

Nantwich Waterlogged Deposits: Report No 4

Phase 2: Monitoring Programme Results and Interpretation

Historic England: HEEP 3839 Main

i

ii

		CONTENTS	
		VE SUMMARY	
1.0	INTRO	ODUCTION	1
2.0		(GROUND	
	2.1	The origins to the first phase of the project	2
		Summary results from Phase 1	
	2.3	The sub-surface deposit model	3
3.0		AND OBJECTIVES	
		Aims	
	3.2	Objectives	. 11
4.0	OBJE	CTIVE 1: THE NANTWICH METHODOLOGY AND ENHANCEMENTS	. 13
		Summary of Methodological Tasks Undertaken	
		Borehole Drilling and Monitoring Well Installation	
		Characterization of deposits from Phase 2 borehole investigation	
	4.4	Groundwater Monitoring and Sampling 2011 - 2015	. 16
		Permeability Testing	
		Gas Monitoring and Sampling	
5.0		CTIVE 2: OPTIMUM APPROACH TO CHARACTERIZATION A	
6.0	OBJE	CTIVE 3: ANALYSIS OF DATA	. 23
		Baseline and annual results	
	6.2	A guide to redox geochemistry of groundwater	. 23
	6.3	Results of analysis of key parameters	. 24
	6.4	Comparison of data from multilevel dipwell installations	. 29
		Groundwater Temperature	
		Duration of monitoring project	
	6.7	Additional studies: redox measuring techniques and soil moisture	. 32
7.0		CTIVE 3: CHARACTERIZATION OF THE GEOLOGY, HYDROGEOLOGY	
	HYDF	ROLOGY EFFECTING NANTWICH'S WATERLOGGED DEPOSITS	_
	7.1	Geology of Nantwich	
	7.2	Overview of Stratigraphy	
		Hydrogeology	
		Hydrology	
		Groundwater Monitoring Data	
SEE	BORE	HOLE LOGS IN APPENDIX A FOR DETAILED DATA	. 43
8.0	C14 F	RESULTS AND THE EARLY MEDIEVAL INCEPTION OF DEPOSITS	. 47
	8.1	Results of radiocarbon dating	. 47
	8.2	Discussion	. 49
9.0	CONC	CLUSIONS	. 56
		Geochemical Assessment	
	9.2	Validity of measured parameters	. 58
	9.3	C14 dating of gas samples	. 59
		How relevant can quantities (mg/l or mg/kg) be for other urban centres?	
		The role and importance of the capillary fringe	
		River zone v. perched water-table near the church	
		How does the data help with future management of the resource?	
		Was it all worth it for the results achieved?	
10.0		SURE	
	BIBLI	OGRAPHY	63

TABLES

Table 1 Summary of Principal Redox Indicators	
Table 2 Comparison of Different Monitoring Techniques – Annual Results	24
Table 3 Calibrated redox values at Location N, N1	36
Table 4 Groundwater Level Monitoring Data	43
Table 5 Radiocarbon samples and age determinations	47
FIGURES	
Figure 1 Preservation Zones (Phase 1) and monitoring locations (Phase 2) with Nantwich	
Figure 2 Location of dipwells and drawn transects between boreholes	
Figure 3 Transect AB, AF, AE, AG, P, S, T, Q, V, F (west and east sides of river Wel Row – Church Lane)	sh
Figure 4 Transect C, AF, AE, D, AG, F (west and east sides of river 2 nd Wood Stree	t -
Church Lane)	. 7
Figure 5 Transect AC, N, P, F (west side of river Snow Hill – Church Lane) showing the solution of the solutio	
deposit model and basal geology; 3D model below	
showing deposit model and basal geology	
Figure 7 Groundwater Measurements with Data-logging Transducer v. Dip Meter	. J 18
Figure 8 Gas sampling for C14	
Figure 9 Seasonal Variations in Dissolved Oxygen	
Figure 10 Carbon Dioxide Concentrations at Locations P and P1	29
Figure 11 Groundwater Temperature Fluctuations	
Figure 12 Graph showing total annual rainfall in Nantwich between 2011 and 2015	
Figure 13 Groundwater levels at location F1 over five years	
Figure 14 Eh/pH stability plot at dipwell N, N1	
Figure 15 Comparison of groundwater sampling methods at dipwell N1	
Figure 16 Comparison of redox probe results from location N, N1	
Figure 17 Results for resin/platinum probe from location N, N1	
Figure 18 a) Trime Pico 64/160mm probe; b) Pico T3P Profile Probe	
Figure 19 Soil moisture readings against rainfall from location N, N1	
Figure 21 Groundwater elevations plotted against borehole logs	
Figure 22 Hydrological Map of Nantwich with Groundwater Flow Contours	
Figure 23 Comparison between Groundwater Fluctuation and Permeability	
Figure 24 Probability distributions for radiocarbon calibrated date ranges	
Figure 25 calibration of radiocarbon results from the Nantwich boleholes 2012 seri	
by the probability method (Stuiver and Reimer 1993)	
Figure 26 Probability distributions of radiocarbon dates from Snow Hill (AC-1) a	
Wood Street (AE-1), Nantwich, carpark dipwells. The distributions are t	
result of simple radiocarbon calibration (Stuiver and Reimer 1993)	

APPENDICES

Appendix A	Borehole Logs with Archaeological Descriptions
Appendix B	Borehole Logs with Interpretive Classifications
Appendix C	Groundwater & Gas Monitoring Data
Appendix D	Laboratory Results
Appendix E	Transducer and Rain Gauge Data

Status of report: Final

Authors Tim Malim, Mark Swain, Ian Panter

Date 7th July 2016

Reviewed Historic England

Date Review comments received 21st January 2017

Comments Summary, validity of laboratory testing, technical queries

Revisions March 2017

The SLR staff involved in the implementation of this project were:

Tim Malim BA FSA MCIfA Technical Director QA & Project Management

Mark Swain BSc MSc FGS Associate Engineer Monitoring & data processing

Caroline Malim BA MPhil Senior Illustrator Report Drawings & GIS

Charles Heasman, Phil Murphy, and Nez Ali Project Geologists, monitoring

Any Bates BSc, MSc ACIfA Senior Archaeologist Archiving and OASIS submission

lan Panter of York Archaeological Trust provided archaeological conservation science input and analysis. John Carrott of Palaeoecological Research Services described and characterized the cores and organic remains. Peter Marshall of Historic England managed the C14 dating of samples.

Acknowledgements

SLR is grateful for the assistance of Jennie Stopford and Sue Stallibrass (English Heritage/Historic England) Dr Jill Collens and Mark Leah (Cheshire Shared Services) who steered the project throughout the duration of Phase 1 (2007 – 2010) and during the five years of monitoring (January 2011 – December 2015).

Quality Standard

SLR is a Registered Organisation with the ClfA, an audited status which confirms that work is carried out to the highest standards of the profession. SLR operates a quality management system to help ensure all projects are managed in a professional and transparent manner, which enables it to qualify for ISO 9001. SLR is a member of the Federation of Archaeological Managers and Employers.

Executive Summary

The Nantwich Waterlogged Deposits Phase 2 monitoring programme was conducted over a five year period from 2011 – 2016 and was designed to provide scientifically robust data on how preservation conditions within the urban waterlogged deposits beneath the town changed over time.

This programme consisted of 18 groundwater dipwells which have been monitored every three months and sampled annually, while rainfall was recorded daily. Water quality was assessed for changes in dissolved oxygen, conductivity, pH, temperature and redox potential. Gas meter readings were also taken quarterly, staggered with the groundwater testing. Groundwater levels were measured using an audible dipmeter, whilst water quality was assessed by inserting a digital water meter into the dipwell. In addition the water level was measured automatically on a daily basis at six key locations, so as to provide more detailed data for comparison with the quarterly monitoring. Groundwater samples were taken annually so that they could be tested in a laboratory for what levels of specific chemicals were present. This provided comparative data and a good control, helping provide confidence in the quarterly results of groundwater sampling.

This Historic England-funded study is a unique attempt to systematically characterize a specific urban environment in which organic archaeological remains have been well-preserved. In Nantwich, two zones of preservation were found: well-preserved organic remains, in areas bordering the river; and more variable preservation, with some active decay, in a higher part of the town. The first zone is a pH-neutral environment with high sulphide and low nitrate content. It is thus conducive to preservation of organic remains such as wooden artefacts and plant material. The second zone was once also waterlogged, and there is grave concern that the burial environment there is drying out more quickly as a result of modern changes in the town centre.

The implications of this research are of value far beyond the Nantwich Supplementary Planning Document for the *Area of Special Archaeological Importance*, which has been produced to guide future development in Nantwich, and which has been included as part of the evidence base for Cheshire East Council's emerging local plan. For example, the issues of ground stability, water management and sustainable development raised by the situation in Nantwich are equally applicable to all urban centres with comparable environments (these are generally those with poor drainage and that are prone to episodic flooding). The success of the Nantwich project in characterizing conditions beneath historic towns makes it a valuable comparator for similar projects in Norway, the Netherlands and other European countries. Indeed, considerable amounts of information and advice have been exchanged at international conferences between these various projects.

However the work has also identified the difficulties involved in producing a coherent understanding of all the complex issues that help to preserve, or threaten, buried remains. Equally challenging is the problem of how to influence decisions at a sufficiently strategic level to provide effective long-term management as the best approach is to change behaviour so that future infrastructure, public realm and building projects in the town are designed in such a way as to encourage re-watering of the deposits. The aim is to raise awareness of the issue among decision-makers in the local authority (including spatial planners and engineers), whilst also educating developers in the importance of the archaeological resource and its sensitivity to intrusive works. Standing buildings are threatened if the drying-out of waterlogged deposits results in subsidence, a factor that might ultimately be more persuasive than concern for the buried archaeology itself.

1.0 INTRODUCTION

This report details the results from a five year programme of monitoring at Nantwich, Cheshire, to assess the variability in hydrological and geochemical conditions within the archaeological deposits that underlie the historic centre of the town. This nationally unique project was funded by Historic England through grant-aid to Cheshire East Council, and has been designed to help establish best practice for a standard methodology for monitoring of waterlogged remains within urban centres. The robust scientific data gathered have allowed analysis of how the conditions conducive to preservation have fluctuated seasonally and annually, and how the unsaturated capillary fringe or vadose zone is an important component in ensuring good preservation conditions for organic remains, in spite of the deposit not being fully saturated. The duration of the monitoring programme has ensured that abnormal results from a single year have not skewed the data, whilst comparison to the baseline established in 2007 has shown that the general burial environment has remained reasonably consistent over the period of investigation.

1

The five years of monitoring have produced a large corpus of data which is summarised in the Appendices of this report and remains available for consultation as metadata through hosting on the Archaeology Data Service (ADS) website¹. This report has focused instead on analysis of trends in the data and the interpretations that derive from that analysis. The monitoring data have used proxy indicators to help interpret the degree to which the burial environment enables agents of decay to act on ancient organic remains. These indicators include the degree of saturation within sediments, water quality parameters, and the ratios of oxygen-reducing chemical species on a scale from aerobic – anoxic conditions.

Several papers have been delivered at national and international symposia, and publications from some of these have been produced². These provide interim statements and comparative studies with related types of site and deposits, to complement the final report on completion of the five year programme of monitoring, which is presented in the following chapters. In addition five interim reports have been produced to record the results from the monitoring programme annually, and these reports have been peer reviewed by the project steering group. The need for data compilation and interim report presentation has been extremely beneficial as, together with the challenge and review sessions, it has provided an iterative process which has tested the effectiveness of the methodology and posed research questions as the project progressed, leading to enhanced methods and more robust data sets. In addition, following the success at Nantwich, English Heritage (now Historic England) has commissioned a series of preliminary studies of other urban waterlogged deposits, at Bristol, Berwick, Boston, Carlisle, and Droitwich as part of a tiered approach to help understand the archaeological resource in accordance with a new guidance document³.

1 https://www.google.co.uk/?safe=strict&gws_rd=ssl#safe=strict&q=archaeology+data+service&*

² Malim, T. and Panter, I., 2012 Is preservation in-situ an unacceptable option for development control? Can monitoring prove the continued preservation of waterlogged deposits? *Conservation and Management of Archaeological Sites, Vol. 14 Nos 1–4, 2012, 429–41*;

Malim, T., Panter, I., and Swain M. 2015 The hidden heritage at Nantwich and York: Groundwater and the urban cultural sequence *Quaternary International 368, 5-18*;

Malim, T., Morgan, D., and Panter, I. 2015 Suspended preservation: particular preservation conditions within the Must Farm - Flag Fen Bronze Age landscape *Quaternary International 368, 19-30*;

Malim, T., Swain, M., and Panter. I, 2016 Monitoring and Management options in the preservation of urban waterlogged deposits, Nantwich, UK *Conservation and Management of Archaeological Sites, Vol.18 Nos 1-3, 139-155*

³ https://historicengland.org.uk/images-books/publications/<u>preserving-archaeological-remains/</u>

2.0 BACKGROUND

2.1 The origins to the first phase of the project

In April 2007 Cheshire County Council, with funding from the Historic Environment Enabling Programme, English Heritage, commissioned SLR Consulting to undertake a programme of work on Nantwich's waterlogged deposits, including desktop study, a campaign of field coring, and the preparation of a management strategy. This work aimed to map the extent of waterlogged deposits, to investigate formation processes for the onset of waterlogging, and to characterise the geochemistry and groundwater of the burial environment. One of the outputs was to provide a strategic framework for long-term management and investigation of this rare resource.

The results of this project are presented in:

- Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations (SLR Consulting Ltd July 2007);
- Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation (SLR Consulting Ltd November 2009); and
- Nantwich Waterlogged Deposits Report No 3 Management Strategy: Supplementary Planning Document for the Historic Environment and Archaeological Deposits (SLR Consulting Ltd January 2010).

2.2 Summary results from Phase 1

Investigations in Nantwich over the past 30 years have revealed exceptional finds such as hollowed out oak trunks (known as "salt-ships"), structural timbers and wooden water channels, stave-built barrels and lids, leather shoes, accumulations of organic-rich stable floorings and domestic waste, and deep organic-rich silty deposits. These finds date from the Iron Age - medieval periods. Their distribution throughout the town, however, is not fully understood: the factors that have governed their initial creation and long-term preservation are unknown, and the threats to their continued survival through modern development and hydrological change are of great concern. With limited knowledge about the extent and character of these deposits effective planning control advice has been problematic at times, and the former Historic Environment Team, Cheshire County Council proposed the original project in order to design a well-informed management strategy which could be implemented by the local planning authority.

The original project included the compilation of existing information from boreholes and archaeological investigations, so that information on the occurrence and depth of waterlogged deposits could be layered over geological and historical mapping. GIS modelling was employed to suggest the possible sub-surface topography and natural drainage. A desktop report was produced in June 2007 which informed the selection of 30 borehole locations for further investigation; to aid the iterative process and development of the best methodology this coring programme was undertaken in two stages (in August and September 2007) with a monitoring review between them. A variation was proposed as a consequence of this review process, to improve on the methodology as envisaged in the original project design.

This variation from the original scheme permitted the insertion of 11 dipwells, so that baseline data could be gathered on variations in sub-soil water chemistry and movement. This was an innovative idea to add value to the original scope of the project through implementation of an economical method for long-term monitoring. Money was saved by utilizing the drilling of boreholes during the second stage of geoarchaeological investigation in 2007, rather than requiring a separate phase of drilling to install piezometers. Two locations were chosen to act as control points (AB and L) which lie on the western and

3

Results from the coring programme and assessment of soil samples recovered from the boreholes have helped in defining the limits and depth of the waterlogged deposits, as well as characterising their nature. Two distinct zones of preservation dependent on urban hydrology have been identified from the geochemical assessment. A low-lying zone adjacent to the river in which well-preserved organic remains have been recovered⁴, and a secondary zone along the higher slopes in which organic preservation has been detected but active decay appears to be in progress⁵ (Figure 1). The evidence for this comes from poorly preserved invertebrate and diatom remains, as well as high sulphate and nitrate levels in the deposits liable to fluctuation above the present groundwater level. Within this zone, however, it was also noted that sulphate levels decreased and sulphide increased with depth, so that below the water-table good conditions for preservation continued to exist.

The implications of the Nantwich research are of value far beyond the application of a supplementary planning document to manage change within the historic core of one town. Keen interest in the methodology and results from the first phase has been expressed by a wide range of individuals and organizations. Issues of ground stability, sustainable development and urban water management raised by this project are equally applicable to all urban centres with known or potential preservation of organic-rich deposits. European collaboration has included the transfer of information and protocols, and the success of the Nantwich project in characterising the burial conditions and preservation beneath the historic town provides a valuable comparison for similar projects undertaken in Norway, The Netherlands and other European countries. However the work has also identified the difficulties in producing a coherent understanding of all the complex issues involved that help to preserve and to threaten such cultural heritage, and the problems of influencing decisions at a sufficiently strategic level to provide effective long-term management.

Although the Nantwich Phase 1 project enabled informed decision-making at the highest levels, an assessment of the results of the Phase 1 project identified a series of issues which needed further analysis in order to address the long term sustainable management of fragile waterlogged archaeological deposits. This formed the basis of the aims and objectives of this project design for a second phase.

2.3 The sub-surface deposit model

The grid of boreholes drilled over the historic core of Nantwich from both phases of the project has allowed a simple model to be created which is presented below in Figures 2 - 6 as a series of transects running north-west – south-east and west – east across the main area of waterlogged deposits. Basal geology comprises Mercian Mudstone with Glacial Till above, which is present across wide areas to the east and west of the River Weaver and forms the main geology beneath Nantwich. The river terrace deposits which overlie the clay consist of sandy silts with clay and gravel, which can extend to 3 – 5m in thickness. Above the natural geological strata, anthropogenic deposits have accumulated up to c.4m in depth from the current ground surface, comprising organic-rich silts, as well as archaeological horizons with carbonized organic remains, and more recent made-ground. Salt-working and flooding, as well as domestic and stable waste, have contributed to the build-up of deposits, which at times are interspersed with redeposited mineral-rich horizons.

⁴ Preservation Zone 1

⁵ Preservation Zone 2

Figure 1
Preservation Zones (Phase 1) and monitoring locations (Phase 2) within Nantwich

Figure 2 Location of dipwells and drawn transects between boreholes

n.b. Borehole A is located north of the Public Baths, just beyond the edge of the plan

Dipwell Installation

Figure 3 Transect AB, AF, AE, AG, P, S, T, Q, V, F (west and east sides of river Welsh Row – Church Lane) showing deposit model and basal geology

Figure 4 Transect C, AF, AE, D, AG, F (west and east sides of river 2nd Wood Street - Church Lane) showing deposit model and basal geology

Dipwell Installation

Made ground/overburden Archaeological deposit Non carbonised organics Mineral rich deposits Fluvial glacial sands Glacial clay Average water level

Figure 5 Transect AC, N, P, F (west side of river Snow Hill – Church Lane) showing deposit model and basal geology; 3D model below

Dipwell Installation

Figure 6 Transect D, P, T, U, V (west and east sides of river Wood Street – Church) showing deposit model and basal geology

The transects represented in Figures 3-6 are simplified versions of the borehole logs which can be found in Appendices A and B. The original detailed archaeological descriptions and lenses of each core extracted during the borehole investigations are recorded on one set of logs (Appendix A), and then the multiple descriptions have been interpreted and each description assigned to one of five broad categories of deposit (Interpretation boreholes Appendix B):

- Made ground,
- Archaeological deposit,
- Non-carbonised organics,
- Mineral-rich deposits, and
- Fluvial-glacial sands

These are explained in more detail below (section 7.2) and also in the 2nd report (*Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation* SLR Consulting Ltd November 2009), but the distinction between Made ground and Archaeological deposit can be very diffuse (the made ground assumed to be of relatively modern origin). In addition the Mineral-rich deposit has been adjusted to mean deposits that are probably of natural origin, rather than redeposited sand (as was found at the top of the sequence in BH V for example). Interpretation of the origin, rather than descriptive nature, of the deposit has changed the mineral-rich deposit at top of BH V to made ground, because this was located in the churchyard and is assumed to have derived from grave-digging activity, whereas the mineral-rich deposits in BH A are most likely a result of flooding.

Non-carbonised organics refer to part of the archaeological sequence that demonstrated clear evidence for inclusion of wood, plant material, or other organic component, as opposed to an Archaeological deposit that was of anthropogenic origin and had bone, pottery, ash or mortar in it, but did not contain specific evidence for organic remains.

Borehole investigation allows a keyhole view of the deposit, but does not characterise it entirely, as it is chance as to whether the extracted sample included organic remains or not. For example boreholes that were located in areas where previous archaeological investigation had occurred, sometimes did not include evidence for organic remains, even though the larger-scale excavation had included such evidence (see for example Tables 1 & 2 in the 1st report (*Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations* SLR Consulting Ltd July 2007)). The data from the boreholes logs and subsequent analyses are included within a project database which will be archived and available for study from the Archaeological Data Services (ADS) website.

3.0 AIMS AND OBJECTIVES

3.1 Aims

3.1.1 National

The nationally strategic aim of the Nantwich Waterlogged Deposits project was to develop and test a scientifically rigorous methodology for characterizing and monitoring the historic buried remains in urban waterlogged deposits so that bespoke management plans could be designed to secure the long-term conservation of such remains in ancient urban centres where this is viable.

3.1.2 Regional

The regional aim of the project was to protect and conserve the historic core of Nantwich, one of the best preserved towns in the northwest, renowned for its variety of standing 16th century and later timber-frame buildings. The group value of the many listed buildings is recognised as an important resource in the conservation area designation, which acknowledges the role of these assets in attracting tourists and providing an improved quality of life. In addition the town centre is built upon an extensive area of deeply stratified and waterlogged deposits containing a wealth of palaeoenvironmental data and organic remains from Iron Age to post-medieval times. The vulnerability of these deposits from desiccation, and from physical or chemical changes to the burial environment, threatens not only the survival of buried remains, but also the structural stability of the above-ground historic environment.

3.1.3 Local

Locally the aim of the project was to design a revised management strategy to help protect Nantwich as an *Area of Special Archaeological Potential*, and to ensure that this strategy is adopted and implemented by the new arrangements for local government and planning control within Cheshire. This will include a requirement for geoarchaeolgical investigation as part of development within the town centre, so that new data are constantly added to the baseline established by the Phase 2 project, and against which changes to the waterlogged deposits can be measured. Such an approach will allow a dynamic management tool to be employed in the conservation of Nantwich's historic environment.

3.2 Objectives

3.2.1 Objective 1

To develop and test an effective methodology for monitoring the preservation of *in situ* waterlogged deposits and organic remains, within the context of extensive urban wetlands. This would be the first such comprehensive methodology to be produced in the UK and would act as a principal guidance document for future projects of a similar nature.

3.2.2 Objective 2

To develop a management tool that will benefit national and international partners as part of a collaborative effort to enhance the care and conservation of important waterlogged deposits at risk from urban development, changes to water management systems and climate change. This tool would need to embrace the core values of spatial and water management planning in an urban context, and to raise awareness of the needs of the historic environment to be a major consideration as part of such strategic thinking.

3.2.3 Objective 3

To gather data on types and rates of change to the burial environment, which can be measured against the baseline data, in order to enable a greater understanding of the dynamics of conditions that are either conducive, or threatening, to continued preservation. This requires sufficient rigour to be statistically acceptable and to be of comparative value for international studies. These data will form the baseline against which geoarchaeological coring data, required as part of the planning process for any future development in the town centre, can be analysed.

3.2.4 Objective 4

To disseminate the results from both phases of the project as an integrated study, detailing the methodologies that have been developed and their validity for application to other urban areas, and providing interpretation of the results and the preservation process for the specific case study at Nantwich.

3.2.5 Objective 5

To revise the supplementary planning advice note so that Cheshire East Council, the successor authority to Crewe and Nantwich Borough Council, can implement a coherent strategy towards its planning decisions within the historic core of Nantwich. This will include development of a proactive management strategy for the preservation of urban waterlogged deposits.

3.2.6 Objective 6

To raise awareness of the national and international significance of the buried and built heritage of Nantwich to the local community, and to identify the vulnerability to desiccation or incremental change to the local burial environment, that would lead to degradation of the historic value of the town.

3.3 Products and Outcomes

The products and outcomes of Objectives 1, 2 and 3 are presented in sections 4-8 below. The products for Objective 4 are listed above under Introduction, and include three international conference papers delivered and published, a published summary in *Historic England Research Online Issue* 4^6 , presentation to an English Heritage workshop on urban waterlogged deposits, five annual interim reports (listed in the bibliography) and this final report. The product for Objective 5 was a supplementary planning document⁷, which has been endorsed as part of the evidence base for the local plan and is available online at Cheshire East Council. The products for Objective 6 include a presentation at a Cheshire Archaeology Day event, and an article in the Nantwich Museum magazine.

-

⁶ https://historicengland.org.uk/images-books/publications/historic-england-research-4/

⁷ http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf

4.0 **OBJECTIVE 1: THE NANTWICH METHODOLOGY AND ENHANCEMENTS**

4.1 **Summary of Methodological Tasks Undertaken**

The Phase 2 project design underwent a number of iterations between the proposals submitted by the designers (SLR Consulting, YAT and Cheshire Council's Historic Environment Team) and the funders (English Heritage) during the period 2009 – 2010. The original project design was rejected due to the limited budget available at EH, and a reduced scheme for three years monitoring, rather than five years, was substituted. Exceptional rainfall in year two, however, meant that justification for a two year extension was accepted by EH as a variation with additional funding, and the full five year programme was then implemented. This section describes the fieldwork methodology undertaken as part of the project since 2011, which comprised the following key elements:

- Drilling seven additional boreholes and installing dipwells at each of these locations to increase the grid of monitoring locations across Nantwich (AE, AF on west side of River Weaver, AG and F2 on east side), and to provide multi-level monitoring (at N1, P1, F1) where good organic preservation was identified in Phase 1 (see Figure 1);
- Acquiring sediment samples for geochemical and palaeoenvironmental analysis from two cores (AE, AF);
- Installing water level data loggers in key selected dipwells in order to take daily groundwater measurements (AB, AE, AF, N1, P, and F1)8;
- Installing a rain gauge and barometer at Nantwich Museum to collect daily rainfall and atmospheric pressure measurements;
- Undertaking in situ permeability testing at all fifteen separate dipwell locations;
- Collecting groundwater samples from each of the fifteen separate dipwell locations for geochemical laboratory analysis on an annual basis; and
- Conducting quarterly monitoring at seventeen dipwells for groundwater level, water quality parameters and ground gas concentrations.

The approach for each task is detailed below along with any methodological improvements that were developed to address specific issues that arose during the monitoring programme. In addition two separate English Heritage value-added projects were conducted in 2012 at Location N, N1, designed to compare different methods for monitoring redox⁹, and to evaluate methods for measuring moisture content within sediments 10. The methodology and results from Nantwich have also been used to inform the development of Historic England guidance and related case studies¹¹.

⁸ F1 and F2 were drilled in Phase 2, because in Phase 1 stage 1 no dipwell was installed at Location F. As the organic remains recovered from Location F identified this as a target for the Phase 2 monitoring programme, two new dipwells were required, F1 screened for the non-carbonised organic remains cultural horizon only and to host the transducer, whilst F2 was screened for the full depth of the dipwell to retrieve data comparable with the majority of other dipwells. At Location P a dipwell had been installed in 2011 which was screened for the full sequence beneath the bentonite seal, and P1 was drilled in Phase 2 so that only the non-carbonised organic remains cultural horizon could be screened. Unfortunately P1 was above the watertable, and so the transducer and all measurements had to be taken from the original Phase 1 dipwell at BH P.

⁹ Panter, I., and Davies, G. March 2015 Preservation in situ guidance – redox potential measurement Final Report York Archaeological Trust Conservation Department Report No: 2013/54, English Heritage project No. 6524

¹⁰ Panter, I., and Davies, G. March 2015 Preservation in situ guidance – Soil Moisture Measurement Final Report York Archaeological Trust Conservation Department Report No: 2014/70, English Heritage project No. 6523

¹¹ https://historicengland.org.uk/images-books/publications/preserving-archaeological-remains/

4.2 Borehole Drilling and Monitoring Well Installation

The drilling of the seven additional boreholes was completed using the same methodology as applied in Phase 1.

Before drilling each location was checked for underground services using a cable avoidance tool, in addition to checking all manhole covers in the vicinity and referring to the services drawings provided by the utilities companies. Safety barriers were set up around the work area to prevent the general public being injured by the window sampling rig. The concrete or tarmacadam hard surfacing was then cut out and removed using a rotary coring device attached to the window sampling rig to enable the percussive drilling of soils to proceed.

A 100mm steel cutting tool containing a plastic core liner was advanced into the ground with a percussive hammer. The percussive hammer was repeatedly lifted and dropped by a revolving chain on the window sampler pushing the window sampler into the ground at an increment of a few centimetres until a depth of one metre had been reached. A tubular steel cylindrical casing was advanced simultaneously outside the cutting tool to prevent loose material collapsing back into the hole.

The cutting tool was then extracted from the hole using a hydraulic extraction system and the plastic core liner containing the sediment core sample was pulled out of the cutting tool. A new plastic core liner was then inserted into the cutting tool ready for the next sample. The empty cutting tool was then placed back into the hole ready to progress the hole by another metre. A steel rod was then screwed into the base of the cutting tool and an additional length of casing was connected to the length already in the ground. The next metre was then advanced using the percussive hammer and the next core sample was extracted using the winch on the rig.

This process was repeated until the desired depth was reached, and the casing was not extracted until the groundwater monitoring-well installation was complete. A 50 mm diameter slotted PVC monitoring well was then installed into each borehole to provide a means of monitoring groundwater and soil gas, and obtaining groundwater and gas samples as required. Although well screens were positioned to target specific archaeological horizons in three locations (F1, N1, P1) and intercept water levels within the underlying sedimentary sequence, most dipwells included a well screen that extended to the full depth below the 1m deep bentonite plug at the top. The top one metre of each borehole was secured with a length of blank casing, and the annulus between blank casing and the borehole was sealed with bentonite and cement to prevent surface water entering the well. A rubber bung with a gas tap was placed on top of each well to allow natural soil gases to accumulate and be monitored using a gas analyser. Each hole was capped off with a stopcock cover set in concrete.

The sediment cores were immediately taken to the Palaeoecology Research Services laboratory in Hull for detailed recording and sampling.

4.2.1 Methodological enhancement

The condition of several monitoring dipwell covers and gas taps gradually deteriorated over time, particularly in areas with high traffic volumes. Ongoing maintenance of the headworks was therefore required to ensure that the wells remained accessible. Generally the survival of the dipwells and lack of vandalism was remarkable, but unfortunately location AG was eventually lost in 2015 due to resurfacing work in the Bowers Row/Crown Hotel car park.

4.3 Characterization of deposits from Phase 2 borehole investigation

4.3.1 Geochemical Soil Analysis

In order to characterise the nature of the burial environment, six additional soil samples were submitted to an accredited laboratory for analysis. Samples were selected following on site assessment of each core in discussion with the project palaeoenvironmentalist. Samples were selected from those deposits that appeared to be "archaeological" and also from deposits that appeared to have an organic component. Although no samples were collected from location AG or the additional boreholes at location F, N and P which had been previously sampled in Phase 1, sufficient samples were taken from a range of deposit types in AE and AF to enable deposit characterisation.

Approximately 250g of sediment per sample was extracted from the core and stored in an airtight plastic container which was then kept at a low temperature until despatch to the laboratory. The majority of samples were despatched within 96 hours of sampling. Rapid despatch was necessary to reduce potential for the samples to become oxidised or to dry out, and this process was carried out in accordance with standard practice ¹².

The parameters measured in the laboratory by using standard techniques included pH, loss on ignition, conductivity, natural moisture content ratio and assays for total sulphur, sulphide, sulphate, nitrate, nitrite, ammoniacal nitrogen, total iron, sodium, chloride and phosphate. Unfortunately the laboratory was unable to undertake iron II and III assays.

4.3.2 Palaeoecological Assessment

The boreholes were extracted in one metre plastic sleeves which had to be split in order to examine and describe the sediment sequences on delivery to the laboratory. The properties of the sediments were recorded and a preservation category (PC) assigned to the layers following the state of preservation scale (SOPS) established by NIKU¹³ for the recording of borehole samples.

The cores were subdivided into subsamples according to their stratigraphic composition and placed into labelled polythene bags. Where the sediment was consolidated the sampling was undertaken so as to preserve the stratigraphy. Where unconsolidated, the depth range of the sequence was recorded but the internal stratigraphy of the subsample could not be retained. During recording, subsamples were also extracted for chemical analysis, where possible retaining approximately half of the sediment sequence for the preservation study.

The positions of organic inclusions (typically of waterlogged wood) within the boreholes were recorded and they were removed as organic 'spot' samples (sensu Dobney et al. 1992) for identification, recording and subsequent submission as possible candidates for radiocarbon dating.

Samples were selected for processing based on their potential to address the project aims (i.e. to provide information on the waterlogged preservation of organic remains in the deposits under Nantwich).

-

¹² This procedure derived from the BS5930 code of practice for site investigation (BSI 1999)

¹³ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits

Subsamples were processed for the recovery of plant and invertebrate macrofossils, broadly following the techniques of Kenward et al. (1980). The weights of the subsamples were recorded prior to processing. For each of the processed macrofossil subsamples small quantities of sediment (a few tens of grammes) were extracted for a parallel investigation of microfossil preservation.

The assessment techniques were the same as those adopted for Phase 1, as discussed in the report produced on conclusion of the initial project in 2010 (see above in Section 2, Background).

4.4 Groundwater Monitoring and Sampling 2011 - 2015

All of the groundwater monitoring wells installed during the coring programme have been monitored on a quarterly basis and sampled annually between February 2011 and December 2015. The depth to groundwater and the base of the well were measured using a dip meter during each monitoring and sampling visit. The annual sampling for geochemical indicators was designed in order to provide comparative data for the quarterly monitoring. The quarterly monitoring round and daily monitoring by transducers, were included in the monitoring regime to provide data for understanding seasonal variation, as well as relationship to rainfall events.

4.4.1 Annual sampling

For the annual sampling round groundwater samples were taken in accordance with USEPA guidelines ¹⁴ using a peristaltic pump discharging through a flow cell connected to a YSI 556 [™] digital water quality meter. Properties including pH, eH (redox Potential), conductivity, temperature and dissolved oxygen were recorded using the water quality meter, and each dipwell was purged of stagnant water until the water quality parameters stabilised. The flow cell was then disconnected to avoid cross contamination, and the sample containers supplied by the laboratory were filled using the peristaltic pump, and all of the sample containers containing preservatives were filled with water filtered in the field using a 45 micron filter. The preservatives included hydrochloric acid, nitric acid and zinc acetate. The analysis for pH, conductivity, sulphide, sulphate, nitrate, ammoniacal nitrogen, total dissolved iron, iron II, iron III, dissolved manganese, manganese II, manganese IV, sodium, chloride, phosphate and dissolved methane was completed at an accredited laboratory, Jones Environmental Forensics of Deeside.

4.4.2 Quarterly monitoring

For the quarterly monitoring visits when samples were not required, the water quality parameters were recorded in situ using the YSI 556™ digital water quality meter. The measurement probes were placed into the monitoring well using a 4m long cable, instead of using the flow cell and peristaltic pump. The probes were left in situ for approximately 15 minutes until the readings had stabilised and the results for each parameter were recorded. This approach was adopted at the project design stage to save time and reduce costs.

4.4.3 Comparison of Methodologies for Monitoring Water Quality Parameters

A comparison of the techniques for measuring water parameters including redox, dissolved oxygen, electrical conductivity and pH was undertaken at location N as part of a separate

¹⁴ USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504

English Heritage funded project completed between July 2012 and June 2013, and the results are also of value to this project (see further details in section 6.7 below).

Four methods for comparative water monitoring were undertaken:

- A YSI water quality meter was used to measure these parameters in situ before purging;
- a flow through cell connected to a peristaltic pump;
- sample collection using a passive bailer after purging; and
- in situ after purging.

The tests were repeated on a monthly basis in both monitoring wells at location N, N1, which were screened at different depths in order to target different layers within the deposits.

The tests revealed that although the different techniques had little impact on the pH or redox results, the bailing process, however, was found to oxygenate the water samples. Another problem with the bailing process was that it caused a reduction in water level which then drew in more saline water from a deeper layer and caused a significant increase in conductivity. In contrast the results from both the in situ monitoring and the low flow purging using the flow cell (which generally draws in water horizontally from the surrounding deposits), were broadly consistent (apart from some fluctuations in redox), which helps support the validity of using the less time-intensive technique of in situ monitoring with a water quality meter.

4.4.4 Daily monitoring and Rainfall Data Logger

Daily monitoring was employed at selected locations by installing transducers (data loggers), at three locations on either side of the river, to monitor more detailed changes to water levels than could be achieved on a quarterly interval. The data loggers were also set to automatically record groundwater temperature on a daily basis. The six transducers were installed in dipwells F1, N1, P, AB (as a control on the edge of the Preservation Zone), AE and AF. The transducer that was intended for installation in dipwell AG was moved to AB because no waterlogged deposits were recorded in Bowers Row Car Park, and a transducer was installed in dipwell P instead of P1, because P1 contained insufficient water. The data loggers were installed at the base of each monitoring well, and the data were downloaded using an optical reader connected to a field laptop computer on a quarterly basis. The water level was measured manually using an audible dip meter during installation and at each subsequent data download event to confirm the actual depth to water. A barometric pressure data logger was also installed at Nantwich Museum in order to calibrate the readings from the water level data loggers.

A rain gauge connected to a digital data logger was also installed to the rear of Nantwich Museum. The rain gauge consisted of a calibrated tipping bucket mechanism connected to a data logger that counted the number of tips caused by rainfall.

4.4.5 Methodological issues and enhancements

Water quality meter

Several reliability issues occurred with the YSI 556™ digital water quality meter during the project, and consequently it was not always possible to collect a full data set during each monitoring visit. Additionally some measurements taken on a particular round (pH and dissolved oxygen) appear substantially elevated from the norm (see Table 2 below), which suggest there might have been a defective probe. Sufficient data were collected over the course of the project, however, for this not to present a significant issue overall.

redox

An additional issue was the need to correct measurements taken in the field by the platinum redox electrode by adjustment to the standard hydrogen electrode (SHE) reference measurements. This correction is necessary because it is impractical to use SHE electrodes in the field, and therefore more field-suitable reference electrodes are used. However, this means that field redox measurements then need to be converted to the values that would have been recorded using a SHE electrode in accordance with BS ISO 11271. The difference is generally 211mV lower than the field measurement, but this is temperature dependent. SHE corrections were therefore included into the data processing phase.

Calibration of transducer data

A comparison with the manual dip data (see **Figure 7** below) confirmed that it was necessary to calibrate the information from the water level data-loggers on a regular basis to account for drift in the measurement device and movement of transducers during downloading events. This was achieved by correcting the transducer data to correlate with the manual dip readings.

Rectification of transducer data errors

During 2014 it was noticed that some of the groundwater level data-loggers were becoming unreliable. In order to eliminate the gaps in the data set additional data-loggers were installed in the multilevel monitoring points (Locations F1, N1 and P), and the number of measurements was increased to four readings per day to provide additional back up data. The increased sampling frequency successfully resolved the issue, although the additional

data loggers provided an effective backup system. As the data set grew substantially, quality control procedures (data checking through visual inspection of the dataset) became increasingly important in eliminating human error for the increasing amount of data processing that was required.

19

Rain gauge and more frequent monitoring visits

The location of the rain gauge at Nantwich Museum was not ideal due to the amount of rain shadow caused by the surrounding buildings and trees, but unfortunately there were no other suitable locations to securely store the device within the town centre.

Nesting insects and larvae blocked the rain gauge between the 17th June and 19th September 2011 and therefore there is gap in the rainfall information for this period ¹⁵. In order to prevent blockages to the rain gauge, a nylon mesh was fitted to the rain collection device in November 2011. This was successful in preventing the build-up of leaf litter and insect larvae that had caused the rain gauge to stop working.

A revised maintenance schedule was also put in place by separating the quarterly water quality and gas monitoring visits by a six week interval. Not only did this allow the rain gauge to be serviced more regularly, but it also enabled additional rounds of groundwater monitoring to be completed using a dip meter to supplement the daily water level data from the six transducer monitoring points.

4.5 Permeability Testing

In situ permeability testing was undertaken in fifteen of the dipwells during 2011 in order to assess the differences in permeability within the varying soil types encountered during the previous borehole investigations. The tests used a plastic cylindrical slug that had been lowered into the water column to displace a fixed volume from the dipwell. Once the groundwater level had returned to rest conditions the plastic cylindrical slug was removed as quickly as possible. The rate of groundwater recharge was then measured using a pressure transducer to calculate the length of time that the water level took to stabilise. The results were then analysed to calculate the permeability of the deposits at each location.

4.6 Gas Monitoring and Sampling

Quarterly ground gas monitoring was undertaken in each of the installed seventeen dipwells using a Geotechnical Instruments GA2000 or GA5000 gas analyser. The Gas Analyser was used to measure the concentration of hydrogen sulphide, methane, oxygen, carbon monoxide and dioxide through the gas taps which have been fitted to the majority of dipwells. Methane and hydrogen sulphide are indicators of anaerobic conditions, whilst oxygen, carbon monoxide and carbon dioxide are more indicative of aerobic deposits.

Liaison with Historic England's scientific dating team and with SUERC identified an acceptable methodology and equipment for sampling gas, and rapidly processing these samples to extract a radiocarbon determination for the potential age of the origin of the gas. A special round of gas monitoring was conducted when barometric pressures were low enough (below 1000mb) on the 16th September 2015, and two dipwells displayed sufficiently high levels of methane (AC) and carbon-dioxide (AE) for sampling purposes.

¹⁵ data available from John Moore's university has been used as a substitute for this period

Sampling was undertaken by pumping through gas taps which seal the dipwells, using a GA5000. The gas was then stored in a 1 litre Tedlar bag, and despatched to SUERC's laboratories next day (**Figure 8**).

Figure 8
Gas sampling for C14

5.0 OBJECTIVE 2: OPTIMUM APPROACH TO CHARACTERIZATION AND MONITORING

In addition to clear documentation on aims, objectives, methodology, parameters, personnel, programme and communications, the results from the monitoring programme have suggested some optimum techniques and methodologies which can be recommended for future monitoring projects in other historic urban centres, or where waterlogged deposits are preserved within the unsaturated or vadose zone. The elements of an effective monitoring programme include:

21

- · appropriately calibrated equipment;
- porosity and permeability testing of the sedimentary deposits;
- a sufficient network of monitoring points across the extent of waterlogged remains;
- a series of georeferenced and levelled borehole logs with descriptions of the deposit sequence detailed enough to identify organic remains, their depths within the sequence, and conditions of preservation (based on the Norwegian protocols);
- geochemical analysis of key parameters from the deposit sequence;
- redox and TDR measurements from deposit horizons which contain organic remains;
- annual geochemical sampling using same suite of parameters as used in baseline;
- gas monitoring for carbon monoxide, carbon dioxide, hydrogen sulphide, methane;
- water level, dissolved oxygen, electrical conductivity, pH, temperature; and
- rainfall measurements

The monitoring interval is dependent on issues such as whether annual or seasonal change is being monitored, but the use of data-loggers allows flexibility. Ideally data should be gathered from the specific horizon with organic remains rather than from a wider zone. The suite of groundwater geochemical testing which has been used as proxy indicators of the conditions for preservation within the waterlogged deposits at Nantwich included:

- Nitrate
- Manganese
- Phosphate
- Sulphate
- Ferric iron (III)
- Ferrous iron (II)
- Sodium
- Ammoniacal nitrogen
- Sulphide
- Chloride
- Calcium carbonate
- Carbon

The monitoring data and laboratory analyses permit assessment of whether high levels of degradation are probable due to aerobic conditions, or reducing levels of microbial activity with anaerobic conditions. For example if dissolved oxygen concentrates exceed 0.5mg/l it is highly likely that aerobic degradation is present 16 . The ratio of oxidised and reduced species allows assessment of the redox conditions, for example nitrate and ammonium, oxidised and reduced forms of iron, and sulphate to sulphide ratios. In summary the chain of electron receptors (or sequence of preference for degradation by micro-organisms) is oxygen \rightarrow nitrate \rightarrow iron \rightarrow sulphate \rightarrow carbon dioxide. Comparative studies in Norway have

¹⁶ Carey, M.A., Finnamore, J.R., Morrey, M.J.., and Marsland, P.A. 2000 *Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater* Environment Agency R&D Publication 95

suggested that good preservation conditions in sediment require high concentrations of, for example, ammonium (NH₄⁺) >50mg/kg, sulphide (S²⁻) >100mg/kg, sulphate (SO⁴) >500 mg/kg, and less than 80% of reduced iron (Fe²⁺)¹⁷. Poor preservation is characteristically defined by low concentrations, e.g. nitrate (NO₃-) >10mg/kg, sulphate (SO₄) <500 mg/kg, and reduced iron (Fe²⁺) <20%.

22

These chemical analyses inform the initial characterization or baseline survey stage to inform on the current state of preservation, and also during subsequent monitoring to assess whether conditions conducive for preservation exist within the burial environment ¹⁸. During the Nantwich project the current state of preservation was largely assessed through description of the sediment cores (observation and application of the Norwegian National Standard (NS 9451, 2008 ¹⁹), assessment of palaeoecological and wood structure, permeability testing, and geochemical analysis of sediment samples. The monitoring regime that followed on from the characterization of current preservation, focused on groundwater and water quality testing, gas emissions, and geochemical analyses of water samples to assess whether conditions appeared to be conducive for preservation.

The presence of water has long been understood as a major factor in the reasons for preservation of organic remains as it blocks oxygen ingress into the sediment pores, and so significantly reduces decay rates. Unsaturated archaeological deposits, however, can still contain well-preserved organic remains, as seen in Nantwich in dipwells AE and AF for example, where the capillary action through the silts draws moisture up from the watertable into the tension-saturated or vadose zone above. Therefore it is the degree of void space within the sediments which determines how preservation conditions will be affected by oxygen ingress.

Recent studies in Bryggen suggest that when the air content of a sediment exceeds 10 -15% by volume, it will have a noticeable effect on decay mechanisms, but that dissolved oxygen brought in by rainwater is of less importance for the introduction of oxygen into the vadose zone 20 . In addition temperature rise accelerates the potential rate of decay for both microbial and chemical reactions, with a 2 - 3 fold increase for a rise of 10° C. 21 This only affected dipwell F1 at Nantwich, as most other dipwells recorded temperature change half this range.

The measurement of pH is also important, not only for assessment of redox conditions, but also as an indicator of other chemical changes over time. Studies at Star Carr for example, have recorded a difference in pH between *in situ* measurements and laboratory samples. Increased acidity seems to have been triggered by exposure to oxygen, and even a small reduction in water level or increase in atmospheric oxygen triggered sulphate production²².

1

¹⁷ Martens, V.V., and Bergersen, O. 2015 *In situ* site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 68-79*.

¹⁸ See for example Matthiesen, H. 2015 Detecting and quantifying ongoing decay or organic archaeological remains: A discussion of different approaches *Quaternary International 368, 43-50*

¹⁹ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits

²⁰ Matthiesen, H., Hollesen, J., Dunlop, R., Seither, A. and De Beer, J. 2015 In situ measurements of oxygen dynamics in unsaturated archaeological deposits *Archaeometry 57, 6, 1078-1094*

²¹ Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen* Riksantikvaren, p.82-3

²² Boreham, S, Conneller, C., Milner, N., Taylor, B., Needham, A., Boreham, J., and Rolfe, C.J. 2011 Geochemical indicators of preservation status and site deterioration at Star Carr *Journal of Archaeological Science 38, 2833-2857*

6.0 OBJECTIVE 3: ANALYSIS OF DATA

6.1 Baseline and annual results

A series of interim reports were produced each year during Phase 2, and were used by the steering group to review progress and monitor success. The baseline results from the physical assessment of the cores retrieved from the dipwell installation were reported in the first two reports²³. The data gathered during the project have been deposited at ADS.

6.2 A guide to redox geochemistry of groundwater

Dissolved oxygen at levels of 0.5-2 mg/L indicate that aerobic respiration is probably occurring. The Oxygen – Reduction Potential (ORP or Eh) is the relative tendency of a solute to gain or lose electrons, which in groundwater is normally due to the activity of organisms leading to biodegradation. This is measured in electrical current passing through the groundwater and recorded in mV, and calibrated to the standard hydrogen electrode (SHE) so that oxidising conditions occur above c.400mV with increasingly reducing conditions occurring as the measurement drop to -400mV.

Proxy indicators assess what chemical reactions are happening in groundwater, and how this compares to the scale of reduction occurring. The presence of methane and hydrogen sulphide generated from obligate and facultative anaerobes indicate a high level reducing environment, whereas the presence of sulphate, ferric iron and magnesium indicate reducing conditions, with nitrates and phosphates indicating a mildly reducing environment. The absence of these indicators is found in oxidising conditions (see Table 1).

Table 1
Summary of Principal redox Indicators

Description	Species present/absent	redox value (mV)	Microbes present	Decreasing rate of decay	
Oxidising	Oxygen present	400 and above	Aerobes	П	
Mildly reducing	Nitrate, Manganese (Mn ⁴⁺) decline,	100 to 400	Facultative anaerobes		
Reducing	Sulphate, ferric Iron (Fe ³⁺) present	-100 to 100	Facultative anaerobes and obligate anaerobes		
Highly reducing	Sulphate and ferric Iron (Fe ³⁺) disappear Sulphide (S ²⁻), ammonium (NH ₄ ⁺⁾ , ferrous Fe ²⁺ and methane present	-400 to -100 Obligate anaerobes			

System	redox potential range (mV) corrected to pH 7	Microbiology	Burial environment	
Oxygen disappearance	+500 to +350	Aerobes	Oxic	
Nitrate disappearance	+350 to +100	Facultative anaerobes		
Manganese ²⁺ formation	Below +400	Facultative anaerobes	- Sub-oxic	
Fe ²⁺ formation	Below +400	Facultative anaerobes	- Sub-Oxic	
Sulphide formation	0 to -150	Obligate anaerobes	America	
Methane formation	below -150	Obligate anaerobes	- Anoxic	

_

²³ January 2011 and November 2011 Nantwich Waterlogged Deposits Cheshire Phase 2 Interim Report No 1 English Heritage HEEP 3839 Main

6.3 Results of analysis of key parameters

A selection of some of the key parameters have been used to review how conducive for preservation the burial conditions have been at each of the monitoring locations over the five year period. A comparison between the observed state of preservation recorded during description of the original cores, and annual summary of groundwater parameters over the five year monitoring period, is presented in Table 2.

Table 2
Comparison of Different Monitoring Techniques – Annual Results

Location	Observed Baseline Preservation Conditions	Date	Dissolved Oxygen (mg/l)	Dissolved Methane (mg/l)	Saturation Conditions of archaeological deposit (hydrographs)	Geochemical Conditions from annual laboratory analysis	Eh Difference from Iron Boundary (mV)	Redox Environment
		Nov-07	0	0	UNSATURATED	OX	-155.4	RED
		Feb-11	1.85	0	VADOSE	OX	3.05	OX
AB	LOUSY	Feb-12	3.94	0.006	VADOSE	OX	149.25	OX
AD	LOUST	Feb-13	0.76	0.007	VADOSE	OX	-52.65	RED
		Feb-14	2.85	0	VADOSE	OX	-42.5	RED
		Feb-15	0.01	0	VADOSE	OX	-349.5	RED
		Nov-07	0	0.051	VADOSE	RED	-226.35	RED
		Feb-11	0.77	0	VADOSE	RED	-186.05	RED
AC	POOR	Feb-12	1.12	0.364	VADOSE	RED	161.7	OX
AC	FOOR	Feb-13	0.49	0	VADOSE	RED	-90.85	RED
		Feb-14	1.48	0	VADOSE	RED	-183.15	RED
		Feb-15	0.17	0.0	VADOSE	RED	-480.2	RED
		Feb-11	0.86	1.981	VADOSE	RED	-117	RED
		Feb-12	0.7	5.273	VADOSE	RED	242.1	OX
AE	MEDIUM	Feb-13	0.47	0	VADOSE	RED	-80.95	RED
		Feb-14	1.33	0	VADOSE	RED	-30.25	RED
		Feb-15	-	0	VADOSE	RED	-460.5	RED
	POOR	Feb-11	0.82	3.396	VADOSE	RED	-153.75	RED
		Feb-12	0.65	3.765	VADOSE	RED	245.7	OX
AF		Feb-13	0.51	4.019	VADOSE	RED	-97.55	RED
		Feb-14	1.24	0.11	VADOSE	RED	-194.9	RED
		Feb-15	-	1.0	VADOSE	RED	-450.7	RED
		Feb-11	1.05	0.009	UNSATURATED	RED	170.4	OX
		Feb-12	1.05	0.012	SATURATED	RED	170.1	OX
AG	MEDIUM	Feb-13	0.9	0	SATURATED	RED	-73.8	RED
		Feb-14	3.52	0	SATURATED	RED	51.65	OX
		Feb-15	-	1	SATURATED	RED	-332.9	RED
		Feb-12	2.14	-	VADOSE	-	179.7	OX
F1	MEDIUM	Feb-13	1.63	-	VADOSE	-	-64.55	RED
''	MEDION	Feb-14	5.78	-	UNSATURATED	-	0.4	OX
		Feb-15	-	-	VADOSE	-	-	-
		Feb-11	0.94	0	SATURATED	RED	268.65	OX
		Feb-12	1.08	0.943	SATURATED	RED	217.4	OX
F2	MEDIUM	Feb-13	1.03	0	SATURATED	RED	-23.25	RED
		Feb-14	2.48	0	SATURATED	RED	-4.7	RED
		Feb-15	-	0	SATURATED	RED	-295.4	RED
L	NULL	Nov-07	0.95	0.003	UNSATURATED	OX	-113.7	RED

Location	Observed Baseline Preservation Conditions	Date	Dissolved Oxygen (mg/l)	Dissolved Methane (mg/l)	Saturation Conditions of archaeological deposit (hydrographs)	Geochemical Conditions from annual laboratory analysis	Eh Difference from Iron Boundary (mV)	Redox Environment
		Feb-11	1.21	0.032	UNSATURATED	OX	-37.9	RED
		Feb-12	1.12	0	VADOSE	OX	139.8	OX
		Feb-13	0.46	0.012	UNSATURATED	OX	-26.65	RED
		Feb-14	6.14	0	UNSATURATED	OX	81.55	OX
		Feb-15	-	0	UNSATURATED	OX	-289.8	RED
		Nov-07	0	0.008	VADOSE	OX?	-84.2	RED
		Feb-11	1.17	0	VADOSE	OX?	-46.35	RED
		Feb-12	1.25	0	VADOSE	OX?	181.6	OX
М	LOUSY	Feb-13	1.24	0	VADOSE	OX?	-50.9	RED
		Feb-14	2.24	0	VADOSE	OX?	77	OX
		Feb-15	3.00	0	VADOSE	OX?	-408.6	RED
		Nov-07	1.08	2.9	VADOSE	RED	-224.2	RED
		Feb-11	0.97	-	VADOSE	-	-54.2	RED
	_	Feb-12	1.12	-	VADOSE	-	182.15	OX
N	GOOD	Feb-13	0.72	_	VADOSE	-	-42.95	RED
		Feb-14	2.15	_	VADOSE	-	95.9	OX
		Feb-15	0.83	_	1715002	-	-315.3	RED
		Feb-11	1.22	8.107	VADOSE	RED	-48.85	RED
		Feb-12	1.36	6.777	VADOSE	RED	180.3	OX
N1	GOOD	Feb-13	0.47	2.783	VADOSE	RED	-54.2	RED
		Feb-14	1.83	2.2	VADOSE	RED	-45.6	RED
		Feb-15	0.07	2	VADOSE	RED	-	-
		Nov-07	0.07	2.2	VADOSE	RED	-191.85	RED
		Feb-11	2.37	0	VADOSE	RED	-20.2	RED
		Feb-12	1.13	0	VADOSE	RED	182.8	OX
0	POOR	Feb-13	0.73	0	VADOSE	RED	-78	RED
		Feb-14	1.56	0	VADOSE	RED	30.75	OX
		Feb-15	-	0	VADOSE	RED	-385	RED
		Nov-07	0.00	0	UNSATURATED	OX	-195.95	RED
	MEDIUM	Feb-11	0.82	0.007	UNSATURATED	OX	58.55	OX
		Feb-12	0.84	0.007	UNSATURATED	OX	148.45	OX
P		Feb-12	0.69	0	UNSATURATED	OX	-80.9	RED
		Feb-14	1.94	0	UNSATURATED	OX	-110.15	RED
		Feb-14	0.94	0	UNSATURATED	OX	-380	RED
		Nov-07	0.51	0	UNSATURATED	OX	-140.05	RED
		Feb-11	1.14	0	UNSATURATED	OX	-140.05	RED
		Feb-12	2.1	0	UNSATURATED	OX	168.85	OX
Q	NULL	Feb-12	0.76	0	UNSATURATED	OX	-53	RED
		Feb-14	2.13	0.0056	UNSATURATED	OX	-42.45	RED
		Feb-14	2.10	0.0030	UNSATURATED	OX	-387.9	RED
		Nov-07	0.00	0	UNSATURATED	OX	-89.7	RED
		Feb-11	0.00	0.017	UNSATURATED	OX	117	OX
		Feb-12	1.27	0.017	UNSATURATED	OX	165.55	OX
S	NULL	Feb-12	0.88	0.005	VADOSE	OX	-79.95	RED
		Feb-13	2.14	0.011	VADOSE	OX	-79.95 -26.7	RED
				· ·	UNSATURATED	OX		
		Feb-15	-	0.00	UNSATURATED	UX	-	-

Location	Observed Baseline Preservation Conditions	Date	Dissolved Oxygen (mg/l)	Dissolved Methane (mg/l)	Saturation Conditions of archaeological deposit (hydrographs)	Geochemical Conditions from annual laboratory analysis	Eh Difference from Iron Boundary (mV)	Redox Environment
		Nov-07	0.04	3	UNSATURATED	RED	-220.65	RED
		Feb-11	0.9	2.97	UNSATURATED	RED	123.9	OX
т .	POOR	Feb-12	1.38	2.02	UNSATURATED	RED	189.15	OX
'		Feb-13	1.4	0	UNSATURATED	RED	-61.95	RED
		Feb-14	4.95	0	UNSATURATED	RED	-15.65	RED
		Feb-15	-	0.00	UNSATURATED	RED	-	-
		Nov-07	0.00	0	VADOSE	RED	-222.9	RED
		Feb-11	1.23	0.094	VADOSE	RED	-198.7	RED
v	MEDIUM	Feb-12	1.42	0.026	VADOSE	RED	198.7	OX
V	WIEDIOW	Feb-13	0.68	0.006	VADOSE	RED	-160.2	RED
		Feb-14	2.78	0	VADOSE	RED	-87	RED
		Feb-15	-	0	VADOSE	RED	-492.8	RED

6.3.1 Table 2: Criteria for data collection and processing

The observed baseline preservation conditions have been taken from the description of the cores, which applied the Norwegian Standard for characterizing deposits²⁴.

The dissolved oxygen and redox measurements were taken using a peristaltic pump discharging through a flow cell connected to a YSI 556™ digital water quality meter during the annual sampling round. The redox measurements were then corrected to standard hydrogen electrode (SHE) reference values and then comparing the results against the iron oxidation and reduction boundary (which varies depending on pH values) to determine if the conditions were oxidising or reducing.

The saturation conditions were determined by the location of the water table in relation to the archaeological deposits. The archaeological deposits were considered to be saturated or unsaturated if the groundwater was located above or below these deposits (see Appendix C hydrographs). If the water table was recorded within the archaeological deposits the location was considered to be located within the vadose zone. These archaeological deposits include the non-carbonised organic category as well as deposits that were of archaeological origin but did not have evidence for organic remains within the cores extracted. The archaeological deposits do not generally include the uppermost level, which is categorized as made ground.

The groundwater samples collected during the annual sampling round were analysed for dissolved methane concentrations by an accredited laboratory (Jones Environmental Forensics of Deeside), and the laboratory results are summarised in Appendix D.

The assessment of the geochemical conditions was completed by reviewing the overall suite of geochemical parameters indicative of aerobic and anaerobic processes (also shown in Appendix D).

_

²⁴ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits

6.3.2 Table 2: general comments on results of analysis

The table shows very interesting results and has been sub-divided into saturated, vadose and unsaturated conditions based on the water level in relation to archaeological deposits. This sub-division is crude because in some instances the organic remains have been found as a particular horizon within the more general description of archaeological deposits, either entirely below the water level, or occasionally above it, but the attribution of whether it is saturated depends on how the water level relates to the compete archaeological sequence.

The final two columns show a surprising divergence between results from geochemical proxy indicators taken from samples processed in the laboratory, with the redox readings taken from water *in situ*. The geochemical results suggest more oxidising conditions in many instances, than the redox measurements indicate.

The left hand column shows the contrast with how each deposit was described following visual inspection and baseline description when the original cores were extracted.

6.3.3 Table 2: comparison between baseline and monitoring results

Predominantly reducing conditions were recorded over the monitoring period in ten of the groundwater monitoring wells that were fully saturated or located within the vadose zone. Dissolved oxygen and methane concentrations indicate that the most reducing conditions were recorded within the archaeological deposits at locations N, V and AF, and the baseline preservation conditions were all medium or good in these areas. Archaeological deposits with oxidising conditions were detected at locations AB and M, and this is consistent with the baseline lousy preservation conditions recorded from the cores.

The groundwater parameter results indicate that archaeological deposits were consistently unsaturated in only three (P, Q and T) out of the seventeen groundwater monitoring wells. Due to the lack of water in the archaeological deposit, this prevents a direct comparison to the baseline conditions from the groundwater preservation parameters at these locations.

The unsaturated archaeological deposits in T and vadose archaeological deposits in AC, AF and O recorded poor preservation conditions at baseline, and although the unsaturated deposits at location P recorded medium preservation conditions at baseline, they also exhibited signs of active decay.

In summary the dissolved oxygen, dissolved methane, saturation condition and geochemical results were generally consistent with the observed baseline preservation conditions. The redox measurements from the groundwater quality meter, however, showed a significant amount of fluctuation and the results did not necessarily correlate with the other recorded preservation parameters.

Comparison between the baseline data with the monitoring results recorded between 2011 and 2015 indicate that overall conditions have remained generally consistent, although closer analysis of the dissolved oxygen and methane could suggest that there is a trend for slightly increasing levels of oxidation over the five year monitoring period. This is particularly evident in areas with good preservation (N/N1, AE and AF) where dissolved methane concentrations are declining. The apparent trend from the dissolved oxygen, however, is suspect because there are substantially elevated levels recorded for February 2014, which appear inconsistent with previous values and with comparative data. This could reflect a faulty probe used during the data collection round. February 2015 measurements were so

erratic that have been removed from Table 2, and it is possible that the apparent drop in eH values during that same data capture round, could be due to an error in the pH probe, which would affect the relationship between the mV measured to the reducing/oxidising iron boundary.

Further analysis of the dissolved methane strongly suggests a causal link between elevated measurements and ingress of rain water during the period of abnormally high rainfall between 2012 and 2013. This is not consistent throughout all locations, but could be significant at AB, AC, AE, AF, F2, and T.

This trend is also reflected within the seasonal fluctuations, with increased concentrations of dissolved oxygen recorded following the infiltration of oxygen from effective rainfall in winter periods 2012-13 and 2013-14 (See **Figure 9**). Seasonal variations were less evident in the pH and conductivity groundwater data. At the multilevel locations the average value of dissolved oxygen throughout the monitoring period at Church Lane were 2.49mg/l for F1 (targeted to archaeological deposit) and 1.48mg/l for F2, whilst the average value at Snow Hill was 1mg/l at N1 (targeted to archaeological deposit) and 1.4mg/l at N. At F1 the relatively high level of dissolved oxygen could have been caused by the proximity of the dipwell to the car park drainage system c.2-3m to the north, suggesting a direct hydrological relationship between the deposit and rainfall events. At location N1 the archaeological deposit has a reduced amount of dissolved oxygen compared to the adjacent deeper dipwell which includes the underlying groundwater, and thus suggests the lower oxygen concentrations would be more conducive to the preservation of non-carbonised organic remains in the archaeological deposit.

Figure 9
Seasonal Variations in Dissolved Oxygen

6.4 Comparison of data from multilevel dipwell installations

Multilevel dipwell installations were installed at locations F1, N1 and P1 to specifically target the cultural horizons (archaeological deposit) and assess the differences between these targeted zones with the more general results from the adjacent dipwells (F2, N and P) that were screened to include both the archaeological deposits and the underlying geological strata. However, there are no groundwater data available for comparison from P1 as the groundwater level remained below the base of the archaeological deposit throughout the monitoring period.

The groundwater monitoring data from the water quality meter show that there is a direct correlation in redox and pH values in the multilevel monitoring wells at both locations F1/F2 and N/N1 (Appendix C). This is also generally the case for conductivity values, although location N generally shows an increase in conductivity values when groundwater is drawn in from the deeper deposits with higher salinity contents, in contrast to the values recorded in N1.

The gas data from location P (See **Figure 10** below) show that dipwell P1 generally recorded higher concentrations of CO_2 and depleted levels of oxygen compared to dipwell P. As indications of active decay were observed in the archaeological deposits at location P it is possible that increased levels of CO_2 may be caused by the breakdown of organic deposits in this area. This trend is also present at location F1/F2 although it is less evident at location N/N1. The dissolved oxygen (DO) concentrations in monitoring well F1 are typically higher than the deeper well at location F2 and this may be due to the increased influence of oxygenated runoff from the nearby car park drainage system in this area, which is also evident in the water level and temperature data from the transducer. This trend is not replicated at location N/N1 where the DO concentrations are generally consistent in both wells.

Figure 10
Carbon Dioxide Concentrations at Locations P and P1

6.5 Groundwater Temperature

The data loggers installed in borehole locations AB, AE, AF, F1, N1 and P were also set to record groundwater temperature on a daily basis, and these results are shown in **Figure 11** below:

Figure 11
Groundwater Temperature Fluctuations

As expected, the groundwater temperature shows a strong correlation with seasonal fluctuation, generally reaching a maximum during October and a minimum in April. The total span for recorded groundwater temperature over all locations showed they remained in a temperate range of 6.6 to 16.3° C. Groundwater temperature can have a significant impact on the speed of oxidisation and reduction processes, but although temperature rise accelerates the potential rate of decay for both microbial and chemical reactions, with a 2-3 fold increase for a rise of 10° C²⁵, such a range only appears to effect dipwell F1 at Nantwich, as most other dipwells recorded temperature change of half this range.

The data from locations AB, AE, AF and P show very consistent seasonal trends, with temperature fluctuation of approximately 3 - 4°C. This would suggest that these locations are generally influenced by natural groundwater flow. However, the results from F1 do not seem to follow the same natural cycle. Although a strong seasonal fluctuation is still present, they exhibit a wider range of temperature fluctuation (up to 9.7°C in F1), they reach their seasonal minimums and maximums up to 2 months before the other locations and generally exhibit more erratic temperature trends. This suggests that preferential drainage pathways

²⁵ Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen* Riksantikvaren, p.82-3

have a significant impact on groundwater within this area, which is located in close proximity to car park drainage infrastructure.

6.6 Duration of monitoring project

The initial Phase 2 project design was for a three year programme of monitoring due to budgetary constraints within English Heritage. A variation was agreed in 2013 to extend the monitoring for a further two years, due to the exceptionally variable amounts of rainfall that had occurred in 2012 which risked skewing the data if not balanced against a longer monitoring period than just three years. The results from the monitoring programme demonstrate the validity of a longer duration, as shown in **Figure 12** which compares the total annual rainfall recorded between 2011 and 2015.

Figure 12
Graph showing total annual rainfall in Nantwich between 2011 and 2015

Figure 12 shows that the annual rainfall in 2012 was approximately 35% higher than the average rainfall recorded during the five year monitoring period (469mm per year). The average rainfall for the first three years (2011 – 2013 inclusive) was 494mm per year, whereas for the following two year extension (2014 – 2015 inclusive) it was 430mm per year, so it was approximately 14% higher during the initial period. Extending the initial monitoring period by 2 years allows greater confidence to be placed on the impact of oxygenated rainfall on the other data-sets during the monitoring period by reducing the effect of the exceptional rainfall recorded in 2012 on the average data. For example, analysis of dissolved methane (Table 2) shows that the majority of elevated levels were detected during the period effected by higher rainfall.

The disparity in results that would have occurred with only three years of data is also shown clearly when groundwater level is plotted for specific dipwells. In **Figure 13** for example,

dipwell F1 shows a rapid rise in groundwater level as a response to the exceptionally high level of rainfall in 2012, whereas the level drops again over the succeeding years, which better represents the average conditions. Location F is probably more responsive than most dipwells to rainfall events, as in common with other locations in car parks, it appears as though the run-off and drainage from such zones directly affect the groundwater level in those dipwells in the immediate vicinity.

Figure 13
Groundwater levels at location F1 over five years

6.7 Additional studies: redox measuring techniques and soil moisture

6.7.1 Measuring redox (Historic England Project 6524).

Additional redox monitoring was carried out by inserting two types of in situ probes into the deposits adjacent to Boreholes N and N1, and collecting readings over a twelve month period from July 2012 to June 2013.

The probes were one rigid resin rod, with two platinum rings collecting readings at c. 1.0 m and 1.5 m below ground surface and three platinum-tipped heavy gauge copper wires also inserted to 1.5m below ground surface. Manual readings from the copper probes were collected on a monthly basis using a WTW pH3110[™] meter with a Silver Chloride reference electrode, whilst the resin- made probe was connected to a Hypnos III[™] datalogger

collecting readings at hourly intervals. Another silver chloride reference electrode connected to the data logger was permanently installed in the ground to complete the circuit with the resin probe.

A monthly measuring programme was initiated to take readings from the copper probes, download data from the Hypnos datalogger as well as recording groundwater redox values with the YSI ORP probe using four sampling techniques on groundwater samples from the dipwell at N1 thus:

- Pre-purge in situ
- Low-Flow sample
- · Bailer sample
- Post-purge in situ

The Eh/pH stability plot (**Figure 14**) for these groundwater sampling techniques indicates that throughout the twelve month period groundwater redox values can be described as reducing in character, and mainly neutral to slightly alkaline, with two outliers (a bailed and low flow sample) located above the iron boundary suggesting oxidising conditions, and two further samples (pre-and post-purge samples) reducing and slightly acidic.

Figure 14
Eh/pH stability plot at dipwell N, N1

When comparing the annual linear trend for all groundwater sampling methods (**Figure 15**, redox values calibrated to SHE), the broad trend is predominantly moderately reducing conditions, with episodes of more oxidising conditions, followed by slow recovery to a more reducing environment. The highest values were recorded following a period of high rainfall during May 2013, with two samples (from bailing as well as low flow) measuring above 750mV, calibrated to SHE.

Figure 15
Comparison of groundwater sampling methods at dipwell N1

The lowest values throughout the year were observed from *in situ* groundwater standing in the dipwell N1 prior to sampling where initially conditions were reducing (less than -100mV), although throughout the twelve months conditions became less reducing as a result of higher rainfall during 2012. A large peak recorded at the end of May 2013 when conditions became highly oxidising coincided with a period of high rainfall during that month.

The highest values were recorded from bailed samples, effectively proving that the physical action of bailing introduces oxygen into the sample. Readings taken from groundwater refilling the dipwell following bailing out were also high as the water becomes oxygenated from the air contained in the empty dipwell. This phenomena has been observed before (Caple and Dungworth, 1998, p.28²⁶) who stated that "This demonstrates that the condition of 'fresh' groundwater in purged dipwells is not representative of that found in situ in archaeological burial environments."

It is also of interest that the low flow-through cell readings were also higher than the prepurged groundwater. Because of problems inherent in measuring redox from groundwater samples, two types of *in situ* probe were tested during the field trials to identify their potential for redox studies - three copper/platinum probes, and one resin/platinum probe.

-

²⁶ Caple, C. & Dungworth, D. 1998 Waterlogged Anoxic Archaeological Burial Environments Unpublished Ancient Monuments Laboratory Report 22/98. Historic Buildings and Monuments Commission, London.

