Substrata

An archaeological magnetometer survey
 Land at Wolborough Barton Newton Abbot, Devon

Centred on NGR (E/N): 285600,70000 (point) and 286300,69400 (point)

Report: 1508WOL-R-1
Ross Dean BSc MSc MA MCIfA
18 June 2016

Substrata
Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273 273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

Client:
Mr Anthony Rew
Wolborough Barton
Newton Abbot,
Devon TQ12 1EJ

Contents

1. Survey description and summary 1
2. Survey aims and objectives 2
3. Standards 2
4. Site description 2
5. Archaeological background 3
6. Results, discussion and conclusions 5
7. Disclaimer and copyright 8
8. Acknowledgements 8
9. Bibliography 8
Appendix 1 Supporting plots 9
Appendix 2 Methodology 30
Appendix 3 Data processing. 31
Appendix 4 Minimally processed data plots 34
Figures
Figure 1: location map 10
Figure 2: area and plot designations with OS 2 m contours 11
Figure 3: survey interpretation, Areas A and B 12
Figure 4: survey interpretation, Area D 14
Figure 5: survey interpretation: Area B; Plots 2, 3, 8 and 10. 16
Figure 6: survey interpretation: Area B; Plots 5, 6 and 8 17
Figure 7: survey interpretation: Area B; Plot 4 18
Figure 8: survey interpretation: Area A; plots 11, 12 and 14. 19
Figure 9: survey interpretation: Area D; Plots 17, 18 and 19 20
Figure 10: survey interpretation: Area D; Plots 21 to 25 21
Figure 11: processed gradiometer data, Areas A and B 22
Figure 12: processed gradiometer data, Areas D 23
Figure 13: processed gradiometer data: Area B; Plots 2, 3, 8 and 10 24
Figure 14: processed gradiometer data: Area B; Plots 5, 6 and 8 25
Figure 15: processed gradiometer data: Area B; Plot 4 26
Figure 16: processed gradiometer data: Area A; plots 11, 12 and 14 27
Figure 17: processed gradiometer data: Area D; Plots 17, 18 and 19 28
Figure 18: processed gradiometer data: Area D; Plots 21 to 25 29
Figure 19: shade plot of minimally processed gradiometer data: Area B; Plot 2 35
Figure 20: shade plot of minimally processed gradiometer data: Area B; Plots 3 to 6,8 and 10 36
Figure 21: shade plot of minimally processed gradiometer data: Area A; Plots 11, 12 and 14 37
Figure 22: shade plot of minimally processed gradiometer data: Area D; Plot 19 38
Figure 23: shade plot of minimally processed gradiometer data: Area D; Plots 17, 18, 21 to $24 . .39$
Figure 24: shade plot of minimally processed gradiometer data: Area D; Plot 25 40
Tables
Table 1: land use during the survey 2
Table 2: Historic Landscape Characterisation (HLC) 3
Table 3: data analysis, Plots 2 to $6,10,11$ and 14 13
Table 4: data analysis, Plots 17 to 19,21 to 25 15
Table 5: methodology summary 30
Table 6: magnetometer survey - processed data metadata: Area B, plots 2 to 6, 8, 10 31
Table 7: magnetometer survey - processed data metadata: Area A, plots 11, 12 and 14 32
Table 8: magnetometer survey - processed data metadata: Area D, plots 17 to 19, 21 to 25 33

Project archive

Report ..
Copies of report figures ..Adobe PDF format
Raw and processed grid \& composite files......................DW Consulting TerraSurveyor 3 formats
Minimal processing data plots and metadata....................DW Consulting TerraSurveyor 3 formats
Final data processing data plots and metadata...................DW Consulting TerraSurveyor 3 formats
GIS project, shape files and classification schema GIS project
.Manifold 8 '.map' file
GIS shape files ESRI standard GIS classification schema Adobe PDF format
AutoCAD version of the survey interpretation..AutoCAD DXF

Website: substrata.co.uk
For an overview of Substrata, our archaeological geophysical surveying techniques and the results we obtain.

1 Survey description and summary

1.1 Survey

Type: twin-sensor fluxgate gradiometer
Date: between 14 January and 23 February 2016
Area: 54ha
Lead surveyor: Mark Edwards BA
Author:
Ross Dean BSc MSc MA MIfA
1.2 Client

Mr Anthony Rew, Wolborough Barton, Newton Abbot, Devon TQ12 1EJ
1.3 Agent

PCL Planning Ltd, 1st Floor, 3 Silverdown Office Park, Fairoak Close, Clyst Honiton, Exeter, Devon EX5 2UX
1.4 Location

Site: Land at Wolborough Barton
Civil Parish:
Newton Abbot
District:
County:
Nearest Postcode:
Teignbridge
Devon
TQ12 5PZ
NGR:
SX 859697
Ordnance Survey NGR (E/N): centred on 285600, 70000 (point) and 286300,69400 (point)
1.5 Archive

OASIS number:
substrat1-254242
Archive:
At the time of writing, the archive of this survey will be held by Substrata.
1.6 Introduction

This report presents the results of an archaeological magnetometer survey at the above site, hereafter referred to as the survey area. It has been prepared for Mr Anthony Rew as contributing information for a forthcoming planning application concerned with the above area. The survey area location is shown in Figure 1.

The area and plot designations used in this report follow those of an historic environment assessment completed by AC Archaeology Ltd for the same application albeit for a larger area of 92.4ha (Costen, 2015).

1.7 Summary

The magnetic responses across the survey area were sufficient to be able to differentiate between anomalies representing possible archaeological features and background magnetic responses.

One hundred and five magnetic anomaly groups were mapped as representing possible archaeological deposits or structures. Of these, seventeen are likely to represent a former field boundaries recorded on historical maps. One anomaly group represents a former quarry recorded on historic maps. A similar, nearby anomaly group probably represents an unmapped, disused quarry. One group may represent, a rubble and/or brick deposit and may possibly be associated with nearby former rifle butts from a nineteenth century rifle range that continued in use until after World War 2. Three groups may represent former routeways such as stock paths or un-ditched tracks. Eighteen groups are thought to represent historic ridge-and-furrow cultivation. The sixty four remaining magnetic anomaly groups have characteristics that are typical of anomalies representing former field and enclosure boundaries of unknown origin and more than one phase of land enclosure.

