	
38 – Fig 123c	37	-		
		-		
		_		