Figure 16
Comparison of redox probe results from location N, N1

Figure 16 shows the linear trend for the three copper/platinum probes during the twelve month field trial, where two probes (P436 and P437) indicated conditions were becoming oxidising whilst the third (P438) suggests that the deposits are in a highly reducing condition. The results are not entirely unexpected as although the cluster of three probes were installed all to the same depth, the installation was not without its problems, due to the pliant nature of the copper used to make the probes and the presence of below ground obstructions that affected the installation process. Other workers in the field have experienced similar problems and have resorted to installing clusters of five probes or more, and either averaging the readings or ignoring single outliers as anomalies.

The results from the resin/platinum probe (**Figure 17**) indicate highly reducing conditions were re-established approximately 26 days after the probe had been installed, and continued until the datalogger was flooded with groundwater ten days later, when it ceased to function.

Figure 17
Results for resin/platinum probe from location N, N1

However, periodic manual reading using a millivolt meter indicate that reducing conditions continue to be maintained particularly at 1.5m depth below ground surface. Conditions at 1.0m depth were mainly reducing (Table 3) apart from on two occasions when the readings imply an oxidising environment (23rd March 2013 and 27th June 2013), although there appears to be no correlation between excess rainfall on the two dates.

Table 3
Calibrated redox values at Location N, N1

DATE	Calibrated Eh values	(mV)
DATE	1.0m bgs	1.5m bgs
26/02/2013	-217.2	-172.6
22/03/2013	-138.9	-190.3
23/04/2013	567.4	-177.3
31/05/2013	-201.8	-182.3
27/06/2013	559.8	-129.6

6.7.2 Measuring soil moisture (Historic England Project 6524)

The volumetric soil moisture content of the below ground deposits at monitoring point N and N1 were measured using Time Domain Reflectometry (TDR) during field trials conducted between March 2013 and March 2014. TDR technology involves measuring the reflectance time for an electromagnetic pulse travelling through a soil or sediment, which is determined by the dielectric properties of the soil which in turn is influenced by the soil moisture content.

For the purpose of this study, two TDR devices were evaluated: a Trime™-Pico 64/160mm probe (**Figure 18a**) which was inserted into deposits circa 1.0m below the ground surface,

and a Pico T3P™ Profile Probe which was permanently installed into a dry access tube to record soil moistures at specific depths, thereby recording moisture through a vertical profile (Figure 18b)

Figure 18
a) Trime Pico 64/160mm probe; b) Pico T3P Profile Probe

The TRIME-PICO unit (reference 34687) was installed at a depth of circa 1.0 m below ground level to record volumetric moisture content in the capillary fringe zone at a single location. The hand auger was used to core through the upper deposits, and then the TDR unit was hand pushed into the deposit to ensure close contact between the wave guides and the soil. A bentonite seal was formed around the top of the TRIME-PICO unit to prevent surface water ingress. The unit was then hard-wired to the datalogger.

The datalogger was set to capture moisture contents once every 12 hours, and the measuring system was set to operate with a universal calibration for mineral soils (where clay content >50%, organic content >10%, bulk density <1.1kg/dm3 or >1.7kg/dm3) which is pre-programmed into the datalogger.

Initially both devices worked well capturing soil moisture data which was transmitted via the datalogger at daily intervals. However, between 13/07/13 and 20/07/13 no data were transmitted from the PICO profile probe sensors. Data were then captured and transmitted from the two uppermost sensors (between 0.95m - 1.06m bgl and 1.20 -1.31 m bgl) until 24/07/13 when no data was captured or transmitted. A fault with the data logger was ruled out as data were being captured and transmitted from the TRIME-PICO 64 unit. A site visit

was made on the 8th August 2013 where it was discovered that the access tube was filled with water. The probe unit was removed, dried and electrical contacts cleaned, and attempts were made to bail out the water and insert a new bung to seal the base of the access tube. This proved unsuccessful and as it was impossible to prevent further groundwater ingress into the access tube, this element of the trial was abandoned. The single point TRIME-PICO 64 unit performed well though, and continued to operate throughout the 12 month period.

Soil moisture values from the TRIME-PICO 64 unit have been plotted alongside rainfall events during the year (**Figure 19**) showing a slight reduction in soil moisture content (below 43%) during the summer months followed by a gradual increase during the winter months (peaking at over 46%). There is also a broad correlation between increased rainfall events and increased soil moisture (albeit with a slight time lag before the impacts are detected), implying that deposits circa 1.0m bgl are influenced by rainfall and downward surface water percolation.

Figure 19
Soil moisture readings against rainfall from location N, N1

Before ceasing to function, the data (**Figure 20**) provided by the PICO T3P sensor units demonstrate increasing soil moisture content with increasing depth, with fully saturated conditions (100% soil moisture content) observed in the zone at between 1.70 and 1.81 m bgl. Within the zone between 1.45 to 1.56m bgl, the soil moisture content is around 60%, and around 50% in the zone between 1.20 to 1.31m bgl.²⁷

 $^{^{27}}$ Organic remains were found in BH N from 1.13m – 1.80m bgl, although more abundant and better preserved organic content occurs from 1.88 – 2.85m bgl. A layer of greyish-blue clayey-silt with possible vivianite occurs from 1.80 – 1.88m bgl. Water levels were 1.54m bgl at baseline and in general fluctuated seasonally between c.1.0 – 1.5m bgl over the duration of the monitoring period.

One anomaly appears to be data from the zone between 0.95 and 1.06m bgl where soil moisture contents from the profile sensor were between 79% and 95%, which are at variance with data from the TRIME-PICO unit, where soil moisture contents ranged between 43 and 45%. This disparity is likely to be due to the access tube acting as a conduit for surface water ingress, especially if the bentonite seal was of insufficient thickness, thereby creating the false impression of higher than actual soil moisture contents. Voids around the access tube will also produce anomalous results as such pockets can fill with surface water and give the impression of highly saturated conditions. This reinforces the requirement to ensure that the TDR access tubes are in as close contact with the soil as is possible, for without that intimate contact, erroneous results will occur.

Figure 20 Increasing soil moisture with depth bgl at location N, N1

7.0 OBJECTIVE 3: CHARACTERIZATION OF THE GEOLOGY, HYDROGEOLOGY & HYDROLOGY EFFECTING NANTWICH'S WATERLOGGED DEPOSITS

7.1 Geology of Nantwich

The British Geological Survey (BGS) indicates that Nantwich is underlain by superficial (drift) deposits consisting of Alluvium, River Terrace Deposits, Glacial Till and undifferentiated Glaciofluvial Deposits. The superficial deposits are underlain by solid geological strata of the Mercian Mudstone Wilkesley Halite Formation.

The ground conditions encountered during the investigations completed in 2007 and 2011 were generally as anticipated from the desk study (SLR July 2007), with natural superficial strata of Alluvium, River Terrace Deposits and Glacial Till overlain by made ground in the developed areas. Archaeological deposits were widespread throughout the study area, with layers of waterlogged organic deposits clearly defined within the shallow sequence.

The mudstone bedrock of the Wilkesley Halite Formation was not encountered in any of the boreholes during the intrusive investigations. This indicates that the superficial deposits are generally in excess of 4m thick within the study area.

The ground conditions are described in detail in the borehole logs shown in Appendix A, and a summary of the superficial strata is provided in the section below.

7.2 Overview of Stratigraphy

The borehole logs in Appendix A show that a diverse range of superficial strata were encountered during the shallow soil investigations, although there were sufficient similarities to enable the deposits to be classified into five broad categories, and the borehole logs showing the categories are presented in Appendix B. These categories enabled comparisons to be made between the various borehole locations and provided a basis for cross sections to be constructed throughout the study area.

The five categories for the superficial deposits are summarised below:

- Made ground
- Archaeological deposits
- Non-carbonised organic-rich deposits
- Mineral-rich deposits
- Fluvio-glacial deposits

Made Ground

A variable thickness of made ground was encountered beneath the developed areas of the town, with typical thicknesses of between 0.2m and 2m recorded.

The made ground comprised a variety of naturally sourced soils and sediments (clays, silts, sands and gravels) containing fragments of man-made materials including brick, masonry, ceramics, glass, ash/clinker and wood fragments etc.

Waterlogged Deposits

The archaeological deposits encountered were typically described as moist/wet dark grey or dark brown organic silts. They were divided into two categories:

- Archaeological deposits consisting of silts, clays and sands, black light grey in colour, which contained evidence of human activity such as ash, charcoal, pottery, bone, and:
- Non-carbonised organic-rich deposits which included plant-microfossils, wood, leather, plant debris and sulphide odours.

Mineral-rich Deposits and Alluvium

Alluvial deposits were typically found in association with the archaeological and organic deposits, between the made ground and glacio-fluvial deposits, in the boreholes drilled close to the river. The Alluvium encountered consisted of cohesive deposits typically comprising occasionally organic clayey silts and sandy silty clays, but did not contain archaeological material, and were therefore designated as mineral-rich deposits.

Some boreholes also contained mineral-rich deposits that were not deposited by natural fluvio-glacial processes, and these sediments did not contain organic or archaeological material either. It was assumed that these were re-worked natural deposits, as they were frequently encountered overlying archaeological deposits (e.g. BH U at the churchyard, perhaps due to grave-digging).

Fluvio-glacial Deposits

- The River Terrace Deposits were generally encountered beneath the Alluvium in the vicinity of the river, at elevations below approximately 30m aOD, gradually rising to 38m to 39m aOD beneath the higher ground with distance away from the river. These deposits consisted of predominantly granular materials typically described as slightly clayey sands with occasional gravels.
- The Glacial Till was the deepest strata encountered beneath Nantwich. This
 consisted of a cohesive stratum typically described as very stiff brown clay,
 occasionally sandy and with occasional gravel.

7.3 Hydrogeology

The regional geology is dominated by the Mercia Mudstone Group, which is generally considered to comprise a non-aquifer.

The Wilkesley Halite formation that underlies Nantwich, is a thick saliferous, basinal deposit, that occurs within the Mercian Mudstone of the Cheshire Basin. Groundwater movement within the Halite may occur along fractures, bedding planes and dissolution features. However, due to the limited quantity of groundwater within the formation, and its poor brackish quality, this unit is also considered an unproductive aquifer. The low permeability of the bedrock means that the top of the Wilkesley Halite effectively acts as an aquiclude, with shallow groundwater perched within the superficial fluvio-glacial and alluvial deposits above.

This means that the sands and gravels of the River Terrace Deposits form the most significant aquifer beneath Nantwich, although lenses of perched water are also present at even shallower depth within more permeable horizons of the alluvium and made ground.

Although groundwater may also be present in the more permeable horizons of glacial sands and gravels within the Glacial Till, the glacial deposits encountered within the boreholes were generally more cohesive in nature with high clay content. Therefore, the Glacial Till is more likely to be unproductive in nature and act as a low permeability aquitard for the more granular deposits above.

The lenses of perched water within the made ground and alluvium may exist as isolated pockets or, where permeable deposits are extensive, or hydraulic continuity exists within the River Terrace Deposits, allow some lateral flow of groundwater towards the River Weaver. However, the higher permeability River Terrace Deposits associated with the River Weaver provide preferential flow pathways that control the local hydraulic gradients beneath Nantwich, with groundwater flowing in the general direction of the River Weaver and its northward drainage. The historical drainage systems within Nantwich also appear to exploit the natural flow pathways by culverting small and ephemeral streams, enhancing the preferential flow pathways that were already present (see **Figure 22**).

7.4 Hydrology

The principal surface water feature in the vicinity of the study area is the River Weaver and its broad shallow river valley. The Weaver flows northward through the town, with a number of small tributaries draining the slightly higher ground to the west and east, to join the River Weaver at Nantwich. Cheney Brook flows north westward across the eastern valley side joining the River Weaver north of the town.

The River Weaver bisects the town of Nantwich, and the Environment Agency's web-based Flood Map indicates that the extent of the flood plain associated with the River Weaver is limited to a stretch approximately 100m in width.

The Shropshire Union Canal also runs approximately parallel to the River Weaver, marking the western extent of the town. It is likely that some leakage of surface water from the canal occurs, and makes some contribution to groundwater flow within the superficial deposits and therefore to surface water springs/issues.

Numerous springs, sinks and issues are observed, particularly on the western side of the River Valley. These may reflect the presence of dissolution features in the underlying Halite formation, and the variable permeability of the overlying drift deposits.

7.5 Groundwater Monitoring Data

The results of the final round of groundwater level monitoring completed in December 2015 are tabulated below, and the results from the previous rounds of monitoring are contained in Appendix C.

Permeability and preferential flow paths

The permeability test results are shown in the third column of Table 4. The type of sediment in which the water strike occurred and enabled permeability testing is listed in the second column.

The average depth to the groundwater level within the anthropogenic deposits was approximately 1.9m below ground level, with evidence from the west side of the river showing groundwater depth increasing towards the River Weaver (2.79m in borehole AF). Deeper groundwater levels were detected in those dipwells located within deposits that contained a high percentage of granular material, reaching a maximum depth of 3.23m below ground level in dipwell S within the free draining sand deposits located around St

Mary's Church (See **Figures 21 and 22** below). The figure shows the preferential flow pathways which helps to explain why groundwater depth is deeper for dipwells P, S, and T, as the sandier matrix probably derives from a natural drainage channel in this zone.

Table 4
Groundwater Level Monitoring Data

Dipwell No	Predominant Strata Type at watertable	Permeability (m/day)	Surface elevation (m OD)	Depth to groundwater (m)	Water elevation (m OD)
AB	SILT & SAND	0.5	37.93	1.93	36.00
AC	Clayey SAND	0.1	36.42	2.50	33.92
AE	Very sandy SILT	0.3	35.19	2.56	32.63
AF	Sandy SILT	0.2	34.89	2.79	32.10
AG	CLAY	0.01	37.03	Destroyed	-
F1	Sandy SILT & CLAY	-	39.69	1.42	38.27
F2	Sandy SILT & CLAY	0.1	39.69	1.58	38.12
L	SAND	2	38.71	2.10	36.61
M	SAND	3	37.81	1.42	36.40
N	SILT & CLAY	0.02	39.17	1.42	37.74
N1	SILT & CLAY	-	39.16	1.49	37.67
0	CLAY	0.001	39.64	1.33	38.31
P	SAND	2	39.93	3.19	36.74
Q	Silty SAND	0.7	39.22	1.68	37.54
S	SAND	3	39.77	3.23	36.55
Т	SAND	6	39.50	3.04	36.45
V	Slightly clayey SAND	4	39.39	1.85	37.54

Depths are below ground measurements made relative to ordnance datum. See borehole logs in Appendix A for detailed data

Figure 21 shows the maximum and minimum groundwater elevations plotted against ten borehole logs from the key borehole locations. This suggests that the Phase 1 conclusions were accurate in suggesting that the saturation of shallow sands overlying boulder clay is a contributing factor to the waterlogging of deposits, whereas areas with deeper sand deposition contribute to rapid drainage.

Although the direction of groundwater flow is generally towards the River Weaver, the results from the groundwater monitoring indicate that the higher permeability deposits appear to have a significant influence on local flow direction. This is particularly evident in the area around St Mary's Church where the sand and gravel deposits associated with a former tributary of the River Weaver seem to be acting as a preferential flow pathway (See **Figure 23** below).

Figure 21
Groundwater elevations plotted against borehole logs

Figure 22
Hydrological Map of Nantwich with Groundwater Flow Contours

In order to assess the relationship between permeability and fluctuations in groundwater level following periods of rainfall, additional data logging transducers were installed into BH O and BH T. The results of this comparison are shown in **Figure 23** below.

Figure 23
Comparison between Groundwater Fluctuation and Permeability

The results indicate that the groundwater fluctuations observed in BH T are similar to those observed in BH P, and the behaviour of BH O was most similar to BH AB. However, neither BH T nor BH O exhibited the high levels of fluctuation observed in boreholes F1, N1, AE or AF. Consequently there does not appear to be a direct relationship between permeability and groundwater fluctuation as the trend observed in BH O does not match the fluctuations observed in other low permeability locations. However, it is possible that the groundwater fluctuations may be influenced by preferential drainage routes and surface runoff as F1, N1, AE or AF are all located in car parks or hard surfaced areas, whereas O, P, T and AB are all located on or close to areas without hard surfacing. For example drainage within the car parks may be via soakaways, or leakage could occur around the drains contributing to sudden pulses from the surface run-off.

8.0 C14 RESULTS AND THE EARLY MEDIEVAL INCEPTION OF ANTHROPOGENIC DEPOSITS

8.1 Results of radiocarbon dating

The radiocarbon results for the samples submitted during all phases of the project (Phase 1 2007, Phase 2 in 2012, and 2015) are shown in Table 5 below. The table also presents the depth below ground surface and sedimentary context from which they derived, and the type of material used for dating. The following sections include a discussion on the reliability of the results by year of submission, and a general discussion over the implications of the dates for the onset of waterlogged deposits and preservation of organic remains.

Table 5 Radiocarbon samples and age determinations

Laboratory number	Sample reference and depth in core	Sediment description	Material dated	δ ¹³ C (‰)	Radiocarbon age (BP)	Calendar date (95% confidence)
		Borehole F (Church Lan	e)			
OxA-18722	Spot sample 3, 0.76–0.82m	Moist, very dark grey-brown to black, crumbly to unconsolidated (working soft), humic, very slightly sandy slightly clayey SILT Wood frags, sulphide odour	<i>Ulmus</i> sp. sapwood	-24.6	150 ±23	cal AD 1660–1950
SUERC- 18781	076100F06, 0.76–1.00m	Moist, very dark grey-brown to black, crumbly to unconsolidated (working soft), humic, very slightly sandy slightly clayey SILT. Wood frags, sulphide odour	hazel nutshell	-25.7	775 ±30	cal AD 1210–1290
OxA-18683	100125F05, 1.00–1.25m	Moist, very dark grey-brown to black, crumbly to unconsolidated (working soft), humic, very slightly sandy slightly clayey SILT. Wood frags, sulphide odour	ably to unconsolidated (working soft), ic, very slightly sandy slightly clayey		946 ±20	cal AD 1020–1160
SUERC- 18780	125150F04, 1.25–1.50m	Moist, very dark grey-brown to black, crumbly to unconsolidated (working soft), humic, very slightly sandy slightly clayey SILT. Wood frags, sulphide odour	sloe stone	-27.1	970 ±30	cal AD 1010–1160
OxA-18721	150186F03, 1.50–1.86m	Moist, very dark grey-brown to black, crumbly to unconsolidated (working soft), humic, very slightly sandy slightly clayey SILT. Wood frags, sulphide odour	hazel nutshell	-24.3	966 ±23	cal AD 1010–1160
		Borehole N (Snow Hill)			
OxA-18684	Spot sample 6A, 2.00– 2.05m	Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus, large wood fragments and also twigs throughout. Overpowering sulphide odour	Salix sp. wood	-24.8	1068 ±23	cal AD 890– 1020
SUERC- 18782	Spot sample 6B, 2.00– 2.05m	Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus, large wood fragments and also twigs throughout. Overpowering sulphide odour	Corylus sp. wood	-27.2	1130 ±30	cal AD 780– 990
SUERC- 18783	Spot sample 8, 2.23–2.33m	Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus,	Alnus sp. wood	-27.1	1215 ±30	cal AD 690– 890

Laboratory number	Sample reference and depth in core	Sediment description	Material dated	δ ¹³ C (‰)	Radiocarbon age (BP)	Calendar date (95% confidence)
		large wood fragments and also twigs throughout. Overpowering sulphide odour				
OxA-18723	Spot sample 9, 2.35–2.40m	Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus, large wood fragments and also twigs throughout. Overpowering sulphide odour	Fraxinus sp. roundwood	-28.5	1071 ±24	cal AD 890- 1020
OxA-18724	Spot sample 10A, 2.62– 2.70m	Moist to wet, very dark grey-brown, crumbly (works soft), slightly silty, clayey SAND. Large roundwood (?wattle) inclusions. Very slight sulphide odour	Salix sp. roundwood	-28.2	1192 ±24	cal AD 730- 940
SUERC- 18784	Spot sample 10B, 2.62– 2.70m	Moist to wet, very dark grey-brown, crumbly (works soft), slightly silty, clayey SAND. Large roundwood (?wattle) inclusions	<i>Salix</i> sp. roundwood	-27.1	1215 ±30	cal AD 690- 890
		Borehole P (Pepper Stre	et)			
SUERC- 18786	150163P09, 1.50–1.63m	Just moist, mid to dark, slightly purplish- brown, amorphous organic humified peat. Fragments of moss stems and leaves', sedge (Carex) nulets and rootlets.	hazel nutshell	-25.2	865 ±30	cal AD 1040–1260
OxA-18726	163173P08, 1.63–1.73m	Just moist, dark brown to dark grey-brown, crumbly (working more or less soft), silty very humified amorphous organic PEAT.	hazel nutshell	-20.6	840 ±25	cal AD 1160–1260
SUERC- 18785	173191P07, 1.73–1.91m	Moist, dark brown to dark grey-brown, crumbly (working soft), slightly clayey SILT with some charcoal upper interface	hazel nutshell	-27.7	910 ±30	cal AD 1030–1210
OxA-18725	191200P06, 1.91–2.00m	Humified peat collapsed and loose in core tube.	hazelnut shell	-23.3	841 ±24	cal AD 1160–1260
		Borehole AC (Snow Hil	1)			
SUERC- 64289	AC-1		Methane gas sample	-30.9	1138 <u>+</u> 38	cal AD 770- 970
SUERC- 64290	AC-2		Methane gas sample	-42.0	1190 <u>+</u> 38	cal AD 770- 970
	Boreho	ole AD (Welsh Row brushwood trackway: in	road fronting 14	Welsh R	ow)	
GrN-31797	Timber 1 2.3m bgl	sandy and organic-rich deposits	Acer campestre	-29.6	945 ±15	cal AD 1020–1150
GrN-31798	Timber 2 2.3m bgl	sandy and organic-rich deposits	Alnus sp.	-27.8	970 ±15	cal AD 1025–1160
	Corduroy i	roadway from gas main inspection pit adjace	ent 33 Welsh Rov	v (SJ 649	00 5239)	

Laboratory number	Sample reference and depth in core	Sediment description	Material dated	δ ¹³ C (‰)	Radiocarbon age (BP)	Calendar date (95% confidence) AD 1259 – 95	
lan Tyers ²⁸ Dendro	Welsh Row trackway 0.75m bgl	yellow sand lenses interleaved with organic-rich dark sandy SILT layers.	Oak, 189 rings, 4 sap		Measured sequence 1065 - 1253		
		Borehole AE (Wood Stre	et)				
SUERC- 39418	AE 6T - A 3.4 – 4.0m	Very dense dark grey silty fine SAND with rare patches of black staining	hazelnut shell	-26.9	1495 <u>+</u> 30	cal AD 535 640	
OxA-26170	AE 6T – B 3.4 -4.0m	Very dense dark grey silty fine SAND with rare patches of black staining	plant remains -22		1532 <u>+</u> 29	cal AD 430 605	
SUERC- 64291	AE-1		CO2 gas sample	-14.9	3780 <u>+</u> 38	2280–2040 cal BC	
SUERC- 64292	AE-2		CO2 gas sample	-12.2	3724 <u>+</u> 38	2280–2040 cal BC	
		Borehole AF (Wood Stre	et)				
SUERC- 39419	AF 17/T – A 2.0 – 2.27m	Very soft dark greyish brown sandy organic SILT with occasional patches of black - sulphide staining.	twig -28		890 <u>+</u> 30	cal AD 1035-1220	
OxA-26232	AF 17/T – B 2.00 – 2.27m	Very soft dark greyish brown sandy organic SILT with occasional patches of black - sulphide staining.	wood twig	-27.2	826 <u>+</u> 30	cal AD 1160-1270	
SUERC- 39423	AF 19/T – A 2.48 – 3.0m	Very soft greyish brown slightly clayey sandy SILT	hazelnut shell	-28.0	875 <u>+</u> 30	cal AD 1045-1225	
OxA-26171	AF 19/T - B 3.4 – 4.0m	Very soft greyish brown slightly clayey sandy SILT	plant remains	-23.3	897 <u>+</u> 27	cal AD 1035-1215	

8.2 Discussion

8.2.1 Phase 1 sampling results 2007 (John Meadows)

Each sample consisted of a single-entity short-lived plant macrofossil or timber (Ashmore 1999). The samples from Boreholes F, N, and P were dated by Accelerator Mass Spectrometry (AMS) radiocarbon dating at the Scottish Universities Environmental Research Centre in East Kilbride (SUERC; technical procedures are described by Vandenputte *et al* (1996), Slota *et al* (1987), and Xu *et al* (2004)), or at the Oxford Radiocarbon Accelerator Unit (OxA; laboratory methods are given by Bronk Ramsey *et al* (2002; 2004)). The Welsh Row timbers were dated by Gas Proportional Counting at the Centre for Isotope Research, Groningen University, The Netherlands, following Mook and Streurman (1983). Internal quality assurance procedures at all three laboratories and international inter-comparisons (Scott 2003) indicate no laboratory offsets, and validate the measurement precision quoted.

The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using the program OxCal v4.05(Bronk Ramsey 1995; 1998; 2001; 2008) and the IntCal04 data set (Reimer *et al* 2004), and are quoted in the form recommended by Mook (1986), with the ranges rounded outwards by 10 years, or by 5 years where the

²⁸ Tyers, I., 2008 Tree-ring spot-date from an archaeological sample: Welsh Row Gas Main works, Nantwich *Dendrochronological Consultancy Ltd Report 103* (funded by Cheshire County Council)

radiocarbon error is less than ±25. The probability distributions shown in the figure below have been calculated using the probability method (Stuiver and Reimer 1993), and the same data.

The four results from **Borehole P** are statistically consistent with a single radiocarbon age (T' = 4.1, T'(5%) = 7.8, v = 3; Ward and Wilson 1978), and could thus be of the same calendar date (during the $11^{th} - 12^{th}$ centuries AD). This is what we would expect to find if the organic deposit between 1.50 and 2.00m depth in this core had accumulated very rapidly.

The six results from **Borehole N** are not statistically consistent (T' = 35.4, T'(5%) = 11.1, v = 5), and these samples therefore cannot all be of the same date. You can see from the figure that although SUERC-18783 (spot sample 8) appears to be slightly earlier than the underlying OxA-18723 (spot sample 9), there is a general trend for samples from stratigraphically-earlier levels to be older than those from later levels, which we would expect to find if the samples were not intrusive or residual, and if a period of time had elapsed between deposition at 2.70m and 2.00m. **This suggests that the waterlogged deposit in this section of the borehole dates to the late Saxon period**, an impression reinforced by the statistical consistency between results from the two samples at the top of this deposit, 6A and 6B (OxA-18684 and SUERC-18782; T' = 2.7, T'(5%) = 3.8, v = 1), and those at the base of it, 10A and 10B (OxA-18724 and SUERC-18784; T' = 0.4, T'(5%) = 3.8, v = 1). It is difficult to say precisely when sedimentation at these levels took place, or what time span is represented by the waterlogged deposit between 2.00 and 2.70m; **it could be as little as a few decades in the 9th or 10th centuries AD**.

The five results from **Borehole F** fail the test of consistency by a wide margin (T' = 872.1, T'(5%) = 9.5 v = 4), but this is due to the post-medieval elm spot sample 3 (OxA-18722) at 0.76–0.82m depth. The four medieval results are still not consistent, however (T' = 31.0, T'(5%) = 7.8, v = 3), and the nutshell at 0.76–1.00m is appreciably more recent than the three samples from lower in the core. Whether the thirteenth-century date of this sample provides more than just a *terminus post quem* for this deposit is worth thinking about, but at any rate the deposit appears to be significantly later than the waterlogged deposit between 1.86 and 1.00m in the core, which may have accumulated rapidly in the **11**th **or 12**th **centuries AD**; the three results here are statistically indistinguishable (T' = 0.6, T'(5\%) = 6.0, v = 2).

The two results from **Borehole AD** are statistically consistent with a single radiocarbon age (T' = 1.4, T'(5%) = 3.8, v = 1); Ward and Wilson 1978), and could thus be of the same calendar date – as expected, given that neither timber had a significant intrinsic age and that the two timbers formed part of the same structure. If we assume that this trackway was built of freshly-felled timber, it was built between the **early-mid 11**th **century and the middle of the 12**th **century cal AD**. This is somewhat later than the post-Roman date permitted by the sherds in the underlying deposit, and a century or two earlier than the dendro-dated corduroy trackway nearby.

Figure 24
Probability distributions for radiocarbon calibrated date ranges

8.2.2 AE and AF 2012 sampling results (Alex Bayliss)

The samples were dated by Accelerator Mass Spectrometry (AMS) at the Scottish Universities Environmental Research Centre in East Kilbride (SUERC-) and the Oxford Radiocarbon Laboratory (OxA-) respectively. The samples dated at SUERC were pre-treated using methods outlined in Stenhouse and Baxter (1983), combusted following Vandeputte et al (1996), graphitized as described by Slota et al (1987), and measured by AMS (Xu et al 2004). The samples processed at ORAU were pre-treated using a standard acid/base/acid method followed by an additional bleaching step (Brock et al 2010), combusted, converted to graphite, and dated as described by Bronk Ramsey et al (2004). Internal quality assurance procedures and international inter-comparisons (Scott 2003; Scott et al 2010) indicate no laboratory offsets and validate the measurement precision quoted.

The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using the program OxCal v4.1 (Bronk Ramsey 1995; 1998; 2001; 2009) and the IntCal09 data set (Reimer et al 2009). They quoted in the form recommended by Mook (1986), rounded outwards to 5 years. The probability distributions of the calibrated dates, shown below, have been calculated using the probability method (Stuiver and Reimer 1993), and the same data.

Each of the pairs of duplicate radiocarbon measurements from the specific heights in the different boreholes are statistically consistent at 95% confidence:

Nantwich borehole AE6/T 340-400 (T'=0.8; (T'(5%)=3.8; v =1; Ward and Wilson 1978); Nantwich borehole AF19/T 248-300 (T'=0.3; (T'(5%)=3.8; v =1; Ward and Wilson 1978); Nantwich borehole AF17/T 200-227 (T'=2.3; (T'(5%)=3.8; v =1; Ward and Wilson 1978).

The dated duplicate samples from each bore hole could therefore represent material of the same actual age, for Borehole AE 5th to 6th centuries AD, and for Borehole AF 11th to 13th centuries AD.

Figure 25 calibration of radiocarbon results from the Nantwich boleholes 2012 series by the probability method (Stuiver and Reimer 1993)

8.2.3 AC and AE 2015 methane and carbon dioxide (Peter Marshall)

Samples of methane (CH₄) and carbon dioxide (CO₂) from two dipwells – Snow Hill (AC-1) and Wood Street (AE-1), Nantwich - were submitted to the Scottish Universities Environmental Research Centre for radiocarbon dating. The samples were processed and dated by Accelerator Mass Spectrometry as described in Dunbar *et al* (in press).

The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). Replicate measurements are available on samples of the same gas from both dipwells. In both cases the measurements are statistically consistent at 95% confidence (Table 1; Ward & Wilson, 1978). These measurements have therefore been combined by taking a weighted mean before calibration.

The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using the program OxCal v4.2(Bronk Ramsey 1995; 2009) and the IntCal13 data set (Reimer et al 2013), and are quoted in the form recommended by Mook (1986), with the ranges rounded outwards by 10 years. The probability distributions shown in Figure 1 have been calculated using the probability method (Stuiver and Reimer 1993).

The wide discrepancy in ages between the CO₂ and CH₄ components suggests that either the gases are derived from different sources or that they are composed from a mixture of sources (Garnett *et al* 2013). The considerable older age of the CO₂ (**Borehole AE**, **Early Bronze Age**) would suggest that it is derived from much deeper organic waterlogged deposits. The methane samples from **Borehole AC** are more consistent with previous radiocarbon determinations from the Nantwich Waterlogged Deposits project and lie within the 8th to 10th centuries AD. Submission of further gas samples from dipwells together with water and peat samples may help in determining the C source of gases and in particular the CO₂ component from the Wood Street dipwell AE (cf Charman *et al* 1999).

Figure 26
Probability distributions of radiocarbon dates from Snow Hill (AC-1) and Wood Street (AE-1), Nantwich, carpark dipwells. The distributions are the result of simple radiocarbon calibration (Stuiver and Reimer 1993)

8.2.4 Implications for the origins and preservation of waterlogged deposits

The earliest radiocarbon dates were those from the CO₂ samples from Borehole AE in Wood Street car park on the west side of the River Weaver. These suggest organic remains of Early Bronze Age date, whilst the proximity of the borehole to the river suggests that the material could derive from river-borne deposition, or inundation of riverside vegetation.

The onset and development of waterlogged conditions for the historic salt town at Nantwich range from the Middle Saxon period through to the High medieval period. The earliest indication of waterlogging also comes from Borehole AE in Wood Street car park with a pair of dates in the $5^{th} - 7^{th}$ centuries from 3.4 - 4m below ground level (bgl), from hazelnut shells found when sampling the basal sand, which was not described in the logging as of anthropogenic origin (i.e. as an Archaeological deposit or Non-carbonised organics). This location for the earliest evidence of waterlogging in the historic town is not surprising, as this lies adjacent to the west bank of the River Weaver, in a zone that archaeological evidence has shown had intensive salt-working during the medieval period.

Slightly later Saxon dates were recovered from Boreholes N and AC, both located at Snow Hill, just uphill on the east bank of the River Weaver, and an area which historic documentation (1624 Survey of Nantwich: walling lands, wych houses) identifies as the core zone for salt making in the post-medieval period. From Borehole N dates from the 8^{th} to 11^{th} centuries AD have been recovered at c.2m, 2.2-2.4m, and 2.6-2.7m bgl, whereas at Borehole AC methane gas gave two similar dates from the 8^{th} to the 10^{th} centuries. Snow Hill has also produced the earliest radiocarbon dates associated with salt-working, which were structural timbers from the Iron Age found during monitoring by Malcolm Reid prior to the present project²⁹.

Dates during the Late Saxon and Norman periods ($9^{th} - 12^{th}$ centuries) were obtained from Borehole F (Church Lane uphill on the east side of the river, from depths between 1-1.86m bgl), and Borehole AD, the brushwood trackway in Welsh Row on the west side of the Weaver (at 2.3m depth bgl). The distance apart of these locations shows how extensive waterlogging had become by the Late Saxon period, both uphill near the church, as well as low down near the river and bridge, where material was laid to form a dry walkway.

Medieval dates have been recovered from Boreholes F (Church Lane, from 0.76-1m depth bgl), P (Pepper Street), AF (Wood Street car park), and Welsh Row (dendrochronological

_

²⁹ Reid, M., 2004 Archaeological Observations at Snow Hill Car Park, Nantwich, Cheshire *Journal of the Chester Archaeological Society 79, 25-36*

date from a corduroy trackway at 0.75m bgl). The date ranges all end in the 13th century, although start of the range varies between the 11th and 12th centuries.

A single post-medieval date was obtained from the upper part of Borehole F (Church Lane, at 0.76 - 0.82m bgl).

The depths at which the samples came from within the core sequences at each location, appear to be consistent with the dates calculated in that the early dates come from the deepest deposits, and later dates come from samples higher in the sequence.

The type of deposit and state of preservation from which the samples were taken include wet or moist, organic-rich silts and sands with sulphide odour for the Saxon - Norman dates, and just moist, humic sandy-silt or humified peat for the Norman – medieval dates. The state of preservation for all deposits sampled at Borehole F were labelled as A3 (unsaturated with medium preservation), whereas those from Borehole N were C4 (saturated with good preservation) for the higher deposits sampled, and C3 (saturated with medium preservation) for the lowest samples. Borehole P was mostly labelled as A2 (unsaturated with poor preservation), whilst AC varied throughout its sequence from higher deposits labelled as A1 (unsaturated with lousy preservation) to base labelled as B2 (vadose (fluctuation) zone with poor preservation). There was no state of preservation documented for Borehole AD or the corduroy trackway in Welsh Row. Boreholes AE and AF ranged from A4 (unsaturated with good preservation) in the 2-2.27m depth range, changing to vadose zone and saturated conditions lower in the sequence.

The possible causes for the onset of waterlogging have been discussed in the 2nd report (*Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation* SLR Consulting Ltd November 2009). In summary changing climatic conditions could have contributed, whilst proximity to the river and salt-working were probably significant factors for the earliest deposits, and infill of dips in the terrain with domestic, industrial and stable rubbish further up the hill. The geological conditions were such that the natural sand became saturated because of a low permeability or impervious clay beneath, inhibiting downward drainage, and therefore allowing waterlogging higher up which prevented decay of the organic components within the rubbish deposits. This led to gradual accumulation over several centuries, until a reversal in the process was effected under Victorian sanitisation programmes in the mid-19th century. Drains were inserted and streets paved over, so that the amount of surface water replenishing the ground-water system was reduced, and desiccation of the deposits began to occur.

9.0 CONCLUSIONS

9.1 Geochemical Assessment

9.1.1 Sediment samples

Baseline geochemical conditions were described during the initial borehole survey conducted in 2007, following analysis of samples from sediment samples extracted from window samplers. The concentrations of principal redox sensitive parameters, including sulphates, sulphides, nitrates as well as nutrients such as phosphates were determined using UKAS standards³⁰. The conclusions drawn from these data were that whilst shallow surface sediments were oxidising, deeper sediments could be considered as more reducing in character because the sulphate and nitrate concentrations were low, sulphide was detected in several samples and the pH values were broadly neutral. Taking everything into consideration, the evidence pointed to redox conditions residing between the sulphur and iron boundaries, conditions that, although not optimum, could be conducive to the continued preservation of organic materials, especially where deposits remained saturated and anoxic.

Highly reducing conditions would have been indicated by the presence of higher levels of sulphide, and the low levels/absence of sulphides was surprising, especially given the overall good level of preservation of wood and palaeoenvironmental remains in the samples as well as the strong odour of hydrogen sulphide gas detected from a couple of the boreholes. However it is very likely that the perceived low levels/absence of sulphide is due in part to the sampling and testing procedures adopted at this stage of the project despite of following established practice (BS5930). Where possible sediment subsamples were taken after the recording of the sediment profile and packaged in re-sealable polythene bags, after much of the air had been squeezed out. Samples were then stored in a cool box at a temperature initially around 5° C with some rising throughout the day to ambient, and in Phase 2 there was a delay before the samples reached the laboratory. Therefore there is a possibility that samples reacted with atmospheric oxygen and what were once reduced chemical species became oxidised before any subsequent analyses performed at the testing laboratory. Laboratory analysis of samples seldom record sulphide, a phenomenon which is attributed to the unstable nature of sulphide, which will oxidise to sulphate as guickly as it can, and therefore it is not surprising that low levels of sulphides with commensurate high levels of sulphates were recorded from some of these boreholes at Nantwich.

Similar results were observed during a recent sampling programme at Guys Hospital, London, where the well preserved remains of a Roman boat were discovered in 1958, and re-evaluated three years ago. Sulphide concentrations were below the detection level, but sulphates and total sulphur were recorded in all six samples taken from three boreholes³¹. The difference between the percentage concentrations of total sulphur and sulphate implied that sulphides were present and conditions could be described as reducing. This conclusion was supported by the presence of ammoniacal nitrogen, which is often regarded as an indicator of reduced conditions in the natural environment (Christensen et al, 2000³²)

³⁰ (UK Accreditation Service for laboratory testing)

³¹ Report from Derwentside Environmental Testing Services, 11th January 2016

³² Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes. *Journal of Contaminant Hydrology 45 165-241*.

9.1.2 Methodological improvement

If geochemical assay of sediment samples continues to be used as one of the suite of techniques used to assess the character of the burial environment it is recommended that the methodology employed recently at Avaldsnes, Norway (Martens and Bergersen 2015³³) is followed. In this study sediment samples were packed in plastic bags which were then inserted into another plastic bag containing an oxygen scavenger to create anaerobic conditions. All samples were stored at 4°C and opened in a nitrogen atmosphere with analysis of redox sensitive parameters also conducted in a nitrogen atmosphere. Whether commercial UKAS approved facilities have this capability will need to be ascertained, as the methodology does not appear to be included with the relevant British Standard (BS 1377, part 3, 1990). A similar problem with potential ingress of atmospheric oxygen into the groundwater sample bottles could be mitigated by the use of vacuum canisters.

9.1.3 Groundwater samples

Further geochemical assays were carried out on groundwater samples collected annually between 2011 and 2015, measuring a suite of redox sensitive parameters including total sulphur, sulphate, sulphide, ferrous and ferric iron and nitrate and the nutrient phosphate. Samples were extracted by peristaltic pump and stored in plastic bottles into which were added preservatives including hydrochloric acid, nitric acid and zinc acetate. Testing was carried out at a UKAS accredited laboratory. In situ testing for dissolved methane gas was also carried out on site at each visit.

The results are broadly similar to those obtained from the sediment samples in 2007 (see Table 2 above), and can be characterised as having moderate to high levels of sulphate, low to no sulphide, total sulphur not detected, and iron detected in both states, ferrous and ferric, with low levels of phosphate detected too. Sulphate was recorded in all groundwater samples over the 5 year period, as was phosphate (although occasionally below test detection levels), and nitrates. Sulphide and ferric and ferrous iron were occasionally not detected, and total sulphur levels were either zero or not detected at all.

The pH of the groundwater fluctuates slightly on either side of neutral, exhibiting a greater degree of variety then observed in the sediment samples. However this is a function of the larger number of readings taken from groundwater samples as opposed to the sediment samples, and is therefore a truer reflection of the variation in groundwater pH ranges.

Groundwater samples collected from borehole N1 have moderate levels of sulphate, slight traces of sulphide, ferrous and ferric iron plus low levels of nitrate. Based on these, the dominating redox process appears to be either sulphur or iron. This is corroborated by the groundwater redox potential measurements which, when plotted on a typical Eh/pH stability chart lie between the sulphur and iron boundaries, where sulphates and ferrous iron would dominate. Therefore conditions can be described as reducing in character.

As for the results of analyses, the low levels of sulphide are at first disappointing, as one would have expected higher concentrations especially at N1 where a good level of organic preservation has been recorded. However, whilst there will again be an issue of oxidation of the groundwater as it enters the dipwell (and also when the water is pumped into the sample containers, which could be reduced in future by inline sampling), there is also a possibility

_

³³ Martens, V.V., and Bergersen, O. 2015 In situ site preservation in the unsaturated zone: Avaldsnes Quaternary International 368, 68-79.

(identified elsewhere) that the low levels of detected sulphide could be attributed its low solubility when ferrous iron is present in ground water³⁴.

58

9.1.4 Gas samples

The highest concentrations of dissolved methane gas were recorded from borehole N1 indicating that highly reducing conditions exist somewhere within the locality of the dipwell. Methane gas can travel some distance from its source, and the source of the methane has been confirmed as archaeological material through carbon 14 dating at dipwell AC (other sources for methane gas include fractured gas pipes and buried modern rubbish dumps). Methane gas was also detected in two boreholes installed in the river Weaver floodplain, designated as AE and AF, where concentrations of sulphates would infer reducing rather than highly reducing conditions.

The likelihood for highly reducing conditions at borehole N1 is supported by the presence of methane gas and strongly negative redox potential readings recorded from the rigid resin/platinum in situ probe installed to a depth c. 1.5m below ground surface (bgs) for the redox trial (see **Figure 16**). Uncalibrated soil moisture contents, as measured by a TDR profile probe (**Figure 20**) were around 60% at c. 1.5m bgs and 100% at c. 1.70mbgs. Water contents at both depths were fairly static throughout the monitoring period indicating that deposits probably remained anaerobic throughout this period.

Further investigation into the use of methane gas as a proxy indicator for defining the dominating redox processes should be actively pursued, although it has to be stressed that methane gas was not detected at all locations where organic materials were preserved.

9.2 Validity of measured parameters

Some key parameters have been identified, and it is possible to identify the most essential elements from the suite employed during the monitoring programme. This helps for planning the cost effectiveness of future monitoring schemes within waterlogged areas in the UK.

From the Nantwich experience a targeted monitoring programme of sufficient rigour to supply valid data for monitoring purposes could be employed comprising the following techniques:

Essential techniques

- Permeability and porosity testing of sediments, and in particular the cultural horizons and sediments vertically adjacent;
- Geochemical testing of sediments particularly ammoniacal nitrogen, ferrous and ferric iron, sulphates and sulphides (or percentage difference between total sulpur and sulphates) to establish baseline sample storage and laboratory testing to be done under as oxygen -free conditions as possible);
- Redox measurements using in situ rigid resin/platinum probes connected to a datalogger (redox cannot be measured in unsaturated conditions);
- Water levels and rainfall on a daily basis;

Desirable (but not essential) techniques

Water quality dip meter testing particularly dissolved oxygen on a quarterly basis;

³⁴ Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology 45 165-241

- Gas monitoring, particularly methane and carbon dioxide on a quarterly basis;
- Geochemical analysis of water samples on an annual basis to confirm validity of water testing dip-meter results;
- In situ soil moisture testing from sediments which comprise the cultural horizon and from the stratigraphic sequence above and immediately below it, using either TDR or FDR techniques.

9.3 C14 dating of gas samples

The validity of gas emissions in helping to characterize whether conditions conducive for preservation exist, requires accurate scientific dating so that modern contamination does not present misleading data. The Nantwich project has built on previous experimental work to show how this can be achieved, and a detailed methodology for gas sampling is included above. The importance of the accurately dated gas emissions is that the results can be considered as closely related to the organic remains which have been preserved, rather than providing data from more indirect water quality proxy indicators derived from a mixture of sources which have become combined within the dipwell.

9.4 How relevant can quantities (mg/l or mg/kg) be for other urban centres?

Dissolved oxygen at levels of 0.5-2 mg/L indicate that aerobic respiration is probably occurring. If dissolved oxygen concentrates exceed 0.5mg/l it is highly likely that aerobic degradation is present³⁵.

Norwegian studies of sediments have characterized good preservation conditions as including ammonium at levels of over 50 mg/kg, sulphide at over 100 mg/kg, sulphate at over 500mg/kg and reduced iron at over 80%. Poor conditions are represented by nitrate at levels of over 10 mg/kg, sulphate at less than 500 mg/kg, reduced iron at less than 20% ³⁶.

Analysis of potentially comparative data sets would be an interesting outcome, but is beyond the scope of the present project. In Table 2 above, however, the relationship between iron reduction and oxidisation at Nantwich is presented, and in these data 91 entries have been made of which c.29% show good reducing conditions (less than -140mV) and c.24% with more highly oxidising conditions (over 100 mV). The rest of the data suggest conditions fluctuate either side of the boundary, and overall c.68% indicate more reducing than oxidising conditions. Compared with the Norwegian example above, it would indicate that Nantwich on average is close to having good preservation conditions.

This assessment is not supported by the dissolved oxygen, however, which has 71 out of 84 entries in Table 2 as having concentrations above the 0.5 mg/l threshold. This equates to 84% of the recorded dissolved oxygen levels as indicative of aerobic degradation occurring.

Further research into preservation conditions in urban waterlogged deposits is required to identify key trigger points for minimum and maximum conditions necessary for the continued preservation of organic remains.

³⁵ Carey, M.A., Finnamore, J.R., Morrey, M.J.., and Marsland, P.A. 2000 *Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater* Environment Agency R&D Publication 95

³⁶ Martens, V.V., and Bergersen, O. 2015 *In situ* site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 71*.

9.5 The role and importance of the capillary fringe

The significance of the vadose zone for preservation of organic remains has often been overlooked in the past, although various studies have been conducted in the last decade aimed at increasing understanding of the role that capillary action can play in producing conditions conducive for preservation.

At Nantwich there is clear evidence for the importance of this zone, specifically at dipwells AE and AF. These are located adjacent to the river, in an area where previous archaeological investigations over several decades have produced abundant evidence for well-preserved organic remains, in a deposit zone that lies up to 1.5m above the water-table (generally in a zone of 2.5-3.0m bgl.). The relatively low permeability of the silty sediments beneath the organic remains would inhibit rapid drainage, whilst capillary forces may have contributed to preservation through drawing water up into the voids within the sediments.

Anaerobic deposits can therefore exist above the water level if the voids within sediments are sufficiently saturated to exclude the ingress of oxygen. At Location N/N1 soil moisture testing has demonstrated that although the water level fluctuated seasonally to 1.5m bgl, the upper levels with organic remains maintained soil saturation levels of 50 - 60% in the overlying zone from 1.20 - 1.56m bgl.

In contrast at location P/P1 organic remains were also found preserved elevated above the water-table (between 3.0-3.5 m bgl), although in this case the predominance of sand content beneath the cultural horizon (at 1.3-2.0 m bgl) contributes to easy drainage. It probably also results in less capillary action, and thus a lower tension-saturated zone, allowing increased rates of decay within the archaeological deposit.

9.6 River zone v. perched water-table near the church

The topography at Nantwich would logically suggest that preservation would deteriorate with increasing altitude, as the lower-lying zone close to the river would be more inclined to become waterlogged than higher ground near the church for example. Good preservation has been found in both zones, however, and the reasons for this are complex. The subsurface deposit sequence and the terrain underlying the superficial deposits contribute to preferential flow paths and retention of water. In addition to the principal drainage provided by the northwards flow of the River Weaver, the southern edge to the waterlogged deposits runs along what was originally slightly higher ground that is followed by Hospital Street. Between this and the northern edge of the waterlogged deposits the original ground surface formed a shallow valley, and within a band running west from the church through dipwells U, T, S, and P a thick deposit of sand underlying archaeological layers is interpreted as representing a former watercourse. During wetter periods such as the late Saxon and early medieval periods, organic matter from domestic, industrial and stable waste accumulated in depressions and gradually raised the level within this part of Nantwich. Although the underlying sand should have acted as an aquifer, glacial clay beneath the sand prevented drainage and allowed the sand to become saturated, thus inhibiting the decay of organic remains. At Locations F, V and O for example, which define the eastern edge to the waterlogged deposits, the monitoring results show that conditions are generally reducing, and therefore conducive for preservation. Location F has evidence for well-preserved organic remains, substantiated by excavations at the adjacent Lamb Hotel in 2004³⁷, a situation which suggests the existence of a perched water-table.

³⁷ Gifford and Partners Ltd 2005 *The Lamb Hotel, Nantwich: An Archaeological Watching Brief*

SLR

The lower-lying zone on either side of the river was also an area which experienced intensive salt-working during medieval and post-medieval times. This process may have contributed to the deep accumulation of waterlogged deposits, with recharge from rainfall and surface water, as well as capillary action, helping to retain water content within these raised deposits, leading to good organic preservation. The area south-east of the bridge, where the castle once stood, has displayed variable conditions of preservation from archaeological investigations over the years³⁸. This has been attributed to good survival in man-made deep features such as ditches, and poor survival in areas where other activities (such as the castle mound) had been undertaken.

9.7 How does the data help with future management of the resource?

In the Phase 1 study the conclusions included reasons for why the waterlogged deposits had accumulated and been preserved, as well as what the threat was to them now. Rainfall contributed to a relatively high water-table historically due to the ground absorbing the water. The introduction of drainage and hard surfaces during the Victorian period directed rainfall away from permeating the ground and has led to a lower water-table and thus desiccation of deposits. The increased use of impermeable surfaces during the last 50 years has intensified this problem and added flood risk to the town.

The data gathered during the baseline and monitoring programme have allowed a far more detailed understanding of the character and variable nature of the burial environment in Nantwich. This has enabled a sufficiently robust evidence base for design of a management strategy, documented in a Supplementary Planning Document (SPD) which has been endorsed by Cheshire East Council as a supporting document for its local plan. The emphasis of this strategy is for a holistic approach from spatial planners, engineers, developers, utility companies and others engaged in disturbance to below ground conditions and hydrological conditions, to ensure that every opportunity is taken to manage rainfall so that it can be stored and absorbed into the ground, rather than channelled away from the deposits that underlie the historic centre of the town. By preventing gradual desiccation of the waterlogged archaeological deposits not only will the strategy help in preserving archaeological remains, but it will also help prevent subsidence of the built heritage within the Conservation Area, and reduce the likelihood of flash flooding. As appropriate any future development permitted within the Area of Special Archaeological Potential would be required to investigate and monitor the deposits, and such data recovered by these means would help to enhance and revise the existing model derived from the project to date.

9.8 Was it all worth it for the results achieved?

The Nantwich study has demonstrated the need to adopt an holistic approach to the understanding of the dynamics of the urban waterlogged environment. Neither a single parameter, nor single test will adequately describe the nature of the burial environment and the degree of preservation of the archaeological resource. The study has also revealed the pitfalls inherent in using proxy indicators such as redox and gas measurement, where there are significant risks in "over-interpreting" the results - soil redox reactions are by their very nature highly complex and influenced by external factors. Too much can be read into a set of single spot readings. Although the correlation between good preservation and a highly reducing environment is well established, the precise mechanics of preservation in a highly dynamic urban environment remains less understood. The vadose zone remains one of the least understood environments, and further research, along the lines conducted in Nantwich,

³⁸ SLR July 2007 Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations Cheshire County Council and English Heritage 2663/522

should be initiated to help solve the conundrum of well-preserved organic archaeological materials found above the saturated deposits.

Duration of data gathering for monitoring the waterlogged deposits has demonstrated the risks for this over too short a period, and it was necessary to adopt five years at Nantwich to achieve a robust understanding of trends in the data, and to average out particular events which would otherwise have skewed the results. It is recommended that future monitoring programmes gather data over a period of at least five years. Furthermore the results have raised some potential discrepancies between redox measurements and what geochemical conditions would suggest, and this highlights the need for specific research comparing in situ sampling and analysis, with ex situ laboratory testing of samples³⁹.

9.9 Legacy

The Nantwich database curated by the Archaeological Data Service at York (ADS) provides a dynamic series of data-sets for further analysis with a wealth of research potential and comparative study. The data provide a baseline for the situation in 2016 against which new development within Nantwich town centre can be measured. The Nantwich project has provided internationally comparable data-sets, analyses and reports, in its archive and publications⁴⁰. It has been a major player in the creation of national guidance on preservation of archaeological remains⁴¹, as well as providing a valuable planning tool for the local authority⁴².

_

³⁹ Feedback received from three geoarchaeologists who reviewed the draft report offered very different opinions and levels of scepticism about the validity of sampling anaerobic deposits and laboratory testing of them. However, the holistic approach adopted at Nantwich allowed for in situ and ex situ complementary techniques so that the effect of potential methodological flaws could be minimised.

⁴⁰ https://h<u>istoricengland.org.uk/images-books/publications/historic-england-research-4/</u>

⁴¹ https://historicengland.org.uk/images-books/publications/preserving-archaeological-remains/

⁴² http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf

10.0 CLOSURE

This report has been prepared by SLR Consulting Limited with all reasonable skill, care and diligence, and taking account of the manpower and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Cheshire East Council and Historic England; no warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

BIBLIOGRAPHY

Boreham, S, Conneller, C., Milner, N., Taylor, B., Needham, A., Boreham, J., and Rolfe, C.J. 2011 Geochemical indicators of preservation status and site deterioration at Star Carr *Journal of Archaeological Science 38, 2833-2857*

British Standards Institute 1999 BS5930 code of practice for site investigation

Caple, C. & Dungworth, D. 1998 Waterlogged Anoxic Archaeological Burial Environments Unpublished *Ancient Monuments Laboratory Report 22/98*. Historic Buildings and Monuments Commission, London.

Carey, M.A., Finnamore, J.R., Morrey, M.J., and Marsland, P.A. 2000 Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater *Environment Agency R&D Publication 95*

Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes *Journal of Contaminant Hydrology 45* 165-241

Gifford and Partners Ltd 2005 The Lamb Hotel, Nantwich: An Archaeological Watching Brief

Historic England 2016 Preserving archaeological remains: Decision-taking for sites under development Swindon <u>HistoricEngland.org.uk/advice/technical-advice/archaeological-science/preservation-in-situ/</u>

Historic England November 2016 Research online No 4 https://historicengland.org.uk/whats-new/research/?utm_source=adestra&utm_medium=newsletter&utm_campaign=December1

Malim, T. and Panter, I., 2012 Is preservation in-situ an unacceptable option for development control? Can monitoring prove the continued preservation of waterlogged deposits? Conservation and Management of Archaeological Sites, Vol. 14 Nos 1–4, 2012, 429–41

Malim, T., Panter, I., and Swain M. 2015 The hidden heritage at Nantwich and York: Groundwater and the urban cultural sequence *Quaternary International 368, 5-18*

Malim, T., Morgan, D., and Panter, I. 2015 Suspended preservation: particular preservation conditions within the Must Farm - Flag Fen Bronze Age landscape *Quaternary International* 368, 19-30

Malim, T., Swain, M., and Panter. I, 2016 Monitoring and Management options in the preservation of urban waterlogged deposits, Nantwich, UK *Conservation and Management of Archaeological Sites, Vol. 18 Nos 1-3, 139-155*

Martens, V.V., and Bergersen, O. 2015 In situ site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 68-79*

Matthiesen, H. 2015 Detecting and quantifying ongoing decay or organic archaeological remains: A discussion of different approaches *Quaternary International 368, 43-50*

Matthiesen, H., Hollesen, J., Dunlop, R., Seither, A. and De Beer, J. 2015 In situ measurements of oxygen dynamics in unsaturated archaeological deposits *Archaeometry* 57, 6, 1078-1094

Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen Riksantikvaren, p.82-3*

Panter, I., and Davies, G. March 2015 Preservation in situ guidance – redox potential measurement Final Report *York Archaeological Trust Conservation Department Report No.* 2013/54, English Heritage project No. 6524

Panter, I., and Davies, G. March 2015 Preservation in situ guidance – Soil Moisture Measurement Final Report *York Archaeological Trust Conservation Department Report No.* 2014/70, English Heritage project No. 6523

Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual. Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits*

Reid, M., 2004 Archaeological Observations at Snow Hill Car Park, Nantwich, Cheshire *Journal of the Chester Archaeological Society 79, 25-36*

SLR Consulting Ltd July 2007 Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations

SLR Consulting Ltd November 2009 Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation

SLR Consulting Ltd January 2010 Nantwich Waterlogged Deposits Report No 3 Management Strategy: Supplementary Planning Document for the Historic Environment and Archaeological Deposits

http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf

Tyers, I., 2008 Tree-ring spot-date from an archaeological sample: Welsh Row Gas Main works, Nantwich *Dendrochronological Consultancy Ltd Report 103* (funded by Cheshire County Council)

USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504 United States Environmental Protection Agency

BOREHOLE No. **BOREHOLE LOG** Α

Client:

CHESHIRE COUNTY COUNCIL

Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 30/07/07 33.29maOD E364931 N352661

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

Sheet:

SAI	MPLE				SAMPLES & TESTS						STRATA						
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	ESCRIPTION	I					Instrument/
							33.25	× ×	0.04	· —	Recovery					/	偿
							22.80	× × ×	(0.36)	Roo	ist, mid to da otlets preser		n, crumbly (working sof	t), slightly claye	y SILT.	がある
							32.89	× — × — ×	- 0.40		ist, light to m	id brown, so	ft (working m	ore or less	plastic), clayey	SILT.	
								×××;	- - (0.60)								
							32.29	× × × ;	- - 1.00								
							32.23	? X X	1.06	V. **	Recovery						K
								× × ×	-	Moi CL/		ght grey yello	ow/brown stil	ff (working	plastic), very sli	ghtly silty	
					0				- (0.94)								0.00
					J			*X <u>XX</u>	-	1.6 san		continuity of r	noist to wet,	soft to unc	onsolidated, ligh	nt grey,	
							31.29	× × ×	2.00								
								7	_ (0.35)	No	Recovery						
							30.94	ò	- 2.35								
								× × ×	-			iid brown (wit king plastic),		hes of light	to mid orange-	brown), stiff	K
					0			* _ × _ > × _ >	(0.45)	2.3	5 - 2.65 Ver		pearance ca	used by pr	esence of indur	ated clay	
							30.49	× ×	2.80	-	Recovery						-15
							30.37	? <u>*-</u> *-	_ 2.92			id brown to d	arev. soft (wo	rkina sliaht	ly sticky and the	en more or	
								X X X	- - (0.56)	less	s plastic), sli	ghtly silty CL	AY.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.y caony and an		
					0			^_ × ^- × × × ×	-		0 - 3.48 Bec	oming slightly	y wetter and	more stick	y.		
							29.81	××	3.48 - -	Moi	ist to wet, lig	ht to mid gre	y, unconsolio	dated, fine t	to coarse SANE)	
					0		00.00		_ (0.46)								
							29.39		3.90 		ehole comp	lete at 3.90m	1				W5
									-								
									-								
									-								
									-								
oring Prog	g Progress and Water Observations					- 1	Cas	ing			Chiselling		Water	Added	Gen	eral Remar	ks
Date	Time		Dept	h	Wate Dpt	er	Depth	Dia. mr	m Fro	m	То	Hours	From	То	\parallel		
All dimensions in metres Scale 1:31.25 Contractor: Sherwood Drilling Scale 1:31.25 Plant: Geotool Hole Size:						Logged By:	Approved	= B t									

BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. AA

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 12/09/07
 37.97maOD
 E364730 N352391

SLR

Project:

Client:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

SA	MPLE										ST	RATA				
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DES	CRIPTION	N				
		_					37.62		- _ (0.35) - 0.35	grey-	psed and brown, un- ghout.	loose in core consolidated	tube - just m , silty SAND.	oist, mid bro Abundant b	own to mid to orick/tile (<55m	dark nm)
					0			<u></u>	- - (0.29)	claye	y SILT.			•	ing soft), sligh	tly sandy
							37.33		- 0.64 -			shed brick ar			: (<20mm). rown from laye	r above at
					0		36.97		(0.36)	0.64-	0.74m), ur	nconsolidate comes dark g	d, SAND.			
					0				- - - - - - (1.60)	Moist	i, light to m	nid grey, unco	onsolidated, f	ine SAND.		
							35.37		2.60	Just r	moist, mid	brown to gre	ey-brown, ver	y stiff (worki	ing plastic), Cl	_AY.
					0		34.97		- (0.40) - 3.00		,	3	, , .		31	ā ģ
}									-	Boreł	hole comp	olete at 3.00m	1			
									- - - - - -							
oring Pro	gress a	nd W	/ater	Obs	ervati	ons	Cas	ing		C	hiselling		Water	Added	Gen	eral Remark
Date	Time		Dept	h	Wate Dp	er t	Depth	Dia. mr	m Froi	m	То	Hours	From	То		
					-											
All dime	nsions i	n me	etres	1	Contra	actor	: Sherwoo	od Drillir	 ng	Metho	od: Win	idowless S	ampler		Logged By:	Approved
	ale 1:31		ะแยร		Plant:			Ju Dillill	ig	Hole		idowiess S	ampiei		Logged by.	Approved

BOREHOLE No. **BOREHOLE LOG** AB Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E364740 N352370 37.93maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SA	MPLE	S&	TES	STS							ST	RATA					/tuc
Depth	Type No	HS(ppm)	нV(кРа)	PP(kPa)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	ESCRIPTION	N					netriment/
		I	-	-		_				Lig	ht grey SAN	D. Modern fr	agments of b	rick and tile	present (<70n	nm).	Ė
									(0.43)								
									•								
					0		37.50 37.45	× ×	- 0.43 - 0.48	$\overline{}$		k becoming a					
					0		37.32	×o××	0.61	Dai		pacted ashe		of conglom	erate 'hard coi	re' (<100	
								× ×		\mn	າ). ັ້					/	1
					0			× ×	(0.39)			SILT. Trace n) fragments			n), coal (<20mi	m) and	
							36.93	× × ;	1.00	1	aicoai (>oiiii	ii) iiagiiieiiis	present uno	ugilout.			
1							36.83	?	1.10	No	Recovery.						
								× × ×			ist, dark gre n/cinder (<10		Ity fine SANI	D. Occasion	al black gravel	ls of	
								× × ×	-	asi	i/oii/dci (+10	, , , , , , , , , , , , , , , , , , ,					
					0			× × ×	(0.63)								
								× × ×	-								
							36.20	× × ×	1.73	_							
								× × ×	(0.27)	1		-		sandy, sligh	ntly clayey SILT	Г.	ŀ
2					1		35.93	× × ×	2.00		3 - 2.00 Slig	ht sulphide o	dour.				
2						1	35.87	X .X	2.06	\	Recovery.						1
					0	=		× × ×	(0.31)		ist, fine sand oughout.	dy SILT. Occa	asional round	ded pebbles	(<50 mm) pre	sent	
							35.56	.x . x x .x	2.37		Jugilout.						
										Мо	ist to wet, lig	ht yellow to b	rown, uncon	solidated, c	oarse SAND.		
					0				. (0.42)								
							25 14		- 270	27	0 270 Box	undad nabbla	o (<20 mm)	aamman			
							35.14		2.79	$\overline{}$		unded pebble ompacted sa			bbles (<60mm) common	
3					0		34.93		3.00		oughout.	opaotoa oa	, 02	touridou po	22.00 (00	,	
									- - - -	Во	rehole comp	olete at 3.00m	1				
4									- - - - - -								
Soring Pro	dress 3	nd V	Vate	- Ob	Servati.	one	Cas	ing	- - -		Chiselling		Water	Added	Gen	eral Remar	ke
		_													-		
Date	Time	_	Dept	ın	Wate Dp	ť	Depth	Dia. mr	n Fro	m	То	Hours	From	То	Groundw 2.13m bg	ater presen II. Well	ιa
															headspace 40ppm.	ce concentr	ati
All dime			. 1	1	<u> </u>	<u> </u>	: Sherwoo	l D.:::::				idowless S	1		Logged By:	Approved	

BOREHOLE No. **BOREHOLE LOG** AC Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E364963 N352517 36.42maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SA	MPLE	S &	TES	STS							ST	RATA						100
Depth	Type No	HS(ppm)	НV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	ı						lnetri mont
								0000	(0.46)		asional frag	lume compo ments of bric						
							35.96	000	0.46		mid brown	to dark grey,	firm sandy (CLAY Occa	sional stone	s (<15	mm)	-
							35.83		0.59	and	brick/tile (<	50 mm) fragr	ments preser	nt.		3 (10		
							35.69		- 0.73 -			ble GRAVEL to dark grey,			nm).			
							35.42		_ (0.27) 1.00	0.77	7 - 0.80 Bric	k and tile frag	gments (<40	mm) preser	nt.			
1							00.12	× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·×	- - (0.51)	Moi	st, dark gre	dern glass fra y, firm to unco dern pot frag	onsolidated,	ashen, sligh	ntly sandy SII		tar.	1
							34.91	×××	- _ 1.51									
					0		34.84	×	1.58	7		I tile rubble of			•			7
					1			× · × × × × × × × × × × × × × × × × × ×	- (0.42) -	Occ		y, firm to unco gments of brid						
2					0		34.42	× × × × ×	2.00	Moi:		y, firm to unce	onsolidated,	ashen, sligh	ntly sandy, sli	ightly o	clayey	-
					0		33.90	× × ×	- (0.25) - 2.52	plas	stic), clavev	ark grey to gre SILT. ted mortar (<		, ,	soft and som	ewhat		
					0		33.80 33.69		2.62			id grey, crum ent throughou		soft and stic	cky), clayey S	SILT. S	Stones	
					0	<u></u>	33.55	_ <u>*</u>	2.87			id grey, firm .AY, with a sli				somew	hat	
3					1		33.42		3.00	N	st to wet, lig	ht grey to mi				e claye		
					0		33.19 33.12		- - 3.23 3.30	Mois	st, light to m	id grey, stiff a occasional bla	and slightly s ack patches f	ticky (workir from sulphid	ng plastic), ve le staining let	ery slig ft by ro	ghtly otting	
					2		32.98		3.44	Moi		ark brown, cru	umbly to unce	onsolidated	, very slightly	/ claye	у	
					2				(0.42)	Moi	st, mid to da	nid grey, soft ark brown, cru	<u> </u>		<u> </u>	<u> </u>		
							32.56		3.86	\SAN Moi:		wn to grey-br	own, compa	cted and firm	n (working so	oft), cla	avev	/ :
4							32.42	?	4.00	3.55	5 - 3.59 Larç	onal fragment ge stone inclu ge stone inclu	usions (<60m	nm).	oughout.			
									-		Recovery.							/
									- - - -	Bor	ehole comp	lete at 4.00m	1					
Boring Pro	gress a	nd V	/ater	Obs	servati	ons	Cas	sing	- 	(Chiselling		Water	Added	Ge	nera	Rema	arks
Date	Time		Dept	h	Wat Dp	er	Depth	Dia. mr	n Fro	m	То	Hours	From	То	Ground			nt a
					•										2.83m b headspa 20 000p	ace c		rati
All dime	nsions i	n me	etres	\dashv	Contr	actor	: Sherwo	od Drillin		Moti	hod: Win	dowless S	ampler		Logged By	,	pprove	

BOREHOLE No. **BOREHOLE LOG** ΑE Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Project No: Ground Level: Co-ordinates: Date: E364917.887 N352428.049 406.00889.00005 10/01/11 35.19maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SA	MPLE	S &									ST	TRATA				\$
Depth	Type No	HS(ppm)	ну(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	N				3,000
		_	_	_			35.04	,	0.15	MA	DE GROUN	ND: Tarmac c	ver sub base	9		
							33.04		- 0.13	_	recovery					
								7	(0.40)							
							34.64	۰	0.55							
							34.49	000	0.70	Ver	y loose darl	k greyish bro	wn silty sand	y medium GR	RAVEL	
							34.40		0.79	$\overline{}$		dark grey gr				
							34.29 34.19	°0 0 °0	0.90 1.00	_		<u> </u>			are brick/tile fragmen are flecks of mortar	its
1								× ×		0.9	7 - 1.00La	arge brick/tile	fragment (60	0 mm).		
								× × ×	-	odc	y son greys our and rotte	sn brown sar ed wood fragr	nay SIL I , Witi nents.	1 rare brick/tile	e and slight sulphide	
								× × ×								
								× × ×	(1.00)							
								× . ×								
								× × × }	-							
2							33.19	×××	2.00							
2							33.02	× ×	2.17	Ver		grey slightly s	andy coarse	SILT with fre	quent brick/tile and	
							32.88	×××	2.31	Ver	y soft coars				e mortar fragments	
							02.00	× ·× · ×	- 2.01			ery rotted wo			sh brown mottling and	1 1
						1		× ·× ;	-			of brick/tile, i			sir brown mottiling and	1
						÷		× × ×	(0.69)							
								^ × ^ ×	-	2.7	0 - 3.00B	ecoming sligl	ntly clayey.			
3							32.19	· ×·	3.00							
3										No	recovery					
								' -	(0.40)							
							31.79		3.40	1/		d	OAND	h atalaa	file - la - fatatata a	
								× · · ·	-	Ver	y dense dar	rk grey silty fi	ne SAND wit	n rare patche	s of black staining	
								×	(0.60)							
								×	- ` ′							
4							31.19	×	4.00							
									-	Bor	ehole comp	olete at 4.00m	1			
											·					
									-							
									-							
						<u> </u>							T	1	_	
Boring Pro							Cas		_		Chiselling		Water		General Re	emarks
Date	Time		Dept	th	Wat Dp	ť	Depth	Dia. mr	n From	m	То	Hours	From	То		
All dime	nsions i	n me	etres	$\overline{}$	Contra	actor	: Sherwoo	od Drillin	g	Met	hod: Win	ndowless S	ampler		ogged By: Appr	oved E
	ale 1:31				Plant:				-	Hole					C&IP TM	

BOREHOLE No. **BOREHOLE LOG** AF Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 11/01/11 34.89maOD E364899.123 N352463.451 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

S	AMPLE									ST	TRATA				
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTION	N				
		_					34.74		0.15	MADE GROUN	ND: Tarmac o	over sub base	9		
							34.59	?	0.30	No recovery					
							34.46	0.00	0.43	Very loose grey	yish brown sl	ightly silty slig	htly sandy o	coarse GRAV	EL
										Stiff brown CLA	ΑY				
									(0.40)						
							34.06		0.83						
4							33.89		1.00	Firm brown to o	dark grey slig	htly sandy sil	ty CLAY		
1										0.98 - 1.00Si Stiff brown CLA		gravel fragm	ent.		
									(0.39)	1.17 - 1.20C		nts up to 18 i	mm.		
							33.50		1.39						
										Firm dark grey 1.52 - 1.56W	-	_		y with depth	
								× ×	(0.61)	1.52 - 1.50 ۷۷	rood iraginiei	113 up to 13 11			
								× × -		1.72 - 1.78Po	ocket of brov	vn clay.			
2							32.89	x_x_x_1	2.00						
-								× × ×		Very soft dark of black - sulphide	greyish brow e staining.	n sandy orga	nic SILT wit	th occasional	patches of
								^ × ^ }	(0.48)		3				
							32.41	× .× , *	2.48						
							02.11	×××	2.10	Very soft greyis	sh brown slig	htly clayey sa	andy SILT		
								× ·× ·							
						⊉		× × × }							
3								^ × ^ *	_						
								× · × ×	(1.18)						
								× × × }							
								× ^ × }							
							31.23	× × ×	3.66						
							31.23	× ×	. 3.00	Very dense gre	eyish brown t	o dark grey s	lightly clayey	y fine SAND	
									(0.34)						
1							30.89		4.00						
										Borehole comp	lete at 4.00n	ı			
								-							
								-							
oring Pro	ogress a	nd V	/ater	Obs	servati	ons	Cas	ing		Chiselling		Water	Added	Ger	neral Remarks
Date	Time		Dept	:h	Wat Dp	er	Depth	Dia. mn	n From	m To	Hours	From	То		
					م ح		-							1	
All dime	ensions i	n m	atros	$\frac{1}{1}$	Contro	actor	: Sherwoo	nd Drillin	<u> </u>	Method: Win	dowless S	ampler		Logged By:	Approved I
, an anni				- 1		~~~									

BOREHOLE No. **BOREHOLE LOG** AG Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 11/01/11 37.03maOD E365007.316 N352313.389 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SA	MPLE										ST	RATA					_ tc
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	N					lnetri ment/
		_	_	_		_	36.88	,	- 0.15	MAI	DE GROUN	ID: Tarmac o	ver sub base	9			
							30.00		- - - - (0.75)	Noı	recovery						
							36.13	, , , , , , , , , , , , , , , , , , ,	- - - 0.90								
1							36.03	×/0××/0	1.00		y loose light recovery	grey slightly	sandy silty o	oarse GRAV	/EL		
								·	(0.90)								
							35.13 35.03	<u> </u>	1.90	Firm	n brown slia	htlv sandv si	ltv gravellv C	LAY with abu	undant dark g	arev/black	_
2							34.73	Ç	(0.30)	Ash.						/	1
						1	34.73	<u> </u>	2.50	Firm ash			ty gravelly C	LAY with abu	undant dark g	grey/black	
3							33.03		(1.50) - - - - - - - - - - - - - - - - - - -								
									- - - - - - -	Bore	ehole comp	lete at 4.00m	1				
oring Pro	gress a	nd V	Vater	Obs			Cas	ing		(Chiselling		Water	Added	Ger	neral Rema	rks
Date	Time		Dept	th	Wate Dp	er t	Depth	Dia. mr	m Froi	m	То	Hours	From	То			
All dime	nsions iale 1:31		etres		Contra	actor	: Sherwo	od Drillir	ıg	Meth	nod: Win	dowless S	ampler	ı	Logged By: JC & IP	Approve	d E

BOREHOLE No.