2 Survey aims and objectives

2.1 Aims

To establish the presence or absence, extent and character of any archaeological features and deposits within the survey area. The results of the survey and any subsequent trial trenching will be reviewed and used to inform any ensuing mitigation.

2.2 Survey objectives

1. Complete a magnetometer survey across agreed parts of the survey area.
2. Identify any magnetic anomalies that may be related to archaeological deposits, structures or artefacts.
3. Within the limits of the techniques and dataset, archaeologically characterise any such anomalies or patterns of anomalies.
4. Accurately record the location of the identified anomalies.
5. Produce a report based on the survey that is sufficiently detailed to inform any subsequent development on the survey area about the location and possible archaeological character of the recorded anomalies.

3 Standards

The standards used to complete this survey are defined by the Chartered Institute for Archaeologists (2014a) and Historic England (2010). The codes of approved practice that were followed are those of the Chartered Institute for Archaeologists (2014b) and Archaeology Data Service/Digital Antiquity Guides (undated).

$4 \quad$ Site description

4.1 Landscape and land use

The survey area covers 54 ha, which for the purposes of description, has been split into three areas A, B and D (Figure 1). These area designations, and plot designations shown in Figure 2, are those used in an historic environment assessment produced by AC Archaeology Ltd as part of the same programme of work as this report (Costen, 2015). Not all of the plots discussed by Costen were included in the magnetometer survey.

The topography of the area varies as shown in Figure 2. The land is broadly a northwest to southwest orientated hilltop location, with the land dropping away to the northeast, southeast, south and southwest.

Land use	Plot
grass	$2,5,6,8,10,21,22,23,24$
ploughed	3
young crops	$11,12,14,25$
sugar beet	18
stubble	$4,17,19$

Table 1: land use during the survey

4.2 Geology

The survey area has a solid geology as follows (British Geological Survey, undated):

Area A

Part of Plot 11, part of Plot12, Plot 14
Carboniferous and Devonian Whiteway Mudstone Formation. Consists predominantly of red and purple mudstone with subordinate green and grey-black, locally laminated mudstone. Thin units of basalitic (spilitic) lava are sparsely present in thicker developments

Part of Plot 12
Devonian to Permian Southwest England Minor Intrusive Suite which is microgabbro.
Part of Plot 11 and part of Plot12
Devonian East Ogwell Limestone Formation.

Area B

Palaeogene Aller Gravel Formation which comprise10-20cm-thick beds of lenticular-bedded abraded flint and chert gravels, with subordinate red-mottled silts and clays, coarse, angular, flinty gravelly clayey sand, with some cross-bedded coarse sand, lenticles of white clayey sand and reddish brown coarse sand. The constituents of the gravel vary locally, and may contain some or all of the following: flint, quartz and tourmaline rock, Greensand chert, Lower Carboniferous chert, Upper Carboniferous sandstone, white rounded clay clasts, vein quartz, dark grey hornfels and tuff.

Area D
Cretaceous Upper Greensand Formation comprising glauconitic and shelly, fine-grained sand, sandstone and silt.

5 Archaeological background

5.1 Historic landscape characterisation

Area	Plot	HLC Modern	HLC Post-medieval
A	11,12	Medieval enclosures	Medieval enclosures
A	14	Post-medieval enclosures	Post-medieval enclosures
B	$2,3,5,6,10$	Medieval enclosures	Medieval enclosures
B	4	Modern enclosures adapting medieval fields	Medieval enclosures (west) Rough ground (eastern third)
D	17	Modern enclosures adapting medieval fields	Medieval enclosures based on strip fields (west) Post-medieval enclosures with medieval elements (east)
D	18,19	Modern enclosures adapting medieval fields	Post-medieval enclosures with medieval elements
D	$22,22,23$,	Modern enclosures adapting medieval fields	Medieval enclosures based on strip fields

Table 2: Historic Landscape Characterisation (HLC) (Devon County Council, undated).

Medieval enclosures

Fields probably first enclosed with hedge-banks during the middle ages.

Modern enclosures adapting medieval fields

These modern fields have been created out of probable medieval enclosures. The sinuous medieval boundaries survive in places.

Rough ground

Rough grazing ground, heathland or moorland.

Post-medieval enclosures

Enclosures of post-medieval date. Fields laid out in the C18th and C19th commonly have many surveyed dead-straight field boundaries.

Modern enclosures adapting medieval fields
These modern fields have been created out of probable medieval enclosures. The sinuous medieval boundaries survive in places.

Medieval enclosures based on strip fields
This area was probably first enclosed with hedge-banks during the later middle ages. The curving form of the hedge-banks suggests that earlier it may have been farmed as open stripfields.

Post-medieval enclosures with medieval elements

These enclosures are probably based on medieval fields, but the many straight field boundaries suggest they were substantially re-organised in the post-medieval period.

5.2 Historical and archaeological background

Archaeological sites, buildings, historic parks and gardens, conservation areas, registered battlefields and other aspects of the historic environment that are significant because of their historic, archaeological, architectural or artistic interest are considered heritage assets. Designated heritage assets are afforded protection as either scheduled monuments, listed buildings or through their inclusion within conservation areas. Non-designated heritage assets are potential archaeological remains and historic landscapes.

An historic environment assessment of an area of 500 m around the survey area was produced by AC Archaeology Ltd (Costen, 2015) as part of the same programme of work as this report and is the source for the discussion below.

There are no heritage assets within survey area or the wider study area of the historic environment assessment that provide an indication of prehistoric or Romano-British land use, such as burial activity or settlement. However, archaeological investigations in advance of development in the rural areas around Newton Abbot have identified previously-unrecorded evidence for prehistoric burials and settlement and Romano-British settlement. The hilltops within Plots 12 and 14 in Area A, Plot 4 in Area B and Plots 17 and 18 in area D were suggested as suitable locations for such activity, survival under later ploughing permitting. None were recorded during the magnetometer survey.

The manor of Wolborough Barton, as mapped by the Historic Environment Record, extends into the survey area (Plots 8 and 9 in Area B). However, there is no archaeological or documentary evidence for the extent of the manor (which is likely to be much larger than the mapped area) or the location of settlement activity within it. It is possible that the present Wolborough Barton represents an early settlement focus within the manor, but this may not have extended beyond its current curtilage. The combination of a 'barton' placename next to a medieval parish church is indicative of a medieval manor house location.

The only other recorded asset within the survey area is a rifle range (Area B, south-eastern side of Plot 4). Some possible below-ground evidence of the butts associated with the rifle range was recorded.

Costen (ibid) points out that the survey area is an historic agricultural landscape and contains field boundaries of probable medieval and post-medieval date. There were formerly additional smaller fields within its boundary than at present. Below-ground evidence, in the form of remnant banks and associated flanking drainage ditches, for removed field boundaries were recorded during the survey.

6 Results, discussion and conclusions

This survey was designed to record magnetic anomalies. The anomalies themselves cannot be regarded as actual archaeological features and the dimensions of the anomalies shown do not represent the dimensions of any associated archaeological features. The analysis presented below identifies and characterises anomalies and anomaly groups that may relate to archaeological deposits, structures and features.

The terms archaeological deposits, structures and features refer to any artefacts, material deposits or disturbance of natural deposits thought to be the result of human activity and not undertaken as recent land maintenance or farming.

The reader is referred to section 7 .

6.1 Results

The survey area covers 54 ha, which for the purposes of description has been split into three areas A, B and D . The area and plot designations used in this report, shown in Figure 2 and elsewhere, are those used by Costen (2015). Not all of the plots discussed by Costen were included in the magnetometer survey.

Figures 2 and 3 show the interpretation of the survey data. They include the anomaly groups identified as relating to archaeological deposits along with their identifying numbers. Figures 5 to 10 show the same interpretation plots at more detailed scales. Tables 3 and 4 are extracts of the detailed analysis of the survey data sourced from the attribute tables of the GIS project provided in the project archive.

Figures 3 to 10 along with Table 3 and Table 4 comprise the analysis of the survey data.
Figures 11 to 18 are plots of the processed data as specified in Tables 6 to 8. Figures 19 to 24 are plots of minimally processed survey data.

6.2 Discussion

6.2.1 General points

Discussion scope
Not all anomalies or anomaly groups identified in Tables 3 and 4 are necessarily discussed below. All identified anomaly groups are fully recorded in the GIS project held the survey archive.

Data collection

Data collection along the survey area edges was restricted as shown in the figures due to the presence of magnetic materials and physical objects adjacent to the survey area. Strong magnetic responses mapped close to survey boundaries are likely to relate to these materials except where otherwise indicated.

Anomaly characterisation and mapping

There are a number of anomaly groups that could be interpreted as relating to large postholes or pits although most will have natural origins. Anomalies of this sort are only mapped as potential archaeology if they are clustered in groups or otherwise form recognisable patterns.

Recent man-made objects such as manholes, water management equipment, drains, cables and other services were only mapped where they comprised significant magnetic responses across the dataset that needed clarification. If mapped, they are listed in Table 1 but are not discussed below.

Anomalies thought to relate to natural features were not mapped.

Numerous dipole magnetic anomalies are scattered across the data set. These are likely to represent recent buried ferrous objects and such patterns are frequently found in close proximity to settlements.

Anomaly trends

A number of parallel linear anomaly trends are present across the data set. Some of these may indicate deposit disruption caused by historic ridge-and-furrow ploughing and were mapped as part of the analysis. Another type are most likely to relate to relatively recent field drains. These were also mapped to distinguish them from the potentially historical ridge -and-furrow. A third set of unmapped groups of parallel linear anomaly trends is most likely to represent relatively recent and modern ploughing.
6.2.2 Data relating to historic maps and other records

A number of magnetic anomaly groups coincide with, and likely represent, former field boundaries recorded on the Wolborough Tithe map of 1845, the Abbotskerswell Tithe map of 1839 (Plot 19 only) and historic Ordnance Survey maps as listed in Tables 3 and 4. These anomaly groups are designated as 'likely archaeology' because of the supporting historic map evidence. These linear anomalies are group 2 (Plot 2, Figure 5), groups 19, 24, 25 and 27 (plot 4, Figure 7), 44 (Plot 12, Figure 8), 56 (Plot 18, Figure 9), 63, 65, 67, 70 and 71 (plot 19, Figure 9), 79, 82 and 83 (Plot 21, Figure 10), 90 (Plot 24, Figure 10) and 99 (Plot 25, Figure 10).

Anomaly group 43 (Plot 12, Figure 8) represents a now in-filled quarry recorded on historical maps between 1845 and 1974-75.

Anomaly group 28 probably represent a deposit of rubble, possibly mixed with fired bricks, that may be associated with the former rifle butts and rifle range that lay in part along the south-eastern edge of Plot 4 (Figure 7).
6.2.3 Data with no previous archaeological provenance

Magnetic anomaly group 18 (Plot 3, Figure 5) is difficult to characterise and may represent a deposit or structure comprising relatively magnetic material such as may be left by craft or industrial processes of unknown date or purpose. The presence of concrete is an alternative explanation although no such material was visible to the surveyors.

Group 20 (Plot 4, Figure 7) appears to indicate the presence a sub-rectangular shaped structure or group of deposits. It is more likely that the two northwest-southeast trending 'arms' relate to relatively recent ploughing although a sub-rectangular shape cannot be entirely ruled out.

Anomaly group 42 (Plot 11, Figure 8) has very similar characteristics to the nearby group 43 and is likely to represent another unrecorded former quarry.

Groups 59 (Plot 18, Figure 9), 78 (Plot 19, Figure 9) and 88 (Plot 23, Figure 10) are difficult to characterise but may represent former routeways in the form of stock paths or un-ditched lanes.

The sixty four remaining magnetic anomaly groups have characteristics that are typical of anomalies representing former field and enclosure boundaries of unknown origin and very likely of more than one phase of land enclosure.

6.3 Conclusions

The magnetic responses across the survey area were sufficient to be able to differentiate between anomalies representing possible archaeological features and background magnetic responses.