В

Client:

CHESHIRE COUNTY COUNCIL

Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 30/07/07 36.62maOD

E364925 N352582

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 2

																	1 01 2
SA	MPLE	S &		STS	3						S	RATA					3
Depth	Type No	HS(ppm)	ну(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Dep	oth	DESCRIPTION	N					
							36.54 36.50 36.40		<u> </u>	0.22	Moist, mid broven Fresh grass are Small stones a Second very re Live earthworm 10.06 - 0.08 Bed Moist, mid broven associated roo lowest section.	d associated and occasional cent ground a. coming mid to the coming mid to the case and and the case are the case as a case are the case are the case as a case are the case a	rootlet pene al cinder (<3 surface with a dark grey-b y-brown, stiff vorking soft von from third	etration at comm) and m fresh (still or prown. (working p with depth. recent surf	urrer norta gree olastic Fres	nt ground su ir/sand flecks in) grass and c), sandy CL sh grass, clo at interface v	rface. s at 0.05m. clover. AY. ver and with next
1							35.62 35.48 35.16		- - - (0.32	1.14	lower interface Moist, mid to d clayey SAND. with light grey-l fragment declir section (~100 x Live earthworn	ark grey-brow Rootlet penet brown sand g ned at approx x 15-25 x 20 r n.	ration from the rains through the rains through imately 30 d mm). Rounde	hird recent hout. Moist egrees at ir ed pebble (land and nterfa	surface and rather rotted ace with nex mm) at 0.21	I flecked I wood t lowest -0.22m.
							35.00		-	1.62	Just moist, mic soft), slightly si and brick/tile. 'I	ty, clayey SA Hard core' pre	ND. Occasions of the ND. Occasion of the ND. O	onal inclusion hout.	ons o	of rounded p	ebbles
-2							34.62		- (0.38 -	3) 2.00	Just moist, mid soft), slightly si charcoal. Just moist, mid	ty, clayey SA	ND. Occasio	onal inclusio	ons o	of soft, very r	otted
_									(0.44	- 1/1	slightly sandy (throughout. As Just moist, ligh	CLAY. Make- bestos fragm t to mid brow	up/levelling in ent at 1.44m n, stiff (worki	nclusions, e n. ing plastic)	e.g. k	orick, glass, o	coal,
					0		34.18 33.98		-	2.44	Just moist, mid less plastic), sl Occasional 'bu	brown to gre	y-brown, stif	f and slight nes slightly	lly sti	ter in lowest	0.20m.
					0				- (0.36	5)	1.94m), glass (Just moist, mid less plastic), sl	at 1.93m). brown to gre ghtly sandy 0	y-brown, stif	f and slight organic inc	lly sti	icky (working ons at upper	more or interface
3							33.62	× × × × ×	-	3.00	(looks to be 'ar (modern) tile (a 2.42m). Just moist, ligh	t 2.26m-2.28	m), large (<3	30 mm) bot	tle g	lass fragmer	nts (at
					0		20.00		- (1.00		2.54m. Moist, mid to d mm) and other Just moist, mid soft), slightly cl Small stones fr (<20mm). Rou 3.00 - 4.00 Slice	ark grey- brov burnt materia to dark (sligh ayey, slightly om 3.70m be nded edged p	wn, slightly si al throughou ntly blueish) of sandy SILT. coming mor oot fragment	ilty, slightly t but particle grey, stiff an Becomes s e frequent	clayond slight	ey SAND. Ci y at 2.68m ar lightly sticky ttly wetter wit larger with d	inder (<12 nd 2.85m. (working h depth.
4					0		32.62	× × × × × × × × × × × × × × × × × × ×	_ (0.35	4.00 5) 4.35	Moist, mid brownid yellow-browd.35m. Occasion	wn, stiff (work onal very sma	ing plastic), all stones (<2	very slightly 2 mm).	y silty	y clay from 4	.10 -
					0			* - × - > > = × - × - × - × - × - × - × - × - × - ×	- _ (0.65 -								
Boring Pro	gress ar	nd W	/ater	Ob	servation	ns	31.62 Cas	ing		5.00	Chiselling		Water	Added		Gene	ral Remarks
Date	Time	\neg	Dept		Wate Dpt		Depth	Dia. mr	$\frac{1}{m}$	From		Hours	From	To	\dashv		
All dime	nsions in		etres		Contra		: Sherwo	od Drillir	ng		Method: Wir	ldowless S	ampler	<u> </u>	Lo	gged By:	Approved I

NA	IN I VVI	ICH	VV A	ΧΙΕ	RLO	GGE	D DEP	OSITS	i							2 of	2
SAN	//PLES		TES	STS							ST	RATA					ent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Dep	oth	DESCRIPTION	I					Instrument/
		_	_	_			31.44	7	-	5.18	No Recovery.						
					0		31.27	×_×_		1	Moist to wet, lightly	ht to mid bro	wn, firm to so	oft and sticky	(working	more or les	s is
					0		31.18	× ×		5.44	Moist, light to m	id yellow-bro			very sligh	tly silty CLA	Y. (6)
					0		20.00		(0.25	o)	Moist to wet, ligh	ht to mid bro	wn, soft, san	dy CLAY.			
					0		30.93 30.83	, — · · · ·			Wet, light to mic						
					0		30.67	× × ×	-	5.95	Moist to wet, ligi		-				29
6					0		30.62			6.00	Moist to wet, ligh	ht to mid gre	y, soft to und	onsolidated,	clayey SA	ND.	
											Borehole compl						
Boring Prog		_		_			Cas				Chiselling			Added	G	eneral R	emarks
Date	Time		Dept	:h	Wate Dpt	er t	Depth	Dia. mi	m	From	То	Hours	From	То			
All dimens	sions in		etres		Contra Plant:0		: Sherwo	od Drillir	ng		lethod: Win	dowless S	ampler	L	ogged E	Ву: Арр	roved By:

Form SLR AGS3 UK BH File 406.0889.00003.005 NANTWICH ARCHAELOGICAL LOGS.GPJ 26-05-16

BOREHOLE No.

Client:

CHESHIRE COUNTY COUNCIL

Project No: Date: Ground Level: Co-ordinates:

406.0889.00003.005 31/07/07 34.87maOD E364827 N352525

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

SA	MPLE										ST	RATA					-hut/
epth	Type No	(mdd)SH	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIP	OIT	١					Instrument/
							24.57	?	(0.30)	No Recove	ery.						25.52
							34.57 34.52	×	0.30					ited, slightly	silty SAND. Me	odern	12
					1				_ _ (0.65) _	Just moist slightly silty ash/cinder	, light y SAI through	ND. Modern r ughout (conc	n to mid to da ootlet penetr entration, <9	ation through mm, at 0.81	vn, unconsolic hout. Probable m), occasiona nd from 0.94n	e fine I stones	
							33.87	×	1.00	slightly silty and 1.68m	y SAI n, cha	ND. Rootlet c	ontinues to 1 <3mm) at ar	l.06m and al ound 1.58m.	vn, unconsolic so seen at 1.4 . Waterlogged	0m, 1.50m	10X0X0X
					2			×	(0.90)	1.47 - 1.52	2 Poc	ket of orange	sand.				
								× · · · ·	-			ket of light gr		nd.			
							32.97	× · · ·	1.90								R
					2 1 0		32.92 32.87/ 32.78/	× × × × × × × × × × × × × × × × × × ×	1.95 2.00/ 2.09/						andy SILT. Ro vood at 1.95m		
					2		32.68	× — × — ×	2.19	1.90 - 1.95	_	ht sulphide o				/	
								×		soft), silty	SAN	D. Rootlet at	1.98-1.99m.		lightly sticky (v		
					2			× × ×	- (0.81)	thixotropic	, sligh	ntly clayey SI	LT.		and somewha		
					_			* * * * *	_			-brown, soft, ed at ~15 de			f very decayed	d wood	
							31.87	× × × × ×	3.00	pockets of 2.58-2.60r	clay.	Suplhide sta	ining throug	hout but mar	yey SILT with kedly at 2.37- sulting from de	2.43m,	
								× <u>×</u> ×;	-	\rootlet. 2.19 - 3.00) Mod	derate sulphic	le odour.			/	
					1			× × × ;	- - - (1.00)	Moist, mid SILT. Sma black patc	grey all 'thr hes -	-brown, fairly ead-like' filan	stiff and stick nents through whide staining	hout - ?funga	soft and sticky al hyphae. Occ ociated odour	casional	
								× × × × × × × × × × × × × × × × × × ×	-								N. C. A. C.
							30.87	× — ×	4.00								× ×
									-	Borehole o	comp	lete at 4.00m					
									-								
									-								
5			1-1	0:				•	-	<u> </u>			107.1	A 1.1. 1	0	and Daw	<u></u>
oring Pro						- 1	Cas			Chise		Цолга	Water		Gen	eral Rema	rKS
Date	Time		Dept	.11	Wate Dp	t	Depth	Dia. mi	m From	n To)	Hours	From	То			
Λ II α ¹ :	noiona :	n m	tros		Contra	note:	· Chomus	مط المناانة		Mothodi	۱۸/:۰-	dowless	ample:	1,	agged D: :	App. 10.11	
All dime	nsıons ı ale 1:31		erres		Contra Plant:0		: Sherwoo	oa Drillir	ıg	Method: Hole Size		dowless S	ampier		_ogged By:	Approve	a E

BOREHOLE No.

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 31/07/07
 35.03maOD
 E364925 N352423

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

9.0	MPLE	S &	TF	STS							ТР	RATA						٦٢
Depth	Type	MS(ppm)	ну(кРа)	PP(kPa)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DI	ESCRIPTION							Instrument
		<u> </u>	_			_	24.02	?	- 0.00	No	Recovery.							E S
							34.83	×	0.20 - - 0.43	und	consolidated	of matrix (~20 slightly claye	y, silty SANI	D. Mostly br	rick (<75	5mm) and	d stone	
					0		34.56 34.33	000	0.47 - 0.70	Sm	nall amount consolidated	of matrix (~20 slightly claye	%) of moist, ey, silty SANI	mid to dark D with pock	c grey-b ets of b	rown, lack ash/		
					0		0 1.00	× — × — × — ×	(0.30)	low	est layer fro	y, white, uncom 0.63-0.70n	n.				/	
1					0		34.03	1 × 1	1.00	slig cin	htly clayey S der/ash and	n to mid to d SILT, with occ white mortar	asional patc					
					0		33.81 33.76	x ·x	_ 1.22 1.27		Recovery.	vn to mid to c	lark grev-bro	wn soft to	crumbly	/ (working	n soft)	K
					0			× × × ×	- - (0.24)	slig	htly clayey s	andy SILT. C	Occasional as	sh/cinder th	orough	oùt.	/	
					0		33.52 33.43	0, S 0,	1.51	cin cin	der/ash cont der/ash cont	grey to blace ent. Occasio ent is less. V	nal mid to da	ırk brown p	atches	where the	e	
					0		33.26	×—×	1.77	(\Mo		y, white, unco		nortar GRA	VEL gra	ades into	next	
2					0		33.11 33.03 32.94	<u>× × </u>	1.92 2.00 2.09	Mic	d brown SAN	m 0.63-0.70n ID. Mostly co r (at 1.66-1.7	mposed of d					E STATE OF THE STA
					0		02.01	×	(0.28)	Mo	ist, mid brow	n and dark ger common the	rey, sticky (v	vorking soft	t), slightl	ly clayey	SILT.	2
					0		32.66	× 1 . 1	2.37	Мо	ist, mid brow	n, soft (work	ing soft to mo	ore or less	plastic),	silty CLA	AY. Darker	E
									- - - (0.63)	Мо	ist, mid brow	erhaps sulph on to dark green onal black poo	y-brown, cru					25.00
					2				- (0.03)	per	haps sulphic	des. Very rott ht sulphide o	ed charcoal			311/CIIIUCI	OI	\$
							32.03		3.00	Mo sha	ist, varicolou	red (from light n and grey-b	nt to mid brow	wn to mid to nsolidated to	o dark g	rey-brow bly, slight	n in ly silty	
									-	Mo Be	ist, mid brow comes slight	n, firm to cru	mbly (workin increasing o	g soft), slig lepth. Rotte	htly silty	/ clayey S I present	SAND. at	
					0				- - (1.00) -	Sat	y clayey SAN	to mid brown						
									-	dov	wnwards.							
1							31.03		4.00	D		l-tt 4 00						25
									-	BOI	renoie comp	lete at 4.00m						
									-									
									-									
oring Pro	dress at	nd \^	/ater	Ohe	ervati	one	Cas	ina	- -		Chiselling		Water	Added		Gene	ral Rema	rks
Date	Time	_	Dept		Wate		Depth	Dia. mr	n From		То	Hours	From	То	\parallel			_
					الإك		-											
All dime			etres	- 1			: Sherwo	od Drillin	ıg			dowless S	ampler		Logge	ed By:	Approve	d B
	ale 1:31 SLR Co				Plant:0						e Size:							

BOREHOLE No. **E**

Client:

CHESHIRE COUNTY COUNCIL

Project No: Date: Ground Level: Co-ordinates:

406.0889.00003.005 31/07/07 35.34maOD E364931 N352261

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

																1 of 1
SA	MPLE	S &	TES	STS							ST	RATA			<u>'</u>	7
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	N				
		_		_		_	35.23	?	0.11	No F	Recovery.					
1							34.42 34.34	× × × × × × × × × × × × × × × × × × ×	0.17 (0.75) 	Clay Mois clay brick asso	ey sandy S st, dark bro ey sandy S k (<60mm; ociated white e or less dr dern brick (<	ILT. Fresh gr wn to grey-br ILT. Modern notably at 0.2 te flecks of m	rass at 0.11m rown, slightly rootlet penet 21-0.32m, 0.3 ortar.	n. Modern ro humic, crun ration to 0.3 37-0.44m, 0	mbly (working potlet through mbly (working 86m. Frequen 1.57-0.58m) w	out. soft), slightly t modern ith
					0		33.84 33.60 33.48	× ·× · × · × · × · × · × · × · × · × ·	(0.50) - 1.50 - (0.24) - 1.74	Core hum sma from (<62 of ol	e section mic, crumbly all and spars 1.25-1.50 mm) at 1.0 ld rootlet at e section m	ostly collapse (working sof se from 1.00- m. Large stor 0-1.06m and 1.44-1.50m.	d. Moist, dau tt), slightly cla 1.25m becornes including d very large of	yey sandy s ming commo cobble frag cobble (<90)	grey-brown, s SILT. Brick fra on and larger gments (<50m mm) at 1.15-	gments (<42mm) (m) and slate 1.24m. Trace
					0		33.40	×	- 1.94	\ <u></u>	.,	,	, ,	wn, stiff (wo	orking plastic),	CLAY.
2					0 0 1		33.34 33.22 33.10		2.00 2.12 2.24	SAN sect	ND. Abunda tion.	int rounded p	ebbles (<36r	mm) forming	consolidated, g approximate	ely half of this
					1		32.93	× — × ·	- _ 2.41	M					orking plastic), d coarse sand	
									-	(<70 in co	Omm) of stif plour.	f (working pla	astic) CLAY, I	ooth just mo	oist and light t	o mid brown
					0		32.34		- (0.59) - - 3.00	Just thro	lm. t moist, darl ughout, witl	k grey-brown n occasional	, brittle, slight	ly clayey SI	ILT. Rootlets r	noted
3							32.16	?	3.18	Just	t moist, mid		stiff (working		_AY. Large br ered by corer	
					0				- - - _ (0.80)	Mois					Becomes wet nm) througho	
									-							
4					0		31.36 31.34/		3.98 4.00	Mois	st, light grey	/-brown, unco	onsolidated, s	slightly silty	SAND.	
									- - - - -	Bore	ehole comp	lete at 4.00m	1			
oring Pro	gress ar	nd W	/ater	Obs	ervati	ons	Cas	ing		. (Chiselling		Water	Added	Gei	neral Remarks
Date	Time		Dept	h	Wate	er	Depth	Dia. mr	m Froi	m	То	Hours	From	То		
					p-'											
All dime	nsions i	n me	etres		Contra	ctor	: Sherwo	od Drillir	 g	Meth	nod: Win	dowless S	ampler		Logged By	: Approved E
	ale 1:31		55		Plant:0				۷	Hole					55 - 4 Dy	

BOREHOLE LOG BOREHOLE No. F

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 01/08/07
 39.74maOD
 E365191 N352264

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

SAMPLES of Type No Y							ST	RATA];
Depth Type & & & & & & & & & & & & & & & & & & &	HV(kPa)	Y-N	<u>_</u>									
		է Ծ	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTION	N				
3		0003113	Wate	39.14 39.07 38.98	(Thick-	Depth - (0.60) - (0.60) - (0.60) - (0.86) - (0.86) - (0.86) - (1.00) - (1.00) - (1.00) - (1.00)	Moist (dry in tol (0.60m). Moist, light brow CLAY. Abunda Moist, light to make the silvent of t	wn to mid greent stones and grey-brown hid grey-brown hid grey-brown hid greates sulphic y, compacted ht sulphide o a grey-brown hid y, compacted his sulphide o at grey sand i ous organic o hid grey sand i ht grey sand i ous organic o hid grey sa	y (in shades of brick fragment, stiff (workinal brick fragment, stiff (workinal brick fragment), stiff (workinal brick), cruightly clayey that dour. It oblack, cruightly clayey of degrains. It of grains. It our. It	of brown arents (<30m ng soft and nents (<20r mbly to unc SILT. Abun 3-0.81m. o crumbly vombly to unc SILT. Occas (<15mm) if a control of the control of th	more or less plamm) throughout consolidated (wordant waterlogge rery slightly sand consolidated (wo asional wood charcoghout. The sto horizontal) es to horizontal) es to horizontal) ing more or less ted, SAND. Occorganics or per	slightly silty astic), and sliver orking soft), ad wood dy slightly orking soft), ips and s plastic), asplastic), asplastic), asplastic), asplastic), asplastic), asplastic), asplastic),
Boring Progress and	Water O	bserva	ations	Cas	ing		Chiselling		Water	Added	Gene	eral Remark
Date Time	Depth	W; D	ater Opt	Depth	Dia. mr	n From		Hours	From	То		
All dimensions in r Scale 1:31.25			tractor	: Sherwo	od Drillin	ig	Method: Wir	dowless S	ampler		Logged By:	Approved

BOREHOLE No. **BOREHOLE LOG** F1 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 10/01/11 39.69maOD E365188.877 N352269.226 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

S	AMPLE									STRA	ATA				
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTION					
			_	-		_			_	No recovery					
									- - (0.60)						
									(0.00)						
							39.09	XXXXX	0.60	MADE GROUND:	Ctiff light t	to mid brown	arayally Cl	AV Graval is	modium to
							38.90		0.79	coarse (up to 48mi	m) and ar	ngular.		AT. Graveris	medium to
1							38.69	× — × — × — ×	1.00	Moist soft dark gre 0.79Rootlet at st	trata inter	face.			
ı							38.56	<u>/// ////</u>	- 1.13		hes of bla			on.	/ -
						1	38.46 38.31	× — × — >	1.23	\\0.96Bone fragm \No recovery	nent.				
						<u>±</u>	30.31		- 1.30	Dark greyish brown herbaceous detritu	us througl	hout.			ine
									(0.48)	Soft moist dark gre 1.27 - 1.29Rour	nded pebl	oles present	up to 14mm.	layey SILT	<u> </u>
							37.83		1.86		avey SAN	D .			
2							37.69		2.00	1.58 - 1.61 Rour	nded pebl	oles present	up to 12mm.		
									-	Borehole complete					
									- - -						
3									-						
									-						
									-						
									-						
									_						
4									_						
									-						
									-						
									-						
									-						
												T		1	
oring Pro	ogress a		Vater Dept		servati Wat Dp		Cas	ing Dia. mr	m Fro	Chiselling To I	Hours	Water From	Added	Ger	eral Remark
Date	Tillie	+	Бері	.11	<u>Dp</u>	t	Depth	Dia. IIII	1101	10 1	riours	110111	10	_	
All dies	ensions	in m	otroo		Contro	otor	: Sherwo	od Deilli-	20	Method: Windo	wdoco C	ampler	1	Logged By:	Approved

BOREHOLE No. **BOREHOLE LOG** F2 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Date: Ground Level: Co-ordinates: Project No: 10/01/11 406.00889.00005 E365188.877 N352269.226 39.69maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

1 of 1 Instrument/ **SAMPLES & TESTS STRATA** PP(kPa) Backfill Legend HS(ppm SPT-N Water Туре Reduced DESCRIPTION (Thick-Depth Depth Level ness) MADE GROUND: Moist greyish brown slightly silty sandy GRAVEL (poor (1.00)38.69 1.00 No recovery (0.50)38.19 38.10 1.50 1.59 MADE GROUND: Moist greyish brown slightly silty sandy fine to coarse **GRAVEL** MADE GROUND: Moist dark brownish grey SAND with white patches of decayed mortar/lime (up to 10 mm) present throughout. (0.35)Moist grey SAND with brown mottling. 1.72 - 1.75 ...Rounded pebbles present up to 9mm. 1.81 - 1.86 ...Inclusions of light grey clay. 37.69 - 2 1.95 - 2.00 ...Becoming wet. (0.32)No recovery 37.37 Wet greyish brown SAND (0.34)37.03 2.56 - 2.66 ... Becoming slightly clayey with abundant coarse rounded gravel 2.66 up to 60 mm Moist stiff brown CLAY - 3 (1.34)35.69 4.00 Borehole complete at 4.00m File 110509 406.00889.00005 NANTWICH BH LOGS.GPJ General Remarks Boring Progress and Water Observations Casing Chiselling Water Added Water Dpt Date Depth То Hours From Depth Dia. mm All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Logged By: Approved By: Scale 1:31.25 Plant: Geotool Hole Size:

Form SLR AGS3 UK BH

BOREHOLE No.

G

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 01/08/07
 39.60maOD
 E365096 N3523

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

147	-714 1 44		V V /-	11 L	ILO	JOL	D DEF	00110									1 of 1	
SA	MPLE	S &	TES	STS							ST	RATA						ent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DES	SCRIPTION	ı						Instrument
							39.33	×	(0.27)	less 0.00	dry, mid gr m, current	ollapsed and ey-brown, ur ground surfa nes, brick, m	consolidated ce. Modern r	Í, humic, silt ootlet and c	ty SAND other her	. Fresh baceou	grass at	
					0		39.20 39.12 39.07		0.40 0.48 0.53	Just	moist, mid Il areas (<1	grey-brown, 0mm) of mo	unconsolida st, light brow	ted, slightly n, stiff (work	silty SAN	ND, with		
					0 0 0		39.06 39.04	× × ×	0.54 0.56 (0.44)	Mois inclu	t, mid to da sions of bla	ark grey, firm ack ash/cinde	(working sof er and traces	t), clayey SI of rotted br	rick throu	ighout.		
· 1							38.60	^_ X_ X_ X	1.00	CLA'	Ý.	l of moist, un					e-non	3
							38.35	?	(0.25) 1.25	M 14	t, very pale	e (off-white), i					e-rich	
					1		38.12	× — × — × — × — × — × — × — × — × — × —	1.48	some	ewhat plas common	y-brown to ve tic), silty CLA (~10%) throu ery rotted she	Y. Black ash ghout, with s	and/or very ome rotted	y rotted o charcoa	charcoal I pieces	l/cinder (<12mm)	
					0		38.00	×	-	fragn		62-0.66m (<				-0.00111	, the	
-2					0		37.61 37.60	× · · · · ·	- (0.39) - 1.99 2.00/	plast	ic), sandy	grey, crumb clayey SILT. otlets at 1.27	Black inclusi	ons of very	rotted ch		omewhat	222
					Ö		37.45	<u>× </u>	- 2.15			vn, unconsol ark grey, crur			working	soft), sli	ghtly	
					0		37.25 37.16	× × × ×	- 2.35 - 2.44	claye fleck	ey, silty SA s of rotted	ND. Rounded charcoal at 1 vn, unconsol	d quartz pebl .81-1.82m.	ole (<15mm				
									- (0.50)	IN		to grey-brovid grey, firm				olastic),	slightly	
					0				(0.56) - -	Mois		, compacted	`		, ,		AND.	
3							36.60		3.00	unco	nsolidated	ollapsed. Moi , coarse SAN %) in last 0.0	ID. Stones (<				ecoming	
									-	Bore	hole comp	lete at 3.00m	ı					
									-									
									-									
4									-									
									-									
									-									
									-									
									-									
Soring Pro	gress a	nd V	√ater	Obs			Cas	ing		С	Chiselling		Water	Added		Gene	ral Rema	rks
Date	Time		Dept	:h	Wate Dpt	er t	Depth	Dia. mr	m Froi	m	То	Hours	From	То				
All dime			etres				: Sherwo	od Drillir	ng			dowless S	ampler		Logge	d By:	Approve	d By
	ale 1:31 SLR Co		Itina		Plant:0 Hermo			sworth F	Park. Oxor		Size: iness Pai	k, Shrews	oury SY3 5	HJ, Tel: 0	01743 2	39250), Fax: N//	Ą

BOREHOLE No.

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 01/08/07
 39.35maOD
 E365233 N352471

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

						_											
SA	MPLE										ST	RATA					_ hent
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	ESCRIPTION	N					Instrument/
							39.29	? X — X	0.06	\sim	Recovery.						
							39.15	- ×>	0.20			it, mid to dark penetration t		nbly (working	g soft), sandy	clayey SILT.	K
					0		38.99	- ×	0.36	Top	soil of mois	t, mid brown	crumbly (wo		andy clayey S		
					0		38.97 38.89	×	0.38			nt to mid brov its throughou		it 0.21-0.24n	n. Occasional	modern	
					0		38.86	× . × .	0.49						onsolidated S		
					0			×	(0.51)			y, mid to darl er (<18mm) a			slightly silty S	AND.	
								×				y, very pale y					
							38.35	- · · ·	1.00	Jus	t moist, mid	grey (occasi	onal small ar	eas of mid b	prown), crumb	ly (working	
									(0.40)	\ (at	0.60-0.63m)), glass (at 0.	69-0.71m) ar	nd occasiona	62-0.54m), mo al small rounc	ded stones	100
								[(0.42)	1.	0mm) throu Recovery.	ghout.					/ (b
							37.93		1.42					- II - I- 4h 114	.I OAND		_[5
					0		37.83		1.52			nia grey, unce brown, very			clayey SAND.		-15
									(0.38)	Jud	t moiot, mia	biowii, vory	oun (wonting	plactic) CE			16
					0		27.45		L ` ´								É
							37.45 37.35	?	1.90 2.00	No	Recovery.						-Æ
												brown, very	stiff (working	plastic) CLA	λY.		Ŕ
									_								É
								<u> </u>	_								(F
					0				- (1.00)								
					0				(1.00)								
									_								
							36.35		3.00				····· / 1 ·		N/ O 1 005		_2
									_	Jus	it moist, mid liment in cor	l brown, very re tube, rest v	stiff (working /oid - sedime	plastic) CLA ent mobile wit	AY. Only 0.35 thin tube so a	metres of ny depth	2
										rec	ord spurious	3.					2
																	2
					0			<u> </u>	- (1.00)								2
									-								2
								<u> </u>									
							35.35		4.00								Ç
							35.35		4.00								TC.
									-	Bor	ehole comp	lete at 4.00m	1				
									_								
									_								
									-								
									_								
									_								
ring Pro	gress a	nd W	Vater	Obs	ervati	ons	Cas	ing			Chiselling		Water	Added	Gen	eral Rema	ırks
Date	Time	_	Dept		Wate	- 1	Depth	Dia. mi	m Froi		То	Hours	From	То			
					υρ		- 1								1		
			etres					od Drillir	ng			ndowless S	ampler		Logged By:	Approve	ed E
Sc	ale 1:31	.25	ns in metres Contractor : Sherwood Drilling 1:31.25 Plant:Geotool							Hole	e Size:						

BOREHOLE No.

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 31/07/07
 38.96maOD
 E365308 N3523

Co-ordinates: E365308 N352394

Project:

NANTWICH WATERLOGGED DEPOSITS

14.	~(14 44	ЮП	VVA	11 □	KLO	JGL	D DEP	03113								1 of 1	
SA	MPLE			STS							ST	RATA			'		ent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DI	ESCRIPTION	N					Instrument/
				-	1			×	- - - (0.86)	0.3 0.7	sent through 7-0.46m and 7-0.86m and	nout - rounde d 0.62-0.72m	ed to angular. Traces of c (<3mm) at 0.	Decayed ro inder and co	SAND. Stones otlet at 0.30-0 al (<7mm) at).34m, ´	
					2		38.10 38.00	×	- - 0.86 - 0.96		ist. light to m	nid brown to	arev-brown. ı	ınconsolidate	ed, SAND witl	n some	70470
					3 0		37.96	× ×	- 1.00 -	dis 0.6	crete mid gre 9-0.72m, sm	ey clay lumps nall stones at	s (<40mm). L 0.86-0.88m,	arge woody cinder/ash a	root fragment at 0.88-0.92m	ts at	
					0		37.59	×	- (0.37) - 1.37	Mo	ist to wet, m	id grey, unco		lightly silty S	AND. Occasion		
					0		37.38		1.58	Co			st, light to mid	d brown, unc	onsolidated,	fine to	
					0				- (0.42)	ı 🖳	arse SAND. ist, mid brow	vn to grey-bro	own, very stiff	f (working pla	astic) CLAY.	/	
							36.96		2.00	Jus	st moist, light	tic) CLAY. Ro	tted				
									- - -								
					0				- (1.00) -								ALTER CA
							35.96		3.00		st moist, light	tic) CLAY					
					0				(0.70)	June	rmoiot, iigin						
					0		35.26		3.70								
									-		rehole comp	lete at 3.70m	1				
									- -								
									- - -								
									- - -								
ring Pro	gress a	nd V	Vater	Obs	servati	ons	Cas	ing			Chiselling		Water	Added	Gen	eral Rema	rks
Date	Time		Dept	th	Wate Dp	er t	Depth	Dia. mı	m Fro	m	То	Hours	From	То			
All dime			etres	- 1			: Sherwo	od Drillir	ng			idowless S	ampler	L	Logged By:	Approve	d E
	ale 1:31		ltina		Plant:0			sworth [Park Ovo		e Size: siness Pai	rk Shrewe	hury SV3 5	H.I Tel· 0	1743 23925	0 Fax: N//	

BOREHOLE No.

J

Client:

CHESHIRE COUNTY COUNCIL

Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005

E365284 N352296 31/07/07 40.04maOD

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

								OSITS									1 of 1	
SA	MPLE	S &	TES	STS							ST	RATA						ant/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	D	ESCRIPTION	I						Instrument
		_						× × × ×	_ (0.36)	roc	st moist, dark otlet througho		onsolidated,	silty SAND.	. Moderr	n woody	root and	
					0		39.68 39.60		- 0.36 - 0.44		real matrix.	Lumps of fur	nace slag/'ha	ard core' (<	115 mm	۱).		18
					0				(0.42)		odern sand ai 36m.	nd gravel dry	mix hard co	re. Two lay	ers of te	erram me	mbrane at	
-1					2		39.18 39.04	0 \ 0 \ \	1.00	Mo	oist, dark brov gments of cir	nder (<3mm)	own, crumbly in 0.86-0.89	y (working s m and a fev	soft) CL	AY. Sma	 -	
					0		38.78	×	(0.26) 1.26	Mc	gments throu pist, mid to da ghtly silty SAN	irk grey-brow	/n, unconsoli	dated to cru	umbly, s	slightly cla	ayey	2
					2				- - - (0.49)	Mc	pist, light brow ghtly clayey).	n, unconsol	idated, SANI) (last 0.02r	m slight	ly wetter	and	
							38.29		1.75				01	A > 7 / 12 1 /1			200	
- 2					0		38.04		(0.25) 2.00		oist, mid to mi							
-									-	Ju	st moist, mid	brown, very	stiff and sligh	ntly sticky (v	working	plastic),	CLAY.	2223
					0				- (1.00) - - -									2000 A
-3							37.04		3.00	Ju:	st moist, mid 00 - 3.20 Sligl 34 - 3.40 Sligl	ntly silty pock	ket.	ntly sticky (v	working	plastic),	CLAY.	
					0				- - (1.00) - -	0.0	54 - 0.40 Oligi	nty sinty poor	AGL.					
4							36.04		4.00									<u>\$</u>
									- - - -	Во	orehole comp	lete at 4.00m	1					
									-									
Boring Pro		_				- 1	Cas	T .			Chiselling		Water			Gene	ral Rema	rks
Date	Time		Dept	h	Wate Dpi		Depth	Dia. mr	m Fro	m	То	Hours	From	То				
All dime	nsions i		etres		Contra		: Sherwo	od Drillir	ng		thod: Win le Size:	dowless S	ampler		Logge	ed By:	Approve	d By

BOREHOLE No. **BOREHOLE LOG** Κ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365021 N352297 406.0889.00003.005 31/07/07 37.14maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SA	AMPLE									S	ΓRΑΤΑ				7+40
Depth	Type No	(mdd)SH	ну(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTIO	N				1
		<u>. </u>							(0.84)	Largely void, wapproximately) (<22mm).	vith loose stor followed by a	nes (<55mm) a mix of brick	from 0.00-0. (<30mm), co	35m (very oal (<50mm) a	3
							36.30	0 0 0	- 0.84	Moist, light to r	nid grey-brow	n, crumbly (v	vorking soft a	and somewhat	plastic),
1							36.14		1.00	sandy, silty CL throughout. Di	AY. Crushed esel oil odour	brick/tile, bla	ck ash/cinde	r and stones (<12mm)
					0				- - - (1.00) -	Just moist, mic grey/black by o	I brown, very liesel oil cont	stiff (working amination fro	plastic), CLA m 1.00-1.04r	AY. Stained da n.	ırk (C
2	0 35.14								2.00	Laura vaida in	tuba alaa a	manima di cat			i (a rikin a
					0				(0.50)	Large voids in plastic), CLAY. 1.00-1.04m. A	Stained dark	grey/black b	y diesel oil c	ontamination f	rom
							34.64		2.50	Large voids in	tube - also co	ontained just	moist, mid br	rown, verv stiff	(working
					0				(0.50)	plastic), CLAY 1.00-1.04m. A	Stained dark	grey/black b	y diesel oil c	ontamination f	rom
3							34.14		3.00	Borehole comp	olete at 3.00n	1			
1									- - - - -						
								-	- - - -						
oring Pro							Casi			Chiselling		Water	1	Gene	eral Remarks
Date	Time		Dept	in	Wate Dpt	Ĩ.	Depth	Dia. mn	n Froi	n To	Hours	From	То		
All dime	ancione i	n ma			0 1		: Sherwoo			Method: Wir				ogged By:	Approved E

BOREHOLE No. **BOREHOLE LOG** L Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365128 N352544 11/09/07 38.71maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SA	AMPLE										ST	RATA					ent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESC	RIPTION	N					Instrument/
								°0 °0.	(0.50)		ed and hard c	loose in core ore'.	tube - no ma	atrix. Tarma	c and stone	(<60mm)	
							38.21		0.50				dry, light to	mid grey, st	iff (working	plastic), CLAY	
							37.96		- 0.75	No mat	rix. Loos) 'hard core'. se 'hard core					
1					0			× × × × × × × × × × × × × × × × × × ×	- - (0.55)			wn to dark gr ost-medieval/				shy, slightly at 0.97-1.00m.	
							37.41	×	1.30								
									-	Just mo	oist, light at 1.30-1	t brown, unco 1.38m.	onsolidated,	SAND - staiı	ned darker f	rom layer	
					0				(0.70)								
2						1	36.71		2.00	Moist, li 2.00-2.3	ight brov 35m for	wn, unconsol ming ~90% o	idated, SANI f tube conte	D. Abundant nts at 2.00-2	t stones (<8 2.20m.	0mm) at	
					0	<u></u>	36.26		(0.45) - - 2.45								
							00.20		-	Moist, r	nid brow	vn, very stiff (working plas	etic) CLAY.			
0									-								
3					0				- - (1.53)								
									- - -								
									- - -								
4							34.73 34.71/		3.98	No Rec	overy.						
									-	Boreho	le comp	lete at 4.00m	1				
									- - -								
									- -						1 -		<u> </u>
Boring Pro Date	gress a		/ater Dept		servati Wat Dp		Cas Depth	ing Dia. mr	n Fro		selling To	Hours	Water From	Added		eneral Rem	
Date	riille		<u> ը</u> -	41	<u>Dp</u>	t	Беріп	Dia. Mir	II FIO	11	10	TIOUIS	110/11	10	2.28m	bgl. Well ace concen	
	ensions i				Contra												

BOREHOLE No.

Client:

CHESHIRE COUNTY COUNCIL

Project No: Date: Ground Level: Co-ordinates:

406.0889.00003.005 11/09/07 37.81maOD E365015 N352549

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

SA	AMPLE			STS							ST	RATA				ent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	С	DESCRIPTION	N				Instrument/
		_					37.46	× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·×	- (0.35) - 0.3	ur St		collapsed an	d loose in up	per 0.18m c	orown sand), of tube), sandy SILT. e latter abundant from	
					0 0 0		37.36 37.32 37.29 37.26	× × × × × × × × × × × × × × × × × × ×	- 0.4 - 0.4 - 0.5 - 0.5	9 cc 2 cc 5 th	ore section vo	lume). Abund	dant brick/tile	rubble (<38	SILT (approx. 50% of Bmm) - approx. 50% of woody) rootlet common	
					0		37.23 37.01	<u> </u>	0.5 0.8	~ IIIII	o matrix. All of 24mm).	f section was	of angular, _I	pale grey/gre	ey-brown, stone	
·1					0		36.81	× -× -	1.0	U	ry, mid to dark	· , ,			ournt stones (<12mm).	
					0		36.58	× × × × × × × × × × × × × × × × × × ×	- - 1.2	3 Di	ry, mid to dark	grey-brown ent (~10%) of	, unconsolida this section.	ated, ashy sa	andy SILT; very much a ry, angular, brick/tile	
					1	1	36.37	× × .	- 1.4		ust moist, mid (12mm) prese			tic) CLAY. C	Cinder and ash lumps	
					. 1	<u> </u>	36.21	× × ×	1.6 - - (0.40)	0 Ju or fra	ust moist, mid r less plastic), agment (<108	to dark grey- silty CLAY. A mm) at 0.80-	-brown to mic Abundant fine -0.88m, with	e ash throug a little assoc	ey, crumbly (working more phout. Large brick/tile ciated mortar (<10mm).	
2					1		35.81		2.0	0 sa 1.	andy SILT. Lai	rge lumps (< erlying a thin	110mm) of c	onglomerate	nsolidated, very ashy e ?floor surface at ular and rounded stones	
					1		35.58		2.2	3 M Fi	loist, very dark ine ash, rootle naterial througl	c grey to blace ets, stones (< hout.	12mm) and p		l, slightly clayey SILT. er waterlogged organic	
					0				(0.61)	Me as th	sh, rootlet, sto roughout. Sta	k grey to blace nes (<12mm anding ground	k, soft to und) and possib d water from	le other wate ~1.50m dow	I, slightly sandy SILT. Fine erlogged organic material wnwards. Very rotted	
							34.97		- 2.8 -	1.	narcoal (<3mn .44 - 1.60 Sligl	,) at 1.60m.		
3					0		34.81		3.0	cla	ayey SAND. F aterlogged org	ine ash, roo ganic materia	tlet, stones (<12mm) and	d, slightly silty, slightly d possible other	
									- - -	M	ayey SAND w	c grey to blac rith small clas	k, soft to und t of mid brov	vn sand (<10	I, slightly silty, slightly 0mm). Fine ash, rootlet, panic material throughout.	
									- - -	2. W	.00 - 2.23 Very	y slight sulph d brown, unc	ide odour. onsolidated,		ND. Rounded stones	
4									_		argely void as				natrix of loose, saturated,	
7									-	-	orehole comp					
									- - -							
Boring Pro	gress ar	nd W	√ater	Obs	ervati	ons	Cas	ing			Chiselling		Water	Added	General Rema	rks
Date	Time		Dept	h	Wat Dp	er t	Depth	Dia. mı	m Fro	om	То	Hours	From	То	Groundwater preser	nt at
															1.58m bgl. Well headspace concenti 905ppm.	ratio
	ensions i		etres				: Sherwo	od Drillir	ng		ethod: Win	dowless S	ampler		Logged By: Approve	d B
50	ale 1:31				Plant:						ole Size:		0.40 =		 	

BOREHOLE No.

N

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 12/09/07
 39.17maOD
 E365016 N352448

Co-ordinates: E365016 N352449

SLR*

Sheet:

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 2

																1.
SA	MPLES										ST	RATA				
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	De	epth D	ESCRIPTION	N				
							38.97	°0 0 0 0 0 0 × · · ·	-	0.20 gr					ess dry, light an eces of aggrega	
					0		38.67	×	(0.3	sli (50)		ND. Crushed	d cinder and	coal (<4mm	consolidated, a n), brick/tile (<28	
					0		38.54	==	-		st moist, mid rk grey from				Surface discolo	ured to
1					0		38.17 38.10		(0.3	Modal Modal Sti	pist (becomin rk grey-brow cky), sandy (g wet from 0 n to dark gre CLAY, with o	.70 downwar y to black, so ccasional sm	rds - standin oft and slight all clasts (<2	ng ground water tly sticky (works 20mm) of light t and very rotted	o mid
					0 1		37.95	× — ×	-	\tn	roughout (with				lm). ey, unconsolida	ated and
					2	1	37.88	X1, X1,		1.29 \sli	ghtly sticky (v					ited and
					1	<u></u>	37.85/ 37.59		(0.2	26) \cla 1.58 \1.	yey SILT. Ve 13-1.14m) pro	ery rotted woo esent.	od at 1.08-1.	10m and co	y sticky), slightly pal (<3mm) frag	ments (at
					0 3 2		37.57/ 37.42 37.37 37.29		-	1.75 hu 1.80 1.3	mic, amorphe 25-1.26m.	ous slightly s	ilty organic n	naterial. Bar	ore or less soft) k fragment (<5	Omm) at
2					0		37.26	× ×		1.91					erved saturated t and somewha	
-					4		37.17/	× × ×	(0.4	thi	xotropic, silty 1.32-1.35m.	sandy CLAY	, perhaps wi	th a little am	norphous orgar	ic content
							36.71	× × × ×	- `	2.46 sli	ghtly sandy Č lurated clay.	LAY - granu	les mosity se	em to be sr	mall (<2 mm) lu	mps of
					3		36.56 36.45		-	2.61 2.72 thi	xotropic, silty 1.32-1.35m.	sandy CLAY Twig fragme	′, perhaps wi nts (<3mm d	th a little am iameter) at	norphous organ	ic content
3					2 1		36.32 36.17	· · · · · · · · · · · · · · · · · · ·	-	3.00 sil	y CLAY. Coa 1.74m and w	al/cinder (<4n ood fragmer	nm) present it (saturated	throughout, and rotted)	bone fragment	(<11mm)
										da fra	rk brown to g gments (<5n	rey-brown, s nm) present t	ticky (workin hroughout.	g soft), clay	ey SILT. Small	coal
					0				8.0)	30) cla	ayey SILT. Bli 38 - 1.91 Slig	ue ?vivianite	(<12mm) at		.,, : Harrio, 3iigr	
							35.37		-	de	et, dark brow tritus. Hazelr 91 - 2.00 Ove	ut fragment	at 1.93-1.94r	n.	waterlogged he	erbaceous
4					0		35.19 35.17/		-	3.98 Inc	et, dark brow	n, soft, very o	organic SILT	, with a pale	e blueish-grey o s, large wood f	
									ļ	IV IV	00 - 2.46 Ove				CAND	
									-	Me		ry dark grey-	brown, crum	ibly (works s	SAND. soft), slightly silt 2-2.64m and 2.0	
									[1.00	61 - 2.72 Ver oist. liaht arev	, , ,		v (in shade	s of grey and g	rev-brown)
									Ė	ur	consolidated	, SAND. Larg	ge rounded s	tones (<40r	mm) at 2.73-2.7	75m.
									<u> </u>	sh		and grey-bro			mid to dark gre	
Boring Pro	gress ar	nd W	/ater	Obs			Cas	ing	$\perp \mid \perp$		Chiselling		Water	Added	Gen	eral Remarks
Date	Time		Dept	h	Wate Dpi	er t	Depth	Dia. mr	m	From	То	Hours	From	То	1.37m bg	ater present a I. Well e concentrat
															80ppm.	
All dime	nsions ir	n me	etres		Contra	actor	: Sherwo	od Drillir	ng	Me	thod: Win	dowless S	ampler		Logged By:	Approved I
	ale 1:31			- 1	Plant:0			•	_	I	le Size:				55 . 7.	1 '''

BOREHOLE No. **BOREHOLE LOG N1** Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 10/01/11 39.16maOD E365016 N352449 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

S	AMPLE									STRATA	
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTION	
		Ι.		ш.					- - -	No recovery	-
									_ (0.53)		
							38.63 38.60		- 0.53 0.56	MADE GROUND: Soft moist greyish brown gravelly of fragments of brick and tile up to 15mm throughout.	/
							38.21		_ (0.39) -	Moist stiff brown CLAY, possibly redeposited, with inc and ash throughout 0.56 - 0.60Single large stone present (approximate	
1							38.16 37.99	×—×		Moist dark greyish brown gravelly clayey SILT with at black charcoal and ash throughout	·
							37.82		- - 1.34	No recovery	
							0.102	× — ×	-	Moist stiff brown slightly gravelly CLAY, possibly rede Moist dark grevish black organic sandy clayey SILT v	
						1		× × × × × × × × × × × × × × × × × × ×	- - _ (0.66)	odour increasing with depth. 1.46 - 1.47Decayed wood fragments 1.63 - 1.65Decayed mortar/lime up to 15mm.	
						-	37.16	^ -x ^ ; * -x >	- - 2.00	1.92 - 1.94Roundwood fragments up to 35mm.	
2							37.10	?	- 2.30	No recovery	
							36.93	×	2.23	Moist dark greyish black organic sandy clayey SILT v	ith moderate sulphide
								× × × ;	- - ,	odour.	in moderate culpines
								×_×;	_ (0.48)	2.23 - 2.30Large wood inclusion. 2.23 - 2.51Fine herbaceous detritus present.	- -
							36.45 36.39	X X	2.71 2.77	2.51 - 2.71 Abundant wood fragments up to 12mm	
							36.39	<u> </u>	- 2.11	Coarse rounded GRAVEL Light brown very decayed Wood	
3							36.16	<u> </u>	3.00	2.89 - 3.00Wood becomes less decayed and dark Borehole complete at 3.00m	er in colour.
4									- - - -		
									- -		
									-		
									- - -		
oring Pro	ogress a	nd W	/ater	· Oh	servati	ons	Cas	ina	- - 	Chiselling Water Added	General Remarks
Date	Time	$\overline{}$	Dept		Wat Dp	- 1	Depth	Dia. mr	n Fro	_	2331411101114111
			1.		<u>D</u>						

BOREHOLE No. **BOREHOLE LOG** N Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E365016 N352449 39.17maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 2 of 2

SA	AMPLE	S &	TES	STS							SI	TRATA					ent
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DI	ESCRIPTION	N					Instrument/
		_	_			_		,				brown, very					-
												t to mid grey, nid grey, stick					
									•	1 -		olete at 4.00m		,,	-		
									•								
3									-								
									•								
7									-								
									•								
									•								
3									-								
9									_								
									•								
								-									
oring Pro	gress a	nd V	Vater	Obs			Cas	ing			Chiselling		Water	Added	Gei	neral Rema	rks
Date	Time		Dept	th	Wate Dpt	er	Depth	Dia. mn	n Fro	m	То	Hours	From	То	Groundv 1.37m b	vater preser al. Well	nt a
															headspa 80ppm.	ice concent	ratio
All dime	ensions i	in me	etres	$\frac{1}{1}$	Contra	octor	: Sherwoo	od Drillin	<u> </u>	Met	thod: Win	ndowless Sa	ampler		Logged By	: Approve	d P
	cale 1:31		03		Plant:			ا اااااا ال	J	Hol	٧٧11		~pioi		-cagou Dy	. I , ibbiose	ں ۔

BOREHOLE No. O

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 11/09/07
 39.64maOD
 E365184 N352470

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

SA	MPLE										ST	RATA						1
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	D	ESCRIPTION	N						
							39.24	× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·×	- - (0.40) - 0.40	gre su (<;	ey, slightly cla rface at 0.00- 30mm), morta	ed in tube. So ayey sandy Southern and a ar (<15mm), a of this section	ILT. Fresh gr ssociated ro- cinder (<12m	rass and mo otlet penetr nm) and larg	oss from co ration to 0.1	ırrent g 4m. Bri	ground ick/tile	
					0 0 0		39.10 38.96 38.85 38.74	× × × × × × × × × × × × × × × × × × ×	- 0.54 - 0.68 - 0.79 - 0.90	gre su (<; for	ey, slightly cla rface at 0.00 30mm), morta med the bulk 50 - 0.52 Poc	ed in tube. So ayey sandy So -0.02m and a ar (<15mm), a of this section of the section	ILT. Fresh grassociated ro- cinder (<12m on of the core own sand.	rass and motest penetrem) and larger.	ration to 0.1 ge lumps of	urrent g 4m. Bri	ground ick/tile	
					0		38.64	× × ×	1.00	Mo slię	oist, dark greg ghtly clayey s	k/tile which by y (occasional silty SAND. R	ly mid to darl otted mortar	k grey-brow at 0.62-0.68	vn), unconso 8m.			
					2	<u>‡</u>		* * * * * * * * * * * * * * * * * * *	- - - (0.57)	sli (</td <td>ghtly clayey s 20mm).</td> <td>y (occasional silty SAND. M t grey, stiff (w</td> <td>ostly compos</td> <td>sed of cinde</td> <td>er, slag, mo</td> <td>rtar and</td> <td>d coal</td> <td></td>	ghtly clayey s 20mm).	y (occasional silty SAND. M t grey, stiff (w	ostly compos	sed of cinde	er, slag, mo	rtar and	d coal	
					_		37.87	- * - *- *- - * *- * *	- 1.77	No littl	matrix. Almo le associated ection collaps	ost entirely co mortar and t ed in tube. R	omposed of c traces of ash elatively sma	dry, shattere cinder.	ed brick (<6	0 mm),	with a	
					0		37.64		- 2.00 -	CL	AY. Mostly o	o dark grey-b of shattered b ed in tube. R	rick (<70mm), also one	piece of ?V	ctorian	pottery	
							37.25	×	- (0.39) - 2.39	of CL at	moist, mid to AY. Infreque	o dark grey-b ent brick/tile a and fine wate	rown, soft (w nd stones (<	orking more 10mm), larg	e or less pla ge lumps of	stic), s coal (<	ilty (60mm)	
					0		36.75	×	(0.50)	dark grey-brown, sticky (working plastic), CLAY. Brick/tile fragme at 1.77m. 1.97 - 2.00 Becomes slightly sandy.								
					0		36.64		1.97 - 2.00 Becomes slightly sandy. No Recovery. Waterlogged, mid to dark grey-brown, unconsolidated and sl slightly clayey silty SAND. Occasional rounded stones (<15m									
					0				Slightly clayery silty SAND. Occasional rounded stones (<15mm) thro 2.39 - 2.89 Slight sulphide odour. Just moist, mid brown to mid to dark grey-brown, stiff (working plastic) Just moist, mid brown to mid to dark grey-brown, stiff (working plastic) No recovery at 3.36-3.44m.									
							35.64		4.00)								
								35.64 — 4.00 Borehole complete at 4.00m										
oring Pro	gress ar	nd W	/ater	Obs	ervati	ons	Cas	ing			Chiselling		Water	Added	G	enera	ıl Rema	rks
Date	Time		Dept	h	Wat Dp	er t	Depth	Dia. mr	m Fro	m	То	Hours	From	То	1.44m	bgl. V bace o	r presei Vell concent	
All dime	nsions i	n me	etres	1	Contra	actor	: Sherwo	od Drillir	 ng	Me	thod: Win	dowless S	ampler		Logged E	By: A	Approve	ed E

BOREHOLE No. **P**

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 10/09/07
 39.93maOD
 E365098 N3523

Co-ordinates: SLR SLR

Sheet:

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

1172	-114177		V V /	\	INLO	00L	D DEF	00110					1 of 1									
SA	MPLE	S &		STS							ST	RATA					ent/					
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	ESCRIPTION	N					Instrument/					
					0		39.86	0000	0.07			y, light to mid CLAY. Small s			stiff (working p	olastic),						
					0		39.66 39.61		0.27	No	real matrix -	perhaps a lit	tle sand thou	igh this may	y be from the tube, mix of							
					0		39.57		0.36	(<4		on becoming			m), brick/tile (<							
					0		39.33	. '' . ' :	(0.24) 0.60	Moi	re or less dr	y, mid brown			es), crumbly (v	vorking soft),						
								<u></u>	(2.42)	111111111111111111111111111111111111111	, ,	Coal (<10mm v. approxima	, ı		nconsolidated	sand and	1					
					2		20.00	× ->	(0.40)	sma	all lumps (<8	3mm) of mid	to dark grey-	brown claye			1					
1					2		38.93	× — ×	1.00	less	s soft), claye	y SAND. Oc	casional flect	s of coal (<	<3mm) throug	hout.						
					3		38.62	×	-	unc	consolidated	(working sof	t and somew	hat plastic)	rey to mid gre , silty CLAY. (Occasional						
							30.02	× × ×	1.31		gments of br 5-0.70m.	ick/tile (<td>nm) present a</td> <td>and modern</td> <td>n roots noted a</td> <td>at</td> <td>\parallel</td>	nm) present a	and modern	n roots noted a	at	\parallel					
					2		38.43	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.50						rey, crumbly (v		11.					
					2		38.30 38.20	×1, 11,	- 1.63 - 1.73	Jus	t moist, mid	grey, crumb	y (working so	oft), slightly	sandy clayey 1.13-1.24m.	SILT, with	1					
					0		38.02	× × ×	1.91	1.1	3-1.19m) an	d charcoal (a	at 1.17-1.21n	n) were com	nmon with cha fragment (<20	arcoal						
2					2		37.93	<u> </u>	2.00	1.3	0-1.31m.						<u> </u>					
									-	soft		humified amo			(working more flecked with b							
					0				(0.67)	Jus	t moist, mid	to dark, sligh			rphous organ		1					
									Ē		it. Fragment tlets.	ts of moss 'st	ems and lea	ves', sedge	(Carex) nulet	ts and						
							37.26		2.67				ark grey-brown, crumbly (working more or less orphous organic PEAT.									
					0				(0.33)				grey-brown, crumbly (working soft), slightly clayey (<6mm) at upper interface.									
3							36.93		3.00	Hur	mified peat o	collapsed and	<6mm) at upper interface. Ind loose in core tube.									
									_			y, crumbly (w d works soft a			ID, becomes i	more clay at	//					
					0	1			(0.50)			vn, unconsoi ht sulphide o		clean' SAN	D.		/					
							36.43		3.50			/-brown than les (<30mm)			ated, very 'clea	an' SAND.						
									_	We	t, mid browr	n, unconsoild	ated, very 'cl	ean' SAND.	. Rounded pe	bbles						
					0				(0.50)	(~4	omm) comm	non to abund	ant unougno	iut.								
- 4							35.93		4.00								Ì					
									_	Bor	ehole comp	lete at 4.00m	1									
									-													
									_													
									_													
									_													
Boring Pro	aress a	nd \^	/ater	Ohe	ervati	one	Cas	ina		<u> </u>	Chiselling		Water	Added	Ge	neral Rema	arks					
Date	Time		Dept		Wat Dp		Depth	Dia. mr	m Froi		To	Hours	From	To	-	vater prese						
			- 12'		υþ		- 26411				-				3.33m b							
															170ppm							
				_																		
All dime	nsions i ale 1:31		etres		Contra Plant:		: Sherwo	od Drillir	ng		hod: Win e Size:	idowless S	ampler		Logged By	: Approve	ed E					
			ltina					loworth E	Park Ovor			rk Shrowel	hun, SV3 5	H I Tal· (01743 2392	50 Fax: N/	/ A					

BOREHOLE No. **BOREHOLE LOG** P1 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 E365098 N352374 10/01/11 39.93maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

	11411 [TES	STS						STRATA	
Depth	Type No	HS(ppm)	НV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTION) Juneaningul
		_						-	-	No recovery	
								?	(0.50)		
							39.43		0.50		
							39.31 39.22	0	0.62	Moist greyish brown gravelly SAND	
								×o××	0.74	Moist greyish brown clayey SAND Moist stiff brown redeposited CLAY	
1						-	38.93	× × °×	_ (0.26) 1.00	Dry dark greyish brown sandy clayey gravelly SILT with roo throughout. Possibly a former ground surface. 0.77 - 0.84Lump of clay.	tlets and cinder
									- -	No recovery	
									_ (0.55) -		
						-	38.38	× _o ×	- 1.55 -	Moist grey sandy clayey gravelly SILT	od fragments and
							38.21 38.11		_ 1.72 _ 1.82	Dark greyish brown silty gravelly amorphous PEAT with wo	od fragments and
								<u> </u>	-	lumps of clay throughout.	
2						-	37.93	t\ 1\	2.00	Moist dark greyish brown slightly humic slightly sandy SILT herbaceous detritus and organic remains.	with occasional
									-	Borehole complete at 2.00m	
3									-		
4									- - - -		
1									-		
	ogress a	nd W	<i>V</i> ater	Obs			Cas	ing	-	Chiselling Water Added	General Remarks
4 Boring Pro Date	ogress a		Vater Dept		servatio Wate Dpt		Cas Depth	ing Dia. mr		To Hours From To Mo	nitoring well is dry a
Boring Pro									n Fror	To Hours From To Mo	General Remarks nitoring well is dry a m depth.

BOREHOLE No. Q

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 10/09/07
 39.22maOD
 E365196 N352383

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

SA	MPLE									S	ΓRΑΤΑ					ant	
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIPTIO	N					 netriment/	
								×	(0.48)	Collapsed and grey-brown to (<30mm) throu	mid brown, ur	nconsolidated	l, siltỳ SAŇI		ones		
							38.74 38.68	× × × × × × × × × × × × × × × × × × ×	0.48	Just moist, ver very ashy, sligh surface in plac occasional pied	ntly clayey SII es. Cinder/pa	_T, with some rt burnt coal (e light to mid (<20mm) pr	d brown sand o	n outer		
							38.22	× × × × × × × × × × × × × × × × × × ×	1.00	Just moist, dar sandy in place slightly silty CL cinder/coal (<8 at 0.70m.	s) grading into AY. Small rou	stiff (working anded pebble	g more or le s (<12mm)	ess plastic) slig and occasiona	ntly sandy I pieces of		
					0		37.75 37.72	× × × × × × × × × × × × × × × × × × ×	(0.47) 1.47 1.50/	Just moist, dar sandy in place slightly clayey	s) grading into SILT.	stiff (working	g more or le	ess plastic) slig	ntly sandy		
					0	<u></u>	37.59	<u> </u>	- 1.63 - - 1.83	sandy in place slightly clayey abundant.	s) grading into SILT. Mortar a	stiff (working and crushed l	g more or le brick/tile (<1		ntly sandy n to		
					0		37.22 37.12	?	2.00	Wet, mid to da plastic), slightly grades into ne present throug	sandy silty C t lowest sect hout the rest	CLAY, becomion. Stones (of this section	es more sa <30mm) co n	ndy with depth mmon at 1.53-	and 1.55m and		
					0		36.74	× · · · · · · ·	- (0.38) - 2.48	Wet, mid to da silty SAND. Oc Collapsed and SAND.	casional rour	ided pebbles	(<20mm) tl	hroughout.	, , ,		
					0		36.34 36.24		2.88	crumbles), slig	htly silty SAN						
					0		36.22		2.98 3.00/	frequent at 2.8 Moist to wet, m	3-2.88m. iid brown, stiff	d grey-brown, unconsolidated, coarse SAND. jmm) present throughout but larger (<70mm) and including the state of the stat					
					0				- (0.80) -	(<50mm) prese Core tube brok (working plastic (<12mm) at 3.5	en and only (c), CLAY. Occ).8m metres l					
							35.42		3.80	3.00 - 3.03 Slig 3.21 - 3.24 Poo	cket of moist,	mid brown, u					
									- - -								
									- - -								
ring Pro	gress ar	nd W	/ater	Obs	ervati	ons	Cas	ing		Chiselling		Water	Added	Gen	eral Rema	rks	
Date	Time		Dept		Wat Dp	er	Depth	Dia. mr	m From		Hours	From	То	1.71m bg headspac	ater preser . Well e concenti		
														170ppm.			
												-	1		T	_	
All dime	nsions i ale 1:31		etres		Contra ⊇lant:		: Sherwo	od Drillir	ng	Method: Wir Hole Size:	ndowless S	ampler		Logged By:	Approve	d B	

BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. R

Co-ordinates:

E365205 N352362

Project:
NANTWICH WATERLOGGED DEPOSITS
Sheet:

39.18maOD

Ground Level:

Date:

10/09/07

406.0889.00003.005

Client:

Project No:

1 of 1

- SF	MPLE			_							31	RATA					٦ أو
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	D	ESCRIPTION						 netriment/
			-					0000	(0.50)	bri					tly moist mix of centration of bi		TANK SOLVE
							38.68		0.50	I	-ti-t	dod one c	oft (oulsings	and and alia	ulath calcatic) as	h alimbali.	
					0		20.40	× × × × × × × × × × × × × × × × × × ×	(0.50)	sa of (<3	ndy clayey ŠI brick/tile (<8m	LT, flecked v nm) and occ	with occasion asional stone	ial light colo es (<9mm) t	ghtly plastic), as oured sand grai throughout, mo art burnt coal (<	ns. Traces rtar	
1							38.18 38.09	3.	1.00 1.09	No	Recovery.						
					0		37.82	× — × — × — × — × — × — × — × — × — × —	(0.27) 1.36	sa Oc	ndy clayey SI casional clas	LT, clecked ts (<10mm)	with occasion of light to mic	nal light cold d brown stic	<u> </u>	ins.	PETER ST
					0		37.62		1.56	_	ounded pebble				soft, coarse SA	ND.	É
					0		37.58 37.44		- 1.60 - 1.74	\ <u>~</u>	ades from se				liment below. vhat plastic) CL	AV	
					0		37.31		1.87	Mo	oist, light to mi	id brown to g	grey-brown, s	oft (working	g more or less		16
2					0		37.18		2.00	_	AY, with indu			, ,	(2mm). soft, coarse SA	ND.	
_									-	\Ab	undant round	led pebbles	(<35mm).	Cy Diowii, 3	Joit, coarse ort	/	
								?	(0.50)	2.50							
							36.68		2.50	Moist (to wet from 2.35 downwards), mid brown to mid grey-brown, stiff							-6
					0				- _ (0.50)	(working plastic), CLAY.							
3							36.18		3.00								¥.
							36.10		3.08		Recovery.	n to mid are	v-brown stiff	(working pl	astic), CLAY.		K
					0				- - - (0.92)		,	3.	, ,		,		
4							35.18		4.00								
•									-	Во	rehole compl	ete at 4.00m	1				
									- - -								
									- - -								
Soring Pro	gress a	nd W	/ater	Obs	servatio	ons	Cas	ing	- - 		Chiselling		Water	Added	Gen	eral Rema	rks
Date	Time		Dept		Wate		Depth	Dia. mr	n Froi	m	То	Hours	From	То	1		
					рр		- 5641										
																	_
All dime			etres				: Sherwoo	od Drillin	ıg		thod: Wind	dowless S	ampler		Logged By:	Approve	d E
Sc	ale 1:31	.25			Plant:0	3eot	ool			Ho	le Size:						

Sheet:

1 of 1

Project: NANTWICH WATERLOGGED DEPOSITS

Client:

Project No:

3 <i>F</i>	MPLE					4		,	-		STRATA				_ Jer		
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DESCRIP					Instrument		
					0		39.61		0.16	Just moist,	light brown, unc	onsolidated to	o soft, very '	'clean' SAND.			
					0				. (0.65)		More or less dry ne (<80mm).	, unconsolida	ted (collaps	ed and loose in tube),			
							38.96	×	0.81	Just moist,	dark grey-browr	n, crumbly, sli	ghtly ashy, s	slightly silty SAND.	+		
1					0		38.77	×	1.00		ery, with a little o		st, mostly m	id to dark grey-brown,			
2					0 0 0 0 0		37.41 37.33 37.22 37.15	× × × × × × × × × × × × × × × × × × ×	1.28 (0.72) 2.00 (0.36) 2.36 2.44 2.55 2.62	occasional sand at 1.5 of brick/tile Moist, mos Small stone No matrix. No matrix, for overlyin Moist, mid	light brown patci 3m and 1.74m. ((<7mm) from 1.9 tty mid to dark grees (<8mm) present Brick surface - la Angular stone are g brick surface (to dark to dark g	hes of sand a Small stones 90-2.00m. rey-brown, un ent throughou arge fragment and conglomer 2.36-2.44m). rey, unconsol	at 1.40m, 1.6 (<8mm) pre	n) - looks to be hardcore			
-3					0	<u>+</u>	36.49 35.77		(0.66)	Moist, light SAND. Pos Moist, light	pist, mid to dark to dark grey, unconsolidated SAND. Flecks of rotted arcoal (<6mm) and small stones (<8mm) present throughout. pist, light brown to light grey-brown, unconsolidated, fairly coarse 'clean' IND. Possibly deliberately laid 'bedding'. pist, light brown to light grey-brown, unconsolidated, fairly coarse 'clean' IND. Abundant rounded pebbles (<20mm) throughout.						
								-		Borehole c	omplete at 4.00r	n					
Boring Pro	gress a	nd W	/ater	Obs			Cas	ing		Chisel	ling	Water	Added	General Rema	irks		
Date	Time		Dept	:h	Wat Dp	er t	Depth	Dia. mn	n From	n To	Hours	From	То	Groundwater prese 3.34m bgl. Well headspace concent 130ppm.			
All dime	nsions i	n me	etres		Contra	actor	: Sherwo	od Drillin	a l	Method:	Windowless S	Sampler		Logged By: Approve	ed B		

BOREHOLE No. **BOREHOLE LOG** Т Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365140 N352352 14/09/07 39.50maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SA	AMPLE										ST	RATA						ent/
Depth	Type No	HS(ppm)	нV(кРа)	PP(kPa)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	I						Instrument/
1					2			× × × × × × × × × × × × × × × × × × ×	- - - - - - (1.60)	1.24 larg 0.70 0.10	consolidated, 4-1.27m, sto ger (<60mm) 0m and a ?c	oose in core, slightly clay nes (<25mm and commo tharred bone asional lump astic) clay.	ey slightly sil n) present the n from 1.00 fragment (<	ty SAND. R roughout 0.0 -1.60m, ?hu 20mm) at 1	Rootlets a .00-1.00 uman sk I.59m.	at 0.00-0 and bed cull fragn	0.24m and coming nent at	
2					0		37.90 37.70	× · · · · · · · · · · · · · · · · · · ·	1.60	Moi (wo (<8 1.6	orking soft), s 0mm) at 1.60 0 - 1.80 Very lapsed and le	wn to very da slightly sandy 6-1.73m and r slight sulph oose in core	clayey SILT I brick/tile (< ide odour. tube - moist	. Large ?sa 50mm) at 1. ., light browr	ndstone .68-1.73	e inclusion m.	on	
3					2	<u>+</u>			- - - - (1.90) - - - -	with		consolidated depth). Larg						
4					2		35.80 35.50		3.70	Moi	ist mid browr	າ, very stiff (v	vorking plast	tic) CLAY.				
4										Bor	rehole compl	lete at 4.00m						
Boring Pro	ogress a	nd W	/ater	Ob:			Cas	ing			Chiselling		Water	Added		Gene	eral Rema	rks
Date	Time	+	Dept	th	Wat Dp	er t	Depth	Dia. mr	n Fro	m	То	Hours	From	То	- 3.10	6m bgl.	ter prese Well	
																ospace)ppm.	s concent	ıall
All dime	ensions i	in me	etres	$\frac{1}{1}$	Contra	actor	: Sherwoo	od Drillin	ıg	Met	hod: Win	dowless S	ampler		Logge	ed By:	Approve	ed B

BOREHOLE No.

U

Client:

CHESHIRE COUNTY COUNCIL

Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 14/09/07

E365160 N352349 39.43maOD

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

14/			***	\	INLO	JUL	ט טברי	00110								1 of 1	
SA	MPLE	S &	TES	STS							ST	RATA			I	7	
Depth	Type No	HS(ppm)	ну(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	D	ESCRIPTION	I				i de la companya de l	Instrument/ Backfill
-					0				- - - - (1.00)	to fra (<	dark grey, un gments of bri	consolidated ick/tile (<90m	l, slightly silty nm) present t	clayey SAN hroughout.	to mid grey-b ND. Stones (< Animal bone t n skull (<40mi	60mm) and fragment	
- 1 - -					0		38.43	× × × × × × × × × × × × × × × × × × ×	1.00	Mo (w) (<)	orking soft the	en crumbly), ieces of coal	slightly claye (<8mm) thro	y sandy ŠII	ey-brown, sligh LT. Occasiona rge ?human s	ıl stones 🔯	
- - - -					0		37.93 37.86 37.66	× × × × × × × × × × × × × × × × × × ×	1.50 1.57	Sir Mo	ngle large rou pist to wet, mi	nded cobble d to dark gre	(<70mm). y-brown, slig	htly sticky (y clayey sand working soft th tch of light bro	nen	
- -2 -					2		37.47 37.43 37.26	× × × × × × × × × × × × × × × × × × ×	1.96 2.00 2.17	Mo SII pe 1.7	nd at 1.77m. bist to wet, da T. Trace of 1 bble (<18mm 77 - 1.96 Sligl	Stones (<15 irk grey-brow waterlogged i) present.	mm) present n, brittle (wor l organic detr	throughout		stic), clayey	
-					2		36.43		(0.83) - (0.83) 3.00	Mo SII 2.0 Co (oo	T. Root at 2 00 - 2.17 Sligh Ilapsed and I ecasionally sli	.03m. nt sulphide o oose in core ightly sticky),	dour. tube - moist slightly claye	to wet, mid	nd slightly plas brown, uncon AND. Rotted v (<60mm) abu	nsolidated wood	
-3 - - - - -									-	`	oughout. rehole comp	lete at 3.00m	1				
- 4 -									- - - -								
-									-								
Boring Pro		_					Cas	ing	_		Chiselling		Water		Ger	neral Remarks	3
Boring Pro Date All dimer	Time		Dept	ih	Wate Dpf	er i	Depth	Dia. mr	m Fro	m	То	Hours	From	То			
	ale 1:31	.25			Plant:0	Geoto				Но	thod: Win				Logged By:	Approved E	<u>===</u> Зу:

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 14/09/07
 39.39maOD
 E365195 N352346

SLR

BOREHOLE No.