One hundred and five magnetic anomaly groups were mapped as representing possible archaeological deposits or structures. Of these, seventeen are likely to represent a former
field boundaries recorded on historical maps. One anomaly group represents a former quarry recorded on historic maps. A similar, nearby anomaly group probably represents an unmapped disused quarry. One group may represent, a rubble and/or brick deposit and may possibly be associated with nearby former rifle butts from a nineteenth century rifle range that continued in use until after World War 2. Three groups may represent former routeways such as stock paths or un-ditched tracks. Eighteen groups are thought to represent historic ridge-and-furrow cultivation. The sixty four remaining magnetic anomaly groups have characteristics that are typical of anomalies representing former field and enclosure boundaries of unknown origin and more than one phase of land enclosure.

7 Disclaimer and copyright

The description and discussion of the results presented in this report are the authors, based on his interpretation of the survey data. Every effort has been made to provide accurate descriptions and interpretations of the geophysical data set. The nature of archaeological geophysical surveying is such that interpretations based on geophysical data, while informative, can only be provisional. Geophysical surveys are a cost-effective early step in the multi-phase process that is archaeology. The evaluation programme of which this survey is part may also be informed by other archaeological assessment work and analysis. It must be presumed that more archaeological features will be evaluated than those specified in this report.

Ross Dean, trading as Substrata, will assign copyright to the client upon written request but retains the right to be identified as the author of all project documentation and reports as defined in the Copyright, Designs and Patents Act 1988 (Chapter IV, s.79). This report contains material that is non-Substrata copyright or the intellectual property of third parties. Such material is labelled with the appropriate copyright and is non-transferrable by Substrata.

8 Acknowledgements

Substrata would like to thank Mr Anthony Rew for commissioning us to complete this survey.

9 Bibliography

Archaeology Data Service/Digital Antiquity Guides to Good Practice: Geophysical Data in Archaeology [Online], Available: http://guides.archaeologydataservice.ac.uk/g2gp/ Geophysics_Toc [June 2016]

British Geological Survey (undated) Geology of Britain viewer, [Online], Available: http:// www.bgs.ac.uk/discovering Geology/geologyOfBritain/viewer.html [May 2016]

Costen, D. (2015) Wolborough Barton, Newton A bbot, Devon, National Grid References $S X$ 8566670923 north, SX 8729869869 east, SX 8713068423 south, SX 8509069844 west, Historic Environment Assessment, AC Archaeology Ltd unpublished document ACD1188/1/0

Chartered Institute for Archaeologists (2014a) Standard and guidance archaeological geophysical survey. Reading: Author [Online], Available: http://www.archaeologists.net/sites/ default/files/CIfAS\&GGeophysics_1.pdf [April 2016]

Chartered Institute for Archaeologists (2014b) Code of conduct. Reading: Author [Online], http://www.archaeologists.net/sites/default/files/CodesofConduct.pdf [January 2016]

Clark, A. (2000) Seeing Beneath the Soil, Prospecting methods in archaeology, London: Routledge

Dean, R. (2016) A survey method statement for a detailed magnetometer survey over approximately 54ha of land at Wolborough Barton, Newton Abbot, Devon, Substrata unpublished document 21-12-2015

Devon County Council (undated) Historic Landscape Characterisation [Online], Available: http://www.devon.gov.uk/landscape-characterisation [April 2016]

Historic England (2010) Geophysical Survey in A rchaeological Field Evaluation, [Online], Available: https://content.historicengland.org.uk/images-books/publications/geophysical-survey-in-archaeological-field-evaluation/geophysics-guidelines.pdf/ [April 2016]

Appendix 1 Supporting plots

General Guidance

The anomalies represented in the survey plots provided in this appendix are magnetic anomalies. The apparent size of such anomalies and anomaly patterns are unlikely to correspond exactly with the dimensions of any associated archaeological features.

A rough rule for interpreting magnetic anomalies is that the width of an anomaly at half its maximum reading is equal to the width of the buried feature, or its depth if this is greater (Clark, 2000: 83). Caution must be applied when using this rule as it depends on the anomalies being clearly identifiable and distinct from adjacent anomalies. In northern latitudes the position of the maximum of a magnetic anomaly will be displaced slightly to the south of any associated physical feature.

British Grid
centre X: 285774.85 m , centre Y: 69807.90 m

285000 m

Scale: 1:10000@A3. Spatial Units: Meter. Do not scale off this drawing

An archaeological magnetometer survey

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point)
Report: 1508WOL-R-1

Figure 1: location map

British Grid
centre X: 285870.99 m , centre $\mathrm{Y}: 69695.22 \mathrm{~m}$

Scale: 1:6000@A3. Spatial Units: Meter. Do not scale off this drawing

Geophysical survey: Copyright Substrata 2016 Base map \& contour map : Ordnance Survey (c) Crown Copyright 2016. All rights reserved.

An archaeological magnetometer survey

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point)
Report: 1508WOL-R-1

Figure 2: area and plot designations of the geophysical survey areas with Ordnance Survey 2 m AOD contours (after Costen, 2015)

Substrata

Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

certainty, anomaly type (2)

likely, positive (3)
likely, negative (3)
likely, mixed (3)
possible, positive
possible, positive spread
possible, mixed
possible, negative
positive, parallel liners
possible, medium contrast
possible, repeated parallels (4) Potential services \& modern
certainty, anomaly type (2)kely, positive parallel linears (3)
possible, high contrast linear
possible, low contrast linear

- possible, regular narrow linears (4)

Notes

1. All interpretations are provisional and represent potential archaeological deposits
2. Anomalies designated "likely archaeology" have supporting evidence e.g. historical maps and or visible earthworks.
3. Representative; not all instances are mapped.
4. Anomalies likely to represent geological or other natural deposits are not mapped unless relevant to potential archaeological events or deposits.