٧

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

																1 01 1	_
SA	MPLE										ST	RATA					nent/
Depth	Type No	HS(ppm)	нV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Dept	th D	ESCRIPTION	ı					Instrument/
		_			3				- - - - (1.00) - -	un ro		, SAND. Rou	inded stones	(<20mm) p	mid to dark bro oresent through		
1					0		38.39		- (0.44)	fro					, SAND, becom 20mm) present		
					3		37.95 37.88	?		1.44 1.51 No	matrix. Larg	e wood fragr	nent at 45 de	arees to ho	orizontal		-
					3	1	37.69 37.60			1.70 sto 1.79 fra	oist, mid to da ones (<20mm gments - sev	ark brown, un n) present thr reral small pion mm) at 1.56-	consolidated oughout and eces (<15mn 1.63m (rathe	I, slightly cla two areas v n) at 1.51-1. er decayed a	ayey SAND. Rowith waterlogge .54m and slightand orange-cold	d wood tly larger /	
2					2	<u>¥</u>	37.39		(0.50)	2.00 Mo	oist, mid grey me patches of 71-1.77m and	, crumbly to ι of mid orange d large (<60m	unconsolidate e unconsolida nm) horizonta	ed (working ated sand. L al wood frag	soft), clayey SA arge stone (<6 ment at 1.75-1. hat plastic), sa	0mm) at 79m.	
							36.89		- 2	.50 Ha	ccasional rou alf void - mois	nded pebbles t, mid brown	s (<15mm) p , mid grey an	resent. d mid grey-	brown, unconsc	olidated,	
3					0		35.89		- - - - (1.00) - - -	very compacted and with inclusions of stories (<30mm).					and total noist, mid		
4					0		34.89		- - - -(1.00) - - -	Just moist, mid brown, very stiff (working plastic), CLAY. Pieces of contaminant fresh grass on outer surface of core.							
							01.00		- - -		orehole comp	lete at 4.50m	1				
Boring Pro	gress ar	nd W	√ater	Obs			Cas	sing			Chiselling		Water	Added	Gene	eral Remar	<u>⊥</u> ks
Date	Time		Dept	h	Wat Dp	er t	Depth	Dia. mr	m	From	То	Hours	From	То	1.95m bgl	iter presen . Well e concentra	
All dime			etres	- 1			: Sherwo	od Drillir	ng		thod: Win	dowless S	ampler		Logged By:	Approved	== 3 b
Sc	ale 1:31	.25			Plant:	Geoto	ool			Ho	le Size:					1	

BOREHOLE No. W

Client:

CHESHIRE COUNTY COUNCIL

Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 13/09/07 40.03maOD

E365214 N352280

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

																1 01 1			
SA	MPLE										ST	RATA							
Depth	Type No	HS(ppm)	ну(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	D	ESCRIPTION	I							
		•	-	_					- - - (1.00)	un po	consolidated,	, SAND. Roo 30mm) at 0.	its and ?orna 50m, stones	mental bar	k brown to grey k at 0.00-0.15m resent through	-brown, , modern			
							39.03		1.0	10									
1					3		38.67	× × × × × × × × × × × × × × × × × × ×	_ _ (0.36) 1.3	Ju so pre 1.4	ft), sandy clay esent through 18m), single p	yey SILT. Oo lout, root at 1 loot sherd (<3	casional stor 1.05-1.10m a 30mm) at ~1.	nes and bri Ind 1.35m (20m.	ated (working m ck/tile fragment continuing dow	s (<15mm)			
					3				(0.41)	Ro at	oist, mid brow oot as noted a around 1.55n	above contin	grey-brown, oues to 1.48m	crumbly to i and stone	unconsolidated, s (<15mm) wer	SAND.			
2					0		38.26		2.0	Mo SA	oist, light to lig AND - orange 97-2.00m.	to mid bro	own/orange-b from ?iron pa	prown, crun an/oxide. St	nbly to unconso cone (<55mm) p	lidated, resent at			
					0				(0.48)	Co	ollapsed and I	rown, crumb			t to mid AND - orange c	olouration			
					0		37.55 37.39		2.4	Sn			moist, light to mid slightly blue grey, sticky (working y sandy CLAY - more sandy at 2.58-2.64m and th in colour. Most of core section composed of						
					0		37.03		(0.36)	∖ab Ju	undant large	stones (<65	n in colour. Most of core section composed of						
3									- - - - - -	Во	orehole compl	lete at 3.00m							
ı									- - - -										
									- - -										
oring Pro	gress ar	nd V	/ater	Obs			Cas	ing			Chiselling		Water	Added	Gen	eral Remarks			
Date	Time		Dept	h	Wate Dpt	er	Depth	Dia. mr	m Fr	om	То	Hours	From	То					
All dimer			etres				: Sherwo	od Drillir	ng	- 1	thod: Win	dowless S	ampler		Logged By:	Approved			
	ale 1:31 SLR Co		tina		Plant:0	Geot	ool				le Size:	·k Shrowel	hury SV3 5	HI Tal· (01743 23925				

BOREHOLE LOG BOREHOLE No. X

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 13/09/07
 37.62maOD
 E365014 N352321

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

10,001						ים טברי									1 of 1	
SAMPLE	S &	TES	STS							ST	RATA					ent/
Depth Type	HS(ppm)	НV(кРа)	РР(кРа)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	SCRIPTION	I					Instrument/
	Ī					37.28		- _ (0.34) - 0.34	Coll	lapsed and I onsolidated	oose in core CLAY. Mostl	tube - a little ly loose angu	matrix of d ılar 'hard co	lry, light to mi ore' stones (<	d grey, 45mm).	
						37.02	1/ 1/1/ 1/1/x	(0.26)	TOI (<3:	PSOIL. Brick 5mm) prese	t/tile (<20mm nt throughou	ı), mortar (<1 t.	5mm), mod	solidated, silt dern rootlets	and stones	
				2				- - _ (0.52)						with sandy in 0.80-0.85m a		
1				0		36.50						d grey-brown		dark grey, und	consolidated	
				0		36.20		1.42	(<1	0mm) prese	nt - particulai	rly at 1.75-1.8	85m, also a	Occasional st	tones ar rock	
				0		25.00		(0.58)	(<8)	umm) incline	ed at ~45 deç	grees to horiz	zontai at 1.5	53-1.59M.		
-2						35.62 35.41	?	2.00		Recovery.	n von etiff (working place	tio) CLAV (Occasional fo	sirly large	
				0				- - (0.63)				d pebble (<6		Occasional fa 48-2.55m.	arge	
						34.78 34.74	7	- - 2.84 - 2.88	No.	Recovery. S	ingle large a	angular stone	e (<85mm)	penetrates in	ito underlying	200 200 200 200 200 200 200 200 200 200
3				0		34.62		3.00	\clay Moi	to 2.92m -	vertically alig n, very stiff (ned relative working plas	to greatest			/ 600
								- - -	BOI	enoie compi	ete at 3.00m					
								- - -								
4								 - -								
								- - -								
								- - -								
Boring Progress a	and V	 Vater	Obs	servatio	ons	Cas	ing			Chiselling		Water	Added	Ge	eneral Rema	arks
Date Time		Dept	h	Wate Dpt	er	Depth	Dia. mr	n Froi		То	Hours	From	То			
All dimensions Scale 1:3		etres	- 1	Contra		: Sherwo	od Drillin	ıg		hod: Win	dowless S	ampler		Logged By	y: Approve	ed By

BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. Y

Co-ordinates:

E365057 N352322

Project No: 406.0889.00003.005

Client:

Project: NANTWICH WATERLOGGED DEPOSITS

Date:

13/09/07

Ground Level:

39.90maOD

1 of 1

SF.	MPLE	_										RATA				
Depth	Type No	(mdd)SH	ну(кРа)	PP(kPa)	SPT-N	Water	Reduced Level	Legend (Thick- ness)	Depth	DE	ESCRIPTION					
									(0.50)		llapsed and l				rd core' in lump ND.	os (<80
							39.40		0.50 - _ (0.33) - 0.83	SA	llapsed and le	oose in core ent moist and	tube - above d mid brown	e but also wit in colour.	th large stones	(<80mm),
1					0		38.90		1.00	Col und cind		SAND. Brick	and stone r		oist, mid to dar nm), with ?black	
								?	- - - (0.80) -		,					0
							38.10		1.80							0
					0			Ø	_		matrix. Dry s	hattered brid	ck (<90mm).			2
2					0		37.90 37.84		2.00		matrix. 'Plug	of dry brick	(<100mm).			
					0		 37.78 ∕		2.12 - -	crumbly), silty SAND. Crushed brick (<50mm) and black ash/cinder abundal at upper surface. Moist, light brown to light to mid grey-brown (rather orange from 2.12-2.30m						
					0		07.45		(0.63)	probably from surface contamination from brick above), unconsolidated SAND. 2.75						
3					0		37.15 36.90		_ (0.25)	Collapsed and loose in core tube - moist, light brown to light to mid grey-brown, unconsolidated SAND. Abundant rounded pebbles (<50mm) for approximately 90% of the volume of this section.						0mm) form
					0				- - - _ (0.74)	3.00 approximately 90% of the volume of this section. Moist, light brown to light to mid grey-brown, unconsolidated SAND (slightly reddish area (?iron pan/oxide) at 3.38-3.44m). Occasional rounded pebbles (<40mm) present throughout, small 'lens' of pebbles (<25mm) at 3.44-3.50n rounded pebbles (<25mm) common at interface with layer below						pebbles
					0		36.16 35.90		- 3.74 - 3.74 - (0.26) 4.00	Jus	st moist, mid	brown, very	stiff (working	plastic) CLA	AY.	0
4							33.90		- -	Воі	rehole compl	ete at 4.00m	1			<u> </u>
									- - -							
oring Pro	gress a	nd V	√ater	Obs	servatio	ons	Cas	ing			Chiselling		Water	Added	Gene	eral Remark
Date	Time		Dept	:h	Wate Dpt	er	Depth	Dia. mr	m Fro	m	То	Hours	From	То		
All dime	nsions i	n me	etres	$\frac{1}{1}$	Contra	ctor	: Sherwo	od Drillir	na l	Met	hod: Win	dowless S	ampler	<u> </u>	Logged By:	Approved

BOREHOLE No. **BOREHOLE LOG** Ζ **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: 38.46maOD E365079 N352243 13/09/07

Client:

File 406.0889.00003.005 NANTWICH ARCHAELOGICAL LOGS.GPJ

Form SLR AGS3 UK BH

Project No:

406.0889.00003.005

Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 Instrument/ **STRATA** SAMPLES & TESTS Backfill Legend SPT-N PP(kPa Water Туре Reduced DESCRIPTION (Thick-Depth Depth Level ness) 000 Collapsed and loose in core tube - a little sand may constitute matrix. Fill consists largely of rounded pebbles (<40mm), with occasional fragments of brick/tile (<15mm) and a little sand - ?ornamental pebble surface? More or (0.25)00.0 38 21 0.25 less dry grass at 0.25m. Just moist, light brown to mid grey (in shades of brown, grey and grey-brown), unconsolidated SAND. Brick/tile fragments (<8mm) at 0.43-0.45m. (0.45)0 37.76 0.70 Just moist, light grey-brown, unconsolidated SAND. Abundant rounded pebbles (<45mm) throughout. (0.30)0 37.46 No Recovery. (0.68)36.78 Just moist, light grey-brown, unconsolidated SAND, with some mid orange areas of ?iron pan/oxide. Abundant rounded pebbles (<45mm) throughout. (0.36)0 36.42 Moist, mid brown, very stiff (working plastic) CLAY. (0.94)0 35.48 35.46 - 3 0 Just moist, light grey-brown, compacted SAND. Rounded pebbles (<20mm) common Borehole complete at 3.00m General Remarks Boring Progress and Water Observations Casing Chiselling Water Added Water Dpt Date Depth То Hours From Depth Dia. mm All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Approved By: Logged By: Scale 1:31.25 Plant: Geotool Hole Size:

BOREHOLE No BOREHOLE LOG Α Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 30/07/07 33.29maOD E364931 N352661 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

	S & T	EST	S					<u></u>					STRAT	A	ent/
Depth	Type No	Test Type	Test Result		Pres	ervati	ion 4	Water	Reduc Leve	ed Legend	Depth (Thick- ness)			DESCRIPTION	nstrument/
2		SPT	N=0 N=0						29.8		(3.48)	1.61 - 1.6 soft to un 2.35 - 2.6 caused b lumps (<:	65 Very gray presenc 3 mm) with	tinuity of moist to well ted, light grey, sand. ranular appearance se of indurated clay hin the matrix.	
4		SPT	N=0	0				-	29.3		3.90	SAND	complete	e at 3.90m	
Bor	ing Pr	ogress	and Wate							Chiselling	-	Water	Added	General Rer	marks
Date T	ime	Dep	oth Dep	Casi oth	ng Dia. n	nm	Water Dpt	F	rom	То	Hours	From	То	_	

BOREHOLE No BOREHOLE LOG AA Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 37.97maOD E364730 N352391 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SAMPL	ES & 1	EST	S								STRATA	<u> </u>	
Depth	Type No	Test Type	Test Result	Pres	servation	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	DN -
		SPT	N=0	,0			37.33		(0.64) - - - - - - 0.64	0.35 - 0.5 fragments		/ERBURDEN brick and tile 20mm).	
1		SPT	N=0	-					-	SAND 0.64 - 0.7	4 Becomes	s dark greyish	brown.
2		SPT	N=0	,0					- (1.96) - - - - -				
3		SPT	N=0	0			35.37		2.60	CLAY	complete a	nt 3.00m	
4									-				
	oring Pr	1	and Water			r		hiselling To	Hours	_	Added To	Genera	al Remarks
Date	TITTE	Dep	Depti	Casing 1 Dia. n	Wate nm Dpt		From	10	Hours	From	10		
All dimen	sions in	metre	s Contra	ctor · She	rwood Drillii		Meth	od: Win	dowless S	Campler		ogged By:	Approved E

BOREHOLE LOG

BOREHOLE No **AB**

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 12/09/07
 37.93maOD
 E364740 N352370

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

Sheet:

BOREHOLE No BOREHOLE LOG AC Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 12/09/07 36.42maOD E364963 N352517 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

BOREHOLE No BOREHOLE LOG ΑE Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 10/01/11 35.19maOD E364917.887 N352428.049 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

			ATERLO		· \										1 of 1	
SAMPLE	S & T	EST	S					<u></u>					STRATA			ent/
Depth	Type No	Test Type	Test Result	Pro	eserva 2	atior 3	า 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPT	ION	lnetri mont/
				-							- - (0.79)	MADE G	ROUND/OV	ÆRBURDE	N	
									34.40		0.79	ARCHAE	OLOGICAL	. DEPOSIT		$\frac{1}{1}$
1							-		34.19	71/ 71/	1.00			DEPOSIT \	WITH	
		SPT	N=2	-	2						- - - - -	ORGANI	C CONTEN	ı		
2		SPT SPT	N=2 N=2	-	2 2		-	1			-					
		SPT	N=3			●3		₹		<u> </u>	- -					
•		SPT	N=1	•					32.19	1, 11, 1	3.00					
3				-			-		31.79	?	(0.40)	No Recov	ery.			
		SPT	N=1	- • 1 - • 1				-	31.19		- (0.60) - 4.00	SAND				
4						:			31.13			Borehole	complete a	t 4.00m		
Во	oring Pr	ogress	and Water						C	hiselling	-	Water	Added	Gene	ral Rema	rks
Date	Time	Dep	oth Dep	Casing th Dia.	mm	W	ater Opt	F	rom	То	Hours	From	То			
All dimens	sions in			actor : Sh Geotool	ierwoo	od D	rilling	Ш	Metho		dowless S	Sampler	 L J	ogged By: C & IP	Approve	d E

BOREHOLE No BOREHOLE LOG AF Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 11/01/11 34.89maOD E364899.123 N352463.451 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

		.,		000							1 of 1	
SAMPLES	& TEST	S			_					STRATA	<u> </u>	ent/
Depth Ty	ype Test No Type		Preserv 1 2	ration 3 4	Water	Reduce Level	d Legend	Depth (Thick- ness)			DESCRIPTION	Instrument/ Backfill
1	SPT	N=0	•					- - - - - - (1.39)	MADE GR	ROUND/O\	/ERBURDEN	
-	SPT	N=1	\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			33.50		1.39	NON CAL	DONICED	DEDOCIT WITH	
	SPT	N=1	• 1					- - -	ORGANIC	C CONTEN	DEPOSIT WITH IT	
-2	SPT	N=1	Q '	-			<u> </u>	- -				
	SPT	N=2	2				<u> </u>	-				
-	SPT	N=2						- - (2.21) -				
-3	SPT	N=0			₹			- - - -				
aL-92-10	SPT	N=0				31.29	9 1/2 1/2	3.60	SAND			_
25 - 4	SPT	N=0	•0			30.89	9	- (0.40) - 4.00	O/ ((VD			
Boring Date Tim All dimension Scale 1:								-	Borehole	complete a	at 4.00m	
Borine	g Progres	s and Wa	ater Observations	i		(Chiselling		Water	Added	General Remar	rks
Date Tim	ne De	pth D	Casing Depth Dia. mm	Water Dpt	F	rom	То	Hours	From	То		
AGOS UN BIT OPT. THE 4-00.0												
	:31.25	Pla	entractor : Sherwo		rk O	Hole	Size:	dowless S		J	ogged By: Approved TM	

Sheet:

Project:

File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ 26-05-16

Form SLR AGS3 UK BH SPT

NANTWICH WATERLOGGED DEPOSITS 1 of 1 Instrument/ Backfill **SAMPLES & TESTS STRATA** Water Reduced Legend Depth Test Type Type No Test Preservation Depth **DESCRIPTION** (Thick-Result 2 3 ness) MADE GROUND/OVERBURDEN (1.00)36.03 1.00 No Recovery. (0.90)35.13 ARCHAEOLOGICAL DEPOSIT SPT N=3 -2 (0.60)2.50 CLAY SPT N=2 SPT N=1 -3 (1.50)4.00 33.03 Borehole complete at 4.00m General Remarks Boring Progress and Water Observations Water Added Chiselling Water Dpt Date Depth То Hours From Method: Windowless Sampler All dimensions in metres Contractor: Sherwood Drilling Logged By: Approved By: Plant:Geotool Hole Size: Scale 1:31.25

BOREHOLE No BOREHOLE LOG В Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 30/07/07 E364925 N352582 36.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 2

SAMPL	ES & 1	EST	S							<u>ـ</u>					STRATA	Α	
Depth	Type No	Test Type	Tes	t ult			serv 2	atio/	n 4	Water	Reduce Level	Legend	Depth (Thick- ness)			DESCRIPT	TON
1													(2.44)	MADE GI 0.06 - 0.0 grey-brow	8 Becomir	VERBURDE ng mid to da	N \$
2				-							34.1	8	- - - - - - - 2.44				
		SPT	N=(, •	0					-			-			L DEPOSIT	
3		SPT	N=0										- - - - - (1.56)	3.00 - 4.0	00 Slight su	ulphide odou	ır.
4		SPT	N=() •	0						32.6	52	4.00		nded edge	e pot fragme	nt
		SPT			0								- - - - -	\(<11mm) CLAY			
				-		:			:	<u> </u>			-	<u> </u>			
	Boring Pr	1							/ater	╢.		Chiselling	Ua.:		Added	Gene	eral Remarks
Date	Time	Dep	ou I	Depth		<u>Dĭa.</u>	<u>mm</u>		<u>Dpt</u>		From	То	Hours	From	10		
All dimer	nsions in	metre	s	Contrac	ctor	: Sh	erwo	ood [Orilling	<u> </u>	Met	hod: Win	dowless S	Sampler		Logged By:	Approved E

BOREHOLE No BOREHOLE LOG В Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E364925 N352582 30/07/07 36.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 2 of 2

SAMPLE										숄				Depth						- 5
Depth	Type No	Test Type	Test Result			ser\ 2	vatio 3	on 4		Water	Reduce Level	Lege	end	(Thick- ness)			DES	CRIPTI	ON	/+404111111111
		SPT		0					-					(2.00)	CLAY (c	ontinued)				A SECOND
		SPT SPT	N=0 N=0	0																CARCA
		SPT SPT	N=0 N=0	0																CARC
6		SPT	N=0	0		-				-	30.62	2 —		6.00		e complete	at 6.0	00m		R.
7														- -						
														•						
•													-							
8														- ·						
													-	•						
9														- -						
														•						
													-							
														•						
		-	and Wate					Nato	ar			Chisell	ing			r Added	-	Gene	ral Remar	ks
Date	Time	Dep	oth Dep	oth	ing Dia.	mm	 '	Wate Dpt	-1	Fr	rom	То		Hours	From	То	\parallel			
All dimens																				

Project: NANTWICH WATERLOGGED DEPOSITS

1 of 1

Sheet:

SAMPLE	ES & 7	EST	S				_					STRATA	4		ent/
Depth	Type No	Test Type	Test Result		Prese	ervation 3 4	Water	Reduce Level	d Legend	Depth (Thick- ness)			DESCRIPT	ION	Instrument/ Rackfill
		SPT SPT SPT SPT SPT	N=1 N=2 N=2 N=1 N=0 N=2			3 4		32.9			1.47 - 1.5 1.60 - 1.6 sand. 1.72 - 1.7 fragments NON-CANO ORGANIO 1.90 - 1.9 1.95 Wat	2 Pocket of 2 Pocket of 3 Waterlog S. RBONISEE C CONTEN 5 Slight suerlogged w	of orange sai of light grey-l gged wood D DEPOSIT	WITH r. nts.	
- - - - - -4		SPT	N=1	-	∮ 1		-	30.83		4.00					
										-	Borehole	complete a	at 4.00m		
В	oring Pr	ogress	and W	ater Ol	oservatio				Chiselling		Water	Added	Gene	eral Remar	ks
Date	Time	Dep			ising Dia. mi		er F	From	То	Hours	From	То	_		
	e 1:31.	25	Pla	ant:Ge	otool	wood Drill		Hole	Size:	dowless S			Logged By: JC & IP	Approved	

BOREHOLE No BOREHOLE LOG D Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 31/07/07 35.03maOD E364925 N352423 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

Depth	Type No	Test	Test		_								1				
		Туре			Pres 1 2		ation 3	4	Water	Reduce Level	Legend	Depth (Thick- ness)			DESCRIPT	ION	Instrument/
				-									MADE GI	ROUND/O	VERBURDE	EN	
		SPT	N=0	•0					-			(0.70)					
		SPT	N=0	0]	34.3	3 XXX	0.70					9
		SPT	N=0	•						34.3	3	0.70	ARCHAE	OLOGICA fine ash/ci	L DEPOSIT	ortar.	
1				-				-				-					
		SPT	N=0	0					-			1					
		SPT	N=0	•°								(1.39)					250
		SPT SPT	N=0 N=0	0					-			}					
		SPT	N=0	F 0					1			}					CA
2		SPT SPT		0					-	32.9	4	2.09	2.00 - 2.0 SAND	9 Slight su	ulphide odou	r.	
		SPT	N=0	•					-	32.6	6	(0.28)					
				ļ``					1		1/ 1// 1//	İ	NON-CA	RBONISEI C CONTE	D DEPOSIT NT	WITH	
		SPT	N=2	-)	2		:				(0.63)		0 Rotted v			102
					/					22.0	2 1/2 1/2	L					
3				-	/			:	-	32.0	3 11, 11,	3.00	SAND				
				1 /								-					NO.
		SPT	N-O	/								(1.00)					
		371	N=0						-								
				ŀ					}			.[100
4]	31.0	3	4.00					2
												-	Borehole	complete	at 4.00m		
												-					
												-					
		_	and Wate				\\/.	ater			Chiselling			Added	Gene	eral Rema	rks
Date	Time	Dep	oth De	Casi pth	Dia. n	nm	Ď	pt	╢╴	rom	То	Hours	From	То	-		
All dimen	sions in	metre		tractor t:Geot		rwoc	od Dr	rilling	11		nod: Wir	ndowless	Sampler		Logged By: JC & IP	Approve	d E

BOREHOLE No BOREHOLE LOG Ε Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E364931 N352261 31/07/07 35.34maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

Depth	Type No	T4							;			
		Test Type	Test Result	Preservati	Mater 4	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	/+000011450
						34.34		- (1.00) - 1.00	MADE GF	ROUND/O\	/ERBURDEN	
1								(0.50)			DEPOSIT. es and slate.	
		SPT	N=0	•0		33.84	\///\\ -\daggerian \(\)	1.50	MINERAL	RICH DE	POSIT	
2		SPT SPT SPT SPT SPT	N=0 N=0 N=0 N=0 N=1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				- - _(0.91) -				
		SPT	N=1	, • • • • • • • • • • • • • • • • • • •		32.93		2.41			_ DEPOSIT.	T.
3		SPT	N=0	√ • • • • • • • • • • • • • • • • • • •				- - - - - - (1.59)	Contains	rragments	of brick and ash.	
		SPT		• • • • • • • • • • • • • • • • • • • •		31.34		- - - - - - 4.00				
4		SPT	N=0			31.07			Borehole	complete a	at 4.00m	NZ
В		1		r Observations	Matan	С	hiselling		Water		General Rem	narks
Date	Time	Der	oth Dep	Casing oth Dia. mm	Water Dpt F	rom	То	Hours	From	То		

BOREHOLE LOG CHESHIRE COUNTY COUNCIL No: 406.0889.00003.005 Date: 01/08/07 Ground Level: 205-07dinates: E365191 N352264 BOREHOLE No F

Project: NANTWICH WATERLOGGED DEPOSITS

Client:

Project No:

1 of 1

Sheet:

BOREHOLE NO F1

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 10/01/11
 39.69maOD
 E365188.877 N352269.226

400.0000.0000.000 10/01/11 00.0011100D E000100.01/11002E00.EE0

Project: Sheet:

NANTWICH WATERLOGGED DEPOSITS 1 of 1

BOREHOLE No BOREHOLE LOG F2 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365188.877 N352269.226 10/01/11 39.69maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

	T_	_	_	_			<u>⊒</u>			Depth				3
Depth	Type No	Test Type	Test Result	Pr 1	eserva 2	ation 3 4	Water	Reduced Level	Legend	(Thick- ness)			DESCRIPTION	lactri mont/
		SPT	N=0	0						(1.65)	MADE GF	ROUND		
1		SPT	N=0	0			- - - -							
		SPT SPT	N=0 N=0	0				38.04		1.65	ДРСНАЕ	OI OGICAI	L DEPOSIT.	
2		SPT	N=0	0				37.69		(0.35)	Contains glass.	ash/cinder	r, brick, mortar and	
-		SPT	N=0	0				37.37	. ?	(0.32)	No recove	ery		
		SPT	N=0	0						- - (0.34)	SAND			
		SPT	N=0	0				37.03		2.66	CLAY			_
3		SPT	N=0 N=0							(1.34)				
1				-			_	35.69		4.00	Borehole	complete a	at 4.00m	
В	oring Pr	ogress	and Water	Observa	ations			C	hiselling	-	Water	Added	General Ren	narks
Date	Time	Dep	oth Dept	Casing h Dia.	mm	Wate Dpt	F	From	То	Hours	From	То		
All dimens														

BOREHOLE No BOREHOLE LOG G Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365096 N352398 01/08/07 39.60maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPLI	T_	T . (T				. e	를 됐다.	D		Depth					
Depth	Type No	Test Type	Test Result	1		serva 2	ation 3 4	Water	Reduce Level	^d Legend	(Thick- ness)			DESC	RIPTION	
				-				-	39.33		(0.27)	MADE GF	ROUND/O	VERBL	JRDEN	
1		SPT SPT SPT SPT SPT	N=0 N=0 N=0 N=0 N=0						33.34		0.27	ARCHAE Contains and rotted	OLOGICA ash/cinder d charcoal.	, brick,	OSIT. tile fragmer	nts
ı		SPT	N=1) 1						(1.72)					
		SPT	N=0	6							-					
2		SPT	N=0	0					37.6	1	1.99					
-		SPT SPT SPT	N=0 N=0 N=0 N=0	0 0							· _ · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · · - ·	SAND				
		SPT		0							(1.01)					
3				-				-	36.60	0	3.00					
											-	Borehole	complete a	at 3.00	m	
4											- - -					
											-					
														1		
Date	oring Pr Time	ogress	and Wate	er Obse Casir pth [Wate Dpt	- -	rom	Chiselling To	Hours	Water	Added To	-	General Re	marks
			De	μui L	<u>ла. Г</u>		υ ρι									
All dimen																

BOREHOLE No BOREHOLE LOG Н Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 01/08/07 39.35maOD E365233 N352471 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL		<u></u>	5					Decth	,	STRATA	1	2
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	
				-				-	MADE GF	ROUND/O\	VERBURDEN	
				-	-			- (0.36)				
		SPT	N=0	20	1	38.99		0.36	ARCHAE	OL OGICAL	L DEPOSIT.	
		SPT	N=0	0	+			-	Contains		, brick, mortar and	K
		SPT	N=0		1			(0.64)	glass.			15
		SPT	N=0	0 : : : : :	-			- ` ´				6
1					1	38.35		1.00				
				-	+			-	No Recov	ery.		15
					1			(0.42)				Ş
				<u></u>	+	37.93 37.83		1.42 1.52	SAND			
		SPT	N=0	Ţ	1	31.03		- 1.52	CLAY			
		SPT	N=0	∳ ∘	-			-				
			-		1							2
2				-	-			_				
					1			-				
				+	-			-				
		ODT	N O	0	1			-				
		SPT	N=0		-			-				
					1			(2.48)				É
				ļ	-			-				É
3				<u> </u>	1			_				Ē
				ļ	-			-				É
					1			-				E
		SPT	N=0	•	-			-				
					1			-				
				ļ	-			-				
4					1	35.35		4.00				22
•								-	Borehole	complete a	at 4.00m	
								-				
								-				
								-				
								-				
E	Boring Pr	ogress	and Water	Observations	 	С	hiselling		Water	Added	General Re	marks
Date	Time	Dep		Casing Water th Dia. mm Dpt	F	rom	То	Hours	From	То		
			2550									
All dimer	nsions in	metre	e Contra	actor: Sherwood Drilling	٦.	Moth	od· \Min	dowless S	Compler	1.1	Logged By: Appro	oved E

BOREHOLE No BOREHOLE LOG I Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365308 N352394 31/07/07 38.96maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

est Test pe Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick-			DECODIDATION
-			LCVCI]	ness)			DESCRIPTION
PT N=1	•				(0.86)	ARCHAEL 0.00 - 0.86	_OGICAL [6 Very slig!	DEPOSIT ht sulphide odour.
PT N=3 PT N=0	10 ▶3		38.10 38.00		0.86			DEPOSIT WITH IT. Contains
PT N=0	0			> \ \ \ - \ \ - \ \ - \ \ \ \ \ \ \ \ \ \	(0.41)	ash/cinder	r and wood	ly root fragments.
PT N=0	0		37.59		1.37	SAND		
		-	31.30		- 1.30	CLAY		D D
PT N=0	-				- - - -			
PT N=0	o				(2.12)			
PT N=0	0		35.26		- - - - - - 3.70			
					-	Borehole of	complete a	at 3.70m
ress and Water (Observations	$\frac{\bot}{\Box}$	C	hiselling		Water	Added	General Remark
Depth Depth	Casing Water Dia. mm Dpt	F	rom	То	Hours	From	То	
		Contractor : Sherwood Drilling						

BOREHOLE No BOREHOLE LOG J Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365284 N352296 406.0889.00003.005 31/07/07 40.04maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL		LOI			— ⊨		1	5	,	STRATA	·	<u>م</u> و
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	lnstrument/
		SPT	N=0	•				- (1.00)	MADE GF	ROUND/O\	VERBURDEN	
		SPT	N=0	••				(1.00)				
1		SPT	N=2	P ²		39.04		1.00				
		SPT	N=0		-			- -	SAND			
		SPT	N=2	•2	-			- (0.75) -				
		SPT	N=0	•		38.29		- 1.75 - -	CLAY			
2		•						-				
		SPT	N=0	0				- (2.25)				
3		SPT	N=0	•0				- - - - -				
4					-	36.04		4.00				
								- - - - - -	Borehole	complete a	at 4.00m	
E	Boring Pr	ogress	and Wate	er Observations		C	hiselling		Water	Added	General Rem	narks
Date	Time	Dep	oth De	Casing Water pth Dia. mm Dpt		From	То	Hours	From	То		
All dimer	nsions in	metre	s Cont	tractor : Sherwood Drillin		Moth	od: \\/in	dowless S	`amples		ogged By: Approv	rod D

BOREHOLE No BOREHOLE LOG Κ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365021 N352297 31/07/07 37.14maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL								<u> </u>			Depth		STRATA	١	5
Depth	Type No	Test Type	Test Result	1	Pres 2	ervat 3		Water	Reduce Level	Legend	(Thick- ness)			DESCRIPTION	ON Had
				-	:	:	:	-			*	MADE GF	ROUND/O	VERBURDEN	
											*				
				-			:	-			× (4.00)				
					:		:	-			(1.00)				(S
											<u>}</u>				
1				Ŀ			:	-	36.1	4	1.00				
•				-				-			-	CLAY			Š
							:	1			-				(6) 22
		SPT	N=0	0							-				
		SFI	N-U				:				-				
				-				-			1				Š
2				-				-		<u> </u>	(2.00)				
											‡				
		SPT	N=0				:				<u> </u>				
				-				-			_				
							:				-				
		SPT	N=0							F	-				
3				-	- :				34.1	4	3.00				
											-	Borehole	complete	at 3.00m	
											_				
											-				
											-				
4											_				
-											-				
											-				
											-				
											-				
											-				
В	oring Pr	ogress	and Water	Obser	vatic					Chiselling	J	Water	Added	Gener	ral Remarks
Date	Time	Dep	oth Dep	Casing th Di	J a. m	ım	Water Dpt		From	То	Hours	From	То		
All dimen	sions in	metre	s Contr	actor : S	Sher	wood	l Drillin	na	Meth	od: \\/ir	ndowless S	Sampler		Logged By:	Approved E

BOREHOLE No BOREHOLE LOG L Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365128 N352544 406.0889.00003.005 11/09/07 38.71maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1

BOREHOLE No BOREHOLE LOG M Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365015 N352549 11/09/07 37.81maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SPT N=0		Reduced Level		Depth (Thickness)			DESCRIPTIC ÆRBURDEN	
SPT N=0				(Thick- ness)	MADE GF			N
SPT N=0 SPT N=1	•	36.58		-	MADE GR	ROUND/OV	ÆRBURDEN	
	1	30.00	$\times\!\!\times\!\!\times\!\!\times$	- - - 1.23				
			1/ 1/1/ 1/V	- 1.23	ORGANIC		DEPOSIT W T. Contains material.	'ITH
SPT N=1	₹		71/ 71/ 71/ 71/ 7	(1.00)	1.23 - 1.4 1.44 - 1.6	4 Slight sul 0 Slight sul	phide odour. phide odour. phide odour.	
SPT N=1		05.50	<u> </u>	- - -	2.00 - 2.2	3 Very sligh	nt sulphide od	lour.
		35.58		- 2.23 - -	SAND			
SPT N=0 0				(0.77)				
SPT N=0		34.81		3.00	Danahala	complete a	t 2 00	
				- - - - -	Borenoic	complete a	10.0011	
				- - -				
				-				
	I			-				
Boring Progress and Water Observations Casing Water	_		hiselling	Harris	Water			al Remark
Date Time Depth Casing Water Depth Dia. mm Dpt	F	rom	То	Hours	From	То	Groundwate 1.58m bgl. V headspace 905ppm.	Vell
All dimensions in metres Scale 1:31.25 Contractor : Sherwood Drilling Plant:Geotool		Metho		dowless S	Sampler	L		Approved

Form SLR AGS3 UK BH SPT File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ 26-05-16

BOREHOLE LOG

BOREHOLE No
N

Client:

CHESHIRE COUNTY COUNCIL

Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 12/09/07 39.17maOD E365016 N352449

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

Sheet:

BOREHOLE No BOREHOLE LOG N1 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 39.16maOD E365016 N352449 10/01/11 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS

1 of 1

nstrument/ **SAMPLES & TESTS STRATA** Water Reduced Legend Depth Backfill Test Test Preservation Туре Depth (Thick-**DESCRIPTION** Ńο Туре Result Level 2 3 ness) MADE GROUND (0.56)SPT N=038.60 0.56 SPT N=0ARCHAEOLOGICAL DEPOSIT. Contains ash/cinder, brick, tile SPT N=0fragments, mortar and rotted charcoal. 0.56 - 0.60 ...Single large stone present (0.78)SPT N=0 (approximately 55mm) SPT N=0 SPT N=037.82 NON-CARBONISED DEPOSIT WITH ORGANIC CONTENT. Contains 11/ waterlogged wood and herbaceous 11, 11, SPT N=2 1.46 - 1.47 ... Decayed wood fragments 1.63 - 1.65 ... Decayed mortar/lime up to 11, 11, 2 1.92 - 1.94 ...Roundwood fragments up 1, 11, 1 SPT N=0 to 35mm. (1.66) 11, 11, 2.23 - 2.30 ...Large wood inclusion. 1, 11, 1 2.23 - 2.51 ...Fine herbaceous detritus present. SPT <u>/ 1/ / 1/</u> N=32.51 - 2.71 ... Abundant wood fragments 1/ 1/1/ 1 up to 12mm. SPT N=011, 11, SPT N=2 36.16 4 44 2.89 - 3.00 ... Wood becomes less 3.00 SPT N=3-3 decayed and darker in colour. Borehole complete at 3.00m General Remarks Boring Progress and Water Observations Chiselling Water Added Water Dpt Casing Depth | Dia Date Depth Hours From All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Logged By: Approved By: Plant:Geotool Hole Size: Scale 1:31.25

26-05-16

File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ

AGS3 UK BH SPT

SLR

Form

BOREHOLE No BOREHOLE LOG 0 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365184 N352470 11/09/07 39.64maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPLE					water u			Depth	•	STRAT	/ \	
Depth	Type No	Test Type	Test Result	Preservation 1 2 3	n 8	Reduced Level	Legend	(Thick- ness)			DESCRIPTION	Instrument/
1		SPT SPT SPT SPT	N=0 N=0 N=0					- - - - (1.20)		4 Brick/tile	e which becomes the ent.	
		SPT	N=0			38.44		1.20			D DEPOSIT WITH	+
		SPT	N=2	• 2	1	07.07		- (0.57) -	tile, coal f plant rema	ragments ains.	NT. Contains brick, and waterlogged ulphide odour.	
		SPT	N=0	•0		37.87		2.00	ARCHAE	OLOGICA	AL DEPOSIT	
2							?	- (0.39)	No Recov	very.		
		SPT	N=0	•		37.25	71/ 71/ 7 71/ 7	(0.50)	ORGANIC	CONTE	D DEPOSIT WITH NT ulphide odour.	
3		SPT	N=0	• 0		30.73			CLAY			_
		SPT	N=0	0		25.04		- (1.00) - (1.00)				
4				: : :		35.64		4.00	Borehole	complete	at 4.00m	
								- - - -				
В	oring Pr	ogress	and Wate	er Observations		C	hiselling		Water	Added	General Rema	arks
Date	Time	Dep		Casing V	/ater Dpt	rom	То	Hours	From	То	Groundwater prese	nt a
											headspace concent 10ppm.	trati
All dimen	sions in	metre	s Cont	tractor : Sherwood [Metho	od: Win	dowless S	Sampler		Logged By: Approve	ed E

BOREHOLE No BOREHOLE LOG Ρ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 10/09/07 39.93maOD E365098 N352374 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1

BOREHOLE No BOREHOLE LOG P1 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365098 N352374 406.0889.00003.005 10/01/11 39.93maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1

26-05-16

File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ

Form SLR AGS3 UK BH SPT

BOREHOLE No BOREHOLE LOG Q Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365196 N352383 10/09/07 39.22maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL	ES & 1	EST	S						,	STRATA	4	
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	 nstrument/
					-	38.74		(0.48)	MADE GF	ROUND/O	VERBURDEN	
1						00.11		-(1.02)		brick, tile,	L DEPOSIT. cinder/coal and	
		SPT	N=0 N=0	0		37.72		1.50	MINIERAI	. RICH DE	POSIT	
		SPT SPT	N=0 N=0	P ⁰	<u></u>	37.39		(0.33)		- 1 (1011 B)	0011	
2		SPT	N=0	0	-			-	SAND			
		SPT	N=0	0				(1.05)				
		SPT	N=0	0	-	36.34		2.88				
3		SPT SPT	N=0 N=0	0				-	CLAY			
		SPT	N=0	0		35.42		3.80				
1				: : : :		33.42		- - -	Borehole	complete	at 3.80m	
								- - -				
F	Soring Pr	nares	and Water	Observations			hiselling	-	Water	Added	General Rem	arks
Date	Time	Dep		Casing Water th Dia. mm Dpt	F	rom	То	Hours	From	То	Groundwater prese	
											1.71m bgl. Well headspace concen 170ppm.	trati
All dimer	nsions in	metre	s Contra	actor : Sherwood Drilling]	Meth	od: Win	dowless S	Sampler	<u> </u>	Logged By: Approv	ed B

BOREHOLE No BOREHOLE LOG R Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365205 N352362 406.0889.00003.005 10/09/07 39.18maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL	E5 & I	E51	5		e			.	,	STRATA	\	ةِ
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	 hetriment/
									MADE GF	ROUND/O\	VERBURDEN	2
				+	-			(0.50)				
					1							
				-	-	38.68		0.50			L DEPOSIT.	
				†	1			-	Contains	brick, tile,	cinder/coal and	
		SPT	N=0	• • • • • • • • • • • • • • • • • • •	-				mortar fra	igments.		
1				†	1			(0.86)				S
1				ļ	-			_				6
		SPT	N=0	0 : :	+	07.00		4.00				Š
				ļ. i i i i]	37.82	- () — (1.36	MINFRAI	RICH DE	POSIT	
		SPT	N=0		-		\ _\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	1011111211012	- 1 (1011 B)		
		SPT SPT	N=0 N=0	0	1		├ ♦ _ ⟨	(0.51)				Ġ
		SPT	N=0	0	-	37.31	\ - \ \ - \ \ - \ \ \ \ \ \ \ \ \ \ \ \	1.87				
2		SPT	N=0	•	1			_	SAND			Ŕ
=				.	+			- ,				
					1			- (0.63)				9
				ļ	-	36.68		2.50				9
					1	30.00		2.30	CLAY			— <u>[</u> 0
					-			_				2
		SPT	N=0		1		=	_				2
3				[- i i i i i	-							2
					+			_				
]			(1.50)				
				†	1			_				K
		SPT	N=0	0]			-				
				+	+			_				6
					1	0= 40						6
4					+	35.18		4.00				- 2
								-	Borehole	complete a	at 4.00m	
								_				
								-				
								_				
								-				
)				<u> </u>		1.1 11	-	10/-1	A .l. ll	General Ren	20110
Date	Time	Dep		Observations Casing Water th Dia. mm Dpt	╢-,	From	hiselling To	Hours	Water	To	General Ren	narks
Date	111110		Dept Dept	th Dia. mm Dpt	╢.	10111	10	Tiouro	1 10111	10		
A II .:		<u> </u>				1	,			1.		, -
All dimer	nsions in	metre	s Contra	actor : Sherwood Drilling	7	Meth	od: Win	dowless S	sampler	I L	Logged By: │ Appro	ved B

BOREHOLE No BOREHOLE LOG S Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365119 N352343 11/09/07 39.77maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPLE	_5 & I	LOI						te			Donth		STRAT	^	<u>۾</u> ۾
Depth	Type No	Test Type	Test Result	1	Preser 2	vatio 3	on 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION	 nstriment/
		SPT	N=0	0	-						· - - (0.81)	MADE GF	ROUND/C	OVERBURDEN	
		SPT	N=0					-	38.96		- 0.81				
1		SPT	N=0	•0 - - -							- - - -			AL DEPOSIT. s of brick and tile.	
2		SPT	N=0	•0							- - - - (2.47)				
		SPT	N=0	P ⁰							-				
		SPT SPT SPT	N=0 N=0 N=0	•0 •0 •0							-	2.44 Brick <130mm)	surface ((Large fragments	
3		SPT	N=0	••				1	36.49		- - - - 3.28				
											-	SAND			
		SPT	N=0	•0							(0.72)				
4				:		-	:		35.77	,	4.00	Borehole	complete	at 4 00m	
											- - - - - -	2 2 3 3 3 6			
В	oring Pr	ogress	and Wate						C	hiselling		Water	Added	General Rem	narks
Date	Time	Dep	oth Dep	Casing th Di	a. mm	1	Water Dpt	F	From	То	Hours	From	То	Groundwater press 3.34m bgl. Well headspace concer 130ppm.	
All dimen	sions in	metre	s Contr	actor : S	Sherw	rood	Drilling	<u> </u>	Meth	od: Win	dowless S	Sampler		Logged By: Approv	

BOREHOLE No BOREHOLE LOG Т Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 14/09/07 39.50maOD E365140 N352352 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1

BOREHOLE LOG

BOREHOLE No **U**

Client:

CHESHIRE COUNTY COUNCIL

 Project No:
 Date:
 Ground Level:
 Co-ordinates:

 406.0889.00003.005
 14/09/07
 39.43maOD
 E365160 N352349

SLR

Project:

NANTWICH WATERLOGGED DEPOSITS

1 of 1

Sheet:

ITAITIVIOII	WAILKLO	GGED DEPOSITS								1 of 1	
SAMPLES & TES	STS		_					STRATA	١		ent/
Depth Type Te	est Test pe Result	Preservation 1 2 3 4	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPT	ION	Instrument/ Backfill
-						-	Contains	brick, tile	L DEPOSIT. and coal fraç agment (<55	gments.	
SF	PT N=0	•				(1.50)			skull fragmer		
-1 -1 - - - - - - - - - - - - - - - - -	PT N=0	•				- - - -	1.00 - 1.0 (<80mm)	8 Large hu	ıman skull fr	agment	
				37.93		1.50					
SF	PT N=0 PT N=0			07.00		(0.27)	MINERAL	RICH DE	POSIT		
- -2	PT N=1 PT N=2			37.66		1.77	ORGANIO 1.77 - 1.9	C CONTEN 6 Sliaht su	D DEPOSIT I NT Ilphide odou Ilphide odou	r.	
-	PT N=2			26.42	77 77 77 77 77 77 77 77	3.00					
- 3 				30.43			Borehole	complete a	at 3.00m		SOUR
01-00-07 C45-07-07-07-07-07-07-07-07-07-07-07-07-07-						- - - -					
						- - - -					
יייייייייייייייייייייייייייייייייייייי						- - -					
Boring Progre		r Observations		С	hiselling		Water	Added	Gene	eral Remar	ks
Date Time [Depth Dep	Casing Water th Dia. mm Dpt	F	rom	То	Hours	From	То			
Boring Progre Date Time C											
All dimensions in me		ractor : Sherwood Drilling	Ш			dowless S	Sampler		Logged By:	Approved	d By:
		Geotool nes House, Holsworth Pai	rk. O	Hole xon Busii		k, Shrews	bury SY3 5		JC & IP 1743 239250	TM), Fax: N/A	

BOREHOLE No BOREHOLE LOG ٧ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365195 N352346 406.0889.00003.005 14/09/07 39.39maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1

BOREHOLE No BOREHOLE LOG W Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365214 N352280 13/09/07 40.03maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS**

SAMPLE	ES & 1	EST	S							STRATA		1
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduce Level	d Legend	Depth (Thick- ness)		Ι	DESCRIPTION	
1					-	39.03	3	- (1.00) - (1.00)			ERBURDEN	
ı		SPT	N=3	•3		38.67	7	- - (0.36) - 1.36	Contains	OLOGICAL brick and till le pot sherd	e fragments.	
		SPT	N=3	3	-			- - -	S			
2		SPT	N=0					(1.12)				
		SPT	N=0	•0	-	37.55	5	- - 2.48				
		SPT		0				(0.52)	CLAY			
3		G	N=0			37.03	3	3.00	Borehole	complete at	3.00m	
1												
В	oring Pr	ogress		r Observations		(Chiselling	- - -	Water	Added	General Re	marks
Date	Time	Dep	oth Dep	Casing Water th Dia.mm Dpt	F	From	То	Hours	From	То		
All dimen	oiono in			ractor : Sherwood Drilling					Sampler		ogged By: Appro	

BOREHOLE No BOREHOLE LOG Χ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 E365014 N352321 37.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL	ES & 1	EST	S				<u>ا</u>				•	STRATA	4	
Depth	Type No	Test Type	Test Result	Pre	eservation 2 3	on 4	Water	Reduce Level	Legend	Depth (Thick- ness)			DESCRIPT	ION
				-			-	27.0		- (0.60)	MADE GF	ROUND/O	VERBURDE	N
1		SPT	N=2		2	-	-	37.0	2	0.60 - - - - -(0.82)			L DEPOSIT. Ind construc	
		SPT	N=0	•				36.2	0	- - - 1.42	CLAY			
2		SPT	N=0	0		_	-			- - -				
_							-			- - (1.58) - -				
		SPT					-	34.6		3.00				
3		SPT	N=0			•	-	04.0		-	Borehole	complete a	at 3.00m	
4										- - -				
										- - -				
В	oring Pr	ogress	and Wate	er Observa	tions			(Chiselling	-	Water	Added	Gene	eral Remarks
Date	Time	Dep		Casing oth Dia.		Water Dpt	F	rom	То	Hours	From	То		
All dimen	sions in	metre	s Cont	ractor : Sh	erwood	Drilling		Meth	and: Win	dowless S	Sampler	<u> </u>	Logged By:	Approved E

BOREHOLE No BOREHOLE LOG Υ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 E365057 N352322 39.90maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPL					<u>—</u> ≢			Depth		STRATA	`	
Depth	Type No	Test Type	Test Result	Preservation 1 2 3 4	Water	Reduce Level	Legend	(Thick- ness)			DESCRIPT	TION
1		SPT	N=0					(2.06)	MADE GF	ROUND/O	VERBURDE	N
2		SPT SPT SPT	N=0 N=0 N=0			37.8	4	- 2.06 - -	SAND			
		SPT	N=0	•0				- - -				
3		SPT	N=0	••	-			- (1.68) 				
		SPT	N=0	0		36.1	6	- - - - 3.74				
4		SPT	N=0	0	-	35.9		(0.26) 4.00	CLAY			
								-	Borehole	complete a	at 4.00m	
E	Boring Pr	ogress		r Observations		(Chiselling		Water	Added	Gene	eral Remarks
Date	Time	Dep	oth Dep	Casing Wate oth Dia. mm Dpt	i.L	From	То	Hours	From	То		
All dime	nsions in	metre	s Conti	ractor : Sherwood Drilli	ng	Meth	nod: Win	dowless S	Sampler	 L	Logged By: JC & IP	Approved E

BOREHOLE No BOREHOLE LOG Ζ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 38.46maOD E365079 N352243 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1

SAMPLI	ES & 1	EST	S						<u>_</u>				,	STRATA	4	
Depth	Type No	Test Type	Test Result	,	Pres			4	Water	Reduce Level	d Legend	Depth (Thick- ness)			DESCRIPT	TION
		SPT	N=0	0								(0.70)		ROUND/O	VERBURDE	N
		SPT	N=0	0					-	37.7	3	0.70	SAND			
1				-				-	-			_ - - _ (1.34) -				
2		SPT	N=0	0				-	-	36.4	2	- - - 2.04				
			N 2	0					-			(0.96)	CLAY			
		SPT	N=0		-					35.4		3.00				
3		SPT	N=0		·			:		33.1				complete	at 3.00m	
4												- - - - - -				
												- - - -				
В	oring Pr	ogress	and Water							(Chiselling		Water	Added	Gene	eral Remarks
Date	Time	Dep	oth Dept	Casir h I	ng Dia. m	nm	Wa D	ater pt	F	From	То	Hours	From	То		
All dimen	sions in	metre	s Contra	actor	She	rwoc	od Di	rillina		Meth	nod: Win	dowless \$	Sampler		Logged By:	Approved E

Location	Easting	Northing	Surface Elevation	Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
Location			(mOD)	Depth (m)	Elevation (mOD)		Oxygen (mg/l)	(mV SHE)	ρп	(µS/CM)	(°C)
AB	364740	352370	37.93	2.13	35.80	20/11/07	0	105.4	7.08	1253	12.1
AB	364740	352370	37.93	1.77	36.16	01/02/2011	1.85	262.7	7.09	706	7.89
AB	364740	352370	37.93	2.08	35.85	12/05/2011	-	322	7.52	344	9.33
AB	364740	352370	37.93	2.24	35.69	18/08/2011	0.24	118.4	7.12	1086	12.4
AB	364740	352370	37.93	2.27	35.66	15/11/2011	2.22	281	6.73	443	11.15
AB	364740	352370	37.93	1.77	36.16	16/02/2012	3.94	397.4	7.19	412	8.6
AB	364740	352370	37.93	1.97	35.96	25/05/2012	1.88	161.5	7.14	908	7.89
AB	364740	352370	37.93	1.96	35.97	31/08/2012	1.06	305.7	7.07	898	10.68
AB	364740	352370	37.93	1.48	36.45	28/11/2012	1.44	251.3	7.47	1105	8.55
AB	364740	352370	37.93	1.49	36.44	26/02/2013	0.76	188.6	7.25	780	4.92
AB	364740	352370	37.93	1.83	36.1	12/06/2013	1.3	269.2	7.11	639	6.58
AB	364740	352370	37.93	1.91	36.02	20/08/2013	1.42	242.5	7.28	797	12.41
AB	364740	352370	37.93	1.8	36.13	26/11/2013	1.96	325.1	7.8	862	8.88
AB	364740	352370	37.93	1.49	36.44	26/02/2014	2.85	236.7	6.92	1859	4.85
AB	364740	352370	37.93	1.776	36.154	23/05/2014	3.26	138.1	9.85	1519	10.4
AB	364740	352370	37.93	2.026	35.904	21/08/2014	0.21	209	7.04	2336	12.8
AB	364740	352370	37.93	1.86	36.07	26/11/2014	2.44	71.9	7.11	1148	9.19
AB	364740	352370	37.93	1.754	36.18	23/02/2015	0.01	-137	7.5	1273	5.01
AB	364740	352370	37.93	1.859	36.07	29/05/2015	1.81	110.9	8.64	833	10.4
AB	364740	352370	37.93	2.164	35.77	26/08/2015	0.38	210	7.02	1350	12.6
AB	364740	352370	37.93	1.929	36.00	02/12/2015	0.99	355.2	8.09	680	11.9
AC	364963	352517	36.42	2.83	33.59	20/11/07	0	79.3	6.69	3505	14.5
AC	364963	352517	36.42	2.63	33.79	01/02/2011	0.77	156.4	6.37	2455	9.83
AC	364963	352517	36.42	2.98	33.44	12/05/2011	-	340.4	6.84	1489	10.85
AC	364963	352517	36.42	2.85	33.57	18/08/2011	0.32	157.1	6.7	2614	14.9
AC	364963	352517	36.42	2.79	33.63	15/11/2011	0.64	247.2	6.9	1343	13.69
AC	364963	352517	36.42	2.42	34.00	16/02/2012	1.12	408.7	7.2	3253	8
AC	364963	352517	36.42	2.53	33.89	25/05/2012	1.7	371.4	6.81	3013	9.09
AC	364963	352517	36.42	2.56	33.86	31/08/2012	0.79	110.2	7.17	2172	13.49
AC	364963	352517	36.42	2.24	34.18	28/11/2012	1.34	204	7.159	2929	11.31
AC	364963	352517	36.42	2.45	33.97	26/02/2013	0.49	168.8	7.09	1721	6.42
AC	364963	352517	36.42	2.69	33.73	12/06/2013	1.31	148.7	6.43	1356	8.87
AC	364963	352517	36.42	2.73	33.69	20/08/2013	1.02	115.1	7.02	1934	13.17
AC	364963	352517	36.42	2.69	33.73	26/11/2013	1.31	359.7	6.43	1356	8.87
AC	364963	352517	36.42	2.34	34.08	25/02/2014	1.48	117.9	6.73	4338	5.46
AC	364963	352517	36.42	2.54	33.88	23/05/2014	2.7	108.9	-	4425	12.1

Location	Easting	Northing	Surface Elevation	Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
Location	Lasting	Northing	(mOD)	Depth (m)	Elevation (mOD)		Oxygen (mg/l)	(mV SHE)	рп	(µS/CM)	(°C)
AC	364963	352517	36.42	2.744	33.676	21/08/2014	0.73	77	7.17	5669	15.7
AC	364963	352517	36.42	2.62	33.80	26/11/2014	2.03	330	7.1	2944	11.91
AC	364963	352517	36.42	2.695	33.73	23/02/2015	0.17	-244.7	7.3	2785.0	-
AC	364963	352517	36.42	2.754	33.67	29/05/2015	0.12	59.5	8.23	2339	11.9
AC	364963	352517	36.42	2.808	33.61	26/08/2015	3.45	128.9	6.62	3061	15
AC	364963	352517	36.42	2.498	33.92	02/12/2015	0.69	362.2	7.65	1842	14.2
AE	364918	352428	35.19	2.58	32.61	01/02/2011	0.86	192.1	6.66	1405	10.87
AE	364918	352428	35.19	2.84	32.35	12/05/2011	-	272.4	7.11	950	11.22
AE	364918	352428	35.19	2.8	32.388	18/08/2011	0.28	140.6	6.91	2018	14.5
AE	364918	352428	35.19	2.77	32.418	15/11/2011	0.51	177.4	7	990	13.78
AE	364918	352428	35.19	2.58	32.61	17/02/2012	0.7	498.3	7.12	883	10.54
AE	364918	352428	35.19	2.65	32.54	25/05/2012	1.67	148.9	6.92	2114	10.3
AE	364918	352428	35.188	2.72	32.468	31/08/2012	0.89	139.7	7.14	1484	12.11
AE	364918	352428	35.188	2.24	32.948	28/11/2012	0.8	216.3	7.271	1693	11.9
AE	364918	352428	35.188	2.58	32.608	26/02/2013	0.47	185.6	7.03	1315	7.68
AE	364918	352428	35.188	2.62	32.568	12/06/2013	1.28	218.9	6.72	889	9.15
AE	364918	352428	35.188	2.72	32.468	20/08/2013	1.31	147.1	7.02	1032	12.26
AE	364918	352428	35.188	2.613	32.578	26/11/2013	2.18	343.2	6.65	1346	9.3
AE	364918	352428	35.188	2.54	32.648	26/02/2014	1.33	293.8	6.53	5369	7.91
AE	364918	352428	35.188	2.557	32.631	23/05/2014	3.23	145.4	9.89	2834	12.5
AE	364918	352428	35.188	2.64	32.548	21/08/2014	0.86	104	7.56	3067	15.1
AE	364918	352428	35.19	2.48	32.71	26/11/2014	1.63	90.8	7.17	2518	11.79
AE	364918	352428	35.19	2.5	32.69	23/02/2015	-	-213.5	7.2	2045	-
AE	364918	352428	35.19	2.547	32.64	29/05/2015	0.29	98.1	8.35	1593	12.4
AE	364918	352428	35.19	2.676	32.51	26/08/2015	0.64	154.7	6.64	1857	14.6
AE	364918	352428	35.19	2.556	32.63	02/12/2015	0.17	332.9	7.89	1139	14.8
AF	364899	352463	34.89	2.84	32.05	01/02/2011	0.82	168	6.55	2337	10.7
AF	364899	352463	34.89	2.99	31.90	12/05/2011	-	373.1	7.82	1319	11.07
AF	364899	352463	34.89	2.83	32.06	18/08/2011	0.36	126.5	6.86	2122	15.2
AF	364899	352463	34.89	2.89	32	15/11/2011	0.76	416.4	7.14	1117	13.55
AF	364899	352463	34.89	2.77	32.12	17/02/2012	0.65	499.6	7.14	1329	9.89
AF	364899	352463	34.89	2.92	31.97	25/05/2012	1.17	-3.1	7.02	2303	10.05
AF	364899	352463	34.89	2.92	31.97	31/08/2012	0.96	153.1	7.22	1709	12.42
AF	364899	352463	34.89	2.67	32.22	28/11/2012	0.7	178.9	7.065	2288	11.81
AF	364899	352463	34.89	2.84	32.05	26/02/2013	0.51	164.4	7.07	1445	7.07
AF	364899	352463	34.89	2.83	32.06	12/06/2013	1.09	123	6.83	1062	8.84
AF	364899	352463	34.89	2.88	32.01	20/08/2013	1.4	109.3	6.87	1496	13.13
AF	364899	352463	34.89	2.823	32.067	26/11/2013	1.57	363.7	7.17	1847	12.11

Location	Easting	Northing	Surface Elevation	Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
A.F.	364899	352463	(mOD)	Depth (m)	Elevation (mOD)	26/02/2014	Oxygen (mg/l) 1.24	(mV SHE) 109.6	6.7	(µS/CM)	(°C) -101.4
AF AF			34.89	2.74	32.15 32.097				0.7	4142	
AF AF	364899 364899	352463 352463	34.89 34.89	2.793 2.892	31.998	23/05/2014 21/08/2014	2.63 0.58	104.9 66	7.71	3014	12.2
AF AF	364899	352463	34.89	2.83	32.06	26/11/2014	1.69	67.6	7.71	4419 2586	15.1 12.29
AF AF	364899	352463	34.89	2.815	32.08		1.09	-215.2	7.07	2856.0	6.84
AF AF	364899	352463	34.89	2.762	32.06	23/02/2015 29/05/2015	0.26	85.6	8.17	2166	11.9
AF AF	364899	352463	34.89	2.762	32.13	26/08/2015	0.20	123.8	6.83	2660	14.9
AF AF	364899	352463	34.89	2.788	32.10	02/12/2015	0.39	303.1	7.71	1520	14.9
AG AG	365007	352313	37.03	2.766	34.42	01/02/2011	1.05	481.8	6.64	3336	9.4
AG	365007	352313	37.03	2.07	34.96	12/05/2011	1.05	279.7	7.55	3186	11.28
AG	365007	352313	37.03	1.54	35.4898	18/08/2011	0.46	156	6.61	4424	14.3
AG	365007	352313	37.03	1.57	35.4598	15/11/2011	0.46	223.4	6.68	2355	13.07
AG	365007	352313	37.03	1.53	35.4596	17/02/2012	1.05	421.7	7.16	2832	8.03
AG	365007	352313	37.03	1.55	35.48	25/05/2012	1.64	124.1	6.86	7274	9.81
AG	365007	352313	37.0298	1.56	35.4698	31/08/2012	1.15	305.6	7.02	5348	14.18
AG	365007	352313	37.0298	1.47	35.5598	28/11/2012	0.88	270.3	7.038	6817	10.41
AG	365007	352313	37.0298	1.67	35.3598	26/02/2013	0.88	189.3	7.036	4517	7.18
AG	365007	352313	37.0298	1.58	35.4498	12/06/2013	1.21	283.4	6.55	3646	9.74
AG	365007	352313	37.0298	1.68	35.3498	20/08/2013	1.61	256.1	7.15	5186	14
AG	365007	352313	37.0298	1.208	35.8218	26/11/2013	1.43	339.4	7.75	4530	10.8
AG	365007	352313	37.0298	0.91	36.1198	26/02/2014	3.52	246.9	7.65	2262	6.73
AG	365007	352313	37.0298	1.35	35.6798	23/05/2014	1.44	-40	7.00	8762	12.2
AG	365007	352313	37.0298	1.247	35.7828	21/08/2014	0.27	125	6.59	7562	17.2
AG	365007	352313	37.03	0.91	36.12	26/11/2014	1.41	124.9	7.21	7216	10.87
AG	365007	352313	37.03	1.365	35.66	23/02/2015	-	-85.9	7.2	13098	-
AG	365007	352313	37.03	Destroyed	-	29/05/2015	_	-	-	-	_
AG	365007	352313	37.03	Destroyed	-	26/08/2015	-	_	-	_	-
AG	365007	352313	37.03	Destroyed	-	02/12/2015	-	_	-	_	_
F1	365189	352269	39.69	1.31	38.38	12/05/2011	-	326.1	7.33	700	12.33
F1	365189	352269	39.69	1.29	38.3988	18/08/2011	1.45	117.6	6.97	1076	16.5
F1	365189	352269	39.69	1.14	38.5488	15/11/2011	1.86	148.6	7.21	421	12.57
F1	365189	352269	39.69	0.98	38.71	17/02/2012	2.14	429	7.18	302	5.54
F1	365189	352269	39.69	1.02	38.67	25/05/2012	3.3	197.4	7.4	560	10.05
F1	365189	352269	39.6888	1.1	38.5888	31/08/2012	2.48	223.3	7.09	389	11.24
F1	365189	352269	39.6888	0.92	38.7688	28/11/2012	1.03	312.6	7.437	1252	9.72
F1	365189	352269	39.6888	0.94	38.7488	26/02/2013	1.63	181.3	7.21	476	4.51
F1	365189	352269	39.6888	1.02	38.6688	12/06/2013	1.06	256.2	7.42	241	9.65
F1	365189	352269	39.6888	1.14	38.5488	20/08/2013		206.9	7.64	293	14.28

Location	Easting	Northing		Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
			(mOD)	Depth (m)	Elevation (mOD)		Oxygen (mg/l)	(mV SHE)		(µS/CM)	(°C)
F1	365189	352269	39.6888	1.6	38.08	26/11/2013	2.61	390.4	8.44	375	8.79
F1	365189	352269	39.6888	1.51	38.1788	26/02/2014	5.78	277.3	6.94	917	5.57
F1	365189	352269	39.6888	1.422	38.2668	23/05/2014	4.66	82.4	-	812	12.9
F1	365189	352269	39.6888	1.55	38.1388	21/08/2014	2.89	144	7.35	1121	15.43
F1	365189	352269	39.69	1.42	38.27	26/11/2014	4.61	85.7	7.07	431	9.46
F1	365189	352269	39.6888	1.307	38.38	23/02/2015	-	-90.9	-	1772	-
F1	365189	352269	39.69	1.6	38.09	29/05/2015	-	-	-	-	-
F1	365189	352269	39.69	1.628	38.06	26/08/2015	0.68	258.1	6.74	2323	14.9
F1	365189	352269	39.69	1.42	38.27	02/12/2015	2.79	363.5	8.36	294.2	12
F2	365189	352269	39.69	1.44	38.25	01/02/2011	0.94	590.4	6.55	1421	7.44
F2	365189	352269	39.69	1.34	38.35	12/05/2011	-	317.9	7.38	847	12.17
F2	365189	352269	39.69	1.32	38.3718	18/08/2011	0.24	138.8	6.8	1918	13.8
F2	365189	352269	39.69	1.16	38.5318	15/11/2011	0.76	169.4	7.32	354	11.72
F2	365189	352269	39.69	1.05	38.64	17/02/2012	1.08	473.6	7.12	415	7.56
F2	365189	352269	39.69	1.01	38.68	25/05/2012	0.99	40.9	7.13	1501	8.99
F2	365189	352269	39.6918	1.13	38.5618	31/08/2012	1.53	208.8	6.99	496	13.82
F2	365189	352269	39.6918	0.76	38.9318	28/11/2012	5.96	252.3	7.613	3.24	7.74
F2	365189	352269	39.6918	1.07	38.6218	26/02/2013	1.03	234.1	7.11	519	4.27
F2	365189	352269	39.6918	1.11	38.5818	12/06/2013	1.11	188.9	6.98	510	8.8
F2	365189	352269	39.6918	1.18	38.5118	20/08/2013	0.71	159.4	7.47	574	13.56
F2	365189	352269	39.6918	1.61	38.08	26/11/2013	1.64	325.7	8.24	1244	10.5
F2	365189	352269	39.6918	1.55	38.1418	26/02/2014	2.48	290.6	6.78	1349	6.52
F2	365189	352269	39.6918	1.535	38.1568	23/05/2014	1.87	-0.1	-	1939	11.6
F2	365189	352269	39.6918	1.615	38.0768	21/08/2014	2.11	187	7.06	1709	16.6
F2	365189	352269	39.69	1.65	38.04	26/11/2014	1.81	66.9	7.08	1857	10.44
F2	365189	352269	39.69	1.592	38.10	23/02/2015	-	-48.4	7.2	1756	-
F2	365189	352269	39.69	1.582	38.11	29/05/2015	1.98	174.7	8.06	1171	12.9
F2	365189	352269	39.69	1.605	38.09	26/08/2015	0.23	162.2	6.77	662	16.3
F2	365189	352269	39.69	1.575	38.12	02/12/2015	0.25	309.4	7.75	1231	13.3
L	365128	352544	38.71	2.28	36.43	20/11/07	0.95	87.3	7.6	1644	12.8
L	365128	352544	38.71	2.26	36.45	01/02/2011	1.21	266.6	6.7	1275	8.34
L	365128	352544	38.710	2.35	36.36	12/05/2011	-	351.6	6.99	260	9.88
L	365128	352544	38.710	2.28	36.43	18/08/2011	0.39	151.8	6.78	1807	13.3
L	365128	352544	38.710	2.21	36.5	15/11/2011	1.44	346.1	6.52	491	11.81
L	365128	352544	38.710	1.18	37.53	16/02/2012	1.12	382.2	7.24	821	7.97
L	365128	352544	38.710	2.13	36.58	25/05/2012	2.1	267.1	7.15	838	8.36
L	365128	352544	38.71	2.24	36.47	31/08/2012	1.35	243.4	7.22	762	11.84
L	365128	352544	38.71	2.09	36.62	28/11/2012	1.24	294.6	7.363	1267	9.15

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Groundwater Elevation (mOD)	Date	Dissolved Oxygen (mg/l)	REDOX (mV SHE)	рН	Conductivity (µS/CM)	Temperature (°C)
L	365128	352544	38.71	2.16	36.55	26/02/2013	0.46	216.9	7.23	564	4.04
L	365128	352544	38.71	2.21	36.5	12/06/2013	0.48	277.3	6.92	470	7.59
L	365128	352544	38.71	2.23	36.48	20/08/2013	0.6	194.9	7.47	709	11.52
L	365128	352544	38.71	2.17	36.54	26/11/2013	4.19	422.5	7.9	1553	9.96
L	365128	352544	38.71	2.12	36.59	26/02/2014	6.14	368.8	6.85	822	4.56
L	365128	352544	38.71	2.131	36.579	23/05/2014	0.78	-74.1	-	1908	10.6
L	365128	352544	38.71	2.248	36.462	21/08/2014	0.66	78	7.77	4018	13.4
L	365128	352544	38.71	2.23	36.49	26/11/2014	1.77	404.5	6.49	1594	9.84
L	365128	352544	38.71	2.219	36.49	23/02/2015	-	-77.3	7.5	1488	-
L	365128	352544	38.71	2.155	36.56	29/05/2015	0.87	139.2	8.65	707	10.5
L	365128	352544	38.71	2.245	36.47	26/08/2015	0.68	254.4	6.88	1762	13.6
L	365128	352544	38.71	2.103	36.61	02/12/2015	0.54	394.5	7.9	787	12.3
M	365015	352549	37.81	1.58	36.23	20/11/07	0	236.4	6.56	1577	12.9
M	365015	352549	37.81	1.55	36.26	01/02/2011	1.17	257	6.71	1259	7.66
M	365015	352549	37.810	1.68	36.13	12/05/2011	-	341.2	7.2	865	10.74
M	365015	352549	37.810	1.63	36.18	18/08/2011	0.93	198.1	6.62	1464	13.2
M	365015	352549	37.810	1.53	36.28	15/11/2011	1.49	419.2	6.52	664	11.82
M	365015	352549	37.810	1.47	36.34	17/02/2012	1.25	430.9	7.18	693	9.14
M	365015	352549	37.810	1.45	36.36	25/05/2012	3.71	423.3	6.99	1230	8.91
M	365015	352549	37.81	1.54	36.27	31/08/2012	1.15	161.9	7.11	804	12.17
M	365015	352549	37.81	1.39	36.42	28/11/2012	0.99	247.3	7.297	1213	9.44
M	365015	352549	37.81	1.51	36.3	26/02/2013	1.24	191.5	7.24	650	3.55
M	365015	352549	37.81	1.57	36.24	12/06/2013	1.24	285.2	6.39	590	7.33
M	365015	352549	37.81	1.56	36.25	20/08/2013	0.98	199	7.22	785	11.82
M	365015	352549	37.81	1.32	36.49	26/11/2013	3.91	402.1	7.81	1088	9.89
M	365015	352549	37.81	1.47	36.34	26/02/2014	2.24	413.7	6.42	1771	3.78
M	365015	352549	37.81	1.477	36.333	23/05/2014	2.04	-42.8	-	2058	10.8
M	365015	352549	37.81	1.546	36.264	21/08/2014	0.63	194	6.98	2637	14.4
M	365015	352549	37.81	1.46	36.36	26/11/2014	2.38	342.8	6.49	1551	10.14
M	365015	352549	37.81	1.495	36.32	23/02/2015	3.00	-161.6	7.2	1313	3.51
M	365015	352549	37.81	1.482	36.33	29/05/2015	1.56	131.6	8.4	1077	11.1
M	365015	352549	37.81	1.485	36.33	26/08/2015	2.12	227.5	6.69	1479	14
M	365015	352549	37.81	1.415	36.40	02/12/2015	0.81	407.8	7.97	1001	12.5
N	365016	352449	39.17	1.37	37.80	20/11/07	1.08	52.7	6.94	731	13.4
N	365016	352449	39.16	1.71	37.45	01/02/2011	0.97	192.8	7.2	1204	9.59
N	365016	352449	39.165	1.8	37.37	12/05/2011	-	359.8	6.92	533	11.13
N	365016	352449	39.16	1.67	37.485	18/08/2011	0.3	164	6.98	7939	14.1
N	365016	352449	39.16	1.57	37.585	15/11/2011	0.75	370.4	6.52	286	12.8

Lasation	Faating	N a utla i a a	Surface Elevation	Groundwater	Groundwater	Doto	Dissolved	REDOX		Conductivity	Temperature
Location	Easting	Northing	(mOD)	Depth (m)	Elevation (mOD)	Date	Oxygen (mg/l)	(mV SHE)	рН	(µS/CM)	(°C)
N	365016	352449	39.16	1.55	37.61	17/02/2012	1.12	434.9	7.15	484	8.82
N	365016	352449	39.16	1.61	37.55	25/05/2012	1.54	329.6	7.03	797	9.8
N	365016	352449	39.155	1.27	37.885	31/08/2012	1.3	138.7	6.83	372	12.21
N	365016	352449	39.155	1.38	37.775	28/11/2012	4.28	299.9	8.05	427	9.8
N	365016	352449	39.165	1.47	37.695	26/02/2013	0.72	182.2	7.39	370	5.18
N	365016	352449	39.165	1.49	37.675	12/06/2013	0.45	111.3	7.11	343	9.14
N	365016	352449	39.165	1.57	37.595	20/08/2013	0.65	206.1	7.39	356	13.36
N	365016	352449	39.165	1.561	37.604	26/11/2013	2.32	394.9	7.23	518	10.23
N	365016	352449	39.165	1.57	37.595	25/02/2014	2.15	382	6.86	1085	8.14
N	365016	352449	39.165	1.534	37.631	23/05/2014	1.24	-69.4	-	1021	12.4
N	365016	352449	39.165	1.553	37.612	21/08/2014	1.65	289	6.86	754	15.2
N	365016	352449	39.17	1.33	37.83	26/11/2014	2.05	94.1	7.13	765	10.77
N	365016	352449	39.16	-	-	23/02/2015	0.83	-102.8	7.5	809	7.99
N	365016	352449	39.17	1.48	37.69	29/05/2015	1.53	229.4	8.73	662	11.6
N	365016	352449	39.17	1.491	37.67	26/08/2015	0.14	206	6.97	793	14.5
N	365016	352449	39.17	1.423	37.74	02/12/2015	3.21	373.5	8.48	280.3	13.2
N1	365016	352449	39.16	1.73	37.43	01/02/2011	1.22	215.4	7.05	1023	9.65
N1	365016	352449	39.16	1.81	37.35	12/05/2011	-	355.7	7.14	645	11.53
N1	365016	352449	39.165	1.71	37.455	18/08/2011	0.28	119.8	6.92	1183	14.9
N1	365016	352449	39.165	1.53	37.635	15/11/2011	2.34	396.1	6.51	355	11.54
N1	365016	352449	39.165	1.54	37.63	16/02/2012	1.36	431.9	7.16	490	9.21
N1	365016	352449	39.165	1.68	37.49	25/05/2012	1.56	461.1	7.21	1005	9.76
N1	365016	352449	39.165	1.28	37.885	31/08/2012	0.42	61.5	7.4	846	11.82
N1	365016	352449	39.165	1.4	37.765	28/11/2012	2.25	292.6	6.51	744	9.46
N1	365016	352449	39.155	1.48	37.675	26/02/2013	0.47	179	7.32	310	4.69
N1	365016	352449	39.155	1.48	37.675	12/06/2013	0.41	195.8	6.92	307	8.9
N1	365016	352449	39.155	1.66	37.495	20/08/2013	0.6	79.9	7.43	412	13.19
N1	365016	352449	39.155	1.63	37.595	26/11/2013	1.46	240	8.33	539	9.7
N1	365016	352449	39.155	1.64	37.515	25/02/2014	1.83	224.4	7	996	6.81
N1	365016	352449	39.155	1.471	37.684	23/05/2014	2.42	-48.6	-	1016	12.3
N1	365016	352449	39.155	1.625	37.53	21/08/2014	0.9	58	7	1732	15.5
N1	365016	352449	39.16	1.37	37.78	26/11/2014	1.64	87.1	7.32	665	9.94
N1	365016	352449	39.16	1.545	37.61	23/02/2015	0.07	-157.6	-	798	-
N1	365016	352449	39.16	1.615	37.64	29/05/2015	0.15	60.4	8.72	671	12
N1	365016	352449	39.16	1.547	37.61	26/08/2015	0.41	111.5	6.96	852	15
N1	365016	352449	39.16	1.485	37.67	02/12/2015	0.22	303.1	8.39	405.9	12.5
0	365184	352470	39.64	1.44	38.20	20/11/07	0.07	77	7.01	1981	13.5
0	365184	352470	39.64	1.49	38.15	01/02/2011	2.37	268.2	6.84	1026	9.39

Location	Faating	No wile in a	Surface Elevation	Groundwater	Groundwater	Dete	Dissolved	REDOX		Conductivity	Temperature
Location	Easting	Northing	(mOD)	Depth (m)	Elevation (mOD)	Date	Oxygen (mg/l)	(mV SHE)	рН	(µS/CM)	(°C)
0	365184	352470	39.642	1.57	38.07	12/05/2011	-	341.1	7.3	352	11.6
0	365184	352470	39.642	1.51	38.132	18/08/2011	0.35	140.6	6.89	1557	14
0	365184	352470	39.642	1.48	38.162	15/11/2011	1.19	261.2	6.6	348	12.51
0	365184	352470	39.642	1.49	38.15	16/02/2012	1.13	422.9	7.26	486	8.47
0	365184	352470	39.642	1.5	38.14	25/05/2012	1.62	427.1	7.12	572	9.9
0	365184	352470	39.642	1.55	38.092	31/08/2012	1.21	201.6	7.01	401	13.36
0	365184	352470	39.642	1.38	38.262	28/11/2012	1.65	249.6	7.305	1105	10.03
0	365184	352470	39.642	1.49	38.152	26/02/2013	0.73	185.1	7.06	738	7.16
0	365184	352470	39.642	1.5	38.142	12/06/2013	0.43	180.1	6.81	638	8.95
0	365184	352470	39.642	1.48	38.162	20/08/2013	1.14	139.9	7.5	363	13.06
0	365184	352470	39.642	1.4	38.242	26/11/2013	3.3	362.5	8.19	883	10.48
0	365184	352470	39.642	1.38	38.262	26/02/2014	1.56	318	6.85	734	6.24
0	365184	352470	39.642	1.447	38.195	23/05/2014	0.78	-155.1	-	1677	12.4
0	365184	352470	39.642	1.421	38.221	21/08/2014	0.54	81	7.22	1554	15.6
0	365184	352470	39.64	1.39	38.25	26/11/2014	1.57	357.4	7.05	1036	10.69
0	365184	352470	39.64	1.465	38.18	23/02/2015	-	-161	7.4	700	-
0	365184	352470	39.64	1.48	38.16	29/05/2015	0.9	139.5	8.81	429	12.2
0	365184	352470	39.64	1.39	38.25	26/08/2015	1.97	146.1	6.84	1245	14.7
0	365184	352470	39.64	1.334	38.31	02/12/2015	0.19	338	8.02	682	13.3
Р	365098	352374	39.93	3.33	36.60	20/11/07	0.00	135	6.47	1284	14.17
Р	365098	352374	39.93	3.29	36.64	01/02/2011	0.82	463.1	5.83	885	10.35
Р	365098	352374	39.925	3.42	36.51	12/05/2011	-	346	7.01	698	12.12
Р	365098	352374	39.925	3.38	36.545	18/08/2011	0.5	164.8	6.28	1055	14.4
Р	365098	352374	39.925	3.27	36.655	15/11/2011	0.94	278.2	6.66	565	13.06
Р	365098	352374	39.925	2.36	37.57	16/02/2012	0.84	387.4	7.27	574	10.7
Р	365098	352374	39.925	3.24	36.69	25/05/2012	1.08	245.5	6.36	1401	11.02
Р	365098	352374	39.925	3.26	36.665	31/08/2012	1.34	311.3	6.8	1030	11.99
Р	365098	352374	39.925	3.16	36.765	28/11/2012	2.08	273.1	6.718	1153	11.08
Р	365098	352374	39.925	3.18	36.745	26/02/2013	0.69	198.3	6.92	895	8.23
Р	365098	352374	39.925	3.27	36.655	12/06/2013	1.22	266.7	5.42	724	9.52
Р	365098	352374	39.925	3.31	36.615	20/08/2013	1.22	149.1	6.55	770	11.2
Р	365098	352374	39.925	3.2	36.725	26/11/2013	1.83	296.5	6.56	711	11.44
P	365098	352374	39.925	3.16	36.765	26/02/2014	1.94	246.1	6.25	1623	7.37
Р	365098	352374	39.925	3.204	36.721	23/05/2014	2.12	39.9	_	1260	12.6
Р	365098	352374	39.925	3.287	36.638	21/08/2014	0.92	198.3	6.98	2184	14.5
Р	365098	352374	39.93	3.23	36.70	26/11/2014	1.46	359.5	6.71	916	11.44
Р	365098	352374	39.93	3.275	36.65	23/02/2015	0.94	-75.5	6.7	848	6.70
Р	365098	352374	39.93	3.264	36.76	29/05/2015	0.35	149.6	8.04	1559	12.1

Location	Easting	Northing		Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
	265000	252274	(mOD)	Depth (m)	Elevation (mOD)	26/09/2015	Oxygen (mg/l)	(mV SHE)	6.14	(µS/CM)	(°C)
P	365098	352374	39.93	3.293	36.63	26/08/2015	1.66	152.9	6.14	1321	14.3
	365098	352374	39.93	3.19	36.74	02/12/2015	0.19	279.9	8.23	448.8	14.2
Q	365196	352383	39.22	1.71	37.51	20/11/07	0.51	144.9	6.87	1030	13.21
Q	365196	352383	39.22	1.86	37.36	01/02/2011	1.14	226.7	6.5	2430	8.53
Q	365196	352383	39.215	1.88	37.34	12/05/2011	- 0.47	323.5	7.16	684	11.34
Q	365196	352383	39.215	1.85	37.365	18/08/2011	0.17	127.6	6.82	3246	15.5
Q	365196	352383	39.215	1.82	37.395	15/11/2011	0.77	270.7	6.63	653	13.48
Q	365196	352383	39.215	1.82	37.40	16/02/2012	2.1	414.7	7.21	1254	7.79
Q	365196	352383	39.215	1.82	37.40	25/05/2012	1.62	447.9	6.78	1533	9.71
Q	365196	352383	39.215	1.82	37.395	31/08/2012	1.48	155.1	6.94	548	13.91
Q	365196	352383	39.215	1.27	37.945	28/11/2012	1.84	228.9	7.214	2253	10.09
Q	365196	352383	39.215	1.82	37.395	26/02/2013	0.76	173.3	7.38	2662	5.14
Q	365196 365196	352383 352383	39.215	1.98 1.97	37.235	12/06/2013	0.32	174.1 149.4	6.68 7.11	1799 3143	8.73 13.27
Q	365196	352383	39.215 39.215	1.93	37.245 37.29	20/08/2013	0.93 2.54	370.5	7.11	1772	11.01
	365196			1.95	37.29		2.13	251.7	6.79		6.34
Q	365196	352383 352383	39.215 39.215	1.843	37.372	25/02/2014 23/05/2014	0.58	-174.9	0.79	1978 1453	12.2
Q	365196	352383		1.851			0.56	193	7.21	2082	16.6
	365196	352383	39.215 39.22	1.63	37.364 37.59	21/08/2014 26/11/2014	2.03	345	6.42	1498	11.08
Q	365196	352383	39.22	1.770	37.45	23/02/2015	2.03	-140.9	7.2	1294	11.00
				1.770	37.43		- 0.25				- 40.4
Q	365196 365196	352383 352383	39.22 39.22	1.764		29/05/2015 26/08/2015	0.35	135.6	8.39	1563	13.1 16.3
Q	365196	352383	39.22	1.675	37.84	02/12/2015	1.74	237.4	6.5	1297	
Q		-			37.54		0.36	390 207.9	8	717	13.6
S	365119 365119	352343 352343	39.77 39.77	3.34 3.35	36.43	20/11/07	0.00		6.76 6.48	828 944	13.02 8.67
S S	365119	352343	39.770	3.44	36.42 36.33	01/02/2011	0.91	446.8 355.5	6.77	781	10.27
S	365119	352343	39.770	3.42	36.35	18/08/2011	0.52	125.9	7.06	1372	14.2
S	365119	352343	39.770	3.36	36.41	15/11/2011		293	6.64	501	12.55
S	365119	352343	39.770	3.32	36.45	16/02/2012	0.95 1.27	404.5	7.27	886	8.52
S	365119	352343	39.770	3.26	36.51	25/05/2012	0.92	211.3	6.66	2386	7.26
S	365119	352343	39.77	3.32	36.45	31/08/2012		315.6	6.92	964	11.99
S	365119	352343	39.77	3.2	36.57	28/11/2012	0.96	255.2	6.931	1635	10.04
S	365119	352343	39.77	3.21	36.56	26/02/2013	0.88	191.2	6.99	920	7.29
S	365119	352343	39.77	3.29	36.48	12/06/2013	0.66	279.3	6.21	834	8.19
S	365119	352343	39.77	3.29	36.48	20/08/2013	1.11	233.8	6.84	1199	11.18
S	365119	352343	39.77	3.31	36.46	26/11/2013	2.16	453.7	7.34	1034	10.25
S	365119	352343	39.77	3.15	36.62	25/02/2014	2.16	287	6.62	2437	8.04
					36.547						
S	365119	352343	39.77	3.223	30.547	23/05/2014	2.62	8.9	12.88	2680	11.7

Location	Easting	Northing	Surface Elevation	Groundwater	Groundwater	Date	Dissolved	REDOX	рН	Conductivity	Temperature
Location	Lastilly	Northing	(mOD)	Depth (m)	Elevation (mOD)		Oxygen (mg/l)	(mV SHE)	рп	(μS/CM)	(°C)
S	365119	352343	39.77	3.289	36.481	21/08/2014	0.4	157	6.91	2935	14.5
S	365119	352343	39.77	3.23	36.54	26/11/2014	1.72	351.7	6.74	1173	10.49
S	365119	352343	39.77	3.287	36.48	23/02/2015	-	-	7.3	-	-
S	365119	352343	39.77	Not accessible	ı	29/05/2015	-	-	-	-	-
S	365119	352343	39.77	3.231	36.54	26/08/2015	1.1	239.5	6.58	856	14
S	365119	352343	39.77	3.225	36.55	02/12/2015	0.42	393.4	8.13	471.1	13
Т	365140	352352	39.50	3.16	36.34	20/11/07	0.04	71.2	6.81	784	12.56
Т	365140	352352	39.50	3.14	36.36	01/02/2011	0.9	465.2	6.38	548	8.38
Т	365140	352352	39.495	3.22	36.28	12/05/2011	-	341.9	7.23	466	9.23
T	365140	352352	39.495	3.22	36.275	18/08/2011	0.74	150.2	6.85	853	12.3
Т	365140	352352	39.495	3.13	36.365	15/11/2011	2.81	277.1	6.63	304	10.97
Т	365140	352352	39.495	3.12	36.38	16/02/2012	1.38	430.4	7.25	321	7.89
Т	365140	352352	39.495	3.06	36.44	25/05/2012	2	184.2	6.83	520	8.41
T	365140	352352	39.495	3.13	36.365	31/08/2012	1.65	281.6	6.87	357	10.67
T	365140	352352	39.495	3.04	36.455	28/11/2012	1.51	259.5	8.31	632	9.13
Т	365140	352352	39.495	3.03	36.465	26/02/2013	1.4	200	7.07	325	6.25
T	365140	352352	39.495	3.09	36.405	12/06/2013	0.66	258.6	6.38	285	7.09
Т	365140	352352	39.495	3.12	36.375	20/08/2013	1.57	195.9	7.16	369	9.25
Т	365140	352352	39.495	3.03	36.465	26/11/2013	5.43	408.5	7.76	378	9.12
Т	365140	352352	39.495	2.96	36.535	25/02/2014	4.95	280.8	6.77	689	5.34
Т	365140	352352	39.495	3.051	36.444	23/05/2014	3.47	14	-	693	10.3
Т	365140	352352	39.495	3.135	36.36	21/08/2014	0.43	117	7.27	1282	12.7
Т	365140	352352	39.50	3.02	36.47	26/11/2014	5.55	301	6.88	394	9.32
Т	365140	352352	39.50	3.075	36.42	23/02/2015	-	-	7.3	-	-
Т	365140	352352	39.50	3.037	36.46	29/05/2015	0.97	152.3	8.21	914	10.5
Т	365140	352352	39.50	3.136	36.36	26/08/2015	1.51	188.3	6.71	545	12.2
Т	365140	352352	39.50	3.042	36.45	02/12/2015	3.47	416.3	8.43	233.3	11.9
V	365195	352346	39.39	1.95	37.44	20/11/07	0.00	102.3	6.52	471	12.68
V	365195	352346	39.39	1.75	37.64	01/02/2011	1.23	223.1	5.68	740	6.99
V	365195	352346	39.390	2.09	37.30	12/05/2011	-	309.3	6.54	274	9.75
V	365195	352346	39.390	2.25	37.14	18/08/2011	0.24	147.2	6.71	979	12.3
V	365195	352346	39.390	2.04	37.35	15/11/2011	1.16	263.9	6.62	335	11.59
V	365195	352346	39.390	1.66	37.73	16/02/2012	1.42	445.7	7.2	726	7.37
V	365195	352346	39.390	1.9	37.49	25/05/2012	1.12	98.8	6.47	1001	8.1
V	365195	352346	39.39	1.98	37.41	31/08/2012	1.38	175.5	6.79	587	11.27
V	365195	352346	39.39	1.43	37.96	28/11/2012	3.07	254.4	6.481	1473	8.68
V	365195	352346	39.39	1.55	37.84	26/02/2013	0.68	185.7	6.34	161	3.46
V	365195	352346	39.39	1.97	37.42	12/06/2013	0.54	193.9	5.83	253	6.74

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Groundwater Elevation (mOD)	Date	Dissolved Oxygen (mg/l)	REDOX (mV SHE)	рН	Conductivity (µS/CM)	Temperature (°C)
V	365195	352346	39.39	2.16	37.23	20/08/2013	1.3	125.7	6.81	392	10.34
V	365195	352346	39.39	1.85	38.14	26/11/2013	2.34	315.1	7.39	615	9.52
V	365195	352346	39.39	1.47	37.92	25/02/2014	2.78	291.1	6.06	421	6.55
V	365195	352346	39.39	1.931	37.459	23/05/2014	1.9	-29.1	-	1005	10.3
V	365195	352346	39.39	2.096	37.294	21/08/2014	0.3	88	7.52	1475	13.3
V	365195	352346	39.39	1.91	37.48	26/11/2014	1.72	258.3	6.33	779	9.8
V	365195	352346	39.39	1.816	37.57	23/02/2015	-	-165.3	6.5	799	3.70
V	365195	352346	39.39	2.015	37.38	29/05/2015	0.18	115.4	8.17	1070	10.7
V	365195	352346	39.39	2.081	37.31	26/08/2015	2.03	126	6.54	937	12.8
V	365195	352346	39.39	1.846	37.54	02/12/2015	0.24	317.7	8.26	514	12.4

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
AB	364740	352370	37.93	1.64	3.84	08/03/2011	-0.2	1012	-0.3	0	0	20	0	0
AB	364740	352370	37.93	2.08	3.84	12/05/2011	-0.2	1018	0.34	0	0.3	19.7	5	0
AB	364740	352370	37.93	2.24	3.84	18/08/2011	0.1	1013	0.12	0	0.3	20.2	0	0
AB	364740	352370	37.93	2.27	3.84	15/11/2011	0	1011	0	0	0.2	20.9	0	0
AB	364740	352370	37.93	1.87	3.84	15/03/2012	0	1019	0	0	0.1	20.7	0	0
AB	364740	352370	37.93	1.7	3.84	03/07/2012	0	1007	0	0	0.7	19.4	0	0
AB	364740	352370	37.93	1.59	3.84	04/10/2012	0	1002	0	0	0.3	20.7	0	0
AB	364740	352370	37.93	1.49	3.84	26/02/2013	0	1036	0.3	0	0.2	20.9	0	0
AB	364740	352370	37.93	1.721	3.81	24/04/2013	0	1019	0	0	0.3	20.2	1	0
AB	364740	352370	37.93	2.035	3.83	23/07/2013	-0.1	1007	0.05	0	0.5	19.7	3	0
AB	364740	352370	37.93	1.908	3.84	31/10/2013		1010	0	0	1.5	18.4	0	0
AB	364740	352370	37.93	1.47	3.85	28/01/2014	0.1	974	-0.21	0.2	1.2	20.3	0	0
AB	364740	352370	37.93	1.725	3.83	15/04/2014	0.2	1028	0.05	0	1.3	20.1	0	0
AB	364740	352370	37.93	-	3.83	31/07/2014	-0.1	1007	0	0.2	2.8	20.3	0	0
AB	364740	352370	37.93	1.945	3.83	28/10/2014	-0.2	1003	0.02	0	10.5	3.4	0	0
AB	364740	352370	37.93	1.638	3.83	23/01/2015	0.0	1015	0.00	0.4	1.2	21.3	0	0
AB	364740	352370	37.93	1.857	3.83	01/05/2015	0	999	-0.05	0.1	0.6	20.6	0	0
AB	364740	352370	37.93	2.025	3.84	14/07/2015	0.1	1016	-0.03	0	1.5	19.7	0	0
AB	364740	352370	37.93	2.156	3.84	22/10/2015		1014	0.03	0	0.7	21.2	0	0
AC	364963	352517	36.42	2.49	3.98	08/03/2011	0	1013	0	4	2.9	2.7	3	0
AC	364963	352517	36.42	2.98	3.98	12/05/2011	0	1017	-0.23	4.7	4.6	1.7	5	0
AC	364963	352517	36.42	2.85	3.98	18/08/2011	0	1011	-0.03	4.4	4.2	7.8	0	5
AC	364963	352517	36.42	2.79	3.98	15/11/2011	0	1011	0	1.8	1.6	14.7	0	0
AC	364963	352517	36.42	2.52	3.98	15/03/2012		1017	0	2.7	2.9	7.8	0	0
AC	364963	352517	36.42	1.44	3.98	03/07/2012		1007	0	3.7	3.5	8	0	0
AC	364963	352517	36.42	2.28	3.98	04/10/2012		1002	0	5.9	4.6	2.8	0	0
AC	364963	352517	36.42	2.45	3.98	26/02/2013		1035	-0.2	3.8	2.5	5.5	0	0
AC	364963	352517	36.42	2.741	3.97	24/04/2013	0.1	1018	0.02	3.9	3.5	0.2	3	0
AC	364963	352517	36.42	2.91	3.99	23/07/2013	0.1	1010	0.1	2.1	5.6	4.8	4	0
AC	364963	352517	36.42	2.216	3.97	31/10/2013	-0.1	1013	-0.05	6.5	5.5	0.4	0	0
AC	364963	352517	36.42	2.128	3.84	28/01/2014	0	972	-0.17	7.3	4.5	1.7	0	0
AC	364963	352517	36.42	2.576	3.99	15/04/2014	0	1028	-0.07	2.8	2.6	9.9	0	0
AC	364963	352517	36.42	-	3.99	31/07/2014	0	1007	0.02	5.4	6.2	1.9	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
AC	364963	352517	36.42	2.624	4	28/10/2014	0.1	1003	0	5.1	4.6	3.5	0	0
AC	364963	352517	36.42	2.558	4	23/01/2015	0.0	1018	0.05	5.4	3.3	4.1	0	0
AC	364963	352517	36.42	2.840	4.00	01/05/2015	0.1	999	0.03	2	2.9	8.4	0	0
AC	364963	352517	36.42	2.268	4.00	14/07/2015	0.1	1015	0.02	0	0	20.9	0	0
AC	364963	352517	36.42	2.908	3.99	22/10/2015	0	1014	-0.03	5.4	5.6	0.4	0	0
AE	364918	352428	35.19	2.94	3.93	08/03/2011	0	1014	0	0	4.4	14.9	0	0
AE	364918	352428	35.19	2.84	3.93	12/05/2011	-0.1	1019	-0.02	0.1	10.1	8.9	7	0
AE	364918	352428	35.19	2.8	3.93	18/08/2011	0	1012	0	0	11.7	7.4	0	0
AE	364918	352428	35.19	2.77	3.93	15/11/2011	0	1011	0	0	3.6	18	0	0
AE	364918	352428	35.19	2.68	3.93	15/03/2012		1019	0	0	0.1	20.7	0	0
AE	364918	352428	35.19	2.56	3.93	03/07/2012	0	1007	0	0.1	8.3	9.2	0	0
AE	364918	352428	35.19	2.45	3.93	04/10/2012	0	1002	0	0	10.2	6.9	0	0
AE	364918	352428	35.19	2.58	3.93	26/02/2013		1037	-0.1	0	6.7	14.8	0	0
AE	364918	352428	35.19	2.68	3.93	24/04/2013		1019	0.05	0	8.9	12.1	0	0
AE	364918	352428	35.19	2.712	3.95	23/07/2013	0.1	1007	0	0	11.4	7.3	3	0
AE	364918	352428	35.19	2.48	3.85	31/10/2013	0.1	1010	0	0	12.8	3.8	0	0
AE	364918	352428	35.19	2.205	3.95	28/01/2014	0.2	974	-0.12	0.2	10.2	7.6	0	0
AE	364918	352428	35.19	2.639	3.93	15/04/2014	0.2	1028	-0.02	0	11.3	10	0	0
AE	364918	352428	35.19	- 0.04	3.93	31/07/2014	0	1007	0.12	4.7	14.4	5.2	0	0
AE	364918	352428	35.19	2.61	3.93	28/10/2014	-0.1	1003	0.14	0.2	1.5	18.1	0	0
AE	364918	352428	35.19	2.600	3.93	23/01/2015		1016	0.03	0.4	9.1	10.9	0	0
AE	364918	352428	35.19	2.669	3.93	01/05/2015	0.1	999	0.15	0	7.4	13.2 4	0	1
AE	364918	352428	35.19 35.19	2.636 2.735	3.92	14/07/2015		1016	0.05	0	14.8	9.9	0	0
AE	364918	352428	34.89		3.90	22/10/2015		1016	0.05	0	8.7	17.2	0	0
AF AF	364899 364899	352463 352463	34.89	2.8 2.99	4	08/03/2011 12/05/2011	0	1013 1019	-0.17 -0.02	0.1	0.9	16.4	4	0
AF	364899	352463	34.89	2.83	4	18/08/2011	0.1	1019	-0.02	0.1	4.2	14.7	0	0
AF	364899	352463	34.89	2.89	4	15/11/2011	0.1	1012	0	0.8	7.4	11.9	0	0
AF	364899	352463	34.89	2.81	4	15/03/2012	0	1019	0	0.0	3	16.5	0	0
AF	364899	352463	34.89	2.81	-	03/07/2012		1007	0	0.4	2	16.8	0	0
AF	364899	352463	34.89	2.73	4	04/10/2012		1007	0	0.4	2.5	15.9	0	0
AF	364899	352463	34.89	2.84	4	26/02/2013		1037	-0.07	0.1	0.8	18.8	0	0
AF	364899	352463	34.89	2.792	3.96	24/04/2013		1019	0.07	0.1	4	12.1	2	0
AF	364899	352463	34.89	2.881	4.04	23/07/2013		1007	0.05	0	5.7	15.1	1	0
AF	364899	352463	34.89	2.8	4.06	31/10/2013		1010	0	0	8.9	10.2	0	0
AF	364899	352463	34.89	2.558	3.89	28/01/2014		974	0.06	6.1	3.6	14.6	0	0
AF	364899	352463	34.89	2.836	4.02	15/04/2014	0.1	1028	-1.75	0	2.3	19.2	0	0
AF	364899	352463	34.89	-	4.02	31/07/2014		1007	0.07	0.8	11.9	18.7	0	0
AF	364899	352463	34.89	2.84	4.02	28/10/2014		1003	-0.07	0	9.7	8.4	0	0
AF	364899	352463	34.89	2.782	4.02	23/01/2015		1016	0.09	0.4	0.3	21.9	0	0
AF	364899	352463	34.89	2.844	4.02	01/05/2015	0.1	999	0.07	0	3.9	16.8	0	0
AF	364899	352463	34.89	2.862	4.05	14/07/2015		1016	1.32	0	1.7	18.5	0	0
AF	364899	352463	34.89	2.862	3.80	22/10/2015		1014	0.03	0	4.7	14.1	0	0
AG	365007	352313	37.03	2.7		08/03/2011	-0.2	1012	-0.3	0	4.3	15.3	0	0
AG	365007	352313	37.03	2.07	4.03	12/05/2011	0.3	1018	0.4	0	8	10.9	0	0
AG	365007	352313	37.03	1.54	4.03	18/08/2011	-0.3	1012	0.11	0	10.3	5.2	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
AG	365007	352313	37.03	1.57	4.03	15/11/2011	0	1011	0	0	7.4	9.6	0	0
AG	365007	352313	37.03	1.83	4.03	15/03/2012	0	1018	0	0	0.8	18.3	0	0
AG	365007	352313	37.03	1.38	4.03	03/07/2012	0	1007	0	0	2.7	15.3	0	0
AG	365007	352313	37.03	1.29	4.03	04/10/2012	0	1002	0	0	0	20.9	0	0
AG	365007	352313	37.03	1.67	4.03	26/02/2013	0	1033	-0.1	0	3.8	15.9	0	0
AG	365007	352313	37.03	1.763	4.02	24/04/2013	0	1018	0.11	0	4.3	15.6	2	0
AG	365007	352313	37.03	1.556	4.08	23/07/2013	-0.1	1007	0	0	11.1	4.3	2	0
AG	365007	352313	37.03	0.835	3.94	31/10/2013	0.1	1010	0.12	0	3.5	9.4	0	0
AG	365007	352313	37.03	0.555	3.87	28/01/2014	0.2	974	0.15	0.2	0.6	19.6	0	0
AG	365007	352313	37.03	1.585	3.56	15/04/2014	0.2	1028	0.02	0	4.7	14.3	0	0
AG	365007	352313	37.03	-	3.56	31/07/2014	0.4	1007	-0.09	0	1.7	20.5	0	0
AG	365007	352313	37.03	1.13	3.47	28/10/2014	-0.9	1003	-4.92	0.3	6.4	7.8	0	0
AG	365007	352313	37.03	1.115	3.47	23/01/2015	0.0	1016	0.10	0.8	1.5	18.3	3	0
AG	365007	352313	37.03	1.542	3.47	01/05/2015	0.1	999	0.09	0	2.9	17.1	1	0
F1	365189	352269	39.69	1.4	1.98	08/03/2011	-0.3	1014	0	0	2	17.7	0	0
F1	365189	352269	39.69	1.31	1.98	12/05/2011	0	1017	-0.01	0	2	18.3	0	0
F1	365189	352269	39.69	1.29	1.98	18/08/2011	-0.1	1012	-0.01	0	3.2	16.8	0	0
F1	365189	352269	39.69	1.14	1.98	15/11/2011	0	1011	0	0	0.6	20.5	0	0
F1	365189	352269	39.69	1.06	1.98	15/03/2012	0	1018	0	0	1	19.6	0	0
F1	365189	352269	39.69	0.76	1.98	03/07/2012	0	1007	0	0	1.6	18.9	0	0
F1	365189	352269	39.69	0.79		04/10/2012	0	1003	0	0	0.9	17.3	0	0
F1	365189	352269	39.69	0.94	1.98	26/02/2013		1035	-0.3	0	1.4	19.2	0	0
F1	365189	352269	39.69	1.208	1.97	23/07/2013	0.1	1008	0.05	0	2.9	16.6	3	0
F1	365189	352269	39.69	1.34	1.555	28/01/2014	0	974	0.03	0.2	0.7	20.8	0	0
F1	365189	352269	39.69	1.56	1.96	15/04/2014	0	1028	-1.82	0	1.8	16.8	0	0
F1	365189	352269	39.69	-	1.96	31/07/2014	0.2	1007	0.09	0	2	17.6	0	1
F1	365189	352269	39.69	1.634	1.98	28/10/2014	0.1	1003	0.1	0	0.1	20.6	0	0
F1	365189	352269	39.69	1.598	1.98	23/01/2015	0.0	1015	-0.09	0.4	1	21.1	0	0
F1	365189	352269	39.69	1.634	1.98	01/05/2015	0.1	999	0	0	1.4	19.9	0	0
F1	365189	352269	39.69	1.685	1.97	14/07/2015		1016	0.31	0	4.2	16.2	0	0
F1	365189	352269	39.69	1.651	1.96	22/10/2015		1015	0.29	0	4.5	13.6	0	0
F1	365189	352269	39.69	1.025	1.84	24/04/2013		1017	0.27	0	0	20.8	5	1
F1	365189	352269	39.69	1.358	1.97	31/10/2013		1013	0	0	2	16.2	0 7	0
F2	365189	352269	39.69	1.095	3.49	24/04/2013	-0.1	1017	0.27	0	0.5	20.1	,	0
F2	365189	352269	39.69	1.492	3.82	31/10/2013		1013	0	0	1.1	18.1	0	0
F2	365189	352269	39.69	1.4		08/03/2011	-0.1	1014	0	0	0	20	'	0
F2	365189	352269	39.69	1.34	3.96	12/05/2011	-0.1	1017	0	0.1	0.8	19.6	3	0
F2	365189	352269	39.69	1.32	3.96	18/08/2011	0	1012	0	0	1.9	18	0	0
F2	365189	352269	39.69	1.16	3.96	15/11/2011	0	1011	0	0	2.1	18.3	0	0
F2	365189	352269	39.69	1.16	3.96	15/03/2012		1018	0	0	0.1	20.6	0	0
F2	365189	352269	39.69	0.97		03/07/2012	0	1007	0	0.1	0.5	20.1	0	0
F2	365189	352269	39.69	0.96		04/10/2012		1003	0	0	0.6	18.8	0	0
F2	365189	352269	39.69	1.07	3.96	26/02/2013		1035	-0.3	0	1.2	19.1	0	0
F2	365189	352269	39.69	1.248	3.82	23/07/2013		1008	0.05	0	1.7	18.3	2	0
F2	365189	352269	39.69	1.31	1.999	28/01/2014	-0.2	974	-0.3	0.3	1.5	19	0	0
F2	365189	352269	39.69	1.601	3.74	15/04/2014	0.1	1028	-0.67	0	3	18.5	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
F2	365189	352269	39.69	-	3.74	31/07/2014	0.2	1007	0.7	0	2.5	17.1	0	1
F2	365189	352269	39.69	1.659	3.75	28/10/2014	0	1003	0.24	0	2	18.3	0	1
F2	365189	352269	39.69	1.652	3.96	01/05/2015	0.1	999	0	0	1.9	18.8	0	0
F2	365189	352269	39.69	1.660	3.79	14/07/2015	0.1	1016	0.12	0	2.8	18.1	0	0
F2	365189	352269	39.69	1.660	3.72	22/10/2015	0	1015	-0.09	0	1.5	19.58	0	0
L	365128	352544	38.71	2.13	3.9	08/03/2011	-0.2	1014	0.11	0	1	19.6	2	0
L	365128	352544	38.71	2.35	3.9	12/05/2011	-0.2	1018	0.03	0	0.7	20.2	5	0
L	365128	352544	38.71	2.28	3.9	18/08/2011	0	1011	0.01	0	0.05	19.8	0	1
L	365128	352544	38.71	2.21	3.9	15/11/2011	0	1013	0	0	0.7	20.3	0	0
L_	365128	352544	38.71	2.22	3.9	15/03/2012		1017	0	0	0.9	19.9	0	0
<u>L</u>	365128	352544	38.71	2.09	3.9	03/07/2012	0	1007	0	0	0.8	20.1	0	0
<u> </u>	365128	352544	38.71	2.14	3.9	04/10/2012	0	1003	0	0	0.8	20.4	0	0
<u> </u>	365128	352544	38.71	2.16	3.9	26/02/2013	0	1037	-0.3	0	0	21.2	0	0
<u> </u>	365128	352544	38.71	2.229	3.89	24/04/2013		1020	0.06	0	1	19.8	0	0
<u> </u>	365128	352544	38.71	2.272	3.88	23/07/2013	0.1	1010	0.01	0	1.6	18.4	0	0
<u> </u>	365128	352544	38.71 38.71	2.135	1.88	31/10/2013	0	1013 974	0	0	1.8	18.3 20.9	0	0
<u> </u>	365128 365128	352544 352544	38.71	3.049 2.174	3.89 3.88	28/01/2014 15/04/2014	0.1 0.2	1028	0.09 0.02	0.2	1.6 1.2	20.9	0	0
├	365128	352544	38.71	2.17 4	3.88	31/07/2014	-0.1	1028	0.02	0	2.2	18.3	0	0
	365128	352544	38.71	2.253	3.9	28/10/2014	0.2	1007	0.09	0	2.4	18.9	0	0
	365128	352544	38.71	2.233	3.9	23/01/2015		1018	0.02	0.4	1.4	21.2	0	0
	365128	352544	38.71	2.251	3.90	01/05/2015	0.1	999	0.02	0.4	1.3	19.8	0	0
-	365128	352544	38.71	2.267	3.90	14/07/2015		1013	0	0	0	18.8	0	0
<u> </u>	365128	352544	38.71	2.238	3.88	22/10/2015		1013	0.09	0	2.7	18.7	0	0
M	365015	352549	37.81	1.52	3.84	08/03/2011	0	1013	0	0	0.4	20.3	0	0
M	365015	352549	37.81	1.68	3.84	12/05/2011	0	1017	-0.23	0.1	2.1	17.9	0	0
M	365015	352549	37.81	1.63	3.84	18/08/2011	0.2	1012	-0.08	0	1.4	20.4	0	0
M	365015	352549	37.81	1.53	3.84	15/11/2011	0	1014	0	0	1.3	19.8	0	0
M	365015	352549	37.81	1.52	3.84	15/03/2012	0	1017	0	0	0.3	20.8	0	0
M	365015	352549	37.81	1.34	3.84	03/07/2012	0	1007	0	0	3.2	17.6	0	0
M	365015	352549	37.81	1.42		04/10/2012		1002	0	0	1.4	18.5	0	0
M	365015	352549	37.81	1.51	3.84	26/02/2013	0	1034	-0.008	0	0.3	19.8	0	0
M	365015	352549	37.81	1.542	3.82	24/04/2013	-0.2	1020	0.06	0	0.7	19.1	0	0
M	365015	352549	37.81	1.59	3.81	23/07/2013	-0.1	1010	0.01	0	0.4	19.9	0	0
M	365015	352549	37.81	1.28	3.79	31/10/2013		1013	-0.23	0	2.9	16.3	0	0
M	365015	352549	37.81	1.331	3.8	28/01/2014	0.1	975	0.1	0.2	0.9	21.1	0	0
M	365015	352549	37.81	1.504	3.81	15/04/2014		1028	-0.02	2	1.9	12.5	0	0
M	365015	352549	37.81	-	3.81	31/07/2014		1007	0.09	0	2.3	18.6	0	0
M	365015	352549	37.81	1.489	3.83	28/10/2014		1003	-0.03	4.4	4.8	14.1	0	0
M	365015	352549	37.81	1.467	3.83	23/01/2015		1018	-0.07	0.5	0.4	21.6	0	0
M	365015	352549	37.81	1.537	3.83	01/05/2015	0.1	999	0.02	0	2.3	18.9	0	0
M	365015	352549	37.81	1.516	3.81	14/07/2015		1015	0.09	0	2.3	18.9	0	0
M	365015	352549	37.81	1.551	3.81	22/10/2015		1011	-0.1	0	4.1	15	0	0
N	365016	352449	39.17	1.7	3.93	08/03/2011	0.4	1014	-0.2	0	4.8	10.5	0	0
N	365016	352449	39.17	1.8	3.93	12/05/2011	0.5	1017	0	0.1	4.9	12.7	3	0
N	365016	352449	39.17	1.53	3.93	15/11/2011	0	1013	0	0	2.2	18.2	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
N	365016	352449	39.17	1.71	3.93	15/03/2012	0	1017	0	0	2.5	17.4	0	0
N	365016	352449	39.17	1.49	3.93	03/07/2012	0	1007	0	0	2.3	17.8	0	0
N	365016	352449	39.17	1.43	3.93	04/10/2012	0	1002	0	0	0	20.6	0	0
N	365016	352449	39.17	1.47	3.93	26/02/2013	0	1037	-0.3	0	2.9	17.6	0	0
N	365016	352449	39.17	1.678	3.91	23/07/2013	-0.1	1007	0	0	3.9	14.2	3	0
N	365016	352449	39.17	1.276	3.91	28/01/2014	0	974	0.05	0.3	0.6	20.9	0	0
N	365016	352449	39.17	1.636	3.91	15/04/2014	0	1028	-0.02	0	0.2	19.2	0	0
N	365016	352449	39.17	-	3.91	31/07/2014	0	1007	0.17	0	2	19.9	0	0
N	365016	352449	39.17	-	3.91	28/10/2014	0.2	1003	0.03	0	2.2	19	0	0
N	365016	352449	39.17	1.555	3.91	23/01/2015	0.0	1018	0.00	0.4	0.2	22.1	0	0
N	365016	352449	39.17	1.649	3.91	01/05/2015	0.1	999	-0.02	0	1	19.2	0	0
N	365016	352449	39.17	1.596	3.91	14/07/2015	0	1015	-0.03	0.1	0.1	20.6	0	1
N	365016	352449	39.17	1.556	3.91	22/10/2015	0.1	1016	-0.03	0	0.6	20.5	0	0
N	365016	352449	39.17	1.71	3.93	18/08/2011	0.1	1012	0	0	3.6	16.4	0	0
N	365016	352449	39.16	1.504	3.91	24/04/2013	-0.2	1019	0.16	0	0.1	20.2	5	0
N	365016	352449	39.16	1.42	3.91	31/10/2013	0	1012	0.04	0	0.4	19.7	0	0
N1	365016	352449	39.16	1.67	3	18/08/2011	0	1012	-0.16	0	7.4	11.4	0	0
N1	365016	352449	39.17	1.548	2.72	24/04/2013	-0.1	1019	0.22	0	1.2	19.1	5	0
N1	365016	352449	39.17	1.43	2.65	31/10/2013	-0.1	1012	0.04	0	1.6	15	0	0
N1	365016	352449	39.16	1.69	3	08/03/2011	0	1014	-0.2	0	0.5	19.6	0	0
N1	365016	352449	39.16	1.81	3	12/05/2011	0	1017	-0.27	0.1	1.6	17.9	2	0
N1	365016	352449	39.16	1.57	3	15/11/2011	0	1013	0	0	7.6	9.3	0	0
N1	365016	352449 352449	39.16 39.16	1.75 1.5	3	15/03/2012	0	1017 1007	0	0	0.9	20.9 19.2	0	0
N1	365016	352449	39.16	1.46	3	03/07/2012 04/10/2012	0	1007	0	0.1	0.9	20.5	0	0
N1 N1	365016		39.16	1.48	3			1002	_	0			0	0
	365016 365016	352449 352449	39.16	1.725	2.67	26/02/2013 23/07/2013	-0.1	1007	-0.3 0.05	0	0.8 2.7	19.1 16.6	2	0
N1 N1	365016	352449	39.16	1.725	2.65	28/01/2013	0.1	974	-0.12	0.2	1.6	20.7	0	0
N1	365016	352449	39.16	1.681	2.64	15/04/2014	0.1	1028	0.02	0.2	2	19	0	0
N1	365016	352449	39.16	1.001		31/07/2014		1007	-0.1	0.1	2.4	17.8	0	0
N1	365016	352449	39.16	1.64	2.63	28/10/2014	0.1	1007	-0.03	0	1.7	19.8	0	0
N1	365016	352449	39.16	1.638	2.63	23/01/2015		1018	-0.05	0.4	1	21.3	0	0
N1	365016	352449	39.16	1.676	2.63	01/05/2015	0.0	999	-0.03	0.4	5.6	14.6	0	1
N1	365016	352449	39.16	1.735	2.56	14/07/2015		1015	0.02	0.2	2.8	17.4	0	1
N1	365016	352449	39.16	1.663	2.58	22/10/2015		1016	-0.05	0	2.6	18.9	0	0
0	365184	352470	39.64	1.46		08/03/2011	-0.2	1014	0	0	0.2	20	0	0
0	365184	352470	39.64	1.57	3.7	12/05/2011	-0.1	1017	0.05	0.1	0.1	20.6	0	0
0	365184	352470	39.64	1.51	3.7	18/08/2011	-0.5	1011	0	0	0	20.6	0	0
0	365184	352470	39.64	1.48	3.7	15/11/2011	0	1012	0	0	0.2	20.8	0	0
0	365184	352470	39.64	1.49	3.7	15/03/2012		1017	0	0	0.3	20.7	0	0
0	365184	352470	39.64	1.44		03/07/2012	0	1007	0	0	0.1	20.6	0	0
0	365184	352470	39.64	1.44		04/10/2012		1003	0	0	0.4	20.2	0	0
0	365184	352470	39.64	1.49	3.7	26/02/2013		1032	-0.3	0	0.3	20.6	0	0
0	365184	352470	39.64	1.509	3.67	24/04/2013		1020	0.08	0	0.3	20.2	0	0
0	365184	352470	39.64	1.509	3.66	23/07/2013		1010	0.01	0	0.6	19.3	4	0
0	365184	352470	39.64	1.308	3.68	31/10/2013	0.1	1013	0	0	0.6	19.6	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
0	365184	352470	39.64	1.305	3.67	28/01/2014	0.1	974	0.15	0.2	0.5	21.8	0	0
0	365184	352470	39.64	1.422	3.68	15/04/2014	0.2	1028	0.12	0	0.4	20.7	0	0
0	365184	352470	39.64	-	3.68	31/07/2014	0.1	1007	-0.02	0.1	0.2	20.1	0	1
0	365184	352470	39.64	1.384	3.69	28/10/2014	0	1003	-0.02	0	0.7	20.5	0	0
0	365184	352470	39.64	1.439	3.69	23/01/2015	0.0	1017	0.00	0.4	0.5	21.7	0	0
0	365184	352470	39.64	1.495	3.69	01/05/2015	0.2	999	0	0	1.2	20.4	0	0
0	365184	352470	39.64	1.512	3.66	14/07/2015	0.1	1015	0.05	0	0.4	21	0	0
0	365184	352470	39.64	1.483	3.66	22/10/2015	0.1	1013	0.14	0	0.3	20.9	0	0
Р	365098	352374	39.93	3.26	3.92	08/03/2011	0.2	1013	-0.32	0	0	19.9	0	0
Р	365098	352374	39.93	3.42	3.92	12/05/2011	0.2	1017	0.05	0	0.2	20.1	0	0
Р	365098	352374	39.93	3.38	3.92	18/08/2011	0	1012	0.01	0	3.2	16.9	0	0
Р	365098	352374	39.93	3.27	3.92	15/11/2011	0	1011	0	0	0.2	20.8	0	0
Р	365098	352374	39.93	3.32	3.92	15/03/2012	0	1017	0	0	0	20.9	0	0
Р	365098	352374	39.93	3.16	3.92	03/07/2012	0	1007	0	0	0	20.6	0	0
Р	365098	352374	39.93	3.14	3.92	04/10/2012	0	1003	0	0	0	20.5	0	0
Р	365098	352374	39.93	3.18	3.92	26/02/2013	0	1032	-0.3	0	0	20.8	0	0
Р	365098	352374	39.93	3.26	3.84	24/04/2013	0.1	1017	0.12	0	4.5	16.1	6	0
Р	365098	352374	39.93	3.321	3.91	23/07/2013	0	1008	0.05	0	2.7	18.7	3	0
Р	365098	352374	39.93	3.175	3.91	31/10/2013	0	1012	0.05	0	0.3	19.6	0	0
P	365098	352374	39.93	3.235	3.91	15/04/2014	0.2	1028	-0.1	0	0.3	21.1	0	0
P	365098	352374	39.93	-	3.91	31/07/2014	0.1	1007	0	0	1.5	19.1	0	0
P	365098	352374	39.93	3.268	3.9	28/10/2014	0.1	1003	0	0	0.9	20	0	0
P	365098	352374	39.93	3.223	3.9	23/01/2015	0.1	1015	0.02	0.4	0.2	21.8	0	0
P	365098	352374	39.93	3.295	3.90	01/05/2015	0.1	999	0.03	0	2.8	18.5	0	0
P	365098	352374	39.93	3.311	3.39	14/07/2015	0	1015	0.24	0	0	21.3	0	0
Р	365098	352374	39.93	3.328	3.88	22/10/2015	0	1015	0.07	0	0	20.5	0	0
•	365098	352374	39.93	3.095	3.77	28/01/2014	0	975	-0.05	0.2	0.2	22	0	0
P1	365098	352374	39.93 39.93	1.975	2.04	28/01/2014	0.2	975	0.05	0.2	3.7 2.8	17.6	0	0
P1	365098	352374		Dry	2.05	08/03/2011	0	1013	0.32	0		18	5	0
P1	365098	352374	39.93	Dry	2.05	12/05/2011	Ů	1017	0	0	3.3	16.2	_	·
P1	365098	352374	39.93	Dry	2.05	18/08/2011	0.2	1012	0	0	1.9	18.4	0	0
P1 P1	365098 365098	352374 352374	39.93 39.93	Dry Dry	2.05 2.05	15/11/2011 15/03/2012	0	1011 1017	0	0	2.2 0.2	18.3 20.7	0	0
P1	365098	352374	39.93	Dry	2.05	03/07/2012	0	1007	0	0	0.2	20.7	0	0
P1	365098	352374	39.93	Dry		04/10/2012	0	1007	0	0	1.4	19.1	0	0
P1	365098	352374	39.93	Dry		26/02/2013	0	1032	-0.3	0	0.3	20.6	0	0
P1	365098	352374	39.93	Dry	2.03	24/04/2013	0.1	1017	0.08	0	0.3	20.8	3	0
P1	365098	352374	39.93	Dry	2.04	23/07/2013	-0.1	1008	0.08	0	7.5	13.2	2	0
P1	365098	352374	39.93	Dry		31/10/2013	0	1012	0.05	0	1.2	18.5	0	0
P1	365098	352374	39.93	Dry	2.04	15/04/2014	0.2	1028	0.07	0	2.2	18.5	0	0
P1	365098	352374	39.93	Dry	2.03	31/07/2014	0.2	1007	0.05	0	1.9	20.3	0	0
P1	365098	352374	39.93	Dry	2.03	28/10/2014	0.1	1007	-0.03	0	2.3	18.2	0	0
P1	365098	352374	39.93	Dry	2.03	23/01/2015	0.1	1015	-0.03	0.4	0.2	21.8	0	0
P1	365098	352374	39.93	Dry	2.03	01/05/2015	0.1	999	0.03	0.4	0.6	20.7	0	0
P1	365098	352374	39.93	DRY	2.05	14/07/2015	0.1	1015	0.03	0	4.1	10.2	0	0
P1	365098	352374	39.93	DRY	2.03	22/10/2015		1015	0.07	0	5.2	15.1	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
Q	365196	352383	39.22	1.76	3.62	08/03/2011	0	1015	2.35	0	0.5	19.5	0	0
Q	365196	352383	39.22	1.88	3.62	12/05/2011	-0.4	1017	0	0.1	0.1	20.7	0	0
Q	365196	352383	39.22	1.85	3.62	18/08/2011	0	1012	0	0.1	0.1	20.6	0	0
Q	365196	352383	39.22	1.82	3.62	15/11/2011	0	1012	0	0	0.2	20.8	0	0
Q	365196	352383	39.22	1.79	3.62	15/03/2012	0	1017	0	0	0.1	20.9	0	0
Q	365196	352383	39.22	1.74	3.62	03/07/2012	0	1007	0	0	0.2	20.5	0	0
Q	365196	352383	39.22	1.78	3.62	04/10/2012	0	1003	0	0	1.6	17.7	0	0
Q	365196	352383	39.22	1.82	3.62	26/02/2013		1034	-0.7	0	0.3	20.6	0	0
Q	365196	352383	39.22	1.975	3.58	24/04/2013		1019	0.25	0	1.4	18.8	1	0
Q	365196	352383	39.22	1.928	3.56	23/07/2013	0.1	1010	0.01	0	1.3	18.6	3	0
Q	365196	352383	39.22	1.841	3.55	31/10/2013		1013	0	0	3.3	12.8	0	0
Q	365196	352383	39.22	1.861	3.57	28/01/2014		974	0.02	0.2	5	16.9	0	0
Q	365196	352383	39.22	1.952	3.54	15/04/2014	0.1	1028	-0.13	0	0.7	20.4	0	0
Q	365196	352383	39.22	-	3.54	31/07/2014	0.1	1007	0.05	0	0.5	20.7	0	0
Q	365196	352383	39.22	1.808	3.55	28/10/2014	0	1003	0.29	0	3.3	15.8	0	0
Q	365196	352383	39.22	1.764	3.55	23/01/2015	0.0	1017	0.02	0.4	4	18.3	0	0
Q	365196	352383	39.22	1.863	3.55	01/05/2015	0.1	999	0.02	0	1.5	20.6	0	0
Q	365196	352383	39.22	1.865	3.54	14/07/2015	0.2	1015	0.09	0	3.8	15.2	0	0
Q	365196	352383	39.22	1.757	3.51	22/10/2015		1014	0.22	0	2.9	17	0	0
S	365119	352343	39.77	3.31	3.84	08/03/2011	0	1014	0	0	0	20	0	0
S	365119	352343	39.77	3.44	3.84	12/05/2011	0	1017	-0.02	0	4.3	16.4	3	0
S	365119	352343	39.77	3.42	3.84	18/08/2011	0.2	1012	0.03	0	2.5	17.8	0	0
S	365119	352343	39.77	3.36	3.84	15/11/2011	0	1012	0	0	3.6	18	0	0
S	365119	352343	39.77	3.37	3.84	15/03/2012	0	1018	0	0	0.2	20.6	0	0
S	365119	352343	39.77	3.19	3.84	03/07/2012		1007	0	0	2.9	17.6	0	0
S	365119	352343	39.77	3.18	3.84	04/10/2012	0	1003	0	0	4.7	14	0	0
S	365119	352343	39.77	3.21	3.84	26/02/2013		1032	-0.3	0	2.3	17.9	0	0
S	365119	352343	39.77	3.295	3.96	24/04/2013	0.2	1018	0.12	0	1.2	19.4	4	0
S	365119	352343	39.77	3.351	3.87	23/07/2013	-0.1	1008	0.05	0	1.8	17.9	1	0
3	365119	352343	39.77 39.77	3.204	3.86 3.86	31/10/2013		1013 975	0.04	0	5.4 3.8	14.4 17.8	0	0
S	365119 365119	352343 352343	39.77	3.158 3.25	3.86	28/01/2014 15/04/2014		1028	-0.1	0.2	2	18.1	0	
S	365119	352343	39.77	3.23	3.86	31/07/2014		1028	0.05	0	1.7	18.5	0	0
S	365119	352343	39.77	3.278	3.87	28/10/2014		1007	-0.1	0	2.8	18	0	0
S	365119	352343	39.77	3.226	3.87	23/01/2015	0.0	1017	0.07	0.4	3.9	17.7	0	0
S	365119	352343	39.77	3.329	3.87	01/05/2015	0.0	999	-0.14	0.4	2.9	18.3	0	0
S	365119	352343	39.77	3.353	3.68	14/07/2015		1015	-0.14	0	4.6	15.5	0	0
S	365119	352343	39.77	3.377	2.85	22/10/2015		1013	0.21	0	6.2	14.3	0	0
T	365140	352352	39.50	3.11	3.91	08/03/2011	0.6	1015	3.16	0	0.2	19.9	0	0
T .	365140	352352	39.50	3.22	3.91	12/05/2011	-0.1	1017	0	0	0.2	20.4	3	0
T T	365140	352352	39.50	3.22	3.91	18/08/2011	0.4	1017	0	0	0.2	20.4	0	0
<u>'</u>	365140	352352	39.50	3.13	3.91	15/11/2011	0.4	1012	0	0	0.4	21	0	0
T T	365140	352352	39.50	3.14	3.91	15/03/2012		1018	0	0	1.1	19.9	0	0
T .	365140	352352	39.50	3.06	3.91	03/07/2012		1007	0	0	0.5	20.2	0	0
T .	365140	352352	39.50	3.05		04/10/2012		1007	0	0	1.6	18.8	0	0
†	365140	352352	39.50	3.03	3.91	26/02/2013		1032	-0.3	0	2.4	18.6	0	0

Location	Easting	Northing	Surface Elevation (mOD)	Groundwater Depth (m)	Hole Base (m)	Date	Flow Rate (I/min)	Atmospheric Pressure (mbar)	Relative Pressure (mbar)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
Т	365140	352352	39.50	3.092	3.88	24/04/2013	0.4	1018	0.23	0	0.8	19.8	2	0
Т	365140	352352	39.50	3.145	3.87	23/07/2013	-0.1	1008	0.05	0	1.4	19.1	3	0
Т	365140	352352	39.50	3.025	3.98	31/10/2013	0.1	1012	0.04	0	2.1	18.1	0	0
Т	365140	352352	39.50	2.985	3.89	28/01/2014	0	975	0.02	0.2	1.7	20.6	0	0
Т	365140	352352	39.50	3.052	3.88	15/04/2014	0.2	1028	-0.14	0	4	15.3	0	0
Т	365140	352352	39.50	-	3.88	31/07/2014	0.1	1007	0.02	0	2.6	19.5	0	1
Т	365140	352352	39.50	3.079	3.88	28/10/2014	0.2	1003	0.05	0	2.8	18.6	0	0
Т	365140	352352	39.50	3.039	3.88	23/01/2015	0.0	1017	-0.05	0.4	1.9	20.4	0	0
Т	365140	352352	39.50	3.100	3.88	01/05/2015	0.1	999	0.02	0	1.9	19.9	0	0
Т	365140	352352	39.50	3.140	3.89	14/07/2015	0.1	1016	0.02	0	3	19.2	0	0
Т	365140	352352	39.50	3.180	3.90	22/10/2015	0	1015	0.29	0	1.9	19.8	0	0
V	365195	352346	39.39	1.64	3.98	08/03/2011	0	1015	-0.22	0	2.2	18.5	0	0
V	365195	352346	39.39	2.09	3.98	12/05/2011	0	1017	0	0.1	1.8	18.9	0	0
V	365195	352346	39.39	2.25	3.98	18/08/2011	0	1012	0	0	0.4	20.2	0	0
V	365195	352346	39.39	2.04	3.98	15/11/2011	0	1012	0	0	2.7	18.6	0	0
V	365195	352346	39.39	1.81	3.98	15/03/2012	0	1018	0	0	1.8	19.4	0	0
V	365195	352346	39.39	1.9	3.98	03/07/2012	0	1007	0	0	1.7	19.2	0	0
V	365195	352346	39.39	1.74	3.98	04/10/2012	0	1003	0	0	1	19.5	0	0
V	365195	352346	39.39	1.55	3.98	26/02/2013	0	1036	-0.5	0	0	20.6	0	0
V	365195	352346	39.39	1.799	3.98	24/04/2013	-0.1	1018	0.02	0	0.5	19.8	0	0
V	365195	352346	39.39	2.155	3.98	23/07/2013	0.2	1010	0.17	0	1.7	15.7	2	0
V	365195	352346	39.39	1.92	3.9	31/10/2013	0	1013	0	0	4.3	16.6	0	0
V	365195	352346	39.39	1.392	3.992	28/01/2014	0	975	0	2.1	2	20.9	0	0
V	365195	352346	39.39	1.742	4.01	15/04/2014	0.1	1028	-0.03	0	3.5	17.8	0	0
V	365195	352346	39.39	-	4.01	31/07/2014	0	1007	0.05	0	2.7	18.1	0	1
V	365195	352346	39.39	1.979	3.98	28/10/2014	0	1003	0.24	0	3.5	18.1	0	0
V	365195	352346	39.39	1.740	3.98	23/01/2015	0.0	1017	0.02	0.4	3.1	19.8	0	0
V	365195	352346	39.39	1.851	3.98	01/05/2015	0.1	999	-0.07	0	1.4	20.4	0	0
V	365195	352346	39.39	2.104	4.00	14/07/2015	0.2	1015	0.15	0	3.2	18.9	0	0
V	365195	352346	39.39	1.994	3.94	22/10/2015	0	1014	-0.03	0	3.3	18.6	0	0

Client Name: SLR Consulting Ltd Report : Solid

Reference: Nantwich deposit model

Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	11/2015										
J E Sample No.	1	2	3	4	5	6	7				
Sample ID	BHAE/2	BHAE/4	BHAF/10	BHAF/13	BHAF/15	BHAE/17	BHAF/20				
Depth	2.17-2.26	2.55-2.78	2.70-3.00	0.83-1.00	1.39-1.70	2.0-2.27	3.0-3.2		Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	Т	Т	Т	Т	Т	Т	Т				
Sample Date	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1		LOD	Units	Method
Date of Receipt	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011		200	Onito	No.
Sulphur	1.02	0.45	0.02	0.14	0.32	1.12	0.49		<0.01	%	TM63/PM15
Ammoniacal Nitrogen as N	11.2	5.7	1.3	4.8	4.9	5.0	12.8		<0.6	mg/kg	TM38/PM20
Chloride #M	428	78	108	134	197	743	81		<2	mg/kg	TM38/PM20
Nitrate as NO3 #M	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5		<2.5	mg/kg	TM38/PM20
Nitrite as NO2 ^{#M} Ortho Phosphate as PO4	<0.05 6.5	0.07 8.9	0.13 1.7	<0.05 1.1	0.15 2.2	<0.05 <0.3	0.11 19.5		<0.05 <0.3	mg/kg	TM38/PM20 TM38/PM20
Sulphate as SO4 #M	468.8	52.8	42.0	30.7	88.5	139.7	<1.5		<1.5	mg/kg mg/kg	TM38/PM20
Suipriale as SU4	700.0	52.0	72.0	50.1	00.0	100.1	-1.5		1.5	mg/kg	. 10100/1 10120
Loss on Ignition#	27.6	2.5	2.0	5.4	12.8	23.5	2.2		<1.0	%	TM22/PM0
pH ^{#M}	7.37	7.99	8.21	7.60	6.93	7.30	8.12		<0.01	pH units	TM73/PM11
Sulphide*	<10	<10	<10	23	<10	55	<10		<10	mg/kg	TM0/PM0

Client Name: SLR Consulting Ltd Report : Solid

Reference: Nantwich deposit model

Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	11/2015										
J E Sample No.	1	2	3	4	5	6	7				
Sample ID	BHAE/2	BHAE/4	BHAF/10	BHAF/13	BHAF/15	BHAE/17	BHAF/20				
Depth	2.17-2.26	2.55-2.78	2.70-3.00	0.83-1.00	1.39-1.70	2.0-2.27	3.0-3.2			e attached r	
COC No / misc									abbrevi	ations and a	cronyms
Containers	Т	Т	Т	Т	Т	Т	Т				
Sample Date	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1		LOD	Units	Method
Date of Receipt	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011		LOD	Ollits	No.
Iron	14050	10260	28260	35470	17360	9550	15660		<20	mg/kg	TM30/PM15
Sodium	2411	165	394	288	1465	2356	255		<5	mg/kg	TM30/PM15
Electrical Conductivity @25C#	1300	100	775	<100	750	1800	525		<100	uS/cm	TM76/PM0
											+

Client Name: SLR Consulting Ltd Report : Solid

Reference: Nantwich deposit model

Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	11/2015										
J E Sample No.	1	2	3	4	5	6	7				
Sample ID	BHAE/2	BHAE/4	BHAF/10	BHAF/13	BHAF/15	BHAE/17	BHAF/20				
Depth	2.17-2.26	2.55-2.78	2.70-3.00	0.83-1.00	1.39-1.70	2.0-2.27	3.0-3.2			e attached r	
COC No / misc									abbrevi	ations and a	cronyms
Containers	Т	Т	Т	Т	Т	Т	Т				
Sample Date	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1		LOD	Units	Method
Date of Receipt	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011		LOD	Ollits	No.
Iron	14050	10260	28260	35470	17360	9550	15660		<20	mg/kg	TM30/PM15
Sodium	2411	165	394	288	1465	2356	255		<5	mg/kg	TM30/PM15
Electrical Conductivity @25C#	1300	100	775	<100	750	1800	525		<100	uS/cm	TM76/PM0
											+

Client Name: SLR Consulting Ltd Report : Solid

Reference: Nantwich deposit model

Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	11/2015										
J E Sample No.	1	2	3	4	5	6	7				
Sample ID	BHAE/2	BHAE/4	BHAF/10	BHAF/13	BHAF/15	BHAE/17	BHAF/20				
Depth	2.17-2.26	2.55-2.78	2.70-3.00	0.83-1.00	1.39-1.70	2.0-2.27	3.0-3.2		Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	Т	Т	Т	Т	Т	Т	Т				
Sample Date	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011	13/01/2011				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1		LOD	Units	Method
Date of Receipt	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011	19/01/2011		200	Onito	No.
Sulphur	1.02	0.45	0.02	0.14	0.32	1.12	0.49		<0.01	%	TM63/PM15
Ammoniacal Nitrogen as N	11.2	5.7	1.3	4.8	4.9	5.0	12.8		<0.6	mg/kg	TM38/PM20
Chloride #M	428	78	108	134	197	743	81		<2	mg/kg	TM38/PM20
Nitrate as NO3 #M	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5		<2.5	mg/kg	TM38/PM20
Nitrite as NO2 ^{#M} Ortho Phosphate as PO4	<0.05 6.5	0.07 8.9	0.13 1.7	<0.05 1.1	0.15 2.2	<0.05 <0.3	0.11 19.5		<0.05 <0.3	mg/kg	TM38/PM20 TM38/PM20
Sulphate as SO4 #M	468.8	52.8	42.0	30.7	88.5	139.7	<1.5		<1.5	mg/kg mg/kg	TM38/PM20
Suipriale as SU4	700.0	52.0	72.0	50.1	00.0	100.1	-1.5		1.5	mg/kg	. 10100/1 10120
Loss on Ignition#	27.6	2.5	2.0	5.4	12.8	23.5	2.2		<1.0	%	TM22/PM0
pH ^{#M}	7.37	7.99	8.21	7.60	6.93	7.30	8.12		<0.01	pH units	TM73/PM11
Sulphide*	<10	<10	<10	23	<10	55	<10		<10	mg/kg	TM0/PM0

SLR Consulting Ltd Client Name: Report : Liquid

406.00889.00005 Reference: Location: NANTWICH

Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	11/2257						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN	HN0₃			
J E Sample No.	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50			
Sample ID	AB	AC	AE	AF	AG	F2	L	М	N	0			
Depth	1.77	2.65	2.58	2.84	2.61	1.44	2.26	1.55	1.73	1.49	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ad	cronyms
Containers	VHPG	VHPG	VHPG	VHPG	VHPG	VHPG	VHPG	VHPG	VHPG	VHPG			
Sample Date	01/02/2011	01/02/2011	01/02/2011	01/02/2011	01/02/2011	01/02/2011	02/02/2011	02/02/2011	02/02/2011	02/02/2011			
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	04/02/2011	LOD	Units	No.
Dissolved Iron #	<0.02	13.55	0.25	0.10	0.24	<0.02	<0.02	<0.02	0.07	<0.02	<0.02	mg/l	TM30/PM14
Dissolved Manganese #	0.007	3.516	1.663	0.920	0.543	1.353	0.643	0.148	0.476	1.365	<0.002	mg/l	TM30/PM14
Dissolved Sodium#	64.7	505.9	145.1	467.2	604.4	176.0	151.5	196.5	114.3	141.2	<0.1	mg/l	TM30/PM14
Sulphate # Chloride #	44.94 90.6	171.73 1051.9	62.12 228.6	12.39 787.0	311.67 1488.6	222.30 325.3	153.71 298.5	104.96 368.1	86.18 176.5	41.96 201.6	<0.05 <0.3	mg/l mg/l	TM38/PM0 TM38/PM0
Nitrate as NO3 [#]	25.3	5.4	<0.2	<0.2	<0.2	<0.2	9.7	3.1	1.2	3.4	<0.3	mg/l	TM38/PM0
Ortho Phosphate as PO4 #	9.91	<0.06	11.78	10.95	<0.06	0.82	0.89	7.79	0.41	1.24	<0.06	mg/l	TM38/PM0
Sulphide Aquakem	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4 #	0.03	1.52	21.36	46.22	5.27	4.71	21.52	0.23	4.48	10.19	<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	<0.001	1.981	3.396	0.009	<0.001	0.032	<0.001	8.107	<0.001	<0.001	mg/l	TM25/PM0
Discontou inicalano	0.001	0.001	1.001	0.000	0.000	0.001	0.002	0.001	0.107	0.001	0.001	9	111126111110
Total Alkalinity as CaCO3#	434	480	708	868	552	476	476	352	466	592	<1	mg/l	TM75/PM0
pH#	8.10	7.43	7.82	7.73	7.49	7.70	7.93	7.54	7.93	7.78	<0.01	pH units	TM73/PM0
		l			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			

Client Name: SLR Consulting Ltd Report : Liquid

 Reference:
 406.00889.00005

 Location:
 NANTWICH

Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	11/2257					H=H ₂ SO ₄ ,	Z=ZnAc, N=				
J E Sample No.		56-60	61-65	66-70	71-75						
Sample ID	Р	Q	s	Т	V				Ì		
Depth	3.29	1.86	3.35	3.14	1.75				Please se	e attached n	notes for all
COC No / misc										ations and a	
Containers	VHPG	VHPG	VHPG	VHPG	VHPG				1		
Sample Date		01/02/2011		01/02/2011	01/02/2011				l		
Sample Type		Liquid		Liquid	Liquid				1		
			Liquid							1	T 1
Batch Number		1	1	1	1				LOD	Units	Method No.
Date of Receipt									-0.00		
Dissolved Iron [#] Dissolved Manganese [#]	<0.02 1.313	<0.02 0.154	<0.02 0.213	<0.02 0.786	<0.02 4.041				<0.02 <0.002	mg/l mg/l	TM30/PM14 TM30/PM14
Dissolved Sodium #	14.9	661.9	104.8	31.0	18.3				<0.1	mg/l	TM30/PM14
										-	
Sulphate #	468.44	59.37	56.09	20.25	396.31				<0.05	mg/l	TM38/PM0
Chloride #	16.9	1075.0	202.1	68.6	15.5				<0.3	mg/l	TM38/PM0
Nitrate as NO3#	16.5	6.0	2.0	1.8 12.44	<0.2				<0.2	mg/l	TM38/PM0 TM38/PM0
Ortho Phosphate as PO4 # Sulphide Aquakem	16.26 <0.3	6.00 <0.3	7.73 <0.3	<0.3	<0.06 <0.3				<0.06 <0.3	mg/l mg/l	TM38/PM0
	3.0	3.0	3.0	5.5	3.5				5.5	g/i	53/1 1410
Ammoniacal Nitrogen as NH4 #	0.12	0.15	0.29	3.99	1.24				<0.03	mg/l	TM38/PM0
Dissolved Methane	0.007	<0.001	0.017	2.970	0.094				<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3#	246	282	342	304	78				<1	mg/l	TM75/PM0
рН#	6.98	7.45	7.31	7.36	6.36				<0.01	pH units	TM73/PM0
											1
											-
											-
									<u> </u>		