Scale: 1:3200 @ A3. Spatial Units: Meter.
Do not scale off this drawing

British Grid

centre X: 285582.06 m , centre Y: 69955.78 m

Geophysical survey: Copyright Substrata 2016. Base map: Ordnance Survey (c) Crown Copyright 2016, Licence number 100022432
All rights reserved

An archaeological magnetometer survey
Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Figure 3: survey interpretation, areas A and B

Substrata
Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk Web: substrata.co.uk

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (ENT): 285600,70000
(point) and 286300,69400 (point) Centred on NGR (EN):
Report. 1 1508WOL-R-1

area	plot	$\begin{aligned} & \text { anomaly } \\ & \text { group } \end{aligned}$	$\begin{aligned} & \text { associated } \\ & \text { anomalies } \\ & \hline \end{aligned}$	anomaly characterisation certainty \& class	anomaly form	additional archaeological characterisation	comments	Supporting evidence
	${ }^{2}$	1		possible, negative	curvilinear			
		$\begin{array}{r} 2 \\ \hline \quad 3 \end{array}$		possible, positive possible, positive	disrupted linear linear			
		\square		poossibe.positive	curvilinear			
		5		possible, positive spread	linear			
		6		possible, positive	linear			
		7		possible, positive	linar			
		8		possible, positive	linear			
		9		possible, positive	linear			
		-10		possible, positive	$\xrightarrow{\text { linear }}$			
		11 12		possible, positive likely, positive	${ }^{\text {linear }}$ distuped curvilinear	field boundary	anomaly group coincides with a field boundary mapped on historical maps	1845 Wolborough tithe map, Ordnance Survey 1888-1890 1:2500 to 19061
		${ }_{-13}$		possible, positive	linear	Rebomar		1845 Wolborough tile map, Ordnance Survey 188-1890 1.2500 To
		14		possible, positive	distruped linear			
		$\stackrel{15}{5}$		possible, positive	distupted linar			
		501 16		Possible, high contrast linar		${ }_{\text {ferrous cable, pipe or drain }}^{\text {pito }}$		
${ }^{\text {B }}$	3	17		possible, positive	distupted linear			
		18		possible, positivenenegativepositive	braad curvilinear	problematic - possibly a man-made feature	anomaly group has a high positive and a high negative element, neither of which can be distinguished as a 'magnetic shadow' of the other	
${ }^{\text {B }}$	${ }^{4}$	19		likely, positive possible, positive	linear disrupted sub-rectangular or linear	field boundary	anomaly group coincides with a field boundary mapped on historical maps northwest-southeast trending components may be remnant ploughing	1845 Wolborough tithe map, Ordhance Surrey 1888-1890 1:2500 to 1955-56 1:2500
		21		possible, repeated parallels	-	cullivation traces-possibile ridge-and-furrow		
		22		possible, positive	distupled linear			
		23		possile, positive	distruped linar			1845 Wolborough tithe mar Ordance Survey 1888-1890 1.2500 to 1955-561.2500
		$\begin{array}{r}24 \\ \hline 25\end{array}$		likely, positive	${ }^{\text {disuruped linear }}$	field booundary \& footpath		1845 Wolbrough tithe map, Orranace Survey 1888-1890 1:2500 to 1955-561:2500
		26		possible, positive	distruped linear			
		27		likely, positive	distupted linear	field boundary	anomaly group coincides with a field boundary mapped on historical maps	845 Wolborough tithe map, Ordanate Survey 1888-1880 1:2500 to 1955-56 1:2500
		28		possible, medium contrast	irregular	deposit of rubble, possibly including frred bricks	anomaly group may be associated with rifle buts mapped in the late 19th and early 20th centuries and part of the Decoy Brake riffe range	HER entries MDV 52528 (butts) \& MDV 52399 (rifle range)
${ }^{\text {B }}$	5	$\begin{array}{r}29 \\ \hline 502\end{array}$		possible, repeated parallels		cultivation traces - possible ridge-and-furrow field drains		
${ }^{\text {B }}$	6	30		possible, positive	double linear			
		31		possible, positive	distuped linear			
		32		possible, positive spread	linear			
		33		possible, positive spread	linear			
		34		possile, repeated paralilels		cullivation traces - possile ridge-and-fiurow		
		35		possile, repeated parallels		cultivation traces - possile ridge-and-furrow		
		503		Possible, regular narrow linears			anomaly group is most tikely to representa a fied drain although recent ploughing disturbance cannot ber ruled out entriely	
${ }^{\text {B }}$	${ }^{10}$	- 37		possible, positive	disruped linear			
		${ }_{504}^{504}$		likely, positive paralle linears		track	anomaly group is a clear southerm extension of an extant track which is only shown on current OS mapping (absent from historical mapping)	
${ }^{\text {A }}$	11	38 39		${ }_{\text {possible }}$ peogative ${ }_{\text {posile, positive }}^{\square}$	distruped linear			
		40		possibile, positive enegativepositive	distuped linear	field boundary, possilly a Devon bank		
		$\stackrel{41}{42}$		possibe, repeated parallels		cultivation traces-possile rige-and-furow		
${ }^{\text {A }}$	12	${ }^{43}$		likely, mixed	iriegeguar	rintle or near-surface bedrock		
								Surrey 1888-1890 1:2500 to 1974-75 1:2500
		44		likely, positivenengativepositive	linar	field boundary, possibly a Devon bank	anomaly group coincides with a field boundary mapped on historical maps	1845 Wolborough tithe map, Ordnance Survey 1888-1890 1:2500 to 1906 1:10560
${ }^{\text {A }}$	14	46		possible, positive	distruped linear	$\square 5$		
		47		possible, repeated paralles		cultivation traces - possible ridge-and-furrow		
		48 4		possible, repeated parallels	disupted linear	cultivation traces - p		
		50		possibie, repeated paralilels	(1)	cultivation traces-possible ridge-and-furrow		
		51 52		possilib, positive	distrupled linear			