Client Name: SLR Consulting Ltd Report : Liquid

406.00889.00005 Reference: NANTWICH Location:

Tim Malim Contact: Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	12/1723						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN	=HN0 ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60			
Sample ID	AB	AC	AE	AF	AG	F2	L	М	N1	0			
Depth	1.77	2.42	2.58	2.77	1.53	1.05	1.18	1.47	1.54	1.49	Please se	e attached r	notes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P			
Sample Date	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012			
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	LOD	Units	No.
Total Dissolved Iron	<0.0047	<0.0047	0.0105	0.0206	0.0211	0.0583	0.0268	0.0304	0.1682	0.0234	<0.0047	mg/l	TM30/PM14
Dissolved Manganese	<0.0015	2.0510	1.2410	0.9210	0.8265	0.4455	0.4951	0.2375	0.5999	1.2010	<0.0015	mg/l	TM30/PM14
Dissolved Sodium	66.2	2071.0	196.9	408.5	1705.0	90.7	141.4	207.9	64.0	73.2	<0.1	mg/l	TM30/PM14
Sulphate	55.76	186.08	9.89	12.18	271.66	38.04	119.21	133.55	74.66	28.48	<0.05	mg/l	TM38/PM0
Chloride	96.1	2803.6	307.4	592.9	3047.8	102.0	222.3	300.5	79.1	76.2	<0.3	mg/l	TM38/PM0
Nitrate as NO3 Ortho Phosphate as PO4	8.5 9.99	0.4 <0.06	0.9 11.43	<0.2 8.61	2.5 0.19	<0.2 13.64	6.4 1.44	6.0 7.09	1.5 0.12	0.3 4.95	<0.2 <0.06	mg/l mg/l	TM38/PM0 TM38/PM0
orato i nospitate as FO4	5.55	-0.00	11.43	0.01	0.18	13.04	1.44	7.09	0.12	4.50	-0.00	my/I	T IVISO/P'IVIU
Ammoniacal Nitrogen as NH4	<0.03	2.63	24.23	49.88 ⁺	1.52	1.85	20.91	0.09	3.54	8.06	<0.03	mg/l	TM38/PM0
Dissolved Methane	0.006	0.364	5.273	3.765	0.012	0.943	<0.001	<0.001	6.777	<0.001	<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3	490	428	850	942	564	308	462	394	468	450	<1	mg/l	TM75/PM0
Sulphide	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM106/PM0
Calphiae	-0.01	-0.01	-0.01	10.01	10.01	10.01	10.01	10.01	10.01	-0.01	-0.01	mgn	

Client Name: SLR Consulting Ltd Report : Liquid

 Reference:
 406.00889.00005

 Location:
 NANTWICH

Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.: 12/1723 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HN0;

JE Job No.:	12/1723					H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN	=HN0 ₃			
J E Sample No.	61-66	67-72	73-78	79-84	85-90							
Sample ID	Р	Q	S	Т	V							
Depth	2.36	1.82	3.32	3.12	1.66					Please se	e attached r	notes for all
COC No / misc											ations and a	
Containers	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P							
Sample Date	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012							
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid							
Batch Number	1	1	1	1	1							Method
Date of Receipt	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012					LOD	Units	No.
Total Dissolved Iron	<0.0047	0.0131	0.0156	0.0844	1.9220					<0.0047	mg/l	TM30/PM14
Dissolved Manganese	2.3170	0.0336	0.3080	1.0960	8.6010					<0.0015	mg/l	TM30/PM14
Dissolved Sodium	22.8	549.6	310.8	44.9	38.4					<0.1	mg/l	TM30/PM14
Sulphate Chlorido	876.01	57.52 750.0	71.68	29.81 75.9	974.34					<0.05	mg/l	TM38/PM0
Chloride Nitrate as NO3	23.2 32.0	750.0 23.7	577.0 15.9	75.9 <0.2	34.5 <0.2					<0.3 <0.2	mg/l mg/l	TM38/PM0 TM38/PM0
Ortho Phosphate as PO4	14.90	10.61	5.04	13.55	<0.06					<0.06	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	0.40	<0.03	0.17	5.96	1.83					<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	<0.001	0.005	2.024	0.026					<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3	242	374	308	378	NDP					<1	mg/l	TM75/PM0
Sulphide	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM106/PM0

SLR Consulting Ltd Client Name: Report : Liquid

406.00889.00005 Reference: Location: NANTWICH

Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	12/1723						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	=HN0₃			
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60			
Sample ID	AB	AC	AE	AF	AG	F2	L	М	N1	0			
Depth	1.77	2.42	2.58	2.77	1.53	1.05	1.18	1.47	1.54	1.49		e attached no	
COC No / misc											abbrevi	ations and ac	ronyms
Containers	V H HCL Z P	V H HCL Z P	V H HCL Z P	V H HCL Z P									
Sample Date	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012			
Sample Type	Liquid	Liquid	Liquid	Liquid									
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD	Units	Method
Date of Receipt	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012	LOD	Offics	No.
pH¹	8.38	8.04	8.27	7.97	7.63	8.39	8.28	8.34	8.28	8.42	<0.01	pH units	TM73/PM0
								1		l .	-	<u> </u>	

Client Name: SLR Consulting Ltd Report : Liquid

 Reference:
 406.00889.00005

 Location:
 NANTWICH

Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	12/1723					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0₃			
J E Sample No.	61-66	67-72	73-78	79-84	85-90							
Sample ID	Р	Q	S	Т	V							
Depth	2.36	1.82	3.32	3.12	1.66					Please se	e attached no	otes for all
COC No / misc										abbrevia	ations and ac	ronyms
Containers	V H HCL Z P											
Sample Date	16/02/2012	16/02/2012	16/02/2012	16/02/2012	16/02/2012							
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid							
Batch Number	1	1	1	1	1							Method
Date of Receipt	21/02/2012	21/02/2012	21/02/2012	21/02/2012	21/02/2012					LOD	Units	No.
pH¹	8.08	8.30	8.07	8.22	3.41					<0.01	pH units	TM73/PM0
		<u>I</u>		<u>I</u>	<u>I</u>							

Client Name: SLR Consulting Ltd Report : Liquid

406.00889.00005 Reference: Location: NANTWICH

Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	13/2410						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃			
J E Sample No.	1-5	6-10	11-15	16-20	21-25	26-31	32-36	37-41	42-47	48-52			
Sample ID	AB	AC	AE	AF	AG	F2	L	М	N1	0			
Depth	1.44	2.45	2.58	2.84	1.67	1.07	2.16	1.51	1.48	1.49	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VHZG	VHZG	VHZG	VHZG	VHZG	VHZG	VHZG	VHZG	VHZG	VHZG			
Sample Date	27/02/2013	27/02/2013	27/02/2013	27/02/2013	27/02/2013	26/02/2013	27/02/2013	28/02/2013	26/02/2013	28/02/2013			
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	02/03/2013	LOD	Units	No.
Total Dissolved Iron #	<0.02	9.41	<0.02	0.03	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/l	TM30/PM14
Dissolved Manganese #	<0.002	3.028	2.098	1.088	1.184	0.769	0.033	0.178	1.071	1.310	<0.002	mg/l	TM30/PM14
Dissolved Sodium#	111.9	582.1	180.4	399.9	1595.0	138.7	29.5	170.2	22.0	119.5	<0.1	mg/l	TM30/PM14
0.1.1.#	105.47	100.70	470.47	0.40	000 50	40.00	40.00	07.00	00.00	00.70	.0.05		Th 400 / Dh 40
Sulphate # Chloride #	185.47 265.3	166.70 1094.1	178.47 521.9	8.10 683.2	263.53 3924.5	48.83 246.0	48.66 28.5	97.02 292.5	69.26 28.2	29.73 150.1	<0.05 <0.3	mg/l mg/l	TM38/PM0 TM38/PM0
Nitrate as NO3#	99.8	<0.2	1.4	<0.2	0.8	0.3	11.8	10.9	<0.2	<0.2	<0.3	mg/l	TM38/PM0
Ortho Phosphate as PO4 #	9.47	<0.06	9.90	14.03	0.74	9.80	6.49	5.66	0.48	2.98	<0.06	mg/l	TM38/PM0
Total Ammonia as NH4#	<0.03	1.89	11.77**	40.34**	1.35	2.19	5.54	0.04	1.16	9.59	<0.03	mg/l	TM38/PM0
Dissolved Methane	0.007	<0.001	<0.001	4.019	<0.001	<0.001	0.012	<0.001	2.783	<0.001	<0.001	ma/l	TM25/PM0
Dissolved Methane	0.007	<0.001	<0.001	4.019	<0.001	<0.001	0.012	<0.001	2.703	<0.001	<0.001	mg/l	TIVI25/FIVIO
Total Alkalinity as CaCO3#	498	528	828	860	640	300	114	312	392	436	<1	mg/l	TM75/PM0
pH#	7.30	6.76	6.98	7.09	6.84	7.04	6.79	7.04	7.10	7.14	<0.01	pH units	TM73/PM0
Culabida	40.2	40.2	40.2	40.0	40.2	40.2	40.2	40.2	40.0	10.2	50.2		TM106/PM0
Sulphide	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TIVITUO/PIVIU
													i

Client Name: SLR Consulting Ltd Report: Liquid

 Reference:
 406.00889.00005

 Location:
 NANTWICH

Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.: 13/2410 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	13/2410					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
J E Sample No.	53-57	58-62	63-67	68-72	73-77							
Sample ID	Р	Q	s	Т	V							
Depth	3.18	1.82	3.21	3.03	1.55					Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VHZG	VHZG	VHZG	VHZG	VHZG							
Sample Date	28/02/2013	27/02/2013	28/02/2013	28/02/2013	27/02/2013							
Sample Type												
Batch Number	1	1	1	1	1							I
Date of Receipt										LOD	Units	Method No.
Total Dissolved Iron #	0.03	<0.02	<0.02	<0.02	15.45					<0.02	ma/l	TM30/PM14
Dissolved Manganese #	3.746	0.058	0.305	0.504	1.169					<0.02	mg/l mg/l	TM30/PM14
Dissolved Sodium#	21.4	880.5	257.8	35.2	27.2					<0.1	mg/l	TM30/PM14
											, and the second	
Sulphate #	1117.14	52.64	79.60	107.35	127.49					<0.05	mg/l	TM38/PM0
Chloride#	26.6	1379.8	427.9	51.8	22.2					<0.3	mg/l	TM38/PM0
Nitrate as NO3#	9.6	12.2	9.4	6.3	<0.2					<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4 #	7.88	6.71	6.19	9.77	17.99					<0.06	mg/l	TM38/PM0
Total Ammonia as NH4 #	0.22	0.15	0.29	2.71	0.18					<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	<0.001	0.011	<0.001	0.006					<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3 #	254	232	368	288	66					<1	mg/l	TM75/PM0
Total Aikalifility as CaCOS	254	232	300	200	00					- 1	mg/i	TIVIT S/T IVIO
pH#	6.30	6.92	6.90	6.87	5.75					<0.01	pH units	TM73/PM0
Sulphide	<0.3	<0.3	<0.3	<0.3	<0.3					<0.3	mg/l	TM106/PM0

Client Name: SLR Consulting Ltd Reference: 406.00889.00005

Reference: 406.00889.0 Location: Nantwich Contact: Mark Swain JE Job No.: 14/3458 Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

J E Sample No. Sample ID	1-6 AB	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60			
	AB	۸.											
		AC	AE	AF	AG	F2	L	М	N1	0			
Depth	2.65	3.2	3.25	3.25	2.3	2.65	2.9	2.6	2.2	2.45	Please se	e attached n	otes for all
COC No / misc											Please see attached notes for all abbreviations and acronyms		
Containers	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P	V H HN Z P			
Sample Date								26/02/2014					
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid			
				-			-	-					
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD	Units	Method No.
Date of Receipt								01/03/2014		01/03/2014			
Total Dissolved Iron Dissolved Manganese	<0.02	19	0.18	5.8	0.037	0.04	<0.02 0.03	0.037	0.84	0.029 0.75	<0.02	mg/l	TM30/PM14
Dissolved Manganese Dissolved Potassium	<0.002 15	3.2 51	3.9 65	1.7 57	0.044 5.2	0.35	14	0.12 24	11	17	<0.002 <0.1	mg/l mg/l	TM30/PM14 TM30/PM14
Dissolved Foldasaum Dissolved Sodium	110	510	270	350	390	91	21	150	24	29	<0.1	mg/l	TM30/PM14
Sulphate	95	170	320	6.3	31	44	41	110	51	32	<0.05	mg/l	TM38/PM0
Chloride	210	920	790	600	490	150	27	240	29	18	<0.3	mg/l	TM38/PM0
Nitrate as NO3	53	0.75	1.7	0.80	2.0	1.7	22	13	0.80	2.2	<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4	9.4	<0.06	9.2	12	<0.06	6.3	6.3	2.5	0.55	4.6	<0.06	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	<0.03	3.0	13	41	0.11	1.6	0.54	0.033	1.3	1.6	<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	<0.001	<0.001	0.11	<0.001	<0.001	<0.001	<0.001	2.2	<0.001	<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3	450	530	840	830	140	280	88	350	400	260	<1	mg/l	TM75/PM0
Manganese II	20	3.9	4.6	1.4	<0.02	0.36	0.023	0.11	0.97	0.75	<0.02	mg/l	TM62/PM0
рН	7.4	6.9	7.1	7.3	7.7	7.3	7.0	7.2	7.5	7.5	<0.01	pH units	TM73/PM0
Sulphide	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM106/PM0
Dissolved Iron II	0.30	0.03	0.05	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/l	TM48/PM0
Dissolved Iron III	<0.02	18.97	0.13	5.77	0.04	0.04	<0.02	0.04	0.84	0.03	<0.02	mg/l	TM30/TM48/PM0
Manganese IV (by calculation)	<0.40	<0.10	<0.10	0.30	0.22	<0.02	<0.02	0.05	<0.02	<0.02	<0.02	mg/l	TM62/TM30/PM0

Client Name: SLR Consulting Ltd Reference: 406.00889.00005

Location: Nantwich
Contact: Mark Swain
JE Job No.: 14/3458

Report: Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE JOB NO.:	14/3436						 	iva∪⊓, ⊓iv-	 		
J E Sample No.	61-66	67-72	73-78	79-84	85-90						
Sample ID	Р	Q	s	Т	V						
Depth	3.5	2.75	3.4	3.5	2.7				Diago oo	e attached n	otoo for all
COC No / misc										ations and a	
Containers		V H HN 7 P									
Sample Date											
Sample Type		Liquid	Liquid	Liquid	Liquid						1
Batch Number	1	1	1	1	1				LOD	Units	Method No.
Date of Receipt	01/03/2014	01/03/2014	01/03/2014	01/03/2014	01/03/2014						
Total Dissolved Iron	0.37	0.27	<0.02	0.077	0.83				<0.02	mg/l	TM30/PM14
Dissolved Manganese	0.47	0.026	0.20	0.084	0.31				<0.002	mg/l	TM30/PM14
Dissolved Potassium Dissolved Sodium	32 17	11 250	29 240	11 34	0.46 29				<0.1 <0.1	mg/l mg/l	TM30/PM14 TM30/PM14
Dissolved Sodialii	17	230	240	34	29				~ 0.1	mg/i	110130/110114
Sulphate	520	25	70	45	66				<0.05	mg/l	TM38/PM0
Chloride	22	290	430	62	36				<0.3	mg/l	TM38/PM0
Nitrate as NO3	11	8.4	15	13	0.97				<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4	7.8	11	4.7	5.6	19				<0.06	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	0.15	0.04	0.41	0.18	0.093				<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	0.0056	<0.001	<0.001	<0.001				<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3	230	280	330	220	86				<1	mg/l	TM75/PM0
Manganese II	0.62	0.036	0.22	0.15	0.26				<0.02	mg/l	TM62/PM0
pH	6.7	7.0	7.1	7.1	6.2				<0.01	pH units	TM73/PM0
										-	
Sulphide	<0.3	<0.3	<0.3	<0.3	<0.3				<0.3	mg/l	TM106/PM0
Dissolved Iron II	<0.02	<0.02	<0.02	<0.02	0.02				<0.02	mg/l	TM48/PM0
Dissolved Iron III	0.37	0.27	<0.02	0.08	0.81				<0.02	mg/l	TM30/TM48/PM0
Manganese IV (by calculation)	<0.02	<0.02	0.02	<0.02	0.06				<0.02	mg/l	TM62/TM30/PM0
	•					•			•	•	

Client Name: SLR Consulting Ltd Report : Liquid

 Reference:
 406.00889.00005

 Location:
 Nantwich Town

 Contact:
 Mark Swain

15/4279

JE Job No.:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

Sample No. 1-7 8-14 15-21 22-28 29-35 36-42 43-49 50-56 57-63 64-70	
Depth 3.5 2.2 3.5 3.8 2.8 2.5 2.5 2.8 3.287 2.8 Please see attache abbreviations and COC No / misc Containers VHN HCL Z P G VHN	
COC No / misc Containers	
Containers	notes for all
Sample Date 23/02/2015 23/02/2015 23/02/2015 23/02/2015 23/02/2015 23/02/2015 24/02/	acronyms
Sample Type Liquid Li	
Batch Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LOD/LOR Units Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015	
Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015	
Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015	Method
Total Dissolved Iron 17 0.39 0.78 5.4 <0.02 <0.02 0.66 0.12 <0.02 29 <0.02 mg/l	No.
	TM30/PM14
Dissolved Manganese 2.4 0.57 0.85 1.1 <0.002 0.22 1.3 0.017 0.16 5.0 <0.002 mg/l	TM30/PM14
Dissolved Sodium 470 _A 25 180 420 _A 110 180 46 200 200 28 <0.1 mg/l	TM30/PM14
Sulphate 180 86 69 0.94 96 110 12 21 65 420 <0.05 mg/l	TM38/PM0
Chloride 780 28 370 730 170 340 39 240 270 25 <0.3	TM38/PM0 TM38/PM0
Ortho Phosphate as PO4 4.3 1.3 10 15 9.8 7.6 8.8 14 5.6 0.14 <0.06 mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	TM38/PM0
Dissolved Methane <0.001 2.300 <0.001 1.000 <0.001 <0.001 <0.001 0.005 <0.001 0.010 <0.001 mg/l	TM25/PM0
Total Alkalinity as CaCO3 520 430 660 820 450 320 330 310 350 110 <1 mg/l	TM75/PM0
Sulphide <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	TM106/PM0
Dissolved Iron II 15 _A 0.42 0.87 5.5 _A <0.02 <0.02 0.31 <0.02 0.10 26 _D <0.02 mg/l	TM48/PM0
Dissolved Iron III 2.00 _A <0.02 <0.02 <0.10 _A <0.02 <0.02 0.35 0.12 <0.02 3.00 _D <0.02 mg/l	TM30/TM48/PM0
Manganese II 4.2 _A 0.63 1.0 _A 1.7 _A <0.02 0.22 1.4 _A 0.03 1.2 _A 8.0 _D <0.02 mg/l	TM62/PM0
Dissolved Manganese IV (by calculation)	TM62/TM30/PM0
pH 7.3 7.5 7.2 7.3 7.5 7.2 7.4 7.2 7.3 6.5 <0.01 pH un	TM73/PM0

Client Name: SLR Consulting Ltd Report : Liquid

Reference: 406.00889.00005
Location: Nantwich Town
Contact: Mark Swain

15/4279

JE Job No.:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	15/4279					 H=H ₂ SO ₄ , A	Z=ZNAC, N=	NaOH, HN=	HINU ₃			
J E Sample No.	71-77	78-84	85-91	92-98	99-105							
Sample ID	Т	L	AG	F1	P1							
Depth	3.075	3.2	2.4	2.6	3.75					Please se	e attached n	otos for all
COC No / misc											ations and a	
Containers	V HN HCL Z P G	V HN HCL Z P G	V HN HCL Z P G	V HN HCL Z P G	V HN HCL Z P G							
Sample Date	24/02/2015	26/02/2015	26/02/2015	26/02/2015	26/02/2015							
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid							
Batch Number	1	1	1	1	1							Mathad
Date of Receipt				28/02/2015						LOD/LOR	Units	Method No.
Total Dissolved Iron	0.10	0.07	0.04	<0.02	<0.02					<0.02	mg/l	TM30/PM14
Dissolved Manganese	0.12	0.74	2.9	0.73	0.43					<0.002	mg/l	TM30/PM14
Dissolved Sodium	31	170	5500 _E	120	13					<0.1	mg/l	TM30/PM14
											g	
Sulphate	30	98	250	360	310					<0.05	mg/l	TM38/PM0
Chloride	42	200	9000	230	15					<0.3	mg/l	TM38/PM0
Nitrate as NO3	8.0	0.8	0.7	9.3	18					<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4	5.4	1.8	<0.06	3.2	16					<0.06	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	0.52	16.66	4.95	1.98	0.04					<0.03	mg/l	TM38/PM0
Dissolved Methane	<0.001	0.047	0.970	0.003	<0.001					<0.001	mg/l	TM25/PM0
Total Alkalinity as CaCO3	230	390	400	320	200					<1	mg/l	TM75/PM0
Sulphide	<0.3	<0.3	<0.3	<0.3	<0.3					<0.3	mg/l	TM106/PM0
Dissolved Iron II	0.05	0.04	2.2	1.6	2.0					<0.02	mg/l	TM48/PM0
Dissolved Iron III	0.05	0.03	<0.02	<0.02	<0.02					<0.02	mg/l	TM30/TM48/PM0
Manganese II	0.16	0.85	6.0 _D	5.5 _D	0.89					<0.02	mg/l	TM62/PM0
Dissolved Manganese IV (by calculation)	<0.02	<0.02	<0.20 _D	<0.20 _D	<0.02					<0.02	mg/l	TM62/TM30/PM0
рН	7.3	7.5	7.2	7.2	6.7					<0.01	pH units	TM73/PM0
												<u> </u>

harrisontestin

PROJECT NAME: 2015 BH/TP No.: N/A PROJECT NUMBER: L15646 Depth (m): N/A CLIENT: Jones Environmental Laboratory Sample No.:

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
		SILT		SAND						
	_			-			-			

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	100
10.0	99
6.30	96
5.00	90
3.35	87
2.00	80
1.18	75
0.600	70
0.425	67
0.300	60
0.212	51
0.150	44
0.063	34
0.020	22
0.006	11
0.002	4

Sample Description							
MADE GROUND (Dark grey slightly clayey silty gravelly SAND. Gravel is of							
brick, clinker and wood fragments)							

Sample Proportions %								
Cobbles	0.0							
Gravel	19.7							
Sand	46.7							
Silt	29.1							
Clay	4.4							

Remarks	

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

email: laboratory@harrisongroupuk.com

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2:1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2:1990:CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
		SILT			SAND			GRAVEL		

	I					
Particle Size (mm)	Percentage Passing					
75.0	100					
63.0	100					
50.0	100					
37.5	100					
28.0	100					
20.0	100					
14.0	100					
10.0	100					
6.30	100					
5.00	100					
3.35	100					
2.00	100					
1.18	100					
0.600	99					
0.425	98					
0.300	95					
0.212	84					
0.150	65					
0.063	33					
0.020	15					
0.006	7					
0.002	4					

Sample Description
Dark grey slightly clayey silty SAND

Sample Proportions %					
Oakklas	0.0				
Cobbles					
Gravel	0.0				
Sand	67.3				
Silt	29.0				
Clay	3.7				

Remarks

Harrison Geotechnical Engineering

Unit 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: 01603 416333

Fax: 01603 416443

email: laboratory@ harrisongroupuk.com

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES	
		SILT			SAND			GRAVEL			
						Sai	mple Descript	ion			
Particle Size (mm) Percentage Passin		ng M	ADE GROUNE		F F	avelly slightly s	andy silty CL/	λY.			

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	100
10.0	97
6.30	96
5.00	95
3.35	95
2.00	94
1.18	94
0.600	93
0.425	92
0.300	90
0.212	86
0.150	83
0.063	74
0.020	66
0.006	50
0.002	37

s %
0.0
5.9
19.9
36.9
37.4

Gravel is of sandstone and occasional clinker fragments)

Remarks

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

DATE OF ISSUE:

16/02/2011

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

email: laboratory@harrisongroupuk.com

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
			SILT			SAND			GRAVEL		
-	-										

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	100
10.0	99
6.30	97
5.00	96
3.35	94
2.00	92
1.18	90
0.600	88
0.425	86
0.300	73
0.212	55
0.150	44
0.063	34
0.020	31
0.006	24
0.002	16

Sample Description
MADE GROUND (Dark grey clayey silty gravelly SAND. Gravel is of sandstone, brick and clinker fragments)

Sample Proportions	%
2	0.0
Cobbles	0.0
Gravel	8.0
Sand	58.2
Silt	17.9
Clay	15.9

	Remarks
ı	

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES	
			SILT			SAND			GRAVEL			
_												

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	98
10.0	95
6.30	93
5.00	91
3.35	88
2.00	87
1.18	85
0.600	83
0.425	80
0.300	73
0.212	62
0.150	53
0.063	41
0.020	24
0.006	14
0.002	5

Sample Description						
MADE GROUND (Dark grey slightly gravelly sandy clayey SILT. Gravel is of flint, brick and clinker fragments)						

Sample Proportions %							
Cobbles	0.0						
Gravel	13.0						
Sand	46.0						
Silt	36.3						
Clay	4.7						

Remarks

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

email: laboratory@harrisongroupuk.com

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

SILT SAND GRAVEL	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
			CILT			SAND			GRAVEL		

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	99
10.0	98
6.30	95
5.00	93
3.35	90
2.00	86
1.18	84
0.600	80
0.425	77
0.300	71
0.212	58
0.150	45
0.063	25
0.020	15
0.006	2
0.002	1

Sample Description					
MADE GROUND (Dark brown slightly clayey silty gravelly SAND. Gravel is of					
wood and clinker fragments)					

Sample Proportions %								
Cobbles	0.0							
Gravel	13.5							
Sand	61.3							
Silt	24.4							
Clay	0.8							

Remarks						

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

email: laboratory@harrisongroupuk.com

DATE OF ISSUE: 16/02/2011

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2:1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2:1990:CLAUSE 9.4 - SEDIMENTATION BY PIPETTE

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
		SILT			SAND			GRAVEL		

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	100
20.0	100
14.0	100
10.0	100
6.30	100
5.00	100
3.35	100
2.00	100
1.18	100
0.600	100
0.425	100
0.300	99
0.212	95
0.150	84
0.063	47
0.020	23
0.006	18
0.002	9

Sample Description									
Dark grey sandy clayey SILT									

Sample Proportions %								
Cobbles	0.0							
Gravel	0.0							
Sand	53.3							
Silt	38.2							
Clay	8.5							

Harrison Geotechnical Engineering

Unit 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: 01603 416333

Fax: 01603 416443

email: laboratory@ harrisongroupuk.com

		Groundwa	ter Depth (ı	m below gro	ound level)		Rainfall (mm) Data From	
Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
26/01/2011	1.191	3.27147	1.658	1.72983	2.517	2.784	0	
27/01/2011	1.273	3.28025	1.689	1.74794	2.617	2.850	0.402	
28/01/2011	1.299	3.27382	1.699	1.74481	2.624	2.849	0	
29/01/2011	1.298	3.27454	1.704	1.75165	2.611	2.839	0	
30/01/2011	1.298	3.2794	1.712	1.75907	2.623	2.845	0	
31/01/2011	1.305	3.28611	1.721	1.76605	2.631	2.851	0	
01/02/2011	1.309	3.28742	1.726 1.732	1.77287	2.581	2.841	0 1.407	
02/02/2011 03/02/2011	1.413 1.425	3.28416 3.29351	1.732	1.70773 1.72298	2.746 2.746	2.829 2.834		
04/02/2011	1.425	3.29331	1.737	1.72627	2.688	2.798	0	
05/02/2011	1.419	3.29734	1.742	1.73566	2.716	2.812	0.402	
06/02/2011	1.400	3.30278	1.751	1.75063	2.766	2.843	0.402	
07/02/2011	1.422	3.30351	1.755	1.75098	2.743	2.828	1.809	
08/02/2011	1.471	3.31245	1.764	1.76653	2.807	2.867	0	
09/02/2011	1.450	3.30596	1.761	1.76451	2.747	2.833	0	
10/02/2011	1.456	3.31055	1.763	1.77312	2.734	2.824	0.804	
11/02/2011	1.337	3.3001	1.704	1.77588	2.722	2.818	4.02	
12/02/2011	1.280	3.28985	1.669	1.78192	2.724	2.820	0.402	
13/02/2011	1.351	3.28717	1.659	1.77077	2.661	2.784	4.02	
14/02/2011	1.132	3.27127	1.467	1.76427	2.649	2.784	5.427	
15/02/2011	1.150	3.26598	1.610	1.74371	2.610	2.744	2.613	
16/02/2011	1.164	3.27391	1.628	1.73933	2.618	2.753	0	
17/02/2011	1.194	3.28095	1.651	1.73478	2.706	2.799	0.603	
18/02/2011	1.209	3.28757	1.676	1.73428	2.759	2.831	0	
19/02/2011	1.176	3.28321	1.683	1.72602	2.717	2.804	0	
20/02/2011	1.085	3.28242	1.629	1.72967	2.748	2.823	4.422	
21/02/2011	1.097	3.28383	1.660	1.72396	2.721	2.802	0	
22/02/2011	1.101	3.28463	1.670	1.72266	2.725	2.802	0.201	
23/02/2011	1.113	3.28604	1.678	1.72527	2.725	2.801	1.005	
24/02/2011	1.061	3.2836	1.626	1.72805	2.741	2.814	3.216	
25/02/2011 26/02/2011	1.082 0.942	3.28825 3.24676	1.658 1.595	1.72619 1.71505	2.737 2.647	2.808 2.754	0	
27/02/2011	1.131	3.23903	1.536	1.68043	2.553	2.754	15.075	
28/02/2011	1.249	3.24495	1.604	1.65724	2.534	2.654	1.809	
01/03/2011	1.305	3.24954	1.633	1.64106	2.589	2.716	0.201	
02/03/2011	1.338	3.24852	1.651	1.62769	2.605	2.753	0	
03/03/2011	1.365	3.25071	1.658	1.61986	2.617	2.784	0	
04/03/2011	1.388	3.25444	1.670	1.62332	2.632	2.798	0	
05/03/2011	1.411	3.2546	1.677	1.6239	2.635	2.804	0	
06/03/2011	1.409	3.26296	1.688	1.63196	2.668	2.823	0.201	
07/03/2011	1.430	3.26254	1.696	1.63844	2.675	2.826	0	
08/03/2011	1.402	3.26041	1.695	1.642	2.641	2.802	0	
09/03/2011	1.4734	3.3329	1.7612	1.697	2.6124	2.8873	0.603	
10/03/2011	1.4897	3.3388	1.7678	1.7096	2.6087	2.9474	0.201	
11/03/2011	1.4918	3.3368	1.7785	1.7177	2.6404	2.9352	0.402	
12/03/2011	1.4897	3.3402	1.7702	1.7259	2.5947	3.0296	0.603	
13/03/2011	1.401	3.336	1.7428	1.7425	2.6659	3.0396	0	
14/03/2011	1.4451	3.3511	1.7827	1.7563	2.747	2.9292	4.824	
15/03/2011	1.442	3.3499	1.7915	1.7591	2.7107	2.9293	0	
16/03/2011	1.4469	3.3521	1.8011	1.7664	2.7068	2.9302	0	
17/03/2011	1.4549	3.3617	1.8043	1.7791	2.7159	2.9195	0	
18/03/2011	1.4585	3.3692	1.8132	1.7891	2.7473	2.852	0	
19/03/2011 20/03/2011	1.463 1.4358	3.3701 3.3706	1.8251 1.8245	1.7974 1.8017	2.7725 2.7356	2.7705	0	
21/03/2011	1.4358	3.3706	1.8382	1.8017	2.7636	2.7839 2.757	1.206	
22/03/2011	1.4927	3.3854	1.85	1.822	2.7844	2.712	0	
23/03/2011	1.5079	3.3868	1.857	1.8296	2.7681	2.6885	0	
24/03/2011	1.492	3.3868	1.8582	1.8307	2.7202	2.7267	0	
25/03/2011	1.4729	3.3846	1.8479	1.8359	2.6792	2.8401	0	
26/03/2011	1.4641	3.3837	1.8434	1.8372	2.7022	2.8947	0	
27/03/2011	1.4628	3.3876	1.8526	1.8457	2.7255	2.9166	0	
28/03/2011	1.4615	3.3918	1.8611	1.8534	2.7483	2.9157	0	
29/03/2011	1.453	3.3946	1.8621	1.8612	2.7302	2.9575	0	
30/03/2011	1.3912	3.3822	1.8588	1.861	2.7228	2.9555	0	
31/03/2011	1.4278	3.3869	1.814	1.8767	2.774	2.9534	2.814	
01/04/2011	1.5257	3.3828	1.8391	1.8791	2.7843	2.9699	3.015	
02/04/2011	1.5793	3.3901	1.8459	1.887	2.7789	2.956	0.201	
	1.6108	3.3948	1.8555	1.8944	2.8042	2.9709	0	
04/04/2011	1.5832	3.3859	1.8473	1.8899	2.8067	2.9885	1.407	
05/04/2011	1.6286	3.3978	1.8592	1.9036	2.8233	2.9762	1.608	
06/04/2011	1.6524	3.4001	1.8752	1.9111	2.8518	3.0071	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
07/04/2011	1.6677	3.4009	1.8805	1.9151	2.8775	3.0191	0	
08/04/2011	1.6675	3.4033	1.8849	1.9226	2.8438	3.0297	0	
09/04/2011	1.6653	3.4033	1.8856	1.9269	2.8185	3.0081	0	
10/04/2011 11/04/2011	1.6745 1.6577	3.4063 3.4052	1.8875 1.8857	1.9318 1.9342	2.8222 2.8146	2.9958 2.9952	0	
12/04/2011	1.6602	3.411	1.8914	1.9423	2.859	3.0031	1.005	
13/04/2011	1.6558	3.404	1.8815	1.9414	2.7799	3.0084	1.005	
14/04/2011	1.6699	3.4081	1.8878	1.9473	2.7984	2.9676	0	
15/04/2011	1.6764	3.4113	1.8967	1.9553	2.8188	2.9817	0	
16/04/2011	1.6878	3.416	1.9045	1.9628	2.8437	2.994	0	
17/04/2011	1.6913	3.4189	1.9093	1.9681	2.8491	3.0085	0	
18/04/2011	1.6755	3.4168	1.9083	1.9715	2.7984	3.0071	0	
19/04/2011	1.6677	3.4234	1.9117	1.9784	2.8089	2.9725	0	
20/04/2011 21/04/2011	1.6869 1.6897	3.4251 3.4249	1.9152 1.9182	1.9858 1.9915	2.8219 2.8172	2.9857 2.9928	0	
22/04/2011	1.6895	3.4249	1.9195	1.9986	2.8016	2.9834	0	
23/04/2011	1.4951	3.4241	1.8496	2.0018	2.8513	2.9814	0	
24/04/2011	1.497	3.4242	1.8723	2.0081	2.8794	3.0097	5.025	
25/04/2011	1.4938	3.4306	1.889	2.0138	2.8843	3.0242	0	
26/04/2011	1.4847	3.426	1.895	2.0147	2.8729	3.0274	0	
27/04/2011	1.4819	3.4306	1.9047	2.021	2.8565	3.0183	0	
28/04/2011	1.4684	3.432	1.9071	2.0253	2.8231	3.0099	0	
29/04/2011	1.4617	3.4333	1.9099	2.032	2.8046	2.9795	0	
30/04/2011	1.4662	3.4348	1.9091	2.0419	2.8164	2.9735	0	
01/05/2011	1.4716	3.4338	1.9115	2.0445	2.8302	2.9789	0	
02/05/2011	1.4789	3.4265	1.9181	2.0514	2.8477	2.9869	0	
03/05/2011 04/05/2011	1.4875 1.4931	3.4369 3.44	1.9229 1.9271	2.0573 2.0601	2.8679 2.8711	2.9995 3.0107	0	
05/05/2011	1.4888	3.4415	1.9304	2.063	2.8472	3.0042	0	
06/05/2011	1.4719	3.444	1.9341	2.0698	2.8469	2.98	0	
07/05/2011	1.3277	3.4336	1.8656	2.0725	2.8268	2.985	1.407	
08/05/2011	1.2307	3.4248	1.7798	2.0777	2.8514	2.9731	6.834	
09/05/2011	1.27	3.4228	1.8102	2.084	2.8782	3.0015	5.226	
10/05/2011	1.2731	3.4222	1.8205	2.0875	2.89	3.0126	2.613	
11/05/2011	1.2994	3.4246	1.8231	2.084	2.8539	3.0137	1.005	
12/05/2011	1.3083	3.4216	1.8113	2.0807	2.8445	2.9927	0	
13/05/2011	1.3232	3.3607	1.7951	2.0603	2.7697	2.8951	0.201	
14/05/2011	1.3335	3.3596	1.7814	2.0604	2.7566	2.898	0	
15/05/2011 16/05/2011	1.3004	3.366 3.3719	1.7927	2.0678	2.7961	2.9168	1.206	
17/05/2011	1.3174 1.3255	3.3719	1.8039 1.8036	2.0759 2.079	2.7786 2.7602	2.9061 2.8964	2.412 0.603	
18/05/2011	1.3337	3.3741	1.8053	2.079	2.7381	2.885	0.201	
19/05/2011	1.3348	3.3759	1.8058	2.0849	2.7745	2.9068	1.608	
20/05/2011	1.3512	3.3766	1.8115	2.092	2.7692	2.9057	0	
21/05/2011	1.3727	3.3775	1.8199	2.0938	2.7905	2.9052	0	
22/05/2011	1.3403	3.3751	1.811	2.0984	2.7313	2.8955	0	
23/05/2011	1.3499	3.3817	1.8212	2.1055	2.7997	2.9153	2.211	
24/05/2011	1.3513	3.3853	1.8153	2.1081	2.8085	2.9398	1.206	
25/05/2011	1.3832	3.3831	1.8254	2.1128	2.8296	2.9217	0	
26/05/2011	1.3467	3.3806	1.8124	2.1156	2.7068	2.8671	0	
27/05/2011 28/05/2011	1.2597 1.2473	3.3801 3.3773	1.7738 1.7639	2.1209 2.124	2.7921 2.7558	2.9207 2.8921	5.226 2.01	
29/05/2011	1.2473	3.3773	1.7639	2.124	2.7558	2.8921	0.201	
30/05/2011	1.3197	3.3885	1.7801	2.1299	2.7728	2.9069	0.201	
31/05/2011	1.1338	3.3717	1.6745	2.1326	2.7802	2.9248	6.231	
01/06/2011	1.2968	3.3793	1.7359	2.1369	2.8311	2.9456	3.417	
02/06/2011	1.4115	3.3889	1.7579	2.1456	2.8447	2.9535	0.201	
03/06/2011	1.4956	3.3883	1.7633	2.1472	2.8319	2.9369	0	
04/06/2011	1.5346	3.3895	1.757	2.1507	2.7857	2.9034	0	
05/06/2011	1.4962	3.3848	1.7451	2.1516	2.7463	2.8687	0	
06/06/2011	1.43	3.3792	1.7214	2.1544	2.7006	2.8537	2.412	
07/06/2011	1.5058	3.3813	1.7239	2.1549	2.7003	2.85	0.804	
08/06/2011 09/06/2011	1.5391 1.6045	3.3858	1.7268	2.1572	2.7136 2.7801	2.8667 2.9142	0 1.005	
10/06/2011	1.6045	3.3925 3.3895	1.7437 1.7513	2.1628 2.1631	2.7801	2.9142	1.005	
11/06/2011	1.6334	3.3915	1.7513	2.1657	2.7896	2.9176	0.201	
12/06/2011	1.5821	3.3874	1.7554	2.1668	2.7892	2.8956	0.201	
13/06/2011	1.2225	3.3712	1.6461	2.1718	2.7172	2.8942	7.236	
14/06/2011		3.3794	1.7092	2.1718	2.8015	2.9188	2.211	
1 1/00/2011					2.7598	2.888	0.201	
15/06/2011	1.3152	3.3839	1.7286	2.1773	2.7590	2.000	0.201	
	1.3152 1.3046 1.2712	3.3839 3.383	1.7286 1.7325 1.736	2.1774	2.743	2.8821	0.603 2.211	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
18/06/2011	1.2354	3.3774	1.7291	2.1791	2.6983	2.8588		1.2
19/06/2011	1.2241	3.3846	1.7245	2.1819	2.7707	2.9131		0.8
20/06/2011	1.2274	3.3839	1.7203	2.1828	2.7842	2.9054		0
21/06/2011	1.1222	3.3841	1.6965	2.1876	2.737	2.8856		4
22/06/2011 23/06/2011	1.1353 1.1101	3.3802 3.3801	1.6989 1.6771	2.1858 2.1841	2.7304 2.7631	2.8861 2.913		1.2 4
24/06/2011	1.1526	3.3816	1.6946	2.1794	2.8004	2.9257		0
25/06/2011	0.9898	3.3525	1.5875	2.1782	2.7363	2.8961		4.6
26/06/2011	1.0572	3.3625	1.643	2.1729	2.7629	2.8951		1.2
27/06/2011	1.0996	3.3633	1.6696	2.1721	2.723	2.8706		0
28/06/2011	1.1256	3.3642	1.6833	2.1689	2.7519	2.8883		0
29/06/2011	1.1799	3.3635	1.695	2.1664	2.7696	2.905		0
30/06/2011	1.2299	3.3669	1.7091	2.1661	2.7849	2.9156		0
01/07/2011	1.2738	3.37	1.7208	2.1711	2.7919	2.9163		0
02/07/2011 03/07/2011	1.2896 1.3032	3.3704 3.3767	1.7227 1.7285	2.1701 2.1779	2.7631 2.75	2.8913 2.8919		0
04/07/2011	1.3239	3.3801	1.736	2.1779	2.7624	2.8964		0
05/07/2011	1.3316	3.3817	1.7395	2.1862	2.7485	2.8833		0
06/07/2011	1.2954	3.3726	1.7323	2.1875	2.7129	2.8664		8
07/07/2011	1.2263	3.3704	1.7073	2.1884	2.6958	2.8649		4.4
08/07/2011	1.2502	3.3775	1.7138	2.1929	2.7387	2.8803		6
09/07/2011	1.2329	3.3741	1.7279	2.1955	2.7716	2.9149		2.6
10/07/2011	1.2217	3.3798	1.7389	2.1955	2.8229	2.9402		0
11/07/2011	1.2209	3.3812	1.7474	2.1962	2.8296	2.9438		0
12/07/2011	1.2518	3.3847	1.7515	2.201	2.8204	2.9361		0
13/07/2011	1.2835	3.3872	1.7546	2.2042	2.8161	2.9331		0
14/07/2011	1.3172	3.389	1.7556	2.2068	2.8093	2.9282		0
15/07/2011 16/07/2011	1.3382 1.3328	3.3912 3.387	1.7548 1.7438	2.21 2.2153	2.7993 2.7301	2.9169 2.8638		0.6
17/07/2011	1.2629	3.3851	1.7286	2.2168	2.7003	2.8619		4.8
18/07/2011	0.9101	3.3509	1.3904	2.2132	2.7197	2.884		5.6
19/07/2011	0.929	3.347	1.4402	2.2044	2.7394	2.9021		3
20/07/2011	1.0244	3.3471	1.5898	2.1936	2.7706	2.9137		1.2
21/07/2011	1.1199	3.3502	1.6292	2.1906	2.782	2.9242		1.2
22/07/2011	1.1828	3.355	1.654	2.19	2.8043	2.9287		0.2
23/07/2011	1.0747	3.3366	1.4535	2.1815	2.761	2.9009		0.4
24/07/2011	1.103	3.339	1.6005	2.1813	2.7319	2.8867		0.4
25/07/2011	1.1377	3.3404	1.6287	2.1824	2.7285	2.8869		0.4
26/07/2011 27/07/2011	1.1876 1.232	3.3492 3.3555	1.6585 1.6811	2.1878 2.1934	2.7639 2.8058	2.9138 2.9365		0.2
28/07/2011	1.2591	3.3569	1.695	2.1934	2.8017	2.9388		0.2
29/07/2011	1.2876	3.3613	1.7074	2.2001	2.8054	2.9367		0
30/07/2011	1.298	3.3616	1.7111	2.2012	2.7927	2.9243		0
31/07/2011	1.3014	3.3644	1.7102	2.206	2.7565	2.9011		0
01/08/2011	1.3178	3.3718	1.7153	2.2131	2.7601	2.9057		0
02/08/2011	1.3308	3.3748	1.7167	2.2141	2.7742	2.9189		2.2
03/08/2011	1.3417	3.3764	1.723	2.2193	2.7958	2.926		1.2
04/08/2011	1.3468	3.3774	1.7241	2.2229	2.7726	2.9126		0
05/08/2011	1.2392 1.2684	3.3744	1.6502	2.2256 2.2264	2.7867	2.9371		1.2
06/08/2011 07/08/2011	1.2849	3.3695 3.3755	1.6793 1.6859	2.2278	2.766 2.7407	2.9122 2.9079		0.2
08/08/2011	1.2597	3.3751	1.6288	2.2276	2.7726	2.9382		4.2
09/08/2011		3.384	1.676	2.2354	2.8613	2.9955		0.2
10/08/2011	1.3228	3.3805	1.707	2.2321	2.8556	2.9641		0.2
11/08/2011	1.0916	3.3636	1.4788	2.2379	2.7542	2.9099		5.2
12/08/2011	1.1301	3.3674	1.6066	2.2367	2.7707	2.9187		1.8
13/08/2011	1.1451	3.3653	1.6345	2.2369	2.734	2.8971		1.4
14/08/2011	1.1897	3.3709	1.6512	2.2376	2.752	2.913		0
15/08/2011	1.2472	3.3751	1.672	2.238	2.8018	2.9427		1
16/08/2011	1.2632	3.3739	1.6921	2.242	2.7949	2.9394		1.8
17/08/2011 18/08/2011	1.2684 1.2932	3.379 3.3802	1.703 1.7126	2.2427 2.2425	2.8119 2.8021	2.9507 2.9376	 	0.4
19/08/2011	1.2932	3.3772	1.6201	2.2425	2.7801	2.9376		0
20/08/2011	1.3908	3.3822	1.6255	2.3045	2.7784	2.9316		0
21/08/2011	1.3842	3.3814	1.6273	2.3057	2.7579	2.9257		0
22/08/2011	1.41	3.3881	1.6393	2.3086	2.8098	2.9562		0.6
23/08/2011	1.4144	3.3895	1.6461	2.3142	2.793	2.9352		0
24/08/2011	1.4268	3.3891	1.6433	2.3146	2.7681	2.9273		0
25/08/2011	1.4369	3.3824	1.6436	2.3164	2.7681	2.9304		0.4
26/08/2011	1.3909	3.3819	1.6357	2.3168	2.7591	2.9201		1.2
27/08/2011	1.2814	3.3705	1.3241	2.3206	2.7763	2.9422		12.4
28/08/2011	1.065	3.3498	1.2518	2.3104	2.7374	2.9294		9.4

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
29/08/2011	1.1196	3.3477	1.4536	2.3053	2.7421	2.9251		0.2
30/08/2011	1.1532	3.3477	1.4854	2.3039	2.7403	2.9181		1.2
31/08/2011	1.2042	3.3481	1.507	2.3032	2.7343	2.9086		0.4
01/09/2011 02/09/2011	1.2469 1.268	3.3523 3.3536	1.522 1.5301	2.3057 2.3068	2.7369 2.717	2.9031 2.8964		0
03/09/2011	1.200	3.3562	1.5428	2.3117	2.717	2.891		0
04/09/2011	1.3196	3.364	1.5476	2.3129	2.722	2.8928		6.8
05/09/2011	1.334	3.3619	1.559	2.3118	2.7207	2.9091		0.8
06/09/2011	1.3257	3.3598	1.5734	2.3139	2.7259	2.9073		3.2
07/09/2011	1.3333	3.3718	1.5841	2.3173	2.7641	2.9291		0.4
08/09/2011	1.3283	3.3685	1.5959	2.3199	2.7599	2.9255		1.2
09/09/2011	1.3477	3.374	1.6066	2.3257	2.7712	2.9351		0.2
10/09/2011	1.3233	3.3745	1.6122	2.3293	2.7533	2.9091		0
11/09/2011 12/09/2011	1.3311 1.3214	3.3783 3.3733	1.6123 1.6181	2.3284 2.3309	2.7474 2.7359	2.918 2.9224		0.4 1.4
13/09/2011	1.3423	3.3858	1.6321	2.3324	2.8283	2.9665		2.6
14/09/2011	1.3686	3.3901	1.6405	2.3326	2.8497	2.9868		1
15/09/2011	1.3951	3.3901	1.6494	2.3361	2.8654	2.9923		0
16/09/2011	1.4028	3.3909	1.6478	2.3385	2.832	2.9509		0
17/09/2011	1.308	3.3828	1.6052	2.3416	2.7692	2.9182		4.2
18/09/2011	1.2369	3.3759	1.4581	2.3377	2.7609	2.9253		1.4
19/09/2011	1.2773	3.3871	1.565	2.3431	2.8152	2.9527		1.4
20/09/2011	1.0396	3.3903	1.5925	2.3429	2.825	2.9606		0
21/09/2011	1.1054	3.3705	1.4426	2.3384	2.8111	2.9544	0	
22/09/2011	1.1892	3.3744	1.5168	2.3406	2.8096	2.9362	0.603	
23/09/2011 24/09/2011	1.2102 1.2449	3.3764 3.3787	1.5475 1.5544	2.3403 2.342	2.8117 2.7818	2.9475 2.9256	0	
25/09/2011	1.2825	3.3828	1.5671	2.3441	2.7973	2.9201	0.201	
26/09/2011	1.3427	3.39	1.5844	2.3476	2.8175	2.9259	0.402	
27/09/2011	1.3599	3.3915	1.6046	2.3463	2.865	2.9734	0	
28/09/2011	1.3705	3.3963	1.616	2.3523	2.853	2.9741	0	
29/09/2011	1.3831	3.3965	1.6174	2.3539	2.8333	2.9575	0	
30/09/2011	1.3955	3.3991	1.6213	2.3565	2.8295	2.9524	0	
01/10/2011	1.4117	3.3997	1.6269	2.3581	2.8472	2.956	0	
02/10/2011	1.4204	3.4001	1.6328	2.3591	2.8522	2.9664	0	
03/10/2011	1.4077	3.401	1.6328	2.3623	2.8253	2.9498	0	
04/10/2011	1.438	3.4025	1.6346	2.3609	2.8429	2.9319	0.603	
05/10/2011	1.4331 1.3867	3.4003 3.3993	1.6333 1.624	2.3644 2.3628	2.821 2.7957	2.9503 2.927	0	
06/10/2011 07/10/2011	1.239	3.3815	1.2906	2.3627	2.8339	2.9479	3.216	
08/10/2011	1.1508	3.3693	1.3664	2.3624	2.8381	2.9703	15.477	
09/10/2011	1.0249	3.3565	1.1511	2.3638	2.7806	2.9342	2.211	
10/10/2011	1.0877	3.3504	1.3792	2.3529	2.7529	2.9007	9.447	
11/10/2011	1.1504	3.3547	1.4658	2.354	2.7692	2.901	0	
12/10/2011	1.1736	3.3546	1.5045	2.349	2.7987	2.9214	0.804	
13/10/2011	1.2083	3.355	1.5355	2.3454	2.839	2.9433	0.603	
14/10/2011	1.2215	3.3521	1.5552	2.346	2.8427	2.9613	0	
15/10/2011	1.2419	3.3464	1.5552	2.3404	2.8111	2.9384	0	
16/10/2011	1.2776	3.3433	1.5586	2.3406	2.7885	2.9196	0	
17/10/2011 18/10/2011	1.2448 1.1931	3.3465 3.3329	1.5696 1.5134	2.3438 2.3407	2.7882 2.7422	2.9196 2.8878	0 2.01	
19/10/2011	1.1931	3.3329	1.5134	2.3407	2.7422	2.8878	2.814	
20/10/2011	1.1933	3.3263	1.4797	2.3424	2.8514	2.9522	4.623	
21/10/2011	1.1954	3.3252	1.5179	2.3408	2.8068	2.9459	1.206	
22/10/2011	1.1963	3.3277	1.5457	2.3412	2.785	2.9187	0	
23/10/2011	1.2252	3.3293	1.5502	2.3423	2.7416	2.882	0	
24/10/2011	1.2383	3.3324	1.5559	2.3449	2.7208	2.8717	0	
25/10/2011	1.2578	3.3319	1.5644	2.3437	2.7386	2.8709	0	
26/10/2011	1.2858	3.3313	1.5799	2.343	2.8008	2.9122	1.005	
27/10/2011	1.2667	3.3308	1.595	2.3438	2.8345	2.9386	0.201	
28/10/2011	1.2113	3.3269	1.5171	2.3462	2.8885	2.9676	3.417	
29/10/2011 30/10/2011	1.2101 1.2532	3.3204 3.3299	1.5623 1.5711	2.3403 2.3433	2.8547 2.8206	2.9744 2.9351	1.407 0	
31/10/2011	1.2532	3.3299	1.5864	2.3433	2.8206	2.9351	0.201	
01/11/2011	1.2451	3.3182	1.5804	2.3412	2.7853	2.9075	0.201	
02/11/2011	1.1371	3.3056	1.4788	2.3334	2.7881	2.9185	7.236	
03/11/2011	1.1365	3.3103	1.5101	2.3336	2.7197	2.8656	0	
04/11/2011	1.0867	3.2977	1.4609	2.3272	2.7363	2.8622	3.417	
05/11/2011	1.0316	3.2844	1.2081	2.3211	2.8075	2.9111	0.603	
06/11/2011	1.1077	3.288	1.4546	2.3106	2.8679	2.9565	7.035	
07/11/2011	1.1461	3.2818	1.5093	2.2962	2.8508 2.7831	2.9683	0	
08/11/2011	1.1536	3.2865	1.5264	2.3017		2.9175	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
09/11/2011	1.1793	3.288	1.5342	2.2978	2.7764	2.9004	0.402	
10/11/2011	1.193	3.2955	1.5508	2.3001	2.8042	2.9128	0	
11/11/2011	1.2276	3.2923	1.5572	2.2945	2.7987	2.9202	0.201	
12/11/2011	1.1433	3.2615	1.1815	2.2924	2.8066	2.914	0	
13/11/2011	1.1146	3.2731	1.4619	2.2836	2.8263	2.9448	11.055	
14/11/2011	1.1204	3.2737	1.5091	2.2761	2.7887	2.9155	0	
15/11/2011	1.1412	3.2744	1.5321	2.2726	2.768	2.8926	0	
16/11/2011 17/11/2011	1.1393 1.1572	3.294 3.2951	1.5259 1.5332	2.2671 2.2653	2.7014 2.6983	2.871 2.8643	0	
18/11/2011	1.1863	3.3024	1.5455	2.2667	2.7113	2.8736	0	
19/11/2011	1.21	3.3067	1.5543	2.2677	2.7231	2.8813	0	
20/11/2011	1.2317	3.3062	1.5633	2.2617	2.7439	2.8956	0	
21/11/2011	1.2328	3.3104	1.5661	2.2656	2.7232	2.8893	0	
22/11/2011	1.2276	3.3118	1.5683	2.2682	2.7348	2.8915	0.201	
23/11/2011	1.2384	3.3099	1.5758	2.2632	2.7774	2.9207	2.01	
24/11/2011	1.2549	3.3217	1.5929	2.2718	2.7798	2.9289	0	
25/11/2011	1.2381	3.3264	1.5836	2.2586	2.7368	2.9047	0	
26/11/2011	1.1791	3.3147	1.5262	2.2657	2.7713	2.9259	5.628	
27/11/2011	1.1629	3.3169	1.5391	2.2703	2.6982	2.8912	0	
28/11/2011	1.2206	3.3203	1.5682	2.2629	2.7855	2.9347	0	
29/11/2011	1.1881	3.3259	1.5576	2.2726	2.6891	2.8794	0	
30/11/2011	1.2059	3.3174	1.4589	2.2639	2.7647	2.8559	0.402	
01/12/2011	1.1733	3.3258	1.5017	2.2633	2.6741	2.8867	0.804	
02/12/2011 03/12/2011	1.1896 1.1861	3.3146 3.3137	1.4858 1.5032	2.2604 2.267	2.7279 2.6631	2.8956 2.8681	0.402 0.201	
04/12/2011	1.1963	3.3167	1.5032	2.2619	2.7064	2.8701	0.201	
05/12/2011	1.2064	3.3177	1.5232	2.2602	2.7198	2.8675	0.201	
06/12/2011	1.2199	3.3194	1.5303	2.2622	2.7277	2.8898	0	
07/12/2011	1.2191	3.3242	1.534	2.26	2.7016	2.8805	0	
08/12/2011	1.2379	3.3141	1.5066	2.2593	2.7815	2.9152	0.201	
09/12/2011	1.1851	3.3158	1.4811	2.2592	2.7315	2.8701	0	
10/12/2011	1.2065	3.3144	1.5173	2.2559	2.76	2.8998	0	
11/12/2011	1.1995	3.3169	1.5162	2.2588	2.7268	2.8941	0	
12/12/2011	1.1562	3.3115	1.4353	2.2523	2.6949	2.8566	0.201	
13/12/2011	1.0923	3.3009	1.3431	2.2487	2.5963	2.8189	0	
14/12/2011	1.0567	3.2932	1.371	2.2405	2.65	2.8225	0	
15/12/2011	1.0685	3.2886	1.4209	2.2325	2.6481	2.8295	0.804	
16/12/2011 17/12/2011	1.0377	3.2797 3.2752	1.4428	2.217	2.6466	2.8207	5.025 15.276	
18/12/2011	1.0348 0.7608	3.2421	1.2782 1.2189	2.2036 2.1614	2.7544 2.7145	2.8878 2.8628	5.829	
19/12/2011	0.7608	3.2296	1.2923	2.1313	2.6627	2.7982	8.442	
20/12/2011	0.7862	3.2223	1.201	2.1042	2.613	2.7996	1.407	
21/12/2011	0.8358	3.2121	1.2254	2.064	2.5951	2.7898	3.618	
22/12/2011	0.8614	3.2176	1.3364	2.0419	2.6428	2.8023	0	
23/12/2011	0.9025	3.2153	1.3982	2.0164	2.5772	2.7496	10.854	
24/12/2011	0.8231	3.1887	1.1694	1.9814	2.5715	2.7271	0.603	
25/12/2011	0.864	3.1891	1.3154	1.9564	2.4965	2.6636	0.804	
26/12/2011	0.9146	3.1974	1.4162	1.9472	2.5265	2.6579	0	
27/12/2011	0.9378	3.1986	1.4642	1.9323	2.5271	2.6341	0	
28/12/2011	0.9048	3.1875	1.4761	1.9126	2.4467	2.5971	0	
29/12/2011	0.9798	3.1982	1.5015	1.9126	2.5259	2.6132	1.809	
30/12/2011 31/12/2011	0.9393	3.1974 3.1906	1.4925 1.2399	1.9094 1.9041	2.5122 2.4582	2.6034 2.5872	5.226 3.015	
01/01/2012	0.8488	3.1906	1.3918	1.9041	2.4562	2.5872	2.211	
02/01/2012	0.8653	3.1886	1.381	1.8913	2.4685	2.6259	2.613	
03/01/2012	0.8473	3.1767	1.3465	1.8783	2.4409	2.6274	9.849	
04/01/2012	0.8407	3.1772	1.2562	1.877	2.5171	2.6475	0.201	
05/01/2012	0.7898	3.1623	1.1738	1.8547	2.3818	2.6318	7.437	
06/01/2012	0.8644	3.1683	1.2544	1.8419	2.5354	2.688	0.402	
07/01/2012	0.8408	3.1664	1.3044	1.8256	2.4695	2.6769	1.407	
08/01/2012	0.8865	3.1722	1.4147	1.8171	2.5189	2.7027	1.206	
09/01/2012	0.8967	3.1758	1.4613	1.8089	2.534	2.7233	1.206	
10/01/2012	0.9028	3.1794	1.4817	1.8056	2.5617	2.7324	0	
11/01/2012	0.9249	3.1871	1.4956	1.8061	2.5574	2.731	1.809	
12/01/2012	0.8968	3.185	1.4844	1.8038	2.5259	2.7209	0.201	
13/01/2012 14/01/2012	0.9518 0.9566	3.1924 3.1873	1.5067 1.5018	1.8062 1.7987	2.5869 2.5661	2.744 2.7243	0	
15/01/2012	0.9366	3.1916	1.5147	1.8035	2.5414	2.7243	0	
16/01/2012	1.0055	3.1910	1.5263	1.8124	2.5629	2.7334	0	
17/01/2012	1.0277	3.2066	1.5336	1.8194	2.5864	2.7487	0	
18/01/2012	1.0305	3.2113	1.5408	1.8267	2.5672	2.752	0.603	
19/01/2012	1.0363	3.2213	1.5275	1.8378	2.5775	2.7574	3.015	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
20/01/2012	0.9887	3.2191	1.4353	1.8486	2.5932	2.7716	12.462	
21/01/2012	0.7584	3.1933	1.227	1.8328	2.4967	2.7257	0.804	
22/01/2012	0.8671	3.1975	1.3761	1.824	2.5053	2.7346	0.201	
23/01/2012	0.9238	3.2051	1.4354	1.8216	2.5491	2.7526	0	
24/01/2012	0.9457	3.2067	1.4722	1.8145	2.5712	2.7544	6.834	
25/01/2012	0.851	3.2002	1.3202	1.8083	2.5237	2.7304	0.201 3.819	
26/01/2012 27/01/2012	0.8456 0.8919	3.1936 3.2007	1.3189 1.3832	1.7968 1.7997	2.4632 2.5357	2.7035 2.7541	1.407	
28/01/2012	0.892	3.1902	1.2219	1.7933	2.5957	2.7919	4.824	
29/01/2012	0.8933	3.1816	1.3859	1.7705	2.5729	2.7567	0	
30/01/2012	0.9047	3.1868	1.4532	1.7659	2.5431	2.7411	0	
31/01/2012	0.924	3.1871	1.478	1.7588	2.5357	2.7473	0	
01/02/2012	0.9769	3.1971	1.5048	1.7611	2.5989	2.7829	0	
02/02/2012	0.9992	3.1989	1.5239	1.7606	2.6134	2.7881	0	
03/02/2012	1.0152	3.2081	1.5364	1.7647	2.6173	2.7913	0	
04/02/2012	1.0202	3.2094	1.5476	1.7629	2.608	2.7691	0	
05/02/2012	0.9733	3.208	1.3324	1.7698	2.5355	2.7566	6.231	
06/02/2012	0.9564	3.2098	1.3363	1.7768	2.5945	2.786	4.824	
07/02/2012	0.8903	3.2138	1.4068	1.7714	2.619	2.8033	0.804	
08/02/2012	0.8961	3.2184	1.4776	1.7674	2.6211	2.7919	0	
09/02/2012	0.8976	3.2239	1.52	1.767	2.5882	2.7688	0.603	
10/02/2012	0.7705	3.2195	1.2481	1.7674	2.5636	2.7648	5.628	
11/02/2012	0.8476	3.2245 3.2342	1.4129	1.7625	2.5574	2.7614	0 0.201	
12/02/2012 13/02/2012	0.9007 0.9168	3.2342	1.4888 1.4905	1.7627 1.762	2.564 2.5536	2.7611 2.7442	0.201	
14/02/2012	0.9356	3.2483	1.4905	1.7649	2.5507	2.7513	0.201	
15/02/2012	0.955	3.2559	1.5212	1.7673	2.5547	2.7644	0	
16/02/2012	0.9827	3.262	1.5422	1.773	2.5813	2.7686	0	
17/02/2012	0.9633	3.2552	1.6445	1.7445	2.5998	2.7569	2.412	
18/02/2012	0.9023	3.2529	1.6525	1.7407	2.5444	2.7284	1.809	
19/02/2012	0.8579	3.2593	1.6396	1.7533	2.62	2.799	3.216	
20/02/2012	0.8986	3.2595	1.6213	1.7535	2.6672	2.7958	0.402	
21/02/2012	0.9192	3.2677	1.6533	1.7574	2.628	2.7839	0.402	
22/02/2012	0.9361	3.2738	1.6679	1.7582	2.6171	2.7561	0.402	
23/02/2012	0.9611	3.2801	1.6769	1.7693	2.6309	2.7941	0	
24/02/2012	0.9837	3.2837	1.6886	1.7722	2.6592	2.8123	0.603	
25/02/2012	0.9927	3.2799	1.6903	1.7717	2.6783	2.8087	0	
26/02/2012	1.0092	3.287	1.6956	1.7766	2.6705	2.8075	0	
27/02/2012	1.0057	3.2902	1.7017	1.7806	2.6494	2.79	0.201	
28/02/2012	1.021 1.0332	3.2971 3.3012	1.7086 1.7141	1.7901	2.6584 2.6694	2.8007 2.8089	0.201	
29/02/2012 01/03/2012	1.0409	3.2991	1.7114	1.7948 1.7967	2.6751	2.8155	0	
02/03/2012	1.0592	3.3015	1.7205	1.8045	2.6977	2.8191	0	
03/03/2012	1.0287	3.2996	1.7086	1.8048	2.6328	2.7894	0.201	
04/03/2012	1.0521	3.304	1.7074	1.8136	2.6602	2.8061	4.623	
05/03/2012	1.0028	3.2979	1.6639	1.8207	2.696	2.8313	0.201	
06/03/2012	1.0226	3.3011	1.6963	1.8256	2.6999	2.8253	0	
07/03/2012	0.9922	3.2968	1.7015	1.8239	2.6227	2.7915	2.01	
08/03/2012	1.0115	3.3026	1.7146	1.8392	2.7112	2.846	0	
09/03/2012	1.035	3.3126	1.7361	1.8501	2.7289	2.8507	0	
10/03/2012	1.0555	3.3199	1.746	1.8604	2.7406	2.8624	0	
11/03/2012	1.0657	3.3214	1.7549	1.8632	2.745	2.8544	0	
12/03/2012	1.0644	3.3236	1.759	1.8663	2.7245	2.8412	0	
13/03/2012	1.0698	3.3271	1.7606	1.8713	2.7215	2.8463	0	
14/03/2012	1.0711	3.3252 3.321	1.7564	1.873 1.8719	2.7093	2.8328	0 0 402	
15/03/2012 16/03/2012	1.0653 1.1947	3.3031	1.7491 1.7785	2.032	2.6812 2.655	2.8168 2.8705	0.402 0	
17/03/2012	1.1947	3.3052	1.7746	2.032	2.6379	2.8675	2.211	
18/03/2012	1.178	3.3125	1.7713	2.0484	2.6656	2.9069	4.221	
19/03/2012	1.1311	3.3137	1.7306	2.0531	2.751	2.9459	0	
20/03/2012	1.1631	3.3197	1.7543	2.0598	2.7457	2.9406	0	
21/03/2012	1.1804	3.3258	1.7711	2.0694	2.7502	2.9391	0	
22/03/2012	1.1719	3.3228	1.7723	2.0659	2.7243	2.9203	0	
23/03/2012	1.1773	3.3285	1.7784	2.0757	2.701	2.9132	0	
24/03/2012	1.1947	3.3304	1.7843	2.0803	2.7167	2.9208	0	
25/03/2012	1.2095	3.3362	1.7981	2.0887	2.7482	2.9431	0	
26/03/2012	1.2053	3.3375	1.8067	2.0917	2.7642	2.9459	0	
27/03/2012	1.1894	3.3396	1.813	2.0951	2.7566	2.9412	0	
28/03/2012		3.3377	1.8165	2.0985	2.7399	2.927	0	
29/03/2012	1.1758	3.3398	1.8192	2.1021	2.723	2.9203	0	
30/03/2012 31/03/2012	1.1858 1.1741	3.345 3.3442	1.826 1.8255	2.1118 2.1135	2.7215 2.6883	2.9139 2.901	0	
31/03/2012	1.1/41	J.J 44 ∠	1.0200	۷.۱۱۵۵	۷.0003	2.301	U I	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
01/04/2012	1.2101	3.3429	1.8259	2.1144	2.7295	2.911	0	
02/04/2012	1.1997	3.346	1.829	2.1192	2.6846	2.8827	0.402	
03/04/2012	1.1845	3.347	1.8243	2.1244	2.6581	2.8685	3.417	
04/04/2012 05/04/2012	1.1713 1.195	3.348 3.3493	1.8119 1.7715	2.1303 2.1388	2.6876 2.7715	2.9143 2.9461	2.412 0	
06/04/2012	1.195	3.3472	1.785	2.1366	2.7715	2.9401	0	
07/04/2012	1.1885	3.353	1.79	2.1448	2.6949	2.91	2.01	
08/04/2012	1.1574	3.3536	1.7945	2.1507	2.7175	2.9156	1.407	
09/04/2012	1.0581	3.3464	1.7786	2.1479	2.6543	2.8557	7.236	
10/04/2012	0.801	3.3304	1.6412	2.1492	2.5835	2.8574	0	
11/04/2012	0.9818	3.3365	1.7045	2.1547	2.6713	2.9082	1.608	
12/04/2012	1.0294	3.3428	1.7321	2.1615	2.7176	2.9313	3.819	
13/04/2012	0.9787	3.3344	1.6923	2.1593	2.7194	2.9262	0	
14/04/2012 15/04/2012	0.848 0.98	3.3349 3.3398	1.6228 1.682	2.1648 2.1651	2.7206 2.7657	2.9388 2.965	3.618 0	
16/04/2012	1.0484	3.3433	1.7183	2.1643	2.7803	2.9539	0	
17/04/2012	0.9846	3.3324	1.7062	2.1506	2.6291	2.8645	3.216	
18/04/2012	0.8751	3.3253	1.683	2.1528	2.5643	2.8273	3.015	
19/04/2012	0.8307	3.3256	1.6218	2.1626	2.6116	2.8703	6.432	
20/04/2012	0.669	3.3105	1.5525	2.1525	2.6319	2.8853	7.437	
21/04/2012	0.8471	3.3092	1.631	2.14	2.6199	2.8815	1.608	
22/04/2012	0.9272	3.3122	1.6608	2.1344	2.6522	2.8915	0.201	
23/04/2012	0.9421	3.3107	1.6675	2.1255	2.6309	2.8664	1.005	
24/04/2012	0.9722	3.3171	1.6796	2.1279	2.6491	2.8822	0	
25/04/2012	0.9646	3.3086	1.6815	2.1171	2.6083	2.8315	0.804	
26/04/2012	0.7243	3.3025	1.5686	2.1201	2.5763	2.862	4.824	
27/04/2012 28/04/2012	0.7408 0.76	3.2993 3.2915	1.5402 1.5359	2.1215 2.104	2.6732 2.6424	2.916 2.8405	4.623 1.809	
29/04/2012	0.76	3.2865	1.6107	2.104	2.5708	2.7879	10.653	
30/04/2012	0.5431	3.2436	1.4596	2.0373	2.4753	2.7424	0.402	
01/05/2012	0.7737	3.2488	1.5978	2.0084	2.4084	2.6499	0.402	
02/05/2012	0.886	3.248	1.6426	1.9901	2.465	2.7502	0.201	
03/05/2012		3.2464	1.6494	1.9755	2.4658	2.7865	0	
04/05/2012	0.9069	3.2469	1.6521	1.9659	2.4593	2.8117	0	
05/05/2012	0.9726	3.2517	1.6635	1.9626	2.531	2.8539	0	
06/05/2012	1.0119	3.2562	1.6728	1.9619	2.5628	2.879	0	
07/05/2012	1.0364	3.2591	1.683	1.9621	2.5832	2.8814	0.402	
08/05/2012	0.846	3.2414	1.6196	1.9634	2.54	2.8701	9.045	
09/05/2012	0.9118	3.2506	1.6385	1.971	2.5611	2.8856	0.201	
10/05/2012 11/05/2012	0.6391 0.7096	3.2217 3.2299	1.5609 1.5616	1.9707 1.9718	2.5183 2.5723	2.8703 2.9236	8.04 6.231	
12/05/2012	0.8367	3.2248	1.5927	1.9606	2.6619	2.9446	0.231	
13/05/2012	0.8992	3.2252	1.619	1.949	2.6092	2.8857	0	
14/05/2012	0.8868	3.2285	1.6265	1.9465	2.5119	2.8482	0.402	
15/05/2012	0.913	3.2292	1.6393	1.9483	2.5394	2.8759	11.859	
16/05/2012	0.7639	3.2039	1.5838	1.941	2.5889	2.8985	0	
17/05/2012	0.8349	3.2079	1.6123	1.9334	2.5568	2.8615	1.206	
18/05/2012	0.8333	3.2074	1.6188	1.9323	2.505	2.842	0	
19/05/2012	0.8444	3.2082	1.6341	1.9359	2.5472	2.8733	2.814	
20/05/2012	0.7586	3.2111	1.6047	1.9348	2.578	2.8801	0	
21/05/2012 22/05/2012	0.8545 0.9316	3.2195 3.2298	1.6208 1.6398	1.9372	2.5718 2.6103	2.8836 2.9086	0	
23/05/2012	0.9316	3.2298	1.669	1.9458 1.9583	2.6593	2.9327	0	
24/05/2012	1.0237	3.2429	1.6783	1.9654	2.6707	2.9318	0	
25/05/2012	1.0237	3.2447	1.6835	1.9729	2.6507	2.9189	0	
26/05/2012	0.969	3.2413	1.6998	1.8136	2.6272	2.8658	0	
27/05/2012	0.9602	3.2445	1.6989	1.8234	2.616	2.8603	0	
28/05/2012	0.9714	3.2512	1.7027	1.836	2.617	2.8608	0	
29/05/2012	0.9813	3.2562	1.7045	1.8452	2.6311	2.8654	0	
30/05/2012	0.9911	3.2593	1.7068	1.8543	2.6273	2.8657	0	
31/05/2012	1.0102	3.2646	1.7127	1.8637	2.6431	2.8753	1.809	
01/06/2012	1.0178	3.2682	1.7162	1.8719	2.6443	2.8783	0.201	
02/06/2012 03/06/2012	1.029	3.2708	1.7192 1.6771	1.8791	2.6368	2.8628	0.201	
03/06/2012	0.8298 0.4413	3.2557 3.2237	1.6771	1.8787 1.8611	2.5838 2.5913	2.8417 2.8561	5.427 1.608	
05/06/2012	0.4413	3.2302	1.5439	1.8584	2.5913	2.8272	0	
06/06/2012	0.7409	3.2302	1.5735	1.8559	2.4882	2.7871	4.623	
		3.2312	1.5494	1.8633	2.5267	2.7902	4.422	
07/06/2012	0.7855							
			1.3619	1.8494	2.4369	2./041	17.688	
07/06/2012 08/06/2012 09/06/2012		3.2091 3.1717	1.3619 1.2003	1.8494 1.8242	2.4369 2.511	2.7841 2.8217	17.688 6.03	
08/06/2012	0.5554	3.2091						

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
12/06/2012	0.8012	3.1831	1.5485	1.7673	2.5156	2.7991	0	
13/06/2012	0.8548	3.1901	1.5818	1.7678	2.5538	2.8148	3.819	
14/06/2012	0.8273	3.1694	1.4482	1.7558	2.5398	2.797	0.402	
15/06/2012	0.5337	3.1502	1.3078	1.7464	2.4608	2.7569	5.025	
16/06/2012	0.51	3.1487	1.3861	1.738	2.4454	2.7559	1.407	
17/06/2012	0.6467	3.1567	1.4241	1.7353	2.5265	2.8109	0.402	
18/06/2012	0.7709 0.7753	3.1636 3.1705	1.525	1.7274 1.7282	2.5384	2.8071	0.402 0.201	
19/06/2012 20/06/2012	0.8006	3.1755	1.558 1.5842	1.7296	2.5458 2.5571	2.808 2.8027	0.201	
21/06/2012	0.8229	3.1779	1.5946	1.7286	2.5138	2.7717	0.201	
22/06/2012	0.7406	3.1684	1.4956	1.7303	2.4868	2.7855	0.402	
23/06/2012	0.5161	3.1544	1.3615	1.73	2.5519	2.8178	0.201	
24/06/2012	0.4712	3.1318	1.3313	1.7161	2.4839	2.7865	0.402	
25/06/2012	0.4757	3.1171	1.3944	1.6842	2.4779	2.7648	0.201	
26/06/2012	0.6956	3.1309	1.5055	1.6748	2.4833	2.7525	0	
27/06/2012	0.7397	3.1346	1.5331	1.6694	2.4842	2.7523	0.201	
28/06/2012	0.7533	3.1395	1.5501	1.666	2.4524	2.7237	0.201	
29/06/2012	0.7599	3.1471	1.5573	1.6682	2.4418	2.745	0	
30/06/2012	0.7537	3.1538	1.5715	1.6792	2.5055	2.7828	0	
01/07/2012	0.7758	3.1576	1.598	1.686	2.5454	2.8124	0	
02/07/2012	0.8453	3.164	1.6158	1.6952	2.5564	2.8092	0.201	
03/07/2012	0.759	3.1625	1.494	1.703	2.558	2.808	0.804	
04/07/2012	0.876 0.535	3.171	1.2019	1.745	2.519	2.791	1.005	
05/07/2012 06/07/2012	0.535	3.1469 3.1013	0.9454 0.9608	1.751 1.736	2.528 2.491	2.802 2.772	9.447 37.386	
06/07/2012	0.532	2.9198	0.8833	1.736	2.303	2.772	0.402	
08/07/2012	0.634	2.9464	1.0372	1.518	2.104	2.393	0.402	
09/07/2012	0.600	2.9426	0.9762	1.496	2.252	2.620	4.02	
10/07/2012	0.725	2.9754	1.0471	1.491	2.331	2.717	11.658	
11/07/2012	0.556	2.9167	0.9478	1.448	2.271	2.622	0.804	
12/07/2012	0.676	2.9605	1.06	1.436	2.233	2.582	0	
13/07/2012	0.751	2.9858	1.1235	1.441	2.262	2.665	3.216	
14/07/2012	0.555	2.9555	0.9798	1.448	2.331	2.742	0.402	
15/07/2012	0.732	3.0107	1.1255	1.467	2.407	2.777	0	
16/07/2012	0.858	3.046	1.1874	1.487	2.442	2.783	8.241	
17/07/2012	0.590	2.8569	0.8929	1.473	2.424	2.772	5.628	
18/07/2012	0.700	2.9594	1.0698	1.454	2.314	2.662	0	
19/07/2012	0.703	2.9265	0.9783	1.458	2.322	2.712	0.804	
20/07/2012 21/07/2012	0.665 0.823	2.9637 3.0108	1.0249 1.1344	1.460 1.476	2.399 2.448	2.770 2.790	0.804 0.201	
22/07/2012	0.823	3.047	1.1744	1.476	2.440	2.790	0.201	
23/07/2012	0.900	3.0706	1.2015	1.522	2.462	2.798	0.201	
24/07/2012	0.940	3.0861	1.2177	1.545	2.471	2.801	0.201	
25/07/2012	0.970	3.1017	1.2399	1.570	2.493	2.820	0.201	
26/07/2012	1.004	3.114	1.2583	1.592	2.521	2.827	0	
27/07/2012	1.013	3.1219	1.266	1.609	2.509	2.820	0	
28/07/2012	1.019	3.1271	1.2678	1.627	2.506	2.812	0.201	
29/07/2012	1.040	3.1376	1.275	1.646	2.513	2.826	0	
30/07/2012	1.029	3.1283	1.1694	1.662	2.542	2.840	0	
31/07/2012	1.040	3.1398	1.2487	1.679	2.549	2.835	0	
01/08/2012	0.814	3.1224	1.0698	1.688	2.521	2.810	0	
02/08/2012	0.880	3.1312	1.1002	1.702	2.527	2.827	0	
03/08/2012	0.820	3.1336	1.1132	1.715	2.552	2.832	0.201	
04/08/2012 05/08/2012	0.914 0.961	3.1474 3.1567	1.1731 1.1942	1.727 1.736	2.542 2.543	2.825 2.824	0	
06/08/2012	1.006	3.1567	1.1942	1.736	2.543	2.840	0	
07/08/2012	1.070	3.1765	1.2636	1.746	2.611	2.871	0	
08/08/2012	1.083	3.1822	1.2874	1.774	2.630	2.877	0.201	
09/08/2012	1.106	3.1903	1.3043	1.787	2.638	2.880	0	
10/08/2012	1.114	3.1951	1.3149	1.799	2.639	2.873	0	
11/08/2012	1.113	3.1996	1.3152	1.808	2.609	2.849	0	
12/08/2012	1.109	3.2014	1.3132	1.817	2.566	2.831	0.201	
13/08/2012	1.105	3.2059	1.3169	1.828	2.565	2.835	0	
14/08/2012	1.132	3.2142	1.3246	1.839	2.590	2.855	0	
15/08/2012	1.154	3.2194	1.3288	1.850	2.604	2.841	0	
16/08/2012	1.007	3.2081	1.2262	1.856	2.595	2.865	0.201	
17/08/2012	1.048	3.2151	1.2914	1.866	2.598	2.857	0	
18/08/2012	1.047	3.2211	1.3279	1.873	2.605	2.865	0.201	
19/08/2012	1.095	3.2282	1.3398	1.881	2.642	2.873	0	
20/08/2012 21/08/2012	1.107 1.131	3.2322 3.2346	1.3454 1.3527	1.887 1.896	2.642 2.644	2.880 2.869	0.201	
22/08/2012	1.131	3.2346	1.2889	1.896	2.644	2.869	0.201	
22/00/2012	1.077	0.2000	1.2003	1.500	2.017	2.000	U.ZU I	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
23/08/2012	1.108	3.24	1.3201	1.910	2.623	2.863	0	
24/08/2012	1.113	3.2406	1.3268	1.913	2.585	2.834	0.201	
25/08/2012	1.071	3.2393	1.2694	1.922	2.557	2.831	0	
26/08/2012	1.144	3.2524	1.3031	1.935	2.669	2.896	0.201	
27/08/2012	1.135	3.2479	1.322	1.936	2.662	2.868	0	
28/08/2012	1.047 1.079	3.2509	1.2709	1.944	2.622	2.872	0.201	
29/08/2012 30/08/2012	1.079	3.2549 3.2539	1.3081 1.2059	1.952 1.956	2.638 2.626	2.867 2.894	0 0.201	
31/08/2012	1.099	3.2572	1.2798	1.963	2.718	2.920	0.201	
01/09/2012	1.021	3.2807	1.654	1.906	2.739	2.788	0.201	
02/09/2012	1.044	3.2854	1.6625	1.916	2.720	2.790	0	
03/09/2012	1.099	3.289	1.6815	1.920	2.759	2.799	0	
04/09/2012	1.100	3.2928	1.6855	1.927	2.732	2.795	0	
05/09/2012	1.135	3.2966	1.6958	1.933	2.766	2.814	0	
06/09/2012	1.153	3.2971	1.7049	1.935	2.772	2.802	0	
07/09/2012	1.147	3.3012	1.7066	1.944	2.743	2.795	0	
08/09/2012	1.168	3.3033	1.7155	1.951	2.749	2.790	0	
09/09/2012	1.149	3.2997	1.713	1.953	2.702	2.755	0	
10/09/2012	1.162	3.3099	1.7173	1.963	2.701	2.770	0.201	
11/09/2012	1.169	3.3057	1.564	1.968	2.738	2.803	4.221	
12/09/2012	1.174	3.3035	1.6723	1.969	2.766	2.801	5.025	
13/09/2012	1.098	3.3039	1.5464	1.977	2.792	2.818	0 0 402	
14/09/2012	1.079	3.3014 3.3105	1.6343	1.984	2.720	2.791	0.402	
15/09/2012 16/09/2012	1.136 1.131	3.3105	1.6681 1.68	1.990 1.994	2.781 2.747	2.813 2.788	0	
17/09/2012	1.131	3.3064	1.6865	1.994	2.747	2.788	0.402	
18/09/2012	1.160	3.3058	1.6972	2.003	2.752	2.810	1.608	
19/09/2012	1.134	3.3087	1.5885	2.007	2.810	2.836	9.045	
20/09/2012	0.837	3.291	1.4812	2.008	2.763	2.800	1.608	
21/09/2012	0.829	3.2863	1.5101	2.007	2.729	2.787	1.608	
22/09/2012	0.826	3.2866	1.4777	2.006	2.756	2.801	0.201	
23/09/2012	0.931	3.2818	1.5522	2.005	2.726	2.761	0.201	
24/09/2012	0.627	3.2532	1.2893	1.996	2.596	2.689	25.929	
25/09/2012	0.450	3.1129	1.2191	1.854	2.381	2.422	6.03	
26/09/2012	0.425	2.966	1.0611	1.773	1.984	2.028	8.844	
27/09/2012	0.461	2.9639	1.211	1.685	1.882	1.916	1.206	
28/09/2012	0.655	3.031	1.3788	1.634	2.028	2.201	1.206	
29/09/2012	0.736	3.0756	1.3859	1.605	2.227	2.491	0.402	
30/09/2012 01/10/2012	0.787 0.788	3.1046 3.0986	1.4806 1.3516	1.588 1.578	2.332 2.380	2.596 2.687	0 2.01	
02/10/2012	0.777	3.1299	1.4536	1.578	2.429	2.708	2.01	
03/10/2012	0.777	3.1274	1.3446	1.578	2.4256	2.719	0.603	
04/10/2012	0.794	3.1443	1.4635	1.589	2.4561	2.7352	0	
05/10/2012	1.078	3.1417	1.474	1.5925	2.4611	2.9822	1.407	
06/10/2012	1.058	3.1552	1.4928	1.6077	2.5366	3.0165	0.804	
07/10/2012	1.099	3.1686	1.5369	1.621	2.5981	3.039	0	
08/10/2012	1.150	3.1693	1.5631	1.6241	2.5786	3.0107	0.201	
09/10/2012	1.197	3.1788	1.5711	1.637	2.5897	3.0265	0	
10/10/2012	1.236	3.1849	1.5946	1.6453	2.6005	3.0241	0	
11/10/2012	1.230	3.1909	1.6047	1.6546	2.5702	3.002	0.603	
12/10/2012	0.706	3.104	1.1769	1.6524	2.5409	3.0097	11.457	
13/10/2012	0.856	3.122	1.4075	1.6228	2.3967	2.7945	0.201	
14/10/2012	1.038 1.121	3.1455	1.4767	1.6127	2.3918	2.8622	0	
15/10/2012 16/10/2012	1.121	3.1616 3.1512	1.5223 1.3367	1.6136 1.616	2.4678 2.4527	2.9489 2.9691	2.412	
17/10/2012	1.036	3.1512	1.4754	1.6168	2.4527	2.9835	1.407	
18/10/2012	0.722	3.0955	1.2842	1.6135	2.5137	2.9793	6.834	
19/10/2012	0.925	3.1445	1.4396	1.5955	2.5381	2.9542	0.201	
20/10/2012	1.094	3.1625	1.4993	1.586	2.5589	2.9926	0	
21/10/2012	1.174	3.1764	1.5313	1.5845	2.6062	3.013	0	
22/10/2012	1.213	3.1851	1.513	1.5846	2.6158	3.0206	0.603	
23/10/2012	1.214	3.1917	1.5075	1.5951	2.6453	3.0326	0	
24/10/2012	1.214	3.1962	1.5623	1.5992	2.6288	3.0194	0	
25/10/2012	1.224	3.2021	1.5886	1.6061	2.6207	3.0203	0	
26/10/2012	1.247	3.204	1.6118	1.6145	2.6268	3.0198	0	
27/10/2012	1.265	3.206	1.6257	1.6214	2.6356	3.0369	0	
28/10/2012	1.280	3.2101	1.6433	1.6294	2.6331	3.0151	0.402	
29/10/2012	1.256	3.2157	1.6207	1.6429	2.5989	3.0144	1.005	
30/10/2012 31/10/2012	1.244 1.206	3.2223 3.2189	1.6106 1.6569	1.6509 1.6522	2.6319 2.5567	3.0161 2.9622	0.402 0.201	
01/11/2012	1.022	3.2189	1.4372	1.6549	2.5567	2.9622	3.015	
02/11/2012	1.114	3.2286	1.5586	1.6738	2.6134	3.0225	0	
		3.2200			0.0+	3.0220	· · ·	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
03/11/2012	1.203	3.2346	1.6162	1.6825	2.6706	3.0528	0	
04/11/2012	1.247	3.2375	1.6026	1.6867	2.6823	3.046	0	
05/11/2012	1.297	3.2501	1.5405	1.6994	2.7227	3.0832	0	
06/11/2012 07/11/2012	1.361 1.373	3.2542 3.2658	1.6084 1.6639	1.7083 1.7232	2.7903 2.7951	3.1083 3.1068	0.201	
08/11/2012	1.347	3.2657	1.6824	1.7262	2.7365	3.0764	0	
09/11/2012	1.336	3.2653	1.6867	1.7252	2.7008	3.0402	0	
10/11/2012	1.269	3.2601	1.6423	1.7286	2.6335	3.0131	1.206	
11/11/2012	1.311	3.2693	1.6762	1.7381	2.7087	3.0741	1.809	
12/11/2012	1.345	3.2743	1.6446	1.7483	2.7815	3.0956	1.005	
13/11/2012	1.297	3.2796	1.6075	1.7577	2.7768	3.1015	0	
14/11/2012	1.322	3.2844	1.6734	1.7627	2.7857	3.1036	0	
15/11/2012	1.324 1.312	3.2845	1.6918	1.7634	2.7619	3.0756	0	
16/11/2012 17/11/2012	1.162	3.2827 3.2688	1.6529 1.3627	1.7608 1.7601	2.7135 2.6555	3.0451 3.0282	6.231	
18/11/2012	1.131	3.2697	1.5238	1.7593	2.692	3.0484	0.231	
19/11/2012	1.186	3.2749	1.5738	1.7575	2.6568	3.013	0	
20/11/2012	1.235	3.2866	1.603	1.766	2.6686	3.0289	0.201	
21/11/2012	1.275	3.2908	1.6157	1.7701	2.7038	3.053	12.261	
22/11/2012	1.032	3.2599	1.431	1.74	2.6264	2.9502	0	
23/11/2012	0.958	3.2515	1.3271	1.7216	2.5212	2.9061	5.427	
24/11/2012	1.117	3.2515	1.4974	1.6964	2.5211	2.8702	0	
25/11/2012	0.874	3.2184	1.1751	1.6557	2.4059	2.8723	16.482	
26/11/2012	0.777	3.1683	1.2796	1.5817	2.1189	2.4903	3.819	
27/11/2012 28/11/2012	0.778 0.923	3.1492 3.164	1.2247 1.3987	1.5298 1.4834	2.1448 2.2446	2.5503 2.6707	4.824 0.402	
29/11/2012	0.923	3.1384	1.3987	1.4834	2.2446	2.6707	0.402	
30/11/2012	0.793	3.1393	1.3549	1.4317	2.3201	2.7125	0	
01/12/2012	0.852	3.1499	1.3701	1.438	2.4103	2.8039	2.211	
02/12/2012	0.842	3.1524	1.3586	1.4484	2.4539	2.8271	0	
03/12/2012	0.786	3.1462	1.0798	1.4497	2.4146	2.8095	6.432	
04/12/2012	0.720	3.1494	1.2877	1.4476	2.4001	2.7718	3.015	
05/12/2012	0.675	3.1387	1.0468	1.4459	2.4213	2.7834	4.824	
06/12/2012	0.751	3.142	1.265	1.4251	2.4673	2.7579	0	
07/12/2012	0.657	3.1221	1.0203	1.4093	2.3537	2.755	9.849	
08/12/2012	0.717	3.1326 3.1373	1.2271 1.3236	1.3985	2.4608 2.4234	2.7679 2.74	0 0.201	
09/12/2012 10/12/2012	0.767 0.805	3.1461	1.3674	1.3836 1.3884	2.4234	2.74	0.201	
11/12/2012	0.870	3.1504	1.423	1.3964	2.5209	2.816	0	
12/12/2012	0.861	3.1491	1.4444	1.4042	2.4828	2.7873	0	
13/12/2012	0.844	3.1516	1.4168	1.4124	2.4277	2.7614	0	
14/12/2012	0.843	3.1541	1.45	1.4256	2.4007	2.703	4.623	
15/12/2012	0.641	3.1398	1.1011	1.4339	2.3855	2.7491	6.432	
16/12/2012	0.684	3.1474	1.2208	1.4327	2.3506	2.6539	0.603	
17/12/2012	0.720	3.1502	1.2529	1.4226	2.3443	2.6869	3.417	
18/12/2012	0.689	3.1436	1.1146	1.428	2.4408	2.7523	5.025	
19/12/2012	0.740	3.1399	1.2704	1.4008	2.4111	2.7023	0.402	
20/12/2012 21/12/2012	0.630 0.374	3.1199 2.9726	1.0586 0.9186	1.3794 1.3001	2.3475 2.0839	2.6708 2.3464	14.07 10.854	
22/12/2012	0.557	2.9859	1.1536	1.2092	1.9073	2.3464	12.06	
23/12/2012	0.392	2.8391	0.9497	1.1009	1.8075	2.1034	6.03	
24/12/2012	0.579	2.9078	1.1789	1.0375	1.8951	2.2029	4.02	
25/12/2012	0.455	2.8806	1.1522	1.0295	2.0054	2.4227	3.216	
26/12/2012	0.607	2.9337	1.2243	1.0699	2.1484	2.5333	3.618	
27/12/2012	0.560	2.9313	1.2051	1.0985	2.1835	2.6046	1.608	
28/12/2012	0.686	2.9744	1.2989	1.1441	2.3175	2.6548	2.814	
29/12/2012	0.619	2.9601	1.2841	1.1562	2.2291	2.619	4.422	
30/12/2012 31/12/2012	0.589 0.690	2.9311 2.9629	1.2071	1.1701	2.2481 2.2307	2.6469	0 2.412	
01/01/2013	0.582	2.9629	1.3022 1.1638	1.1856 1.2048	2.2307	2.6029 2.6747	3.618	
02/01/2013	0.562	2.9214	1.3338	1.2311	2.2764	2.6908	3.618	
03/01/2013	0.693	2.9795	1.2685	1.2424	2.3917	2.7325	0	
04/01/2013	0.771	3.0232	1.4073	1.2595	2.4323	2.7453	0	
05/01/2013	0.791	3.0422	1.4537	1.2736	2.428	2.746	0	
06/01/2013	0.823	3.0605	1.4762	1.2917	2.4388	2.7476	0	
07/01/2013	0.827	3.0695	1.4808	1.3069	2.4256	2.7427	0	
08/01/2013	0.838	3.0831	1.4851	1.3313	2.4388	2.7581	3.015	
09/01/2013	0.685	3.0502	1.2562	1.3401	2.4584	2.7641	3.216	
10/01/2013		3.0738	1.3704	1.3436	2.4023	2.7217	0	
11/01/2013 12/01/2013	0.809 0.756	3.0918 3.0904	1.4001 1.3415	1.3663 1.3745	2.4386 2.4211	2.7513 2.749	2.814 0.402	
13/01/2013	0.756	3.0904	1.4162	1.3745	2.4211	2.749	0.402	
13/01/2013	0.007	J. 100Z	1.4102	1.0811	2.4010	4.1131	U	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
14/01/2013	0.822	3.1112	1.2884	1.4005	2.4613	2.7446	8.643	
15/01/2013	0.572	3.0708	1.1529	1.3906	2.4101	2.739	0.804	
16/01/2013	0.720	3.0927	1.2976	1.383	2.3674	2.7051	0	
17/01/2013 18/01/2013	0.807 0.814	3.1133 3.1128	1.3519 1.2896	1.3993 1.4003	2.429 2.4029	2.7369 2.7145	0	
19/01/2013	0.816	3.1126	1.2086	1.4136	2.4029	2.738	0	
20/01/2013	0.714	3.1228	1.2489	1.4271	2.451	2.753	0.201	
21/01/2013	0.692	3.1276	1.2492	1.4376	2.4322	2.7544	0.804	
22/01/2013	0.657	3.1365	1.2083	1.4574	2.4953	2.7986	0.402	
23/01/2013	0.768	3.1472	1.2719	1.4723	2.5556	2.8183	2.211	
24/01/2013	0.724	3.151	1.2823	1.482	2.5633	2.8321	1.407	
25/01/2013	0.799	3.15	1.362	1.485	2.5646	2.7967	0.201	
26/01/2013	0.736	3.1457	1.1389	1.4902	2.4627	2.7732	11.658	
27/01/2013 28/01/2013	0.389 0.557	3.0272 3.0079	1.0142 1.1771	1.4272 1.3295	2.3435 1.9051	2.7096 2.0895	10.452 0.201	
29/01/2013	0.643	3.0529	1.2002	1.3151	1.9996	2.3356	0.402	
30/01/2013	0.705	3.0827	1.2336	1.3174	2.1604	2.5802	0.201	
31/01/2013	0.785	3.1002	1.2777	1.3241	2.3082	2.6826	3.216	
01/02/2013	0.760	3.0896	1.2794	1.325	2.3237	2.6921	0	
02/02/2013	0.819	3.1151	1.2904	1.354	2.4171	2.7863	0.603	
03/02/2013	0.850	3.1169	1.3492	1.3619	2.463	2.772	0	
04/02/2013	0.830	3.1266	1.3515	1.3797	2.4119	2.7634	0	
05/02/2013	0.824	3.1223	1.3527	1.3823	2.3915	2.7321	0.402	
06/02/2013	0.753	3.1309	1.2344	1.4138	2.4409	2.8056	2.211	
07/02/2013	0.851	3.1459	1.3707	1.4343	2.5518	2.8205	1.005	
08/02/2013	0.791	3.1474	1.2914	1.4455	2.5257	2.8208	0.402	
09/02/2013 10/02/2013	0.813 0.626	3.1502 3.1152	1.3291 1.1319	1.455 1.4297	2.5226 2.3932	2.8044 2.7108	3.417 3.618	
11/02/2013	0.826	3.0555	1.0522	1.4297	2.2898	2.7108	1.608	
12/02/2013	0.717	3.0839	1.2664	1.362	2.1862	2.5167	0	
13/02/2013	0.798	3.1005	1.3484	1.3512	2.313	2.6511	0	
14/02/2013	0.570	3.0631	1.1163	1.3399	2.2924	2.6779	7.437	
15/02/2013	0.608	3.0457	1.2794	1.3043	2.1974	2.5141	0	
16/02/2013	0.749	3.0694	1.3638	1.29	2.2622	2.6315	0	
17/02/2013	0.790	3.0864	1.4048	1.2966	2.3327	2.6859	0	
18/02/2013	0.823	3.097	1.4099	1.3107	2.3773	2.7232	0	
19/02/2013	0.849	3.1059	1.4316	1.3318	2.4197	2.744	0	
20/02/2013	0.884	3.1204	1.4291	1.3593	2.4616	2.777	0	
21/02/2013	0.911	3.1276	1.4461	1.3808	2.4963	2.7852	0	
22/02/2013 23/02/2013	0.918 0.932	3.1342 3.1419	1.4663 1.4428	1.4017 1.4225	2.4952 2.5054	2.7891 2.799	0	
24/02/2013	0.960	3.1534	1.4195	1.4471	2.5422	2.8196	0	
25/02/2013	0.973	3.1593	1.4231	1.465	2.5624	2.8301	0	
26/02/2013	0.9412	3.1805	1.48	1.4896	2.6029	2.8438	0	
27/02/2013	1.0075	3.1747	1.3676	1.472	2.5632	2.772	0	
28/02/2013	1.0228	3.1788	1.3655	1.487	2.5421	2.7382	0	
01/03/2013	1.0531	3.1847	1.3735	1.498	2.5596	2.7398	0	
02/03/2013	1.0504	3.1879	1.3629	1.5101	2.5402	2.7431	0	
03/03/2013	1.0578	3.1918	1.3534	1.5217	2.5398	2.7294	0	
04/03/2013	1.03	3.1868	1.3461	1.5262	2.4942	2.7257	0	
05/03/2013 06/03/2013	1.0244 1.047	3.194 3.1957	1.3364 1.3484	1.5412 1.5558	2.4932 2.5228	2.7007 2.7162	0	
06/03/2013	1.047	3.1957	1.2601	1.5558	2.5228	2.7162	1.206	
08/03/2013	0.602	3.156	1.0918	1.566	2.5323	2.7211	5.628	
09/03/2013	0.4945	3.1251	1.0587	1.5587	2.5149	2.736	3.417	
10/03/2013	0.5088	3.1095	1.0842	1.5416	2.5033	2.7188	1.206	
11/03/2013	0.8139	3.1362	1.2412	1.5268	2.5097	2.7154	0	
12/03/2013	0.8794	3.1468	1.242	1.5267	2.5162	2.7204	0	
13/03/2013	0.9194	3.1638	1.2848	1.5346	2.5297	2.7209	0	
14/03/2013	0.9421	3.1701	1.2661	1.5376	2.5475	2.7395	0	
15/03/2013	0.8875	3.1651	1.278	1.5356	2.4712	2.7226	1.206	
16/03/2013	0.5701	3.1543	1.2004	1.5446	2.4577	2.6932	2.814	
17/03/2013 18/03/2013	0.4806 0.7736	3.0968 3.1335	1.1401 1.2343	1.5152 1.501	2.4 2.3923	2.6835 2.6254	6.633	
19/03/2013	0.7736	3.1335	1.2343	1.4904	2.3923	2.6254	0 0.201	
20/03/2013	0.045	3.1476	1.2988	1.4904	2.5346	2.6886	0.201	
21/03/2013	0.9246	3.163	1.3259	1.4919	2.5556	2.7324	0	
22/03/2013	0.8994	3.1609	1.3108	1.4869	2.5113	2.7115	4.422	
23/03/2013		3.0879	1.0736	1.461	2.4843	2.6954	1.206	
24/03/2013	0.6208	3.1174	1.2447	1.4376	2.4804	2.6827	0	
		- 1	4.0000	4 4045	0.4000	0.6005	0	
25/03/2013 26/03/2013	0.7917 0.8375	3.132 3.1392	1.2906 1.3226	1.4315 1.4316	2.4863 2.4857	2.6825 2.6933	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
27/03/2013	0.8613	3.1424	1.3631	1.4378	2.4773	2.6905	0	
28/03/2013	0.8946	3.1519	1.387	1.4497	2.4947	2.6935	0	
29/03/2013	0.9137	3.1609	1.3924	1.4638	2.5052	2.7041	0	
30/03/2013	0.9268	3.1645	1.3919	1.4789	2.509	2.7003	0	
31/03/2013	0.9645	3.1738	1.406	1.4956	2.5491	2.7265	0	
01/04/2013	0.9606	3.1801	1.3813	1.5091	2.5368	2.7175	0	
02/04/2013	0.9828	3.1875	1.3879	1.526	2.5673	2.732	0	
03/04/2013	1.0111 1.0074	3.1939 3.1972	1.4047 1.4306	1.543 1.5542	2.6006 2.584	2.7483	0	
04/04/2013 05/04/2013	0.9987	3.1972	1.443	1.5638	2.5807	2.7436 2.7379	0	
06/04/2013	1.0292	3.2074	1.4618	1.5755	2.6197	2.7554	0	
07/04/2013	1.0232	3.2075	1.4423	1.5813	2.5999	2.7499	0	
08/04/2013	0.9997	3.2094	1.3925	1.5872	2.5378	2.7193	0	
09/04/2013	0.9918	3.208	1.4151	1.5943	2.5214	2.7076	0	
10/04/2013	1.0345	3.2169	1.4372	1.6106	2.5874	2.7383	0	
11/04/2013	1.0143	3.2182	1.4413	1.6174	2.5601	2.7279	0.402	
12/04/2013	0.9784	3.2127	1.3554	1.623	2.5514	2.7227	4.221	
13/04/2013	1.0016	3.2175	1.3308	1.6387	2.6493	2.7748	0.402	
14/04/2013	1.0119	3.2298	1.4081	1.6523	2.6265	2.7684	0.201	
15/04/2013	1.0314	3.236	1.4515	1.6579	2.6465	2.7719	0	
16/04/2013	1.0096	3.2332	1.4731	1.6609	2.6147	2.7565	0.201	
17/04/2013	1.0423	3.2384	1.49	1.6699	2.6667	2.7965	0	
18/04/2013	1.0025	3.2408	1.4407	1.676	2.5853	2.7338	0	
19/04/2013	1.078	3.249	1.5124	1.6887	2.7103	2.8021	0.201	
20/04/2013	1.0953	3.2442	1.5272	1.6897	2.7412	2.8282	0	
21/04/2013	1.0544	3.24	1.5111	1.6912	2.6542	2.7797	0.201	
22/04/2013	1.0385	3.2443	1.4439	1.6983	2.6176	2.7538	0.201	
23/04/2013	1.0653	3.2504	1.4721	1.7098	2.643	2.7624	0	
24/04/2013	1.0951	3.2576	1.5038	1.7253	2.684	2.7917	0	
25/04/2013	1.0213	3.274	1.5809	1.796	2.6772	2.882	0	
26/04/2013 27/04/2013	1.0189 1.0406	3.2723 3.2789	1.5604 1.565	1.8043 1.8096	2.6593 2.6926	2.8635 2.8436	0 0.201	
28/04/2013	1.0209	3.2784	1.5556	1.8158	2.6453	2.8655	0.201	
29/04/2013	1.0209	3.2854	1.5321	1.8283	2.7032	2.8432	1.809	
30/04/2013	1.0642	3.2883	1.5463	1.8342	2.7372	2.8879	0	
01/05/2013	1.0513	3.2891	1.5594	1.8404	2.7069	2.8855	0	
02/05/2013	1.0546	3.2918	1.5861	1.8454	2.7035	2.8724	0	
03/05/2013	1.0472	3.2935	1.5955	1.8515	2.6714	2.8628	0	
04/05/2013	1.0531	3.2952	1.5984	1.8556	2.6795	2.8427	0.402	
05/05/2013	1.0724	3.3019	1.5953	1.8664	2.7193	2.8723	0	
06/05/2013	1.0675	3.3027	1.5737	1.8725	2.6994	2.8754	0	
07/05/2013	1.0596	3.3036	1.5802	1.8785	2.6839	2.8683	0	
08/05/2013	1.0406	3.3057	1.5962	1.8808	2.6365	2.8392	0	
09/05/2013	1.0338	3.2987	1.5503	1.8802	2.6225	2.8539	1.005	
10/05/2013	1.0406	3.3074	1.5467	1.8955	2.7165	2.8385	1.206	
11/05/2013	0.9915	3.2966	1.5644	1.8941	2.6887	2.8691	2.814	
12/05/2013	0.9057	3.292	1.4787	1.8992	2.6885	2.8761	2.613	
13/05/2013	0.8928	3.2993	1.4407	1.9092	2.6734	2.8582	2.01	
14/05/2013	0.8729	3.2908	1.48	1.9069	2.6207	2.8404	1.206	
15/05/2013	0.3964	3.1686	1.1886	1.8323	2.5379	2.7786	34.17	
16/05/2013	0.6621	3.1908	1.4022	1.8126	2.4822	2.7277	0	
17/05/2013 18/05/2013	0.7774 0.7628	3.212 3.2136	1.4483 1.46	1.8028 1.7939	2.5516 2.5416	2.7311 2.7712	0.603 0.603	
19/05/2013	0.7628	3.2136	1.4842	1.7939	2.5416	2.7712	0.603	
20/05/2013	0.8365	3.2203	1.4859	1.7883	2.6027	2.7679	0.201	
21/05/2013	0.8842	3.237	1.4823	1.7845	2.6273	2.8318	0.201	
22/05/2013	0.8842	3.2407	1.4907	1.7851	2.6357	2.8365	0	
23/05/2013	0.8048	3.2354	1.4371	1.7852	2.5939	2.8218	1.809	
24/05/2013	0.8564	3.2454	1.4738	1.7908	2.6147	2.8153	0.804	
25/05/2013	0.8928	3.2527	1.4853	1.8024	2.6588	2.8551	0	
26/05/2013	0.887	3.2544	1.5018	1.8068	2.6255	2.8477	0	
27/05/2013	0.8679	3.2548	1.4951	1.8079	2.5614	2.8213	1.005	
28/05/2013	0.5159	3.229	1.2528	1.81	2.5661	2.8087	8.241	
29/05/2013	0.4259	3.2042	1.2899	1.7879	2.5753	2.8112	8.04	
30/05/2013	0.5887	3.2053	1.3298	1.7712	2.5786	2.8165	2.814	
31/05/2013	0.7974	3.2128	1.3685	1.7649	2.6074	2.8291	0.201	
01/06/2013	0.829	3.2183	1.4781	1.7569	2.6282	2.8546	0	
02/06/2013	0.8806	3.2265	1.5111	1.7581	2.65	2.8677	0	
03/06/2013	0.9041	3.2322	1.5137	1.7619	2.6495	2.8766	0	
04/06/2013	0.9017	3.236	1.5257	1.7666	2.6263	2.8732	0	
05/06/2013	0.9079	3.2384	1.534	1.7694	2.6064	2.8584	0	
06/06/2013	0.948	3.2451	1.5075	1.78	2.6337	2.8572	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
07/06/2013	0.9689	3.2529	1.5628	1.792	2.6505	2.8739	0	
08/06/2013	0.9649	3.2539	1.577	1.7996	2.6345	2.8711	0	
09/06/2013	0.9682	3.2571	1.5674	1.8086	2.6196	2.8547	0	
10/06/2013 11/06/2013	0.9859 0.9986	3.2607 3.2622	1.5671 1.4684	1.8168 1.8258	2.6249 2.6143	2.8462 2.8407	0	
12/06/2013	1.0214	3.2622	1.4841	1.838	2.6218	2.834	0	
13/06/2013	1.0859	3.2497	1.3462	1.8052	2.6476	2.7919	4.02	
14/06/2013	1.0307	3.2378	1.2989	1.8136	2.6349	2.8389	3.015	
15/06/2013	0.9528	3.2417	1.3817	1.8215	2.6077	2.7887	1.206	
16/06/2013	1.0355	3.2551	1.4171	1.8359	2.6648	2.8168	0.201	
17/06/2013	1.0631	3.2605	1.421	1.844	2.678	2.8459	0	
18/06/2013	1.073	3.2652	1.4305	1.8521	2.6628	2.8495	0	
19/06/2013	1.0938	3.2688	1.4442	1.8616	2.6827	2.8496	0.201	
20/06/2013 21/06/2013	1.0731 1.0962	3.2666 3.2739	1.3789 1.5125	1.8643 1.8723	2.6375 2.6571	2.8485 2.8288	0.603 0.201	
22/06/2013	1.0026	3.2668	1.5354	1.8764	2.6081	2.8324	2.211	
23/06/2013	1.0124	3.2739	1.5955	1.8845	2.6921	2.8238	1.608	
24/06/2013	1.1091	3.2819	1.6426	1.894	2.7493	2.878	0	
25/06/2013	1.1349	3.2862	1.6589	1.9023	2.7508	2.8961	0	
26/06/2013	1.1482	3.2874	1.6649	1.9077	2.7422	2.8941	0	
27/06/2013	1.1333	3.2818	1.7092	1.9071	2.6979	2.8839	3.216	
28/06/2013	0.796	3.2621	1.5283	1.9113	2.6397	2.8474	3.618	
29/06/2013	0.8772	3.2713	1.6143	1.917	2.6783	2.8461	0.603	
30/06/2013	0.9523	3.2749	1.6444	1.919	2.6497	2.8515	0	
01/07/2013	1.0236	3.2773	1.6419	1.9223	2.6544	2.8303	0.603	
02/07/2013	1.0273	3.2761	1.6459	1.9213	2.6041	2.8387	2.613	
03/07/2013 04/07/2013	0.9287 1.0143	3.2749 3.2835	1.5882 1.6465	1.93 1.9372	2.6658 2.7037	2.7962 2.8545	2.814	
05/07/2013	1.0787	3.2873	1.6696	1.9429	2.7455	2.8888	0	
06/07/2013	1.0999	3.2907	1.6766	1.9492	2.7223	2.8865	0	
07/07/2013	1.1331	3.2949	1.6877	1.9539	2.7447	2.8958	0	
08/07/2013	1.1397	3.296	1.6923	1.9568	2.7333	2.8978	0	
09/07/2013		3.295	1.6908	1.9593	2.7043	2.8853	0	
10/07/2013	1.1539	3.2972	1.696	1.9644	2.7116	2.8725	0	
11/07/2013	1.1668	3.2984	1.701	1.9676	2.7156	2.8851	0	
12/07/2013	1.1814	3.3002	1.7054	1.9733	2.7181	2.8818	0	
13/07/2013	1.199	3.3054	1.7117	1.9792	2.7287	2.8823	0	
14/07/2013	1.2061	3.3053	1.7147	1.9817	2.727	2.8927	0	
15/07/2013	1.2138 1.2262	3.3093	1.7168	1.9883	2.7258	2.8896	0	
16/07/2013 17/07/2013	1.2341	3.3097 3.3121	1.7187 1.7219	1.9933 1.9998	2.7343 2.7507	2.8929 2.8974	0	
18/07/2013	1.247	3.3121	1.7242	2.0067	2.7563	2.9063	0	
19/07/2013	1.2618	3.3158	1.725	2.0111	2.7488	2.9074	0	
20/07/2013	1.2612	3.3175	1.725	2.0159	2.748	2.9073	0	
21/07/2013	1.2661	3.3162	1.7263	2.0183	2.7303	2.9005	0	
22/07/2013	1.2803	3.3178	1.7292	2.0238	2.7178	2.8911	0	
23/07/2013	1.2096	3.3247	1.7273	2.0302	2.719	2.8848	2.613	
24/07/2013	1.2719	3.378	1.7312	2.0396	2.737	2.8788	0	
25/07/2013	1.2808	3.3789	1.7289	2.0425	2.7313	2.8826	0.402	
26/07/2013	1.2992	3.3821	1.7358	2.0475	2.7515	2.8867	0	
27/07/2013 28/07/2013	1.2932 0.5474	3.3812 3.3147	1.7384 1.4704	2.0504 2.0378	2.7237 2.6533	2.8872 2.8529	0 33.768	
29/07/2013	0.5474	3.3147	1.6103	2.0378	2.6674	2.8529	0.402	
30/07/2013	1.047	3.3195	1.6368	2.0372	2.6778	2.8608	0.201	
31/07/2013	0.955	3.3147	1.4651	2.0308	2.6888	2.86	6.231	
01/08/2013	0.9586	3.3103	1.6037	2.0298	2.6329	2.8478	0.201	
02/08/2013	1.0369	3.3192	1.6249	2.0322	2.6576	2.8315	0	
03/08/2013	1.1292	3.326	1.6523	2.0373	2.7183	2.8425	0	
04/08/2013	1.1565	3.3246	1.6639	2.0367	2.706	2.8739	0	
05/08/2013	0.8156	3.3058	1.4429	2.0298	2.6382	2.855	9.045	
06/08/2013	0.9546	3.3048	1.579	2.0276	2.6697	2.8499	0.402	
07/08/2013	1.051	3.3115	1.6109	2.0279	2.673	2.8344	0	
08/08/2013	1.1023	3.3179	1.633	2.0307	2.6901	2.8541	0	
09/08/2013 10/08/2013	1.1537 1.1848	3.3222 3.3257	1.6437 1.6611	2.0317 2.0346	2.7157 2.713	2.8458 2.8719	0.201	
11/08/2013	1.1848	3.3257	1.6666	2.0346	2.6902	2.8719	0	
12/08/2013	1.2291	3.3318	1.6752	2.0403	2.7019	2.8569	0	
13/08/2013		3.3366	1.6792	2.0452	2.7326	2.8703	0	
		3.3396	1.6813	2.0495	2.7202	2.8796	0	
14/08/20131	1.2700							
14/08/2013 15/08/2013	1.2355	3.3442	1.6822	2.054	2.6984	2.8607	0.402	
			1.6822 1.4798	2.054 2.0524	2.6984 2.6627 2.5928	2.8607 2.8469	0.402 19.899	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
18/08/2013	0.9951	3.3021	1.5647	2.0441	2.6437	2.8118	2.613	
19/08/2013	1.0879	3.3125	1.6208	2.0458	2.722	2.8446	0	
20/08/2013	1.1386	3.3144	1.658	2.0436	2.7247	2.8821	0	
21/08/2013 22/08/2013	1.2991 1.3198	3.2723 3.278	1.6759 1.686	2.0606 2.0646	2.5859 2.5772	2.8976 2.882	0	
23/08/2013	1.3357	3.2804	1.6868	2.0646	2.5684	2.8801	0	
24/08/2013	1.2816	3.2774	1.6266	2.0683	2.5811	2.8744	4.02	
25/08/2013	1.3282	3.2851	1.6789	2.0754	2.6063	2.8785	0.201	
26/08/2013	1.3545	3.2903	1.7046	2.0794	2.6177	2.9042	0	
27/08/2013	1.3726	3.2941	1.7123	2.0798	2.6146	2.8966	0	
28/08/2013	1.3941	3.2993	1.7238	2.084	2.634	2.9084	0	
29/08/2013	1.4037	3.3019	1.7249	2.0887	2.6085	2.902	0	
30/08/2013	1.4279	3.3062	1.7289	2.0934	2.5961	2.8978	0	
31/08/2013 01/09/2013	1.4575 1.4705	3.312 3.3157	1.7382 1.7421	2.0961 2.1002	2.6667 2.659	2.9153 2.929	0	
02/09/2013	1.4703	3.3194	1.7387	2.1002	2.6444	2.912	0	
03/09/2013	1.4888	3.3209	1.7325	2.1077	2.6462	2.9179	0	
04/09/2013	1.4838	3.3212	1.7286	2.1095	2.6088	2.91	0	
05/09/2013	1.4937	3.3238	1.7292	2.113	2.6011	2.8869	0	
06/09/2013	1.2639	3.3127	1.6002	2.1131	2.5893	2.8906	5.829	
07/09/2013	1.3795	3.3133	1.6464	2.1177	2.6282	2.8838	1.407	
08/09/2013	1.4052	3.3165	1.6798	2.1189	2.6396	2.9173	0	
09/09/2013	1.425	3.3192	1.6974	2.1221	2.6446	2.912	0.603	
10/09/2013	1.4504	3.3239	1.7165	2.1272	2.6771	2.9308	0.603	
11/09/2013	1.4617	3.3235	1.7239	2.1288	2.6587	2.9341	1.005	
12/09/2013 13/09/2013	1.3719 1.3436	3.3162 3.3165	1.6377 1.6486	2.133 2.1345	2.631 2.6409	2.9128 2.9062	2.211 1.005	
14/09/2013	1.2862	3.3128	1.6019	2.1345	2.6331	2.8973	2.01	
15/09/2013	1.2798	3.303	1.6178	2.1307	2.5155	2.9059	2.01	
16/09/2013	1.2945	3.3095	1.5696	2.1369	2.5716	2.8633	1.206	
17/09/2013	1.3304	3.3046	1.6038	2.1327	2.5574	2.8817	0.603	
18/09/2013	1.4626	3.3135	1.5546	2.1382	2.6436	2.8791	1.407	
19/09/2013	1.4964	3.3091	1.4384	2.1403	2.618	2.9298	2.613	
20/09/2013	1.5923	3.3168	1.6148	2.145	2.6919	2.9286	0	
21/09/2013	1.6544	3.3214	1.6432	2.1473	2.6851	2.9419	0	
22/09/2013	1.7157	3.327	1.6693	2.1503	2.7035	2.9465	0	
23/09/2013	1.7265	3.3238 3.3269	1.6753	2.1467	2.6621 2.6286	2.9386	0	
24/09/2013 25/09/2013	1.7376 1.7403	3.3269	1.6727 1.6725	2.1502 2.1487	2.6267	2.9153 2.9021	0 1.608	
26/09/2013	1.7586	3.3248	1.6862	2.1492	2.6715	2.9191	0	
27/09/2013	1.7687	3.3323	1.6909	2.1529	2.6554	2.9259	0	
28/09/2013	1.7735	3.3333	1.6887	2.155	2.6336	2.9137	0	
29/09/2013	1.791	3.3344	1.6949	2.1564	2.6432	2.9064	0	
30/09/2013		3.3384	1.7008	2.1583	2.652	2.9113	0	
01/10/2013		3.3404	1.7066	2.1597	2.6698	2.9238	0	
02/10/2013	1.7237	3.3291	1.5658	2.1606	2.6633	2.9206	4.02	
03/10/2013	1.6564	3.3181	1.5551	2.1587	2.6171	2.9207	3.618	
04/10/2013	1.5184	3.3125	1.3291	2.1564	2.6367	2.8991	4.02	
05/10/2013 06/10/2013	1.5741 1.6542	3.3072 3.3071	1.5335 1.6064	2.1517 2.1439	2.6826 2.6707	2.9194 2.9377	0	
07/10/2013	1.7054	3.3113	1.6266	2.1439	2.6595	2.9256	0	
08/10/2013	1.7381	3.3142	1.6469	2.1386	2.6653	2.9156	0	
09/10/2013	1.7438	3.309	1.6476	2.1284	2.6227	2.9223	1.005	
10/10/2013	1.7655	3.3125	1.6677	2.1348	2.6701	2.9038	0	
11/10/2013	1.7787	3.3164	1.6711	2.1363	2.6743	2.917	0	
12/10/2013	1.785	3.318	1.6573	2.1384	2.6496	2.9231	0	
13/10/2013	1.7745	3.3137	1.6654	2.1336	2.6051	2.9042	1.206	
14/10/2013	1.7218	3.3034	1.4094	2.1359	2.5961	2.8763	4.02	
15/10/2013	1.7044 1.7093	3.3087 3.2977	1.5857 1.3283	2.1374 2.1291	2.6249	2.8824 2.9035	0.201 1.608	
16/10/2013 17/10/2013	1.7093	3.2977	1.5261	2.1291	2.5501 2.6356	2.9035	1.608	
18/10/2013	1.7229	3.3009	1.5809	2.1302	2.6142	2.9092	0.201	
19/10/2013	1.6504	3.2928	1.4654	2.1274	2.559	2.8675	3.015	
20/10/2013	1.6347	3.2876	1.503	2.1203	2.5651	2.8684	4.824	
21/10/2013	0.624	3.2501	1.2015	2.0982	2.5187	2.876	8.844	
22/10/2013	1.2735	3.2319	1.3079	2.075	2.4477	2.8321	1.809	
23/10/2013		3.2127	1.2467	2.0467	2.5034	2.7847	6.03	
24/10/2013		3.2124	1.4553	2.0218	2.5391	2.853	0	
25/10/2013		3.2012	1.3676	1.9975	2.4515	2.8227	1.608	
26/10/2013	1.4732	3.2038	1.4885	1.9803	2.4726	2.8156	0	
27/10/2013 28/10/2013	1.4579	3.2036	1.4731	1.9649	2.4418	2.798	1.407	
28/10/2013	1.2362	3.1837	1.231	1.9515	2.4783	2.7924	5.025	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
29/10/2013	1.2961	3.175	1.3045	1.935	2.5203	2.8118	3.216	
30/10/2013	1.4211	3.1731	1.4454	1.9135	2.4839	2.8172	0.201	
31/10/2013	1.4903	3.172	1.4218	1.9025	2.4843	2.8051	1.005	
01/11/2013	1.3731	3.2082	1.4883	1.9297	2.5587	2.8118	4.221	
02/11/2013	1.2477	3.1853	1.2134	1.9153	2.5013	2.8109	2.613	
03/11/2013	1.2139 1.2717	3.1876 3.1837	1.386 1.4311	1.8999	2.4551 2.4152	2.6971	1.407	
04/11/2013 05/11/2013	1.4001	3.1837	1.4843	1.8843 1.8786	2.4152	2.6763 2.7605	0 3.216	
06/11/2013	1.359	3.1881	1.4213	1.8717	2.4764	2.7615	0.402	
07/11/2013	1.076	3.1759	1.2448	1.8662	2.5098	2.738	2.613	
08/11/2013	1.2753	3.1779	1.4285	1.8507	2.4706	2.7145	0	
09/11/2013	1.407	3.1842	1.4728	1.8417	2.4845	2.7367	0.201	
10/11/2013	1.4912	3.1901	1.4463	1.8391	2.5216	2.7116	1.005	
11/11/2013	1.5516	3.1986	1.5426	1.8399	2.586	2.8143	1.608	
12/11/2013	1.4909	3.1976	1.4114	1.8429	2.5896	2.7952	0.603	
13/11/2013	1.4991	3.2002	1.5255	1.8369	2.6159	2.8271	0	
14/11/2013	1.4943	3.2005	1.3952	1.8356	2.5167	2.7441	3.618	
15/11/2013	1.4352	3.1976	1.4485	1.8351	2.6019	2.8126	0	
16/11/2013	1.4879	3.2079	1.519	1.8369	2.57	2.8049	0	
17/11/2013	1.5268	3.2107	1.5607	1.8339	2.5482	2.7971	0.201	
18/11/2013	1.5456	3.215	1.574	1.8327	2.4918	2.7778	0.603	
19/11/2013	1.5384	3.2091	1.3723	1.8313	2.5137	2.7471	2.814	
20/11/2013	1.4755	3.1985	1.4779	1.8288	2.5038	2.8177	4.221	
21/11/2013 22/11/2013	1.3374 1.4145	3.1822 3.1952	1.3527 1.4713	1.822 1.8191	2.4532 2.5245	2.6946 2.7256	1.005 0.201	
23/11/2013	1.4918	3.1952	1.5317	1.8083	2.5245	2.7489	0.201	
24/11/2013	1.5461	3.2067	1.5713	1.806	2.5703	2.7751	0	
25/11/2013	1.5833	3.2161	1.6153	1.8071	2.6102	2.8077	0	
26/11/2013	1.6	3.219	1.6305	1.806	2.6102	2.8218	0	
27/11/2013	1.6305	3.2226	1.4648	1.7967	2.634	2.906	0	
28/11/2013	1.6412	3.2301	1.4816	1.8023	2.6512	2.9252	0	
29/11/2013	1.6344	3.2266	1.4804	1.7998	2.6295	2.9334	0.201	
30/11/2013	1.642	3.2318	1.4776	1.8063	2.6261	2.8832	0	
01/12/2013	1.6525	3.2396	1.4918	1.8152	2.6725	2.9261	0	
02/12/2013	1.6658	3.2476	1.5039	1.822	2.696	2.9515	0	
03/12/2013	1.6601	3.2491	1.4983	1.8265	2.6634	2.9401	0	
04/12/2013	1.6591	3.2526	1.4892	1.8298	2.6419	2.8923	0.201	
05/12/2013	1.6688	3.253	1.4955	1.8356	2.6688	2.9715	0.402	
06/12/2013	1.6643 1.6368	3.2572	1.4869 1.4194	1.842	2.6827	2.9233	1.407	
07/12/2013 08/12/2013	1.6514	3.2578 3.2643	1.4624	1.8524 1.8572	2.6829 2.664	2.9445 2.9311	1.809 0	
09/12/2013	1.6728	3.2729	1.4946	1.8678	2.6948	2.9344	0	
10/12/2013	1.6757	3.2751	1.5014	1.8714	2.7065	2.942	0	
11/12/2013	1.6815	3.2802	1.5017	1.8768	2.7143	2.9571	0	
12/12/2013	1.6719	3.2799	1.4867	1.8781	2.6746	2.9325	0	
13/12/2013	1.6721	3.2847	1.4832	1.8873	2.6717	2.9425	1.206	
14/12/2013	1.6735	3.2864	1.4656	1.8918	2.7035	2.959	0.201	
15/12/2013	1.6705	3.2956	1.4704	1.8984	2.6855	2.9309	0	
16/12/2013	1.6407	3.2891	1.4554	1.9002	2.6446	2.8948	10.854	
17/12/2013	1.5073	3.2701	1.3974	1.8904	2.6718	2.924	0.201	
18/12/2013	1.5419	3.2635	1.4358	1.8722	2.5777	2.9047	0	
19/12/2013	1.5012	3.2495	1.2337	1.8586	2.5004	2.7889	2.814	
20/12/2013	1.5287	3.2533	1.3965	1.8469	2.5754	2.7916	0.804	
21/12/2013 22/12/2013	1.5503 1.4792	3.2515 3.241	1.1793 1.2779	1.8415 1.8258	2.5411 2.4987	2.8313 2.7831	2.613 3.216	
23/12/2013	1.4792	3.2371	1.3708	1.8258	2.4987	2.7831	3.216	
24/12/2013	1.361	3.2371	1.0767	1.785	2.4969	2.6769	2.412	
25/12/2013	1.4186	3.2173	1.3275	1.7657	2.3895	2.6642	0.603	
26/12/2013	1.5081	3.2244	1.3991	1.7543	2.4818	2.7485	0.003	
27/12/2013	1.5314	3.2142	1.3529	1.736	2.3894	2.7449	2.01	
28/12/2013	1.4669	3.2148	1.319	1.7356	2.5051	2.7646	0.603	
29/12/2013	1.5334	3.2218	1.4185	1.7243	2.5972	2.8196	0.402	
30/12/2013	1.5698	3.2244	1.4535	1.7202	2.5552	2.8593	0	
31/12/2013	1.5345	3.2241	1.4409	1.7132	2.5696	2.8823	0.201	
01/01/2014	1.508	3.2223	1.3349	1.7098	2.5441	2.8861	0.603	
02/01/2014	1.3725	3.205	1.1194	1.7058	2.4841	2.7685	4.221	
03/01/2014	1.3787	3.2066	1.3252	1.6891	2.4401	2.7205	0.201	
04/01/2014	1.4596	3.206	1.3333	1.6834	2.5176	2.8108	0.201	
05/01/2014	1.4658	3.2091	1.4008	1.6713	2.5234	2.7813	0.201	
06/01/2014	1.4828	3.1995	1.1439	1.6691	2.4642	2.7793	2.613	
07/01/2014 08/01/2014	1.4032 1.4184	3.195 3.1901	1.2129 1.267	1.6646 1.6489	2.4859 2.499	2.726 2.7096	2.613 2.211	
i 00/01/20141	1.4104	J. 190 l	1.20/	1.0409	2.499	2.7090	۷.۷۱۱	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
09/01/2014	1.3217	3.1482	1.0031	1.6215	2.3903	2.6631	9.447	
10/01/2014	1.3225	3.1601	1.2809	1.5942	2.3824	2.608	0	
11/01/2014	1.4108	3.1689	1.3499	1.579	2.3761	2.6164	1.608	
12/01/2014 13/01/2014	1.4453 1.3993	3.1648 3.1627	1.3548 1.2074	1.5656 1.56	2.4619 2.4072	2.7849 2.7535	0.201 1.809	
14/01/2014	1.3945	3.1649	1.2864	1.5551	2.4174	2.7201	1.809	
15/01/2014	1.3834	3.1549	1.1909	1.551	2.3856	2.7165	3.015	
16/01/2014	1.3184	3.1583	1.2258	1.5443	2.349	2.6908	0.804	
17/01/2014	1.3493	3.164	1.3126	1.5378	2.3392	2.6628	0	
18/01/2014	1.4459	3.1712	1.3822	1.5414	2.4321	2.7769	1.809	
19/01/2014	1.4381	3.1492	1.08	1.5416	2.4335	2.7486	7.437	
20/01/2014	1.3648	3.1489	1.2815	1.5276	2.4219	2.6478	0	
21/01/2014	1.4432	3.1569	1.3668	1.5218	2.4334	2.7355	0	
22/01/2014 23/01/2014	1.456 1.4618	3.1448 3.1619	1.1568 1.3698	1.5192 1.5178	2.4067 2.4618	2.7404 2.7485	3.015 0.201	
24/01/2014	1.4926	3.1636	1.4123	1.5176	2.4766	2.7973	0.201	
25/01/2014	1.4204	3.1362	1.1283	1.5142	2.4593	2.791	9.045	
26/01/2014	1.3563	3.1335	1.2486	1.4955	2.3589	2.6901	2.814	
27/01/2014	1.2817	3.1164	1.2096	1.4741	2.1878	2.5251	0.402	
28/01/2014	1.3406	3.1312	1.2937	1.4671	2.2092	2.553	3.618	
29/01/2014	1.2508	3.0956	1.0149	1.472	2.305	2.461	3.417	
30/01/2014	1.263	3.1137	1.2591	1.4491	2.2487	2.3831	0	
31/01/2014	1.3516	3.1232	1.3343	1.4359	2.2773	2.5203	3.819	
01/02/2014	1.1061	3.0864	1.1537	1.4154	2.1856	2.4194	0.402	
02/02/2014	1.201	3.102	1.1975	1.4218	2.1726	2.3033	2.01	
03/02/2014	1.2824	3.1176	1.3312	1.4125	2.2647	2.4858	0	
04/02/2014 05/02/2014	1.3435 1.3672	3.1233 3.1116	1.3646 1.3382	1.4111 1.409	2.2749 2.2578	2.5319 2.5919	0 2.211	
06/02/2014	1.0905	3.1110	1.1794	1.4472	2.2376	2.5919	1.407	
07/02/2014	1.0019	3.0818	1.0385	1.4232	2.2158	2.3719	5.628	
08/02/2014	1.0704	3.0799	1.1567	1.3937	2.0731	2.3055	1.005	
09/02/2014	1.0127	3.0567	1.0564	1.387	2.1242	2.3113	3.216	
10/02/2014		3.0816	1.2637	1.373	2.1743	2.3372	3.216	
11/02/2014	1.1246	3.0749	1.2351	1.3642	2.2547	2.4901	6.231	
12/02/2014	1.106	3.0589	1.196	1.3456	2.1924	2.3935	1.206	
13/02/2014	1.0893	3.0549	1.1995	1.3259	2.084	2.2659	0	
14/02/2014	1.2351	3.0827	1.3008	1.3328	2.1869	2.4419	0.804	
15/02/2014	1.09	3.044	1.0745	1.3213	2.1262	2.3894	6.03	
16/02/2014	1.1428	3.0532	1.2118	1.3331	2.2726	2.4114	0 0.201	
17/02/2014 18/02/2014	1.2298 1.3439	3.0672 3.0697	1.3195 1.191	1.3131 1.3313	2.2208 2.3147	2.4393 2.5675	1.407	
19/02/2014	1.3279	3.0097	1.3542	1.3486	2.3648	2.6111	0	
20/02/2014	1.3612	3.0906	1.3875	1.3579	2.3365	2.636	0.804	
21/02/2014	1.3499	3.1086	1.3981	1.3814	2.393	2.6605	0	
22/02/2014	1.4114	3.1218	1.4267	1.4072	2.4366	2.6756	0.402	
23/02/2014	1.4626	3.1327	1.4392	1.4258	2.4582	2.727	0	
24/02/2014	1.4962	3.1404	1.4586	1.4478	2.4736	2.7319	0.402	
25/02/2014	1.499	3.1457	1.458	1.4609	2.4475	2.7116	0.402	
26/02/2014	1.5097	3.1584	1.6406	1.4896	2.5443	2.7413	1.005	
27/02/2014	1.4899	3.2752	1.6726	1.4801	2.4832	2.7556	3.417	
28/02/2014 01/03/2014	1.1353 1.3169	3.2711 3.2665	1.5794 1.6378	1.4897 1.5123	2.442	2.7199	0	
02/03/2014	1.4071	3.2664	1.6378	1.5123	2.4985 2.4711	2.7644 2.7731	1.608	
03/03/2014	1.1204	3.263	1.3964	1.5232	2.3969	2.6832	4.623	
04/03/2014	1.2189	3.2606	1.5948	1.5286	2.5131	2.7431	0.201	
05/03/2014	1.3834	3.2611	1.6474	1.5399	2.587	2.7754	0	
06/03/2014	1.4693	3.2673	1.6694	1.5451	2.5895	2.8038	2.01	
07/03/2014	1.3822	3.2703	1.659	1.548	2.5309	2.7505	1.608	
08/03/2014	1.3306	3.2673	1.6477	1.5541	2.579	2.8216	0	
09/03/2014	1.384	3.2671	1.6696	1.5615	2.5315	2.7623	0	
10/03/2014	1.4663	3.2675	1.6887	1.5732	2.5822	2.766	0	
11/03/2014	1.5252	3.2638	1.7047	1.5773	2.6267	2.8157	0	
12/03/2014	1.5396	3.2647	1.7097	1.5837	2.6059	2.8171	0.201	
13/03/2014	1.5441 1.5573	3.2621	1.7096 1.7174	1.5903	2.5823	2.7932	0	
14/03/2014 15/03/2014	1.5653	3.2653 3.2692	1.7174	1.6005 1.6172	2.5901 2.5891	2.8117 2.8032	0	
16/03/2014	1.573	3.2683	1.7307	1.6253	2.5854	2.805	0	
17/03/2014	1.5742	3.2686	1.7354	1.6356	2.5852	2.8097	0	
18/03/2014		3.2669	1.7327	1.6412	2.5655	2.8069	0.804	
						2.816	0	
19/03/2014	1.5815	3.2658	1.7401	1.6522	2.6136	2.010	U 1	
	1.5815 1.5828 1.5623	3.2658 3.2681	1.7401 1.7373 1.7271	1.6522	2.5636 2.562	2.8271	0.201	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
22/03/2014	1.5609	3.2613	1.7205	1.6708	2.5278	2.7697	1.005	
23/03/2014	1.5773	3.2586	1.7325	1.6842	2.593	2.7824	1.206	
24/03/2014	1.5972	3.2573	1.7454	1.6934	2.6604	2.8558	0	
25/03/2014 26/03/2014	1.5876 1.1876	3.261 3.2619	1.7422 1.6297	1.701 1.7142	2.5936 2.6824	2.7918 2.8571	3.015 1.206	
27/03/2014	1.3478	3.2621	1.6825	1.7142	2.5976	2.8029	0.402	
28/03/2014	1.3713	3.2592	1.5814	1.7192	2.616	2.811	2.01	
29/03/2014	1.3767	3.2631	1.6142	1.7288	2.6008	2.8154	0.804	
30/03/2014	1.3968	3.2665	1.6752	1.737	2.583	2.7971	0	
31/03/2014	1.4825	3.267	1.6925	1.7425	2.5963	2.8021	0	
01/04/2014	1.5011	3.2645	1.3643	1.7461	2.593	2.8035	5.628	
02/04/2014	1.302	3.2661	1.6415	1.7427	2.559	2.796	0.603	
03/04/2014	1.3408	3.265	1.6481	1.7464	2.5433	2.7712	0	
04/04/2014 05/04/2014	1.3946 1.3135	3.2624 3.2623	1.5585 1.6507	1.7489 1.7519	2.5773 2.6012	2.7782 2.8067	2.211 1.005	
06/04/2014	1.3626	3.2666	1.6662	1.7565	2.5845	2.8007	1.206	
07/04/2014	1.3547	3.2636	1.6646	1.7548	2.6003	2.8228	8.442	
08/04/2014	1.2053	3.2561	1.5262	1.7409	2.5718	2.7605	0.402	
09/04/2014	1.3303	3.2579	1.6141	1.7372	2.6289	2.8197	0	
10/04/2014	1.4237	3.2601	1.644	1.7268	2.5992	2.8021	0	
11/04/2014	1.4867	3.257	1.659	1.7232	2.5988	2.7887	0	
12/04/2014	1.5291	3.2598	1.6716	1.7228	2.5841	2.7984	0	
13/04/2014	1.5485	3.2569	1.6796	1.7301	2.6154	2.7935	0	
14/04/2014	1.5671	3.258	1.6918	1.7389	2.6204	2.7928	0	
15/04/2014	1.5632	3.2355	1.681	1.7476	2.6382	2.8311	0.201	
16/04/2014 17/04/2014	1.4614 1.458	3.2362 3.2357	1.558 1.556	1.7536 1.7606	2.6093 2.573	2.8166 2.8024	0	
18/04/2014	1.4654	3.2377	1.5561	1.7651	2.5937	2.796	0	
19/04/2014	1.4698	3.2394	1.5607	1.771	2.5987	2.8116	0	
20/04/2014	1.469	3.2393	1.5496	1.7748	2.5821	2.8263	0.201	
21/04/2014	1.4597	3.2441	1.5521	1.7822	2.5552	2.7797	0.201	
22/04/2014	1.4727	3.25	1.5652	1.7914	2.5766	2.7971	1.407	
23/04/2014	1.4763	3.2564	1.5717	1.7998	2.6244	2.8141	0	
24/04/2014	1.4894	3.2573	1.5786	1.8046	2.6435	2.833	0.201	
25/04/2014	1.4926	3.2601	1.5783	1.8133	2.6186	2.8391	3.819	
26/04/2014	1.1827	3.2151	1.3235	1.7984	2.5011	2.7865	7.638	
27/04/2014 28/04/2014	1.1699 1.3204	3.2254 3.2357	1.4769 1.5139	1.8065 1.812	2.5155 2.5783	2.7537 2.791	0	
29/04/2014	1.401	3.2431	1.5306	1.8186	2.5891	2.8063	0	
30/04/2014	1.4361	3.2501	1.5436	1.8235	2.5859	2.8104	0	
01/05/2014	1.4531	3.251	1.5474	1.8246	2.5736	2.7991	0.804	
02/05/2014	1.4728	3.2588	1.5624	1.8299	2.6485	2.82	0	
03/05/2014	1.4884	3.2607	1.5782	1.8339	2.6664	2.8621	0	
04/05/2014		3.2618	1.5878	1.841	2.6185	2.842	0	
05/05/2014	1.4737	3.262	1.5815	1.8411	2.5741	2.825	0	
06/05/2014	1.4634	3.2602	1.5753	1.845	2.5333	2.7737	2.211	
07/05/2014	1.4621	3.2632	1.5734	1.85	2.5676	2.787	0.201	
08/05/2014 09/05/2014	1.4852 1.3878	3.2699 3.2513	1.5851 1.5062	1.8602 1.8584	2.6143 2.5882	2.8458 2.8038	2.412 6.432	
10/05/2014	1.3203	3.2444	1.5247	1.8601	2.5778	2.8535	3.618	
11/05/2014	1.1455	3.2391	1.4807	1.8602	2.5355	2.7663	5.628	
12/05/2014	0.962	3.228	1.3622	1.8577	2.5835	2.8031	4.623	
13/05/2014	0.907	3.1999	1.1194	1.8403	2.5711	2.7858	9.648	
14/05/2014	0.9632	3.1778	1.2749	1.7947	2.5305	2.7375	0	
15/05/2014	1.2033	3.1884	1.4179	1.7724	2.5436	2.7605	0	
16/05/2014	1.3107	3.188	1.4591	1.7588	2.5379	2.7794	0	
17/05/2014	1.3606	3.1914	1.4758	1.7497	2.5106	2.7709	0	
18/05/2014	1.381 1.3999	3.1915 3.1973	1.4824	1.7451	2.4777 2.4735	2.7658	0	
19/05/2014 20/05/2014	1.4261	3.1973	1.4828 1.4917	1.7466 1.757	2.4735	2.7536 2.7588	0.603	
21/05/2014	1.4508	3.2041	1.5057	1.765	2.5688	2.7927	0.603	
22/05/2014	1.4456	3.2087	1.5014	1.769	2.5219	2.774	2.01	
23/05/2014	1.4221	3.2056	1.4721	1.7791	2.5562	2.7943	2.412	
24/05/2014	1.3582	3.2338	1.4708	1.7724	2.5378	2.7881	2.211	
25/05/2014	1.3047	3.2233	1.3835	1.7718	2.5201	2.776	2.613	
26/05/2014	1.3397	3.2169	1.4076	1.7703	2.5191	2.787	3.216	
27/05/2014	1.4674	3.2212	1.5239	1.7691	2.4942	2.7779	0	
28/05/2014	1.5662	3.2266	1.543	1.7698	2.4904	2.777	3.015	
29/05/2014		3.2209	1.4855	1.7677	2.4875	2.7623	1.809	
30/05/2014 31/05/2014	1.3448 1.5138	3.2214 3.2269	1.4958 1.5426	1.7682 1.7679	2.5128 2.5124	2.7713 2.7855	0	
01/06/2014	1.6037	3.2269	1.5426	1.7679	2.5124	2.7855	0	
0 1/00/2014	1.0001	0.2000	1.0018	1.7070	2.0020	2.700	U	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
02/06/2014	1.6334	3.2359	1.5703	1.7748	2.4845	2.7745	1.608	
03/06/2014	1.5736	3.2344	1.5601	1.7765	2.4677	2.7652	1.206	
04/06/2014	1.6315	3.2369	1.5695	1.7789	2.4403	2.757	0.201	
05/06/2014 06/06/2014	1.6213 1.671	3.2416 3.2492	1.573 1.5928	1.784 1.7959	2.4739 2.5033	2.743 2.7678	0.804 0	
07/06/2014	1.6837	3.2568	1.6017	1.8082	2.4929	2.7633	6.633	
08/06/2014	1.4697	3.238	1.4467	1.8104	2.5073	2.7674	1.407	
09/06/2014	1.459	3.2378	1.488	1.8155	2.5007	2.7796	7.236	
10/06/2014	1.1967	3.2147	1.408	1.7942	2.4322	2.6873	1.005	
11/06/2014	1.369	3.2181	1.4585	1.7822	2.4746	2.7137	0.804	
12/06/2014	1.5263	3.221	1.5169	1.7749	2.5248	2.7767	0	
13/06/2014	1.6084	3.2256	1.5472	1.7705	2.5173	2.7794	0	
14/06/2014	1.6424	3.2319	1.5635	1.7716	2.5259	2.7767	0	
15/06/2014 16/06/2014	1.672 1.6295	3.2383 3.2373	1.5803 1.5838	1.7801 1.7818	2.5553 2.5603	2.7941 2.8012	2.01	
17/06/2014	1.6665	3.2419	1.5959	1.7907	2.5695	2.8074	0	
18/06/2014	1.6829	3.248	1.6049	1.8024	2.5685	2.8127	0	
19/06/2014	1.6836	3.2513	1.6077	1.8114	2.5578	2.8054	0	
20/06/2014	1.6907	3.2548	1.6126	1.8191	2.5691	2.8139	0	
21/06/2014	1.696	3.2581	1.6099	1.8275	2.5662	2.811	0	
22/06/2014	1.7051	3.2657	1.6194	1.8376	2.5865	2.8224	0	
23/06/2014	1.717	3.2711	1.6286	1.8485	2.6056	2.8368	0	
24/06/2014	1.7182	3.2755	1.6355	1.8582	2.6093	2.847	0	
25/06/2014	1.7206	3.2798	1.6395	1.864	2.607	2.8448	0	
26/06/2014	1.7267	3.2848	1.6411	1.8716	2.5977	2.8412	0	
27/06/2014	1.7262	3.286	1.6436	1.8781	2.594	2.8402	0.402	
28/06/2014 29/06/2014	1.6563 1.7071	3.2854 3.2893	1.6126 1.6076	1.8831 1.8881	2.5974 2.6162	2.8354 2.8392	3.015 0.402	
30/06/2014	1.7071	3.2956	1.6344	1.895	2.6421	2.86	0.402	
01/07/2014	1.7394	3.3005	1.6503	1.9057	2.6548	2.8595	0	
02/07/2014	1.7488	3.3026	1.6593	1.913	2.6713	2.8854	0	
03/07/2014	1.7491	3.3072	1.6597	1.9211	2.6517	2.8787	0.201	
04/07/2014		3.3061	1.6491	1.926	2.6151	2.877	0.201	
05/07/2014	1.6151	3.3004	1.6113	1.9281	2.571	2.8092	7.035	
06/07/2014	1.6078	3.2938	1.5773	1.9337	2.6191	2.8493	2.01	
07/07/2014	1.4749	3.2826	1.4388	1.9347	2.6423	2.8513	9.849	
08/07/2014	1.5707	3.2857	1.5599	1.9405	2.6592	2.8747	0.201	
09/07/2014	1.6151	3.292	1.5926	1.9472	2.6808	2.8772	0.201	
10/07/2014	1.6836 1.7064	3.2955	1.6078	1.9516	2.6701	2.8802	0	
11/07/2014 12/07/2014	1.7064	3.3014 3.3047	1.617 1.6212	1.9577 1.9626	2.6695 2.6579	2.8807 2.8859	0.201	
13/07/2014	1.7243	3.3032	1.6213	1.9673	2.6164	2.8434	0.201	
14/07/2014	1.7353	3.3086	1.6302	1.9717	2.6683	2.8768	0	
15/07/2014	1.682	3.3168	1.639	1.9779	2.691	2.8758	0.402	
16/07/2014	1.7489	3.3139	1.6402	1.9814	2.7071	2.9066	0	
17/07/2014	1.754	3.3182	1.6247	1.9878	2.7129	2.9044	0	
18/07/2014	1.7551	3.3207	1.6402	1.9922	2.6848	2.9113	0	
19/07/2014	1.7253	3.3218	1.6468	1.9973	2.671	2.8888	13.668	
20/07/2014	0.889	3.2753	1.4517	1.9775	2.611	2.8431	0.402	
21/07/2014	1.4514	3.28	1.5473	1.9727	2.6583	2.863	0	
22/07/2014	1.6143	3.2858	1.5716	1.9729	2.6875	2.8869	0	
23/07/2014 24/07/2014	1.6759 1.7013	3.2896 3.2935	1.5843 1.5952	1.9753 1.9784	2.6848 2.6666	2.8983 2.8799	0	
25/07/2014	1.7119	3.2935	1.6085	1.9846	2.6749	2.8857	0	
26/07/2014	1.7257	3.3017	1.6154	1.9894	2.6744	2.8817	0	
27/07/2014	1.7416	3.3054	1.6246	1.9945	2.6798	2.8815	0.201	
28/07/2014	1.7449	3.3069	1.6338	1.9981	2.6739	2.8728	0	
29/07/2014	1.7551	3.3126	1.6438	2.0034	2.6987	2.8954	0	
30/07/2014	1.7562	3.3157	1.6487	2.0072	2.6916	2.8943	0	
31/07/2014	1.7597	3.3173	1.6532	2.0109	2.6862	2.8947	0.201	
01/08/2014	1.7605	3.3145	1.7369	2.0071	2.6763	2.8995	1.608	
02/08/2014	1.6938	3.3079	1.61	2.0119	2.6551	2.8897	14.472	
03/08/2014	1.3214	3.2904	1.5467	2.0073	2.645	2.86	1.407	
04/08/2014	1.6703	3.2982	1.648	2.013	2.6993	2.8861	0	
05/08/2014	1.7192	3.3016 3.2963	1.6798	2.0157	2.7188	2.9158 2.8843	0 3.417	
06/08/2014 07/08/2014	1.6788 1.6227	3.2963	1.6916 1.69	2.0171 2.0232	2.6666 2.6954	2.8843	0	
08/08/2014	1.7013	3.3027	1.7034	2.0252	2.692	2.9165	0	
09/08/2014		3.3068	1.7018	2.0276	2.65	2.8625	0	
				2.0316	2.6636	2.9165	7.638	
10/08/2014	1.7484	3.3072	1.7093	2.0310	2.0000	2.0100	7.000	
	1.7484 1.3961	3.3072	1.6025	2.0266	2.6527	2.8689	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
13/08/2014	1.6672	3.2905	1.6664	2.0273	2.6571	2.8692	0.402	
14/08/2014	1.7203	3.2952	1.6867	2.0305	2.7001	2.9004	1.206	
15/08/2014 16/08/2014	1.7388 1.758	3.3004 3.3031	1.7029 1.7171	2.0354 2.038	2.7278 2.7495	2.9034 2.9398	0	
17/08/2014	1.7551	3.3007	1.7153	2.036	2.7495	2.8995	2.613	
18/08/2014	1.7365	3.3007	1.7145	2.0394	2.6714	2.8652	3.618	
19/08/2014	1.6549	3.2976	1.6622	2.0436	2.7039	2.8954	10.452	
20/08/2014	1.2806	3.2752	1.5353	2.032	2.6851	2.8943	0.402	
21/08/2014	1.5502	3.2725	1.6039	2.0216	2.6656	2.895	0	
22/08/2014	1.515	3.2804	1.6341	2.0038	2.6351	2.8107	3.216	
23/08/2014	1.4581	3.2492	1.6426	2.0011	2.6716	2.8344	5.025	
24/08/2014	1.3121	3.241	1.549	2.0004	2.6828	2.8522	0	
25/08/2014 26/08/2014	1.4488 0.9819	3.2403 3.2103	1.6124 1.0745	1.9964 1.9796	2.6417 2.5943	2.8539 2.7723	3.015 4.824	
27/08/2014	1.1423	3.2103	1.4441	1.9592	2.651	2.8395	0	
28/08/2014	1.3853	3.206	1.5099	1.9443	2.589	2.7941	0.603	
29/08/2014	1.4796	3.2065	1.5531	1.937	2.6078	2.8007	0	
30/08/2014	1.5458	3.2118	1.5787	1.9335	2.6377	2.8019	1.608	
31/08/2014	1.5576	3.2144	1.5315	1.9344	2.6689	2.8272	3.216	
01/09/2014	1.5305	3.2172	1.5896	1.9352	2.6662	2.8278	0.804	
02/09/2014	1.5349	3.2224	1.6181	1.9337	2.6897	2.8426	0	
03/09/2014	1.5756	3.2281	1.642	1.9395	2.6832	2.8441	0	
04/09/2014	1.5985	3.2344	1.6544	1.9431	2.6728	2.8432	0	
05/09/2014	1.6049	3.2358	1.6571	1.9461	2.6594	2.8335	0	
06/09/2014 07/09/2014	1.6125 1.6175	3.2408 3.2435	1.6654 1.6723	1.9515 1.9523	2.6525 2.6542	2.829 2.8263	0.201	
08/09/2014	1.6242	3.2492	1.686	1.9586	2.68	2.8392	0	
09/09/2014	1.633	3.2543	1.6954	1.9692	2.6987	2.8596	0	
10/09/2014	1.6365	3.2606	1.7035	1.978	2.6977	2.8591	0	
11/09/2014	1.6434	3.2687	1.7085	1.9883	2.7041	2.856	0	
12/09/2014	1.648	3.271	1.7131	1.9946	2.7185	2.8622	0	
13/09/2014	1.6531	3.2794	1.7208	2.0047	2.7331	2.8752	0	
14/09/2014		3.2818	1.7304	2.0121	2.7273	2.8854	0	
15/09/2014	1.6497	3.2834	1.7289	2.0141	2.6995	2.8719	0	
16/09/2014	1.6521	3.2887	1.7285	2.0221	2.6915	2.8583	0.402	
17/09/2014	1.6588	3.2907 3.2951	1.7322 1.7326	2.0282	2.7033	2.8665	0	
18/09/2014 19/09/2014	1.6602 1.663	3.2998	1.7326	2.0322	2.6995 2.7189	2.8631 2.8736	0	
20/09/2014	1.6689	3.3041	1.7421	2.0413	2.7415	2.8772	0.603	
21/09/2014	1.6694	3.3042	1.7525	2.0434	2.7835	2.9012	0.201	
22/09/2014	1.6707	3.3018	1.7594	2.0427	2.7792	2.9156	0	
23/09/2014	1.6686	3.3033	1.7615	2.0476	2.7459	2.9002	0	
24/09/2014	1.6475	3.3001	1.7474	2.0505	2.7062	2.8578	4.02	
25/09/2014		3.304	1.716	2.0537	2.751	2.8927	0	
26/09/2014	1.6611	3.3124	1.7416	2.0618	2.7591	2.8796	0	
27/09/2014	1.6725	3.3106	1.7515	2.0619	2.7931	2.9195	0	
28/09/2014	1.6754	3.3155	1.7595	2.0683	2.7661	2.9164	0	
29/09/2014 30/09/2014	1.6784 1.6796	3.32 3.3241	1.7639 1.7681	2.0713 2.0758	2.7676 2.7764	2.9087 2.9075	0	
01/10/2014	1.6837	3.3264	1.7717	2.0738	2.7764	2.9075	0	
02/10/2014	1.6921	3.3245	1.778	2.0798	2.8254	2.9457	0.201	
03/10/2014	1.6836	3.3257	1.7829	2.0847	2.7664	2.9149	0	
04/10/2014	1.6755	3.3256	1.7827	2.0897	2.7135	2.8643	5.628	
05/10/2014	1.6194	3.317	1.704	2.0884	2.7903	2.9182	0	
06/10/2014	1.6359		1.7277	2.0915	2.6996	2.8914	8.643	
07/10/2014	1.1652		1.5612	2.0793	2.6505	2.831	2.01	
08/10/2014	1.3717	0.0770	1.5568	2.08	2.689	2.8762	2.01	
09/10/2014	1.4407	3.2772	1.3898	2.0767	2.66	2.8251	7.638	
10/10/2014 11/10/2014	1.2619 1.4122	3.265	1.4449 1.5078	2.074 2.0613	2.7183 2.714	2.8551 2.8675	1.608 0	
12/10/2014	1.4122	3.2637	1.5883	2.0513	2.714	2.8738	0	
13/10/2014	1.5686	3.268	1.6192	2.0468	2.6878	2.862	0	
14/10/2014	1.4771	3.2547	1.2899	2.0411	2.6877	2.8449	6.03	
15/10/2014	1.356		1.5372	2.0337	2.6703	2.8606	0	
16/10/2014	1.3466	3.2394	1.3562	2.0213	2.617	2.8051	2.814	
17/10/2014	1.3215	3.2395	1.4015	2.0134	2.638	2.8049	2.01	
18/10/2014	1.3709	3.2386	1.4559	2.0042	2.6226	2.8047	1.206	
19/10/2014	1.3957	3.24	1.5554	1.994	2.6487	2.8272	0	
20/10/2014		3.2454	1.6034	1.9834	2.6859	2.8528	1.206	
21/10/2014	1.535	3.2359	1.6026	1.9705	2.5876	2.7887	2.412	
22/10/2014 23/10/2014	1.396 1.4053	3.2336	1.358 1.5387	1.9667 1.9593	2.7286 2.664	2.8701 2.8538	2.412 0	
23/10/2014	1.4000	<u> </u>	1.0307	1.8080	2.004	2.0000	U	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
24/10/2014	1.4911	3.2374	1.5826	1.9538	2.6387	2.8255	0.603	
25/10/2014	1.5443	3.238	1.5921	1.9455	2.6551	2.8244	0.201	
26/10/2014	1.5793	3.2458	1.6154	1.9453	2.6743	2.8426	0	
27/10/2014	1.5952	3.248	1.6363	1.9455	2.6738	2.843	0.201	
28/10/2014	1.6336	3.2525	1.6428	1.9432	2.6144	2.9142	0.603	
29/10/2014	1.316	3.2615	1.4841	1.9774	2.643	2.9082	2.211	
30/10/2014	1.3759	3.2657	1.5061	1.9788	2.6358	2.9177	0.603	
31/10/2014 01/11/2014	1.4631 1.4839	3.273 3.2762	1.5145 1.5199	1.983 1.9837	2.6375 2.6272	2.9298 2.9122	0 0.201	
02/11/2014	1.4624	3.2736	1.5139	1.9803	2.5813	2.8877	0.804	
03/11/2014	1.4721	3.2709	1.51	1.9793	2.5481	2.8875	1.407	
04/11/2014	1.4249	3.2669	1.4833	1.9772	2.5675	2.8468	0.201	
05/11/2014	1.4872	3.2784	1.5205	1.9867	2.6625	2.9095	0	
	1.5144	3.2766	1.5334	1.9869	2.679	2.9681	0	
07/11/2014	1.5027	3.282	1.5118	1.9896	2.5668	2.8798	6.633	
08/11/2014	1.3566	3.2638	1.3173	1.9848	2.631	2.9249	3.216	
09/11/2014	1.2713	3.2604	1.3689	1.9767	2.5856	2.8644	0	
10/11/2014	1.3588	3.2599	1.4513	1.9684	2.5791	2.8794	0.402	
11/11/2014	1.406	3.2617	1.2987	1.9642	2.5526	2.8627	1.608	
12/11/2014	1.3678	3.2602	1.3678	1.9592	2.5411	2.8407	1.407	
13/11/2014	1.3336	3.2651	1.4018	1.9614	2.6152	2.9097	0	
14/11/2014	1.4027	3.2636	1.4365	1.9578	2.569	2.8697	4.824	
15/11/2014	1.3224	3.2508	1.3364	1.944	2.5666	2.859	0.201	
16/11/2014	1.3683	3.2539	1.4236	1.9374	2.5543	2.8404	0	
	1.4279	3.2555	1.467	1.931	2.5572	2.849	3.015	
18/11/2014	1.3922	3.2523	1.3911	1.9234	2.5992	2.8613	0	
19/11/2014	1.4371	3.252	1.46	1.9182	2.6095	2.862	0	
20/11/2014	1.4778	3.2617	1.4974	1.917	2.6436	2.894	0	
21/11/2014	1.4907	3.258	1.5065	1.9115	2.6188	2.9157	0.402	
22/11/2014	1.3408	3.2311	1.0567	1.9005	2.5325	2.8348	8.04	
23/11/2014 24/11/2014	1.1858 1.2759	3.2381 3.2334	1.3852 1.4397	1.891 1.876	2.5079 2.5101	2.7655 2.78	0.603	
25/11/2014	1.3791	3.2341	1.4764	1.8682	2.5266	2.76	0	
	1.4202	3.2341	1.376	1.8632	2.4885	2.8328	4.02	
	1.3913	3.2205	1.3892	1.8031	2.4614	2.7171	0.804	
	1.4092	3.2236	1.42	1.7977	2.4713	2.6916	0	
	1.4888	3.2277	1.4838	1.7932	2.5167	2.7147	0.201	
	1.5552	3.2358	1.5127	1.7938	2.5525	2.7436	0	
	1.5931	3.2349	1.5368	1.7884	2.5628	2.7588	0	
	1.6102	3.2418	1.5499	1.7878	2.571	2.7314	0.201	
03/12/2014	1.6274	3.2411	1.5636	1.784	2.6306	2.7996	0	
04/12/2014	1.6204	3.2401	1.5632	1.7837	2.5774	2.7888	0	
05/12/2014	1.6235	3.2501	1.5694	1.7893	2.5853	2.7679	0.201	
06/12/2014	1.6371	3.2515	1.567	1.7911	2.6473	2.813	0.201	
07/12/2014	1.6381	3.2554	1.5677	1.7989	2.5771	2.7893	0.402	
08/12/2014	1.639	3.2591	1.5784	1.8018	2.5963	2.781	1.005	
	1.6444	3.2638	1.5771	1.8107	2.6709	2.861	0	
	1.6202	3.2597	1.3962	1.8113	2.5676	2.7592	3.618	
	1.6001	3.255	1.4652	1.8114	2.547	2.7608	1.407	
	1.5696	3.2397	1.1965	1.8036	2.4658	2.7076	9.447	
	1.3769	3.2348	1.3857	1.7801	2.5024	2.6563	0.402	
14/12/2014 15/12/2014	1.4483 1.482	3.2342 3.2334	1.4657 1.3376	1.767 1.7586	2.4487 2.4628	2.6749 2.6754	0.201 4.02	
	1.4639	3.2334	1.4247	1.7566	2.4628	2.7005	0.603	
17/12/2014	1.4639	3.205	0.9895	1.7311	2.4135	2.7005	5.829	
18/12/2014	1.2892	3.2105	1.3494	1.7076	2.4135	2.6333	0.201	
19/12/2014	1.3627	3.2081	1.2134	1.6839	2.416	2.6103	2.211	
20/12/2014	1.41	3.2018	1.4317	1.6693	2.4851	2.6747	0.201	
21/12/2014	1.4908	3.2082	1.4904	1.6622	2.5147	2.7475	0	
	1.5244	3.2106	1.5106	1.6538	2.4593	2.7124	0	
	1.5526	3.2156	1.5149	1.653	2.4921	2.7272	0	
24/12/2014	1.569	3.2168	1.5255	1.648	2.4996	2.6913	0.804	
	1.5899	3.2206	1.5401	1.6528	2.5789	2.7449	1.407	
26/12/2014	1.5912	3.2171	1.4548	1.6547	2.5979	2.8084	1.206	
27/12/2014	1.1744	3.1794	1.0807	1.6308	2.4502	2.694	4.02	
	1.1992	3.1849	1.3525	1.6123	2.476	2.6024	0	
	1.3954	3.188	1.4758	1.6045	2.4877	2.6401	0	
	1.4973	3.1904	1.5129	1.597	2.4776	2.6816	0	
31/12/2014	1.537	3.1936	1.5288	1.595	2.4546	2.6861	0	
01/01/2015	1.56	3.2062	1.5189	1.6049	2.4692	2.7233	0.201	
02/01/2015 03/01/2015	1.5632 1.5482	3.2138 3.2072	1.4723	1.6125	2.4727	2.6535	0.804	
	1 7487	3.70/2	1.5446	1.6144	2.5068	2.7465	4.824	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
04/01/2015	1.3776	3.2006	1.416	1.6136	2.536	2.7194	0	
05/01/2015	1.4294	3.2065	1.5136	1.6089	2.489	2.7176	0	
06/01/2015	1.4908	3.2074	1.526	1.6047	2.4328	2.6708	1.005	
07/01/2015 08/01/2015	1.521 1.4946	3.2104 3.2162	1.5031 1.3643	1.6106 1.6145	2.4953 2.4713	2.726 2.6779	1.005 2.412	
09/01/2015	1.3736	3.2092	1.3843	1.6127	2.4713	2.6957	0.804	
10/01/2015	1.3719	3.207	1.4423	1.6051	2.4377	2.6729	0.603	
11/01/2015	1.4129	3.2097	1.5011	1.6028	2.5073	2.6994	0	
12/01/2015	1.4885	3.2096	1.5267	1.6014	2.4669	2.7266	0.402	
13/01/2015	1.5194	3.2117	1.5233	1.5998	2.4446	2.6882	0.402	
14/01/2015	1.5183	3.2097	1.5238	1.6005	2.4815	2.6974	0	
15/01/2015	1.5184	3.2104	1.2827	1.6032	2.3818	2.6431	2.211	
16/01/2015	1.4499	3.2178	1.4792	1.618	2.5143	2.6783	1.407	
17/01/2015 18/01/2015	1.3986 1.4508	3.2092 3.2138	1.4207 1.4888	1.6184 1.6148	2.5539 2.528	2.7366 2.707	0.201 0.603	
19/01/2015	1.5374	3.218	1.5208	1.6218	2.5657	2.7539	0.003	
20/01/2015	1.5445	3.2188	1.535	1.6194	2.5201	2.7267	0.201	
21/01/2015	1.5607	3.2202	1.5335	1.6226	2.4866	2.6878	0.201	
22/01/2015	1.5913	3.2303	1.5111	1.6371	2.5924	2.7371	0.402	
23/01/2015	1.5991	3.2336	1.553	1.6454	2.6052	2.7895	0.201	
24/01/2015	1.3533	3.234	1.513	1.6603	2.5987	2.8194	1.809	
25/01/2015	1.3127	3.2335	1.6632	1.6675	2.6382	2.886	0	
26/01/2015	1.3295	3.2394	1.6884	1.6707	2.5709	2.8261	0.402	
27/01/2015	1.3468	3.2438	1.6916	1.6793	2.6244	2.8679	0	
28/01/2015	1.3433	3.233	1.6776	1.6712	2.5118	2.8499	1.206	
29/01/2015	1.3202	3.2293	1.6462	1.6681	2.4581	2.8129	0.804	
30/01/2015 31/01/2015	1.2657 1.1721	3.2252 3.2192	1.4264 1.2161	1.6633 1.6659	2.4114 2.4611	2.7043 2.7318	1.809 3.417	
01/02/2015	1.0901	3.2192	1.497	1.6531	2.5018	2.7296	0	
02/02/2015	1.1984	3.2176	1.5929	1.6334	2.5009	2.7542	0	
03/02/2015	1.2871	3.2187	1.6275	1.6224	2.4914	2.743	0	
04/02/2015	1.3472	3.2287	1.665	1.6289	2.5661	2.7901	0	
05/02/2015		3.2335	1.6865	1.6385	2.5854	2.8272	0	
06/02/2015	1.3798	3.2366	1.7004	1.6369	2.6013	2.8338	0	
07/02/2015	1.3832	3.2388	1.7133	1.6434	2.6005	2.8369	0	
08/02/2015	1.3941	3.2456	1.7316	1.6552	2.6142	2.8548	0	
09/02/2015	1.3913	3.2487	1.7411	1.6629	2.5849	2.8463	0	
10/02/2015	1.3936	3.2543	1.7469	1.6727	2.5791	2.8457	0	
11/02/2015	1.3902	3.2518	1.7456	1.6767	2.5495	2.8366	0	
12/02/2015 13/02/2015	1.39 1.388	3.2585 3.2548	1.7474 1.7398	1.6851 1.6896	2.5466 2.4992	2.8326 2.8483	0.201	
14/02/2015	1.3745	3.2647	1.7342	1.6982	2.5078	2.7683	1.206	
15/02/2015		3.2727	1.7598	1.7145	2.6016	2.8393	0	
16/02/2015	1.4064	3.2715	1.7688	1.7183	2.5909	2.8475	1.407	
17/02/2015	1.396	3.2788	1.7731	1.7293	2.6809	2.8618	0	
18/02/2015	1.4167	3.2807	1.7896	1.7354	2.6775	2.9215	0	
19/02/2015	1.3994	3.2801	1.7748	1.7373	2.5831	2.8858	1.407	
20/02/2015	1.3727	3.2765	1.753	1.74	2.5392	2.8406	0	
21/02/2015	1.3723	3.2761	1.7271	1.741	2.515	2.8055	1.206	
22/02/2015	1.3811	3.281	1.6722	1.7518	2.5873	2.8842	1.005	
23/02/2015 24/02/2015	1.272 1.2722	3.2751 3.2854	1.557 1.4829	1.7511 1.7798	2.5002 2.5663	2.8096 2.7389	0.603 2.412	
25/02/2015	1.2722	3.2854	1.4829	1.7798	2.6496	2.7389	0.402	
26/02/2015	1.3072	3.2882	1.683	1.7942	2.6204	2.8377	2.412	
27/02/2015	1.4471	3.2799	1.6212	1.7894	2.6355	2.8221	0	
28/02/2015	1.5199	3.2834	1.6712	1.7926	2.5774	2.834	0	
01/03/2015	1.5336	3.2865	1.6632	1.7865	2.5191	2.7565	1.005	
02/03/2015	1.5005	3.2825	1.61	1.7874	2.5695	2.7656	2.01	
03/03/2015	1.5515	3.2865	1.6849	1.7906	2.621	2.8098	0.201	
04/03/2015	1.5989	3.2964	1.7154	1.7981	2.6671	2.8059	0	
05/03/2015	1.6402	3.2974	1.7442	1.8017	2.7216	2.8799	0	
06/03/2015	1.6433	3.3016	1.7538	1.8038	2.6749	2.8708	0	
07/03/2015	1.6318	3.2995	1.7425	1.799	2.6043	2.8236	0	
08/03/2015 09/03/2015	1.634 1.5606	3.3038 3.2958	1.7398 1.6783	1.8048 1.8041	2.6118 2.6606	2.8015 2.8694	3.618 0	
10/03/2015	1.5891	3.2958	1.6803	1.8091	2.6556	2.8129	0.201	
11/03/2015	1.6215	3.3021	1.6818	1.8091	2.6532	2.8556	0.201	
12/03/2015	1.6255	3.3023	1.6803	1.8121	2.6484	2.8491	0	
13/03/2015		3.3045	1.5838	1.8163	2.6423	2.8151	7.638	
14/03/2015	1.2088	3.2873	1.562	1.808	2.6268	2.8048	0	
	1.4015	3.2852	1.6424	1.7957	2.5639	2.7601	0	
15/03/2015 16/03/2015	1.5053	3.287	1.6629	1.7872	2.5444	2.766	0	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
17/03/2015	1.5611	3.29	1.6737	1.7826	2.5526	2.7482	0.603	
18/03/2015	1.5931	3.291	1.6916	1.782	2.6069	2.7716	0	
19/03/2015	1.612	3.2954	1.706	1.7838	2.6249	2.8021	0	
20/03/2015 21/03/2015	1.6188 1.6165	3.297 3.3018	1.7093 1.7032	1.7856 1.7867	2.6089 2.5954	2.8186 2.7851	0	
22/03/2015	1.6243	3.2943	1.7092	1.7886	2.6304	2.8246	0	
23/03/2015	1.6179	3.2924	1.687	1.791	2.569	2.7886	0.201	
24/03/2015	1.6182	3.2955	1.6821	1.7936	2.572	2.7825	1.005	
25/03/2015	1.6202	3.3014	1.6872	1.8032	2.6031	2.7903	0.402	
26/03/2015	1.6232	3.2939	1.6645	1.8026	2.5505	2.775	3.618	
27/03/2015	1.4575	3.3032	1.6646	1.8195	2.6623	2.8226	0	
28/03/2015	1.5426	3.3016	1.6784	1.8216	2.6233	2.8682	1.407	
29/03/2015 30/03/2015	1.5332 1.3397	3.3026 3.2906	1.6498 1.5555	1.8226 1.818	2.5816 2.5962	2.8283 2.7795	4.623 1.206	
31/03/2015	1.1824	3.2906	1.3454	1.8001	2.5962	2.7795	6.633	
01/04/2015	1.2333	3.2716	1.533	1.7794	2.5945	2.7546	0.804	
02/04/2015	1.3224	3.2556	1.2963	1.7497	2.5358	2.7295	3.216	
03/04/2015	1.2287	3.2469	1.5194	1.722	2.4855	2.7183	1.608	
04/04/2015	1.1956	3.2436	1.5063	1.7047	2.5274	2.7227	0.201	
05/04/2015	1.3262	3.2433	1.5624	1.6892	2.5422	2.738	0	
06/04/2015	1.4472	3.2449	1.605	1.6778	2.5681	2.7469	0	
07/04/2015	1.532	3.2474	1.6286	1.6727	2.5953	2.7769	0	
08/04/2015	1.5603	3.2478	1.628	1.6714	2.5819	2.7816	0.201	
09/04/2015	1.5694 1.5748	3.2495	1.5995	1.6741	2.5599	2.7826	0	
10/04/2015 11/04/2015	1.5748	3.2482 3.2519	1.5654 1.6305	1.6763 1.681	2.543 2.5163	2.7847 2.7263	0.603	
12/04/2015	1.5731	3.2519	1.6651	1.6968	2.6235	2.7263	0.603	
13/04/2015	1.5956	3.2556	1.6879	1.7027	2.6492	2.8179	0.402	
14/04/2015	1.6031	3.2581	1.6802	1.7164	2.6144	2.8191	0	
15/04/2015	1.601	3.2611	1.6741	1.7243	2.59	2.8077	0	
16/04/2015	1.6098	3.2654	1.6728	1.7358	2.6146	2.8268	0	
17/04/2015	1.6175	3.2711	1.6654	1.7483	2.6258	2.809	0	
18/04/2015		3.2757	1.6723	1.7622	2.6924	2.8635	0	
19/04/2015		3.2752	1.6675	1.7678	2.6694	2.8692	0	
20/04/2015	1.629	3.2783	1.6757	1.7767	2.6698	2.8386	0	
21/04/2015	1.6425	3.2857	1.6648	1.7916	2.704	2.8739	0	
22/04/2015 23/04/2015	1.6456 1.6338	3.289 3.2876	1.6591 1.6395	1.8004 1.8051	2.6955 2.6368	2.8859 2.8608	0	
24/04/2015	1.6279	3.2885	1.6405	1.8125	2.6025	2.8338	0	
25/04/2015	1.6267	3.2907	1.6369	1.8213	2.5864	2.8098	2.412	
26/04/2015	1.6277	3.2902	1.6509	1.8271	2.6452	2.8335	0	
27/04/2015	1.6328	3.2919	1.6776	1.8313	2.6598	2.8502	0	
28/04/2015	1.6378	3.2962	1.683	1.8387	2.664	2.8384	0	
29/04/2015	1.6487	3.2964	1.6749	1.8492	2.6536	2.8595	1.608	
30/04/2015	1.632	3.2974	1.6641	1.8562	2.654	2.841	1.005	
01/05/2015	1.6306	3.3044	1.6528	1.8517	2.6941	2.8437	0	
02/05/2015 03/05/2015		3.3034 3.281	1.6646 1.5966	1.8384 1.8412	2.5791 2.5345	2.821 2.8082	0.603 4.623	
04/05/2015		3.2955	1.6781	1.8541	2.569	2.8207	0.402	
05/05/2015	1.3947	3.2538	1.542	1.8421	2.5185	2.7998	4.824	
06/05/2015	1.5689	3.2627	1.6217	1.8449	2.6003	2.849	0.402	
07/05/2015	1.6467	3.2562	1.5003	1.8493	2.6323	2.862	3.618	
08/05/2015	1.5763	3.2123	1.2553	1.8396	2.5384	2.807	2.814	
09/05/2015	1.3338	3.2274	1.525	1.8284	2.5861	2.8453	5.226	
10/05/2015	1.4834	3.2371	1.6021	1.8162	2.5446	2.8157	0	
11/05/2015	1.5911	3.2402	1.6271	1.8106	2.5458	2.812	0	
12/05/2015 13/05/2015	1.6645 1.6978	3.2437 3.2485	1.6474 1.6558	1.8097 1.8108	2.5839 2.5633	2.8314 2.8168	0	
14/05/2015	1.7063	3.2465	1.6579	1.8087	2.5633	2.8175	0	
15/05/2015	1.7355	3.2608	1.6812	1.8228	2.5963	2.8381	0	
16/05/2015	1.7441	3.2617	1.6897	1.8262	2.6283	2.8558	0.201	
17/05/2015	1.7457	3.271	1.6999	1.8335	2.5802	2.8248	0	
18/05/2015	1.4182	3.2536	1.5553	1.8244	2.4932	2.7759	6.03	
19/05/2015	1.4582	3.2513	1.5767	1.8289	2.5491	2.809	3.015	
20/05/2015	1.569	3.2573	1.6332	1.8384	2.6214	2.8516	1.206	
21/05/2015	1.6451	3.262	1.6646	1.8399	2.6224	2.8519	0	
22/05/2015	1.6946	3.2629	1.6722	1.8413	2.6037	2.8391	0	
23/05/2015	1.7226	3.2687 3.2678	1.6825	1.8485	2.5921	2.8302	0 0 603	
24/05/2015 25/05/2015	1.7313 1.7415	3.2678	1.6829 1.6931	1.8497 1.8562	2.5876 2.597	2.8287 2.8351	0.603 0.201	
26/05/2015	1.7559	3.2723	1.7033	1.8604	2.6285	2.8551	0.201	
27/05/2015	1.7472	3.2756	1.6963	1.8612	2.5504	2.8041	0	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
28/05/2015	1.7535	3.2827	1.6987	1.8715	2.5734	2.8187	0	
29/05/2015	1.5984	3.2666	1.6426	1.8681	2.5589	2.8027	4.623	
30/05/2015	1.6957	3.2797	1.709	1.8803	2.5809	2.8127	0.804	
31/05/2015 01/06/2015	1.588 1.6355	3.2696 3.273	1.6957 1.7153	1.8758 1.8796	2.5754 2.5217	2.8092 2.77	2.01 1.206	
02/06/2015	1.3924	3.2505	1.7153	1.8796	2.5435	2.8019	6.231	
03/06/2015	1.5449	3.2614	1.6651	1.8733	2.6374	2.853	0.603	
04/06/2015	1.6228	3.2636	1.6818	1.8671	2.5759	2.8114	0	
05/06/2015	1.6637	3.2601	1.6861	1.8664	2.5716	2.8096	0	
06/06/2015	1.7181	3.2658	1.7081	1.8715	2.6278	2.8422	0	
07/06/2015	1.7464	3.2718	1.7267	1.8775	2.6597	2.8653	0	
08/06/2015	1.7523	3.276	1.7352	1.8806	2.643	2.8578	0	
09/06/2015	1.7531	3.278	1.7105	1.8839	2.6243	2.8469	0.201	
10/06/2015 11/06/2015	1.7595 1.7538	3.2826 3.2843	1.7214 1.7227	1.8908 1.8951	2.5958 2.5544	2.8281 2.8045	0	
12/06/2015	1.7529	3.2859	1.7247	1.8995	2.5485	2.7978	0	
13/06/2015	1.558	3.2673	1.552	1.8972	2.5615	2.8127	8.844	
14/06/2015	1.6627	3.2699	1.6494	1.8982	2.5919	2.8273	0.402	
15/06/2015	1.7139	3.2792	1.6885	1.9055	2.6178	2.8359	0	
16/06/2015	1.7386	3.2842	1.711	1.9117	2.6166	2.8341	0	
17/06/2015	1.7456	3.2872	1.7176	1.9144	2.5992	2.8246	0.201	
18/06/2015	1.7537	3.2885	1.7254	1.918	2.6147	2.8305	0	
19/06/2015	1.7584	3.2918	1.737	1.924	2.6231	2.8374	0	
20/06/2015	1.7599	3.2932	1.7347	1.9281	2.6011	2.8278	0.201	
21/06/2015	1.7635	3.2962	1.7439	1.9331	2.5943	2.8244	0	
22/06/2015	1.733	3.2891	1.7401	1.9348	2.6047	2.8328	1.809	
23/06/2015 24/06/2015	1.7599 1.772	3.2996 3.3031	1.7576 1.7634	1.9448 1.9494	2.6415 2.6466	2.8572 2.8581	0	
25/06/2015	1.7763	3.3079	1.7707	1.9494	2.6421	2.8557	0	
26/06/2015	1.7734	3.3062	1.768	1.9592	2.6189	2.8441	0.201	
27/06/2015	1.786	3.3132	1.7806	1.9703	2.6597	2.8698	0.201	
28/06/2015	1.7199	3.3089	1.7714	1.9717	2.6492	2.8634	2.613	
		3.3149	1.7841	1.9792	2.6618	2.8699	0	
30/06/2015	1.775	3.319	1.7933	1.987	2.6342	2.8531	0	
01/07/2015	1.7709	3.3188	1.7976	1.9893	2.626	2.8486	0	
02/07/2015	1.7703	3.3095	1.6104	1.9936	2.6885	2.8833	7.437	
03/07/2015	1.738	3.3128	1.7125	2.0033	2.6548	2.8604	1.005	
04/07/2015	1.7451	3.3126	1.7322	2.0054	2.6562	2.8635	0.201	
05/07/2015 06/07/2015	1.7337 1.7058	3.3066 3.3046	1.6824 1.6352	2.006 2.0106	2.625 2.6123	2.8417 2.8285	3.618 2.211	
07/07/2015	1.6772	3.3048	1.6878	2.0136	2.5909	2.8179	0	
08/07/2015	1.7163	3.304	1.7113	2.0148	2.6692	2.8683	1.407	
09/07/2015	1.7416	3.3125	1.7384	2.0225	2.6859	2.8775	0	
10/07/2015	1.7007	3.3119	1.7362	2.0265	2.6243	2.8428	0	
11/07/2015	1.7123	3.3186	1.7416	2.0309	2.6572	2.8628	0	
12/07/2015	1.7015	3.3186	1.7514	2.0334	2.6359	2.8617	0.402	
13/07/2015	1.6668	3.3133	1.7342	2.0348	2.6096	2.8445	2.613	
14/07/2015	1.6882	3.3148	1.7408	2.0373	2.6415	2.8601	0.402	
15/07/2015	1.6924	3.3232	1.6285	2.0532	2.6871	2.862	0	
16/07/2015 17/07/2015	1.7044 1.7027	3.3258 3.3299	1.6324 1.6385	2.0557 2.0641	2.6961 2.6356	2.8651 2.8298	0	
18/07/2015	1.7027	3.3299	1.642	2.0641	2.6823	2.8298	0	
19/07/2015	1.7209	3.3332	1.6541	2.0034	2.6715	2.8494	2.211	
20/07/2015	1.6889	3.3318	1.6594	2.0736	2.6869	2.8589	1.206	
21/07/2015	1.7043	3.3309	1.6614	2.0778	2.6797	2.8561	0	
22/07/2015	1.7224	3.3348	1.6717	2.0822	2.7147	2.88	0.804	
23/07/2015	1.7248	3.3354	1.6728	2.0855	2.7286	2.8874	0.201	
24/07/2015	1.7288	3.3374	1.6427	2.0906	2.7121	2.8774	0.402	
25/07/2015	1.7251	3.3336	1.6188	2.0925	2.6903	2.8652	0.603	
26/07/2015	1.7349	3.3413	1.6434	2.0999	2.7188	2.8778	2.211	
27/07/2015	1.6588	3.3259	1.5925	2.0988	2.6122	2.8118	1.206	
28/07/2015 29/07/2015	1.6916 1.6783	3.3315 3.3324	1.5917 1.5769	2.1026 2.1066	2.6784 2.72	2.8537 2.8784	1.407 0.201	
30/07/2015	1.7164	3.3324	1.613	2.1000	2.7577	2.8784	0.201	
31/07/2015	1.7303	3.3383	1.638	2.1158	2.7606	2.9063	0	
01/08/2015	1.7324	3.3415	1.6461	2.1203	2.7197	2.8794	0.402	
02/08/2015	1.7348	3.3431	1.6562	2.1234	2.7435	2.893	0.201	
03/08/2015	1.734	3.3444	1.6689	2.1291	2.6909	2.8576	0	
04/08/2015	1.7396	3.3495	1.6805	2.1346	2.7181	2.8738	0	
		3.3484	1.6909	2.1379	2.7502	2.8929	0	
05/08/2015	1.7454							
05/08/2015 06/08/2015 07/08/2015	1.7454 1.7283 1.7396	3.3469 3.3491	1.6905 1.6967	2.1397 2.1433	2.7249 2.7798	2.8763 2.914	2.412 0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
08/08/2015	1.7523	3.351	1.7002	2.1481	2.7912	2.9219	0	
09/08/2015	1.7498	3.3575	1.7055	2.1549	2.7737	2.9092	0	
10/08/2015	1.7543	3.3599	1.7191	2.1606	2.7552	2.897	1.407	
11/08/2015 12/08/2015	1.7547 1.7657	3.3557 3.3585	1.7167 1.7216	2.1611 2.1616	2.7733 2.8038	2.9076 2.9292	0.201	
13/08/2015	1.7592	3.3644	1.7210	2.1010	2.7851	2.9292	0	
14/08/2015	1.7536	3.365	1.7324	2.1752	2.73	2.8776	14.271	
15/08/2015	1.1587	3.3138	1.5123	2.1648	2.6934	2.8681	0	
16/08/2015	1.5373	3.3176	1.5646	2.1624	2.7202	2.8754	0	
17/08/2015	1.6547	3.3219	1.5821	2.1669	2.7364	2.8842	0	
18/08/2015	1.7004	3.3257	1.5937	2.1686	2.7208	2.8704	0	
19/08/2015	1.7102	3.3291	1.5995	2.1717	2.7166	2.867	1.005	
20/08/2015	1.706	3.3273	1.59	2.1729	2.7321	2.8794	1.608	
21/08/2015 22/08/2015	1.718 1.7275	3.332 3.3351	1.6092 1.6232	2.1791 2.1816	2.7366 2.7388	2.8821 2.8848	0 1.005	
23/08/2015	1.6816	3.3186	1.3679	2.184	2.6908	2.8514	13.266	
24/08/2015	1.4377	3.2921	1.4186	2.1729	2.646	2.8347	2.814	
25/08/2015	1.5476	3.2908	1.5127	2.1657	2.6789	2.8532	0.201	
26/08/2015	1.6311	3.2993	1.5438	2.1641	2.6729	2.8876	2.814	
27/08/2015	1.6779	3.3094	1.6643	2.1541	2.7462	2.8832	0.201	
28/08/2015	1.7179	3.3133	1.7109	2.1535	2.7967	2.9157	0	
29/08/2015	1.7664	3.3202	1.734	2.1558	2.8308	2.9396	0	
30/08/2015	1.7786	3.3228	1.7527	2.1547	2.829	2.9393	0	
31/08/2015	1.7834	3.3265	1.7659	2.1567	2.8134	2.9285	2.814	
01/09/2015	1.5952	3.3091	1.6246	2.1507	2.8046	2.9248	6.633	
02/09/2015	1.3567	3.2917	1.6291	2.1431	2.7705	2.9073	0.804	
03/09/2015 04/09/2015	1.5029 1.5095	3.2897 3.2829	1.6549 1.6363	2.133 2.1242	2.7477 2.7498	2.8882 2.8885	2.211 1.005	
05/09/2015	1.5887	3.2829	1.6521	2.1242	2.7515	2.8863	0.201	
06/09/2015	1.6856	3.2839	1.6756	2.1096	2.7918	2.9137	0.201	
07/09/2015	1.7397	3.292	1.7141	2.1103	2.8038	2.9217	0	
08/09/2015	1.765	3.2959	1.7309	2.1094	2.7992	2.9193	0	
09/09/2015		3.2964	1.7327	2.1064	2.77	2.901	0	
10/09/2015	1.7753	3.3028	1.7324	2.1111	2.7732	2.9065	0	
11/09/2015	1.7804	3.3085	1.7445	2.1136	2.7645	2.901	0	
12/09/2015	1.7776	3.3096	1.7375	2.1178	2.7299	2.8764	5.226	
13/09/2015	1.5732	3.2867	1.6205	2.1106	2.7386	2.8853	0	
14/09/2015	1.6434	3.295	1.6755	2.1168	2.7028	2.8571	0	
15/09/2015 16/09/2015	1.6347 1.5379	3.2714 3.2707	1.3607 1.5842	2.1079 2.1045	2.6782 2.7112	2.8482 2.8682	7.437 0	
17/09/2015	1.6196	3.2688	1.6403	2.1045	2.7172	2.8778	0	
18/09/2015	1.7175	3.276	1.686	2.0932	2.7873	2.9281	0	
19/09/2015	1.7653	3.2851	1.724	2.0956	2.8585	2.9789	0	
20/09/2015	1.7758	3.2911	1.6961	2.0973	2.854	2.9783	0	
21/09/2015	1.7711	3.2952	1.6592	2.0992	2.7921	2.9351	3.618	
22/09/2015	1.6582	3.2698	1.476	2.0914	2.7121	2.8801	5.226	
23/09/2015	1.434	3.2527	1.5431	2.0769	2.7474	2.9084	1.407	
24/09/2015	1.5861	3.2562	1.6159	2.069	2.734	2.8983	0	
25/09/2015	1.69	3.2609	1.6592	2.0631	2.7894	2.9352	0	
26/09/2015 27/09/2015	1.7456 1.7628	3.2648 3.2693	1.6813 1.6963	2.0586 2.0546	2.8266 2.8297	2.9603 2.9636	0	
28/09/2015	1.7628	3.2753	1.7309	2.0546	2.8462	2.9636	0	
29/09/2015	1.7818	3.2814	1.7431	2.0601	2.8375	2.9742	0	
30/09/2015	1.7859	3.2859	1.7401	2.0625	2.836	2.9702	0	
01/10/2015	1.7883	3.2897	1.7554	2.0664	2.8304	2.9692	0	
02/10/2015	1.7873	3.2935	1.7614	2.0679	2.8097	2.9527	0	
03/10/2015	1.7812	3.2953	1.7567	2.0715	2.7701	2.9231	0	
04/10/2015	1.7781	3.2925	1.7442	2.0687	2.7638	2.9193	0	
05/10/2015	1.7873	3.3082	1.7632	2.0842	2.7416	2.9079	0	
06/10/2015	1.7849	3.3108	1.7384	2.0911	2.7183	2.9027	2.412	
07/10/2015	1.7809	3.3031	1.6456	2.0911	2.7528	2.9328	1.206	
08/10/2015 09/10/2015	1.7746 1.7958	3.3014 3.3109	1.6781 1.7338	2.0948 2.1044	2.8124 2.813	2.9722 2.9739	0.402	
10/10/2015	1.8034	3.3154	1.7256	2.1044	2.7872	2.9739	0	
11/10/2015	1.8032	3.3209	1.7247	2.1079	2.746	2.9354	0	
12/10/2015	1.8	3.3224	1.7568	2.1162	2.7561	2.9393	0	
13/10/2015	1.8058	3.3243	1.7617	2.1195	2.7733	2.9482	0	
14/10/2015	1.8194	3.3323	1.7478	2.1272	2.7947	2.9599	0	
15/10/2015	1.8124	3.3339	1.7424	2.1311	2.7712	2.9428	0	
16/10/2015	1.8247	3.3401	1.7521	2.1378	2.7869	2.9531	0	
17/10/2015 18/10/2015	1.8205 1.8221	3.3434 3.3462	1.745 1.7515	2.1408 2.144	2.7879 2.7766	2.9493 2.9412	0	