An archaeological magnetometer survey
and at Noblorough Barto, Newto Abbot Devon
Centred on NGR (ER Centred on NGR (EN):
Report: 1508 WOL -R-1

area	${ }^{\text {plot }}$	$\begin{aligned} & \text { anomaly } \\ & \text { groupp } \end{aligned}$	associated anomalies	anomaly characterisation certainty \& class	anomaly form	$\begin{aligned} & \text { additional archaeological } \\ & \text { characterisation } \end{aligned}$	comments	supporting evidence
D	18	-53		possible, repeated parallels		cultivation traces -possille ridge-and-furrow		
		$\begin{array}{r}54 \\ \hline 55 \\ \hline\end{array}$		possilic, repeated paralle		cultivation traces-possible ridge-and-furrow		
		-56		$\frac{\text { possibe, positive }}{\text { likely } \text { positiveregative/positive }}$	dinear disuled linear	field boundary. posibly a Devon bank	anomaly yroup coincides with a field boundary mapped on historical maps	1845 Wolborough tithe map, Ordanance Surrey 1888-1890 1:2500 to 1964 1:10560
		57		possible, positive spread	braad linear	filled hollow, carthen sufface or earthen spread		
		58		possible, positive				
		$\begin{array}{r}59 \\ \hline 595 \\ \hline\end{array}$		possible, positive spread	curvilinear		anomaly froup may represent either a a archaeological or natural deposit	
		$\begin{array}{r}505 \\ \hline 61\end{array}$		possible, low contrast linear	curvilinear	service trench	anomaly group represents a service trench with a possible fired ceramic orf errous pipe	
${ }^{\text {D }}$	19	62	${ }_{6}$	possible, ,ositive	distruped linear			
		63		likely, positive	distruped curvilinear	field boundary	anomaly yroup coincides witha field boundary mapped on historical maps	1839 Abbots erswell litite map, Ordrance Survey 1888-1890 1:2500 to 19388 1:10560
		64		possible, positive	distupted linear			
		65		likely, positivenegative/positive	distupled curvilinar	field boundary - possible Devon bank	anomaly group coincides witha field boundary mapped on historical maps	1839 Abbotskerswell tithe map, Ordnance Survey 1888-1890 1:2500 to 1964-10560
		${ }_{6}^{66}$	62	possible, negative				
		67		${ }^{\text {likely, positive }}$	linear	field boundary, possilly a Devon bank	anomaly group coincides with a field boundary mapped on historical maps and which formed part of the historic Wolborough and Abbotskerswell parish boundary	1845 Wolborough tithe \& 1839 Abbotskerswell tithe maps, Ordnance Survey
		68	$70 ?$	possible, positive	linear			
		69		possible, positive	linear			
		70	$68 ?$	likely, positive/negativepositive	distupted linear	frield boundary, possibly a Devon bank	anomaly group coincides with a field boundary mapped on historical maps, the western end of which formed part of the historic Wolborough and Abbotskerswell parish boundary	1845 Wolborough tithe \& 1839 Abbotskerswell tithe maps, Ordnance Survey 1888-1890 1:2500 to 1964 1:10560
		71		likely, positive	linear	field boundary	anomaly group coincides with a field boundary mapped on historical maps and which formed part of the historic Wolborough and Abbotskerswell parish boundary	1845 Wolborough tithe \& 1839 Abbotskerswell tithe maps, Ordnance Survey 1888-1890 $1 \cdot 2500$ to $19641: 10560$
		72		possible, positive	Ilinar			
		73		possible, positive	linear			
		74		possible, repeated parallels		cultivation traces -possible ridge-and-furrow		
		$\begin{array}{r}75 \\ \hline \quad 76\end{array}$			disrupted curvilinear			
		- 76		possibe, positive				
		78		possible, positive spread	linear			
		506		possible, high contrast linar		ferrous cable, pipe or drain or buried wire		
${ }^{\text {D }}$	${ }^{21}$	$\begin{array}{r}79 \\ \hline 80\end{array}$		likely, positive	curvilinear	ffield boundary	anomaly group coincides with a field boundary mapped on historical maps	11845 Wolborough tithe map, Ordnance Survey 1888-1890 1:2500 to 1964 1:10560
		$\begin{array}{r}80 \\ 81 \\ \hline 8\end{array}$		${ }^{\text {possible, positive }}$ positive, paralel liners		routeway, track or ridge-and-furrow		
		82		likely, negative	curvilinar	frield boundary	anomaly group coincides with a field boundary mapped on historical maps	1845 Wolborough tithe map, Ordanance Survee 1888-1890 1:2500 to 1964 1:10560
		83		likely, negative	curvilinear	frield boundary	anomaly group coincides with a field boundary mapped on historical maps	1845 Wolboroug t tithe map, Ordnance Survey 1888-1890 1:2500 to 1964 1:10560
		${ }^{84}$		possible, positive	curvilinear		anomaly sroup may represent either an archaeological or natural deposit	
D	22	85 86		possible, repeated parallels		cultivation traces - possible ridge-and-furrow		
		87		possible, positive	linear			
		507		possible, high contrast linar		service or buried fence wire		
D	${ }^{23}$	88		possible, positive spread	broad linear			
		89		possible, positive spread	broad linear			
${ }^{\text {D }}$	${ }^{24}$	90		likely, positive/negative/positive	$\frac{\text { linear }}{\text { linear }}$	frield boundary, possily a Devon bank	anomaly group coincides with a field boundary mapped on historical maps	1845 Wolborough tithe map, Ordmance Survey 1888-18900 1:2500 to 19641:10560
		92		possible, positive	distruted linear			
		93		possible, positive	distupted linear	field boundary		
		94		possible, positive	linear	\triangle -		
D	25	96		Possible, peositive paralels	disrupted linar	culivation traces - posssile r rige-and-urrow		
		97		possible, positive	linear		anomaly yroup may represent an archaeological deposit ora field drain	
		98		Possile, positive	linear disupted curvilinear	frield boundary, possibly a Devon bank	anomaly group coincides with a field boundary mapped on historical maps	Ordanace Surrey 1888-1890 1:2500 to 1977-39 1:2500
		102		possible, positive	distruped linear			Orina ${ }^{\text {a }}$
		103		possible, positive	linear			
		104 -105		possile, repeated parallels		cultivation traces -possile ridge-and-firrow		
		508		possible, low contrast linear		service tench		

Table 4: data analysis, Plots 17 (*) to 19,21 to 25
(*) no relevant anomalies recorded in Plot 17

survey limits survey area

Potential archaeology

certainty, anomaly type
likely, positive (3)
likely, negative (3)
likely, mixed (3)
possible, positive
possible, positive spread
possible, mixed
possible, negative
positive, parallel liners
possible, medium contrast

- possible, repeated parallels (4)

Potential services \& modern
certainty, anomaly type (2)ikely, positive parallel linears (3)
possible, high contrast linear
— possible low cor linear
-_ possible, low contrast linear
_ possible, regular narrow linears (4)

Notes:

1. All interpretations are provisional and
represent potential archaeological deposits
2. Anomalies designated "likely archaeology" have supporting evidence e.g. historical maps and or visible earthworks.
3. Representative; not all instances are mapped.
4. Anomalies likely to represent geological or other natural deposits are not mapped unless relevant to potential archaeological events or deposits.