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
19/10/2015	1.8276	3.3512	1.7818	2.1489	2.8049	2.9595	0	
20/10/2015	1.8361	3.3565	1.7954	2.1549	2.8154	2.9659	0	
21/10/2015	1.8311	3.3611	1.7882	2.1573	2.7795	2.9386	2.814	
22/10/2015	1.6566	3.337	1.6618	2.1556	2.7336	2.8632	2.412	
23/10/2015	1.75	3.3329	1.6397	2.1869	2.7767	2.9029	0	
24/10/2015 25/10/2015	1.7714 1.7051	3.3415 3.3267	1.6628 1.5522	2.1937 2.1856	2.7333 2.7871	2.875 2.9128	0.201 0.603	
26/10/2015	1.7614	3.3365	1.6383	2.1923	2.7553	2.8881	0.003	
27/10/2015	1.7733	3.338	1.6445	2.1909	2.7323	2.8751	0	
28/10/2015	1.7827	3.3455	1.655	2.1938	2.7386	2.8784	0.201	
29/10/2015	1.7672	3.3412	1.6509	2.193	2.7422	2.8792	0	
30/10/2015	1.7746	3.35	1.6722	2.1951	2.7954	2.9173	0	
31/10/2015	1.6699	3.3352	1.5693	2.1946	2.8002	2.9234	0	
01/11/2015	1.675	3.3349	1.6194	2.1922	2.8227	2.9363	0.201	
02/11/2015	1.7264	3.3362	1.6421	2.1857	2.803	2.921	0	
03/11/2015	1.7557	3.3368	1.6496	2.1834	2.7559	2.8887	0	
04/11/2015	1.7557	3.3356	1.48	2.1819	2.742	2.8788	0	
05/11/2015	1.646	3.3346	1.6052	2.1773	2.7532	2.8855	0	
06/11/2015	1.633	3.3289	1.498	2.1724	2.746	2.8849	0.201	
07/11/2015	1.6425	3.3373	1.5635	2.1776	2.7874	2.91	8.241	
08/11/2015	1.4138	3.3061	1.4958	2.1594	2.7778	2.9152	14.271	
09/11/2015 10/11/2015	1.5058 1.537	3.2831 3.2833	1.3431 1.508	2.1378 2.1285	2.7031 2.6902	2.8678 2.8559	2.412 1.206	
11/11/2015	1.5993	3.2859	1.5686	2.1265	2.6902	2.8543	0	
12/11/2015	1.667	3.2845	1.5905	2.0956	2.7166	2.8628	0	
13/11/2015	1.692	3.2776	1.5249	2.0844	2.6765	2.8333	1.407	
14/11/2015	1.6011	3.2737	1.5515	2.0757	2.741	2.8761	1.206	
15/11/2015	1.5592	3.2604	1.2324	2.0711	2.6481	2.8315	0.804	
16/11/2015	1.4799	3.2583	1.5063	2.0628	2.6279	2.8173	0.201	
17/11/2015	1.553	3.2555	1.5518	2.0495	2.6456	2.8174	0.603	
18/11/2015	1.5717	3.2605	1.48	2.0457	2.7118	2.8641	0.603	
19/11/2015	1.6037	3.2567	1.5726	2.032	2.6961	2.8503	0.603	
20/11/2015	1.6644	3.2673	1.6091	2.0313	2.7209	2.8623	0	
21/11/2015		3.2435	1.3915	2.0109	2.6571	2.8206	0	
22/11/2015	1.6652	3.2537	1.5553	2.0126	2.705	2.8477	0.201	
23/11/2015	1.7018	3.2608	1.6111	2.0104	2.7642	2.8853	0	
24/11/2015 25/11/2015	1.7138 1.6881	3.2603 3.2612	1.5031 1.5141	2.0114	2.6784 2.6821	2.8311 2.8335	0.201 11.859	
26/11/2015	1.5918	3.2507	1.4121	2.0067	2.715	2.8563	4.221	
27/11/2015	1.5368	3.256	1.4712	2.0067	2.6789	2.8255	0	
28/11/2015	1.5242	3.2327	1.2489	1.9884	2.642	2.8038	4.824	
29/11/2015	1.5149	3.2274	1.3435	1.9799	2.5785	2.7628	3.216	
30/11/2015	1.5571	3.2315	1.4641	1.9715	2.6578	2.8012	3.618	
01/12/2015	1.4682	3.2108	1.2554	1.9549	2.639	2.7898	3.618	
02/12/2015	1.4428	3.2154	1.4097	1.9417	2.5971	2.743	0	
03/12/2015	1.5095	3.2222	1.4942	1.9226	2.59	2.7482	3.618	
04/12/2015	1.4066	3.1839	1.1504	1.8979	2.5428	2.7261	6.834	
05/12/2015		3.1944	1.4145	1.8852	2.4937	2.6729	0.603	
06/12/2015		3.199	1.4812	1.8742	2.4774	2.6962	0.201	
07/12/2015	1.5138	3.1928	1.4963	1.865	2.5896	2.7907	2.814	
08/12/2015	1.5523	3.1974	1.5316	1.8584	2.5561	2.7856	0	
09/12/2015 10/12/2015	1.6225 1.6671	3.2024 3.2089	1.5662 1.5781	1.8502 1.849	2.6522 2.6014	2.8439 2.8136	0.201 1.809	
11/12/2015	1.3062	3.2089	1.4245	1.8366	2.558	2.7875	5.226	
12/12/2015	1.4735	3.1901	1.5254	1.8297	2.571	2.7769	1.206	
13/12/2015	1.2084	3.1627	1.1684	1.8167	2.5337	2.7588	2.814	
14/12/2015	1.332	3.1691	1.3977	1.8016	2.4731	2.6709	2.814	
15/12/2015	1.4657	3.1725	1.4672	1.7952	2.4876	2.6972	2.412	
16/12/2015	1.5194	3.1764	1.4505	1.7919	2.4794	2.7125	0.804	
17/12/2015	1.5387	3.185	1.5261	1.7909	2.5324	2.7503	0.201	
18/12/2015	1.5768	3.1828	1.4799	1.7852	2.5419	2.762	0.402	
19/12/2015	1.6252	3.1899	1.549	1.7853	2.5324	2.7561	0	
20/12/2015	1.6193	3.1846	1.4378	1.7811	2.4986	2.7378	0.201	
21/12/2015	1.6242	3.1903	1.5406	1.7816	2.5786	2.7887	0.402	
22/12/2015	1.6568	3.2071	1.5393	1.7932	2.6049	2.8009	2.814	
23/12/2015	1.6099	3.1902	1.4669	1.7817	2.5693	2.7851	0.603	
24/12/2015 25/12/2015	1.6447 1.6314	3.2054 3.1947	1.527 1.4554	1.7883 1.7891	2.5671 2.6271	2.7804 2.8221	0.603 3.216	
26/12/2015		3.1947	1.4554	1.7891	2.5749	2.7841	2.211	
27/12/2015	1.4273	3.1891	1.3326	1.7866	2.5749	2.7473	1.407	
28/12/2015	1.4448	3.1947	1.4615	1.785	2.5493	2.736	1.608	
29/12/2015	1.5195	3.1888	1.5032	1.771	2.4732	2.7065	0	
				-				

Date	F1	Р	N1	AB	AE	AF	Rainfall (mm)	Liverpool John Moores University
30/12/2015	1.6315	3.2047	1.557	1.7758	2.5149	2.7419	0.402	
31/12/2015	1.4671	3.1804	1.2328	1.7654	2.5009	2.7424	2.211	
01/01/2016	1.2608	3.1662	1.2405	1.7554	2.5566	2.7512	1.206	
02/01/2016 03/01/2016	1.3712 1.2214	3.1617 3.1531	1.2678 1.0635	1.7406 1.7362	2.3549 2.3853	2.587 2.6043	1.608 1.407	
04/01/2016	0.8951	3.1121	1.1363	1.6947	2.3653	2.4548	1.608	
05/01/2016	1.2898	3.1172	1.2719	1.6664	2.0761	2.2805	2.01	
06/01/2016	1.3671	3.1169	1.3152	1.6447	2.2269	2.4527	2.814	
07/01/2016	1.4331	3.1335	1.3999	1.6325	2.2542	2.5348	2.412	
08/01/2016	1.3606	3.1005	1.2938	1.601	2.3021	2.5315	2.01	
09/01/2016	1.4517	3.1156	1.3927	1.591	2.2009	2.4452	2.211	
10/01/2016	1.31	3.0618	1.0496	1.558	2.186	2.5191	2.211	
11/01/2016	1.2946	3.0846	1.3226	1.5344	2.1349	2.3563	1.809	
12/01/2016 13/01/2016	1.4458 1.3956	3.0907 3.0504	1.2977 1.0076	1.5233 1.5087	2.2569 2.3908	2.5369 2.6523	1.608 1.809	
14/01/2016	1.2862	3.0484	1.1692	1.4735	2.1414	2.3573	1.206	
15/01/2016	1.3058	3.0327	1.2438	1.4482	2.1468	2.3555	1.005	
16/01/2016	1.3267	3.0274	1.1603	1.4308	2.1957	2.4277	6.432	
17/01/2016	1.3562	3.0399	1.1471	1.4149	2.1956	2.456	22.512	
18/01/2016	1.1855	3.0352	1.2583	1.4007	2.1808	2.4795	0	
19/01/2016	1.3547	3.0569	1.337	1.3971	2.2369	2.5326	0	
20/01/2016	1.4774	3.0764	1.3902	1.4076	2.3076	2.5919	0	
21/01/2016	1.5525	3.0863	1.427	1.4164	2.349	2.626	0.201	
22/01/2016	1.5972	3.1046	1.4534	1.4407	2.3689	2.6555	2.01	
23/01/2016	1.6156	3.1068	1.4399	1.4658	2.4505	2.7184	0 0 402	
24/01/2016 25/01/2016	1.6313 1.6458	3.1144 3.1365	1.4714 1.5332	1.4796 1.5073	2.4373 2.4589	2.7099 2.7246	0.402 0	
26/01/2016	1.6461	3.1303	1.4957	1.5217	2.4829	2.7240	0.402	
27/01/2016	1.6435	3.1439	1.4771	1.5328	2.4267	2.7123	0.402	
28/01/2016	1.6557	3.1469	1.4961	1.5546	2.5461	2.7848	0.201	
29/01/2016	1.6673	3.1546	1.5307	1.564	2.5008	2.7561	0.201	
30/01/2016	1.6658	3.1525	1.5158	1.5731	2.4776	2.7439	0.603	
31/01/2016	1.658	3.1577	1.5285	1.5892	2.5189	2.7726	0.603	
01/02/2016	1.663	3.1739	1.5276	1.613	2.5589	2.8024	1.809	
02/02/2016	1.6554	3.1738	1.5191	1.6177	2.5604	2.8006	0	
03/02/2016	1.6713	3.1799	1.526	1.6275	2.5914	2.8153	0.402	
04/02/2016 05/02/2016	1.6125 1.5579	3.1762 3.1816	1.5366 1.5619	1.64 1.6447	2.6105 2.5742	2.8265 2.8046	1.005 0.804	
06/02/2016	1.5641	3.1723	1.5144	1.6417	2.4891	2.7528	0.603	
07/02/2016	1.2975	3.1383	1.2771	1.6348	2.4003	2.7064	0.603	
08/02/2016	1.2795	3.1163	1.1533	1.6186	2.3082	2.6187	0.402	
09/02/2016	1.2464	3.1165	1.248	1.6039	2.3682	2.6235	0.603	
10/02/2016	1.3776	3.1176	1.3805	1.5712	2.2887	2.5459	0.402	
11/02/2016	1.4467	3.1225	1.3979	1.5627	2.3772	2.6467	0.402	
12/02/2016	1.5306	3.1326	1.4756	1.5498	2.3352	2.6288	0.402	
13/02/2016	1.6	3.1444	1.4977	1.5517	2.3554	2.6628	0.201	
14/02/2016	1.6288	3.1442	1.5102	1.5529	2.3642	2.6867	0.402	
15/02/2016 16/02/2016	1.6746 1.7032	3.1593 3.1732	1.5652 1.6027	1.5793 1.5939	2.5052 2.5351	2.7834 2.8078	0.201 0.402	
17/02/2016	1.7032	3.1732	1.6027	1.5939	2.5351	2.7495	20.502	
18/02/2016	1.5087	3.1479	1.3731	1.6046	2.3721	2.7346	1.206	
19/02/2016	1.5642	3.1627	1.5258	1.6111	2.3458	2.6742	0	
20/02/2016	1.6037	3.1709	1.5434	1.6146	2.3102	2.6679	1.809	
21/02/2016	1.5356	3.1373	1.1926	1.6218	2.3353	2.6934	6.432	
22/02/2016	1.4154	3.1362	1.3703	1.5922	2.1946	2.4807	1.206	
23/02/2016	1.4752	3.1464	1.4869	1.5728	2.2787	2.5933	0.402	
24/02/2016	1.5522	3.157	1.5337	1.5674	2.3637	2.6647	0	
25/02/2016	1.6097	3.1603	1.5569	1.5625	2.3665	2.6804	0	
26/02/2016 27/02/2016	1.6502 1.66	3.1683 3.1686	1.5682 1.5406	1.5672 1.5755	2.385 2.3994	2.6935 2.7094	0	
28/02/2016	1.6872	3.1786	1.5406	1.5755	2.3994	2.763	0	
29/02/2016	1.7011	3.1835	1.6198	1.6103	2.5235	2.7863	0	
01/03/2016	1.6992	3.1927	1.6214	1.618	2.4564	2.7486	5.628	
02/03/2016	1.634	3.1781	1.521	1.6272	2.4087	2.731	3.216	
03/03/2016	1.5091	3.1488	1.2902	1.6321	2.4356	2.7528	3.216	
04/03/2016	1.4285	3.1435	1.3037	1.6082	2.3482	2.6759	4.02	
05/03/2016	1.4026	3.1213	1.2053	1.5982	2.3792	2.6834	3.216	
06/03/2016	1.418	3.1256	1.2546	1.5741	2.3934	2.6681	2.412	
07/03/2016		3.131	1.4292	1.5427	2.3767	2.6544	0	
08/03/2016	1.5738	3.1457	1.4986	1.5391	2.4396	2.7018	0	
09/03/2016 10/03/2016	1.6147 1.3027	3.1488 3.113	1.5271 1.2606	1.5313 1.5301	2.367 2.4387	2.6647 2.7188	6.834 0.201	
10/03/2010	1.3027	ა.11ა	1.2000	1.0301	2.430/	2.1100	0.201	

Date	F1	Р	N1	АВ	AE	AF	Rainfall (mm)	Liverpool John Moores University
11/03/2016	1.4524	3.1346	1.4542	1.513	2.4146	2.6526	0	
12/03/2016	1.5603	3.1468	1.519	1.5114	2.4349	2.6927	0	
13/03/2016	1.6293	3.1526	1.5486	1.5176	2.4747	2.7316	0	
14/03/2016	1.6595	3.1628	1.5835	1.5283	2.5055	2.757	0	
15/03/2016	1.6693	3.168	1.597	1.5396	2.4995	2.7592	0	
16/03/2016	1.6794	3.173	1.5828	1.5557	2.5147	2.7775	0	
17/03/2016	1.6857	3.1803	1.6055	1.5719	2.5375	2.7939	0	
18/03/2016	1.689	3.1825	1.5663	1.5819	2.522	2.7795	0	
19/03/2016	1.6982	3.1917	1.6159	1.6026	2.5434	2.793	0	
20/03/2016	1.7046	3.1973	1.6291	1.6194	2.5484	2.7956	0	
21/03/2016	1.7068	3.201	1.6349	1.6303	2.5512	2.794	0	
22/03/2016	1.7096	3.2027	1.6328	1.6411	2.5373	2.7844	0	
23/03/2016	1.7105	3.2087	1.6367	1.6556	2.5463	2.7965	0	
24/03/2016	1.7133	3.2122	1.6401	1.6646	2.5435	2.793	0.603	
25/03/2016	1.7097	3.2113	1.6302	1.6734	2.545	2.794	0.603	
26/03/2016	1.7223	3.2237	1.653	1.6858	2.549	2.7902	0	
27/03/2016	1.6925	3.2131	1.6172	1.6887	2.5111	2.7746	3.216	
28/03/2016	1.6872	3.2174	1.5742	1.6954	2.4781	2.7436	14.472	
29/03/2016	1.1419	3.1709	1.4469	1.6727	2.4215	2.6506	1.005	
30/03/2016	1.32	3.1623	1.3664	1.6554	2.3097	2.5331	4.422	
31/03/2016	1.449	3.1775	1.5083	1.6488	2.4183	2.6554	0.402	
01/04/2016	1.5735	3.1857	1.5556	1.6405	2.4591	2.7032	0	
02/04/2016	1.6308	3.1919	1.5777	1.6373	2.4428	2.7109	2.01	
03/04/2016	1.4858	3.1882	1.4912	1.6354	2.4386	2.7225	2.01	
04/04/2016	1.5106	3.1896	1.565	1.6377	2.4381	2.7216	1.005	
05/04/2016	1.5	3.1948	1.5564	1.6409	2.4859	2.7541		

ABERDEEN

214 Union Street. Aberdeen AB10 1TL, UK T: +44 (0)1224 517405

AYLESBURY

7 Wornal Park, Menmarsh Road, Worminghall, Aylesbury, Buckinghamshire HP18 9PH, UK T: +44 (0)1844 337380

BELFAST

Suite 1 Potters Quay, 5 Ravenhill Road, Belfast BT6 8DN, UK, Northern Ireland T: +44 (0)28 9073 2493

BRADFORD-ON-AVON

Treenwood House, Rowden Lane, Bradford-on-Avon, Wiltshire BA15 2AU,

T: +44 (0)1225 309400

BRISTOL

Langford Lodge, 109 Pembroke Road, Clifton, Bristol BS8 3EU, UK T: +44 (0)117 9064280

CAMBRIDGE

8 Stow Court, Stow-cum-Quy, Cambridge CB25 9AS, UK T: + 44 (0)1223 813805

CARDIFF

Fulmar House, Beignon Close, Ocean Way, Cardiff CF24 5PB, UK

CHELMSFORD

Unit 77, Waterhouse Business Centre, 2 Cromar Way, Chelmsford, Essex CM1 2QE, UK

DUBLIN

7 Dundrum Business Park, Windy Arbour, Dundrum, Dublin 14 Ireland T: + 353 (0)1 2964667

EDINBURGH

4/5 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK T: +44 (0)131 3356830

EXETER

69 Polsloe Road, Exeter EX1 2NF, UK T: + 44 (0)1392 490152

GLASGOW

4 Woodside Place, Charing Cross, Glasgow G3 7QF, UK T: +44 (0)141 3535037

GRENOBLE

BuroClub, 157/155 Cours Berriat, 38028 Grenoble Cedex 1, France T: +33 (0)4 76 70 93 41

GUILDFORD

65 Woodbridge Road, Guildford Surrey GU1 4RD, UK T: +44 (0)1483 889 800

LEEDS

Suite 1, Jason House, Kerry Hill, Horsforth, Leeds LS18 4JR, UK T: +44 (0)113 2580650

LONDON

83 Victoria Street, London, SW1H 0HW, UK T: +44 (0)203 691 5810

MAIDSTONE

Mill Barn, 28 Hollingworth Court, Turkey Mill, Maidstone, Kent ME14 5PP, UK +44 (0)1622 609242

MANCHESTER

8th Floor, Quay West, MediaCityUK, Trafford Wharf Road, Manchester M17 1HH, UK T: +44 (0)161 872 7564

NEWCASTLE UPON TYNE

Sailors Bethel, Horatio Street, Newcastle-upon-Tyne NE1 2PE, UK T: +44 (0)191 2611966

NOTTINGHAM

Aspect House, Aspect Business Park, Bennerley Road, Nottingham NG6 8WR,

T: +44 (0)115 9647280

SHEFFIELD

Unit 2 Newton Business Centre, Thorncliffe Park Estate, Newton Chambers Road, Chapeltown, Sheffield S35 2PW, UK T: +44 (0)114 2455153

SHREWSBURY

2nd Floor, Hermes House, Oxon Business Park, Shrewsbury SY3 5HJ, UK

T: +44 (0)1743 239250

STAFFORD

8 Parker Court, Staffordshire Technology Park, Beaconside, Stafford ST18 0WP,

T: +44 (0)1785 241755

No. 68 Stirling Business Centre, Wellgreen, Stirling FK8 2DZ, UK T: +44 (0)1786 239900

WORCESTER

Suite 5, Brindley Court, Gresley Road, Shire Business Park, Worcester WR4

T: +44 (0)1905 751310

ABERDEEN

214 Union Street, Aberdeen AB10 1TL, UK T: +44 (0)1224 517405

AYLESBURY

7 Wornal Park, Menmarsh Road, Worminghall, Aylesbury, Buckinghamshire HP18 9PH, UK T: +44 (0)1844 337380

BELFAST

Suite 1 Potters Quay, 5 Ravenhill Road, Belfast BT6 8DN, UK, Northern Ireland T: +44 (0)28 9073 2493

BRADFORD-ON-AVON

Treenwood House, Rowden Lane, Bradford-on-Avon, Wiltshire BA15 2AU, UK

T: +44 (0)1225 309400

BRISTOL

Langford Lodge, 109 Pembroke Road, Clifton, Bristol BS8 3EU, UK T: +44 (0)117 9064280

CAMBRIDGE

8 Stow Court, Stow-cum-Quy, Cambridge CB25 9AS, UK T: + 44 (0)1223 813805

CARDIFF

Fulmar House, Beignon Close, Ocean Way, Cardiff CF24 5PB, UK T: +44 (0)29 20491010

CHELMSFORD

Unit 77, Waterhouse Business Centre, 2 Cromar Way, Chelmsford, Essex CM1 2QE, UK

DUBLIN

7 Dundrum Business Park, Windy Arbour, Dundrum, Dublin 14 Ireland T: + 353 (0)1 2964667

EDINBURGH

4/5 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK T: +44 (0)131 3356830

EXETER

69 Polsloe Road, Exeter EX1 2NF, UK T: + 44 (0)1392 490152

GLASGOW

4 Woodside Place, Charing Cross, Glasgow G3 7QF, UK T: +44 (0)141 3535037

GRENOBLE

BuroClub, 157/155 Cours Berriat, 38028 Grenoble Cedex 1, France T: +33 (0)4 76 70 93 41

GUILDFORD

65 Woodbridge Road, Guildford Surrey GU1 4RD, UK T: +44 (0)1483 889 800

LEEDS

Suite 1, Jason House, Kerry Hill, Horsforth, Leeds LS18 4JR, UK T: +44 (0)113 2580650

LONDON

83 Victoria Street, London, SW1H 0HW, UK T: +44 (0)203 691 5810

MAIDSTONE

Mill Barn, 28 Hollingworth Court, Turkey Mill, Maidstone, Kent ME14 5PP, UK T: +44 (0)1622 609242

MANCHESTER

8th Floor, Quay West, MediaCityUK, Trafford Wharf Road, Manchester M17 1HH, UK T: +44 (0)161 872 7564

NEWCASTLE UPON TYNE

Sailors Bethel, Horatio Street, Newcastle-upon-Tyne NE1 2PE, UK T: +44 (0)191 2611966

NOTTINGHAM

Aspect House, Aspect Business Park, Bennerley Road, Nottingham NG6 8WR, UK

T: +44 (0)115 9647280

SHEFFIELD

Unit 2 Newton Business Centre, Thorncliffe Park Estate, Newton Chambers Road, Chapeltown, Sheffield S35 2PW, UK T: +44 (0)114 2455153

SHREWSBURY

2nd Floor, Hermes House, Oxon Business Park, Shrewsbury SY3 5HJ, UK T: +44 (0)1743 239250

STAFFORD

8 Parker Court, Staffordshire Technology Park, Beaconside, Stafford ST18 0WP, UK

T: +44 (0)1785 241755

STIRI ING

No. 68 Stirling Business Centre, Wellgreen, Stirling FK8 2DZ, UK T: +44 (0)1786 239900

WORCESTER

Suite 5, Brindley Court, Gresley Road, Shire Business Park, Worcester WR4 9FD, UK

T: +44 (0)1905 751310