Scale: 1:1800@ A3. Spatial Units: Meter. Do not scale off this drawing

British Grid

centre X: 285515.28 m, centre Y: 70080.24 m

Geophysical survey: Copyright Substrata 2016. Base map: Ordnance Survey (c) Crown Copyright 2016, Licence number 100022432
All rights reserved

An archaeological magnetometer survey

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Figure 5: survey interpretation: area B; plots 2, 3, 8 and 10

Substrata
Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

survey limits
 survey area

Potential archaeology

certainty, anomaly type (2)likely, positive (3)
likely, negative (3)
likely, mixed (3)
possible, positive
possible, positive spread possible, mixed
possible, negative
positive, parallel liners
possible, medium contrastpossible, repeated parallels (4) Potential services \& modern
certainty, anomaly type (2)likely, positive parallel linears (3)

\qquad , possible, regular narrow linears (4)

Notes

1. All interpretations are provisional and represent potential archaeological deposits.
2. Anomalies designated "likely archaeology" have supporting evidence e.g. historical maps and or visible earthworks.
3. Representative; not all instances are mapped.
4. Anomalies likely to represent geological or other natural deposits are not mapped unless relevant to potential archaeological events or deposits.

Scale: 1:1700 @ A3. Spatial Units: Meter. Do not scale off this drawing

British Grid

centre X: 285800.73 m , centre Y: 69778.46 m

Geophysical survey: Copyright Substrata 2016. Base map: Ordnance Survey (c) Crown Copyright 2016, Licence number 100022432
All rights reserved

An archaeological magnetometer survey
Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Figure 7: survey interpretation: area B; plot 4

Substrata
Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

An archaeological magnetometer survey
Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Figure 9: survey interpretation: area D; plots 17, 18 and 19

Substrata
Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

An archaeological magnetometer survey

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Figure 10: survey interpretation: area D; plots 21 to 25

Substrata

Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

An archaeological magnetometer survey
Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point)
Report: 1508WOL-R-1
Figure 14: processed gradiometer data: area B; plots 5, 6 and 8

Scale: 1:2000 @ A3. Spatial Units: Meter. Do not scale off this drawing

British Grid
centre X: 286228.92 m , centre $\mathrm{Y}: 69564.96 \mathrm{~m}$

Geophysical survey: Copyright Substrata 2016. Base map: Ordnance Survey (c) Crown Copyright 2016, Licence number 100022432
All rights reserved

An archaeological magnetometer survey

Land at Wolborough Barton, Newton Abbot, Devon
Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

Substrata

Office 1, 5 Mill Street
Bideford, Devon EX39 2JT
Tel: 01273273599
Email: geophysics@substrata.co.uk
Web: substrata.co.uk

[^0]
Appendix 2 Methodology Summary

Table 5: methodology summary

Documents

Survey methodology statement: Dean (2016)

Methodology

1. The work was undertaken in accordance with the survey methodology statement. The geophysical (magnetometer) survey was undertaken with reference to standard guidance provided by the Chartered Institute for Archaeologists (2014) and Archaeology Data Service/ Digital Antiquity Guides (undated).
2. The survey grid location information and grid plan was recorded as part of the project in a suitable GIS system.
3. Data processing was undertaken using appropriate software, with all anomalies being digitised and geo-referenced. The final report included a graphical and textual account of the techniques undertaken, the data obtained and an archaeological interpretation of that data and conclusions about any likely archaeology.

Grid
Method of Fixing: DGPS set-out using pre-planned survey grids and Ordnance Survey coordinates.
Composition: 30 m by 30 m grids
Recording: Geo-referenced and recorded using digital map tiles.
DGPS used: Spectra Precision PM5V2 GPS with external antenna and survey pole and DigiTerra
Explorer 7 as the survey control program.

Equipment	
Instrument: Bartington Instruments grad601-2	
Firmware: version 6.1	Data Ca Sampl Traver
	Traver Traver 25 wh
Data Processing, Analysis and Presentation Software IntelliCAD Technology Consortium IntelliCAD 8.0 DW Consulting TerraSurveyor3 Manifold System 8 GIS Microsoft Corp. Office Excel 2013 Microsoft Corp. Office Publisher 2013 Adobe Systems Inc Adobe Acrobat 9 Pro Extended	

Appendix 3 Data processing

Table 6: magnetometer survey - processed data metadata: Area B, plots 2 to $6,8,10$

Appendix 3 Data processing

Table 7: magnetometer survey - processed data metadata: area A; plots 11, 12, 14

SITE
Instrument Type: Bartington Grad-601 gradiometer
Units:
nT
Direction of 1st Traverse: GN except plots 2,19 \& 25 which were GN90
Collection Method: ZigZag
Sensors: $\quad 2$ @ 1.00 m spacing.
Dummy Value: 32702
PROGRAM

Name:	TerraSurveyor
Version:	3.0.29.3

Area A: Stats	12, 14	Processes: 5
Max:	69.19	1 Base Layer
Min:	-104.24	2 Clip at 1.00 SD
Std Dev:	3.45	3 De Stagger: Grids: All Mode: Both By: -2 intervals
Mean:	0.10	4 DeStripe Median Traverse: Grids: All
	0.01	5 Interpolate: Match X \& Y Doubled.

Appendix 3 Data processing

Table 8: magnetometer survey - processed data metadata: area D; plots 17 to 19, 21 to 25

SITE

$\begin{array}{ll}\text { Instrument Type: } & \text { Bartington Grad-601 gradiometer } \\ \text { Units: } & \mathrm{nT}\end{array}$
Direction of 1st Traverse: GN except plots 2, 19 \& 25 which were GN90
Collection Method: \quad ZigZag
Sensors: 2 @ 1.00 m spacing.
Dummy Value: 32702
PROGRAM

Name:	TerraSurveyor
Version:	3.0.29.3

Area D; plot 19 Stats Max: Min: Std Dev: Mean: Median:	$\begin{gathered} 89.61 \\ -79.46 \\ 4.31 \\ 0.08 \\ 0.01 \end{gathered}$	Processes: 10 1 Base Layer 2 Clip at 3.00 SD 3 De Stagger: Grids: All Mode: Both By: -3 intervals 4 DeStripe Median Traverse: Grids: All 5 De Stagger: Grids: ac17.xgd Mode: Both By: 2 intervals 6 De Stagger: Grids: aa5.xgd ab5.xgd ac2.xgd ac23.xgd ad4.xgd Mode: Both By: 1 intervals 7 De Stagger: Grids: ab6.xgd ac3.xgd ac22.xgd ab7.xgd ac4.xgd ac21.xgd ab8.xgd ac5.xgd ac20.xgd ab9.xgd ac6.xgd ac 19.xgd Mode: Both By: 1 intervals 8 De Stagger: Grids: ab14.xgd Mode: Both By: -2 intervals 9 Edge Match (Area: Top 30, Left 1320, Bottom 59, Right 1439) to Bottom edge 10 Interpolate: Match X \& Y Doubled
Area D; plots 1 Stats Stats Max: Min: Std Dev: Mean: Median:	$18,, 21 \text { to } 24$ $\begin{array}{r} 19.53 \\ -19.61 \\ 1.36 \\ -0.05 \\ -0.01 \end{array}$	Processes: 16 1 Base Layer 2 Clip at 1.00 SD 3 Clip at 1.00 SD 4 De Stagger: Grids: All Mode: Both By: -2 intervals 5 De Stagger: Grids: a11.xgd a12.xgd a13.xgd a14.xgd a15.xgd Mode: Both By: -2 intervals 6 DeStripe Median Traverse: Grids: All 7 Edge Match (Area: Top 360, Left 1800, Bottom 389, Right 1919) to Right edge 8 Edge Match (Area: Top 390, Left 1800, Bottom 419, Right 1919) to Top edge 9 Edge Match (Area: Top 420, Left 1800, Bottom 449, Right 1919) to Left edge 10 Edge Match (Area: Top 450, Left 1920, Bottom 449, Right 2039) to Right edge 11 Edge Match (Area: Top 480, Left 1920, Bottom 449, Right 2039) to Right edge 12 Edge Match (Area: Top 450, Left 1800, Bottom 449, Right 1919) to Bottom edge 13 Edge Match (Area: Top 240, Left 1800, Bottom 389, Right 1919) to Left edge 14 Edge Match (Area: Top 360, Left 1800, Bottom 389, Right 2039) to Left edge 15 Edge Match (Area: Top 330, Left 1920, Bottom 389, Right 2039) to Right edge 16 Interpolate: Match X \& Y Doubled
Area D; plot 25 Stats Max: Min: Std Dev: Mean: Median:	$\begin{gathered} 24.59 \\ -13.99 \\ 1.30 \\ 0.04 \\ 0.01 \end{gathered}$	```Processes: 5 1 Base Layer 2 Clip at 5.00 SD 3 De Stagger: Grids: All Mode: Both By: -2 intervals 4 DeStripe Median Traverse: Grids: All 5 Interpolate: Match X \& Y Doubled.```

[^1]

Figure 19: shade plot of minimally processed gradiometer data: area $B ; p \operatorname{lot} 2$

Instrument Type: Baxtington Grad 601
D
D
C
S
D
K
X
Y
Ditection of $1_{\text {st }}$ Tyeve
Coll

Gollection Meth	Lugiaz
Sersors:	2 ¢ 0000 m spacmg.
Drammy Yoslue:	32702
GridSue:	30 mt 30 m
X Interval	0.25 m
Y Interval	1 m
Stats	
Max:	200.00
Min:	-10191
Std Deve	5.46
Meant	0.01
Median:	0.00
FROCRAM	
Name:	Terrasureyor
Yersion:	30.2998 Traverse: 0 dez

[^2]Figure 20; shade plot of minimally processed graliometer data: men B; plots 3 to 6,8 and 10

Dimensions	
Composite Size (readings): 2760×540	
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	3001.00
Min:	-3000.50
Std Dev:	26.51
Mean:	-0.05
Median:	0.00
PROGRAM	
Name:	TerraSurveyor
Version:	3.0 .29 .3

Processes: 3
1 Base Layer
2 DeStripe Median Sensors: Grids: All
3 Clip from -100.00 to 100.00 nT

Figure 21: shade plot of minimally processed gradiometer data: area A; plots 11,12 and 14

Instrument Type: Bartington Grad 601
Units:
Direction of 1st Traverse: 90 deg

Collection Method:
Sensors:
Dummy Value:
Grid Size:
X Interval:
Y Interval: $\quad 1 \mathrm{~m}$

Stats	
Max:	100.00
Min:	-100.00
Std Dev:	8.53
Mean:	-0.04
Median:	0.00

PROGRAM

Name:	TerraSurveyor
Version:	3.0 .29 .3

Processes: 3
1 Base Layer
2 DeStripe Median Sensors: Grids: All
3 Clip from - 100.00 to 100.00 nT
\square

Figure 22: shade plot of minimally processed gradiometer data:

Processes: 3
1 Base Layeı
2 DeStripe Median Sensors: Grids: All
3 Clip from-100.00 to 100.00 nT

Figure 23: shade plot of minimally processed gradiometer data: area D; plots 17, 18, 21 to 24

Processes: 3
1 Base Layer
2 DeStripe Median Sensors: Grids: All
3 Clip from -100.00 to 100.00 nT

[^0]: An archaeological magnetometer survey
 Land at Wolborough Barton, Newton Abbot, Devon
 Centred on NGR (E/N): 285600,70000 and 286300,69400 (point) Report: 1508WOL-R-1

[^1]: Appendix 4 Minimally processed data plots

[^2]: Frocesses: 3
 1 Base Layey:
 2 DeStripe Median Sexsors: Grids All
 3 Chip from-100.60 to 100.00 nT

