Nantwich Waterlogged Deposits: Report No 4 Phase 2: Monitoring Programme Results and Interpretation Historic England: HEEP 3839 Main i ii | | | CONTENTS | | |------|-------|---|------| | | | VE SUMMARY | | | 1.0 | INTRO | ODUCTION | 1 | | 2.0 | | (GROUND | | | | 2.1 | The origins to the first phase of the project | 2 | | | | Summary results from Phase 1 | | | | 2.3 | The sub-surface deposit model | 3 | | 3.0 | | AND OBJECTIVES | | | | | Aims | | | | 3.2 | Objectives | . 11 | | 4.0 | OBJE | CTIVE 1: THE NANTWICH METHODOLOGY AND ENHANCEMENTS | . 13 | | | | Summary of Methodological Tasks Undertaken | | | | | Borehole Drilling and Monitoring Well Installation | | | | | Characterization of deposits from Phase 2 borehole investigation | | | | 4.4 | Groundwater Monitoring and Sampling 2011 - 2015 | . 16 | | | | Permeability Testing | | | | | Gas Monitoring and Sampling | | | 5.0 | | CTIVE 2: OPTIMUM APPROACH TO CHARACTERIZATION A | | | 6.0 | OBJE | CTIVE 3: ANALYSIS OF DATA | . 23 | | | | Baseline and annual results | | | | 6.2 | A guide to redox geochemistry of groundwater | . 23 | | | 6.3 | Results of analysis of key parameters | . 24 | | | 6.4 | Comparison of data from multilevel dipwell installations | . 29 | | | | Groundwater Temperature | | | | | Duration of monitoring project | | | | 6.7 | Additional studies: redox measuring techniques and soil moisture | . 32 | | 7.0 | | CTIVE 3: CHARACTERIZATION OF THE GEOLOGY, HYDROGEOLOGY | | | | HYDF | ROLOGY EFFECTING NANTWICH'S WATERLOGGED DEPOSITS | _ | | | 7.1 | Geology of Nantwich | | | | 7.2 | Overview of Stratigraphy | | | | | Hydrogeology | | | | | Hydrology | | | | | Groundwater Monitoring Data | | | SEE | BORE | HOLE LOGS IN APPENDIX A FOR DETAILED DATA | . 43 | | 8.0 | C14 F | RESULTS AND THE EARLY MEDIEVAL INCEPTION OF DEPOSITS | . 47 | | | 8.1 | Results of radiocarbon dating | . 47 | | | 8.2 | Discussion | . 49 | | 9.0 | CONC | CLUSIONS | . 56 | | | | Geochemical Assessment | | | | 9.2 | Validity of measured parameters | . 58 | | | 9.3 | C14 dating of gas samples | . 59 | | | | How relevant can quantities (mg/l or mg/kg) be for other urban centres? | | | | | The role and importance of the capillary fringe | | | | | River zone v. perched water-table near the church | | | | | How does the data help with future management of the resource? | | | | | Was it all worth it for the results achieved? | | | 10.0 | | SURE | | | | BIBLI | OGRAPHY | 63 | ### **TABLES** | Table 1 Summary of Principal Redox Indicators | | |--|-----------| | Table 2 Comparison of Different Monitoring Techniques – Annual Results | 24 | | Table 3 Calibrated redox values at Location N, N1 | 36 | | Table 4 Groundwater Level Monitoring Data | 43 | | Table 5 Radiocarbon samples and age determinations | 47 | | | | | FIGURES | | | Figure 1 Preservation Zones (Phase 1) and monitoring locations (Phase 2) with Nantwich | | | Figure 2 Location of dipwells and drawn transects between boreholes | | | Figure 3 Transect AB, AF, AE, AG, P, S, T, Q, V, F (west and east sides of river Wel Row – Church Lane) | sh | | Figure 4 Transect C, AF, AE, D, AG, F (west and east sides of river 2 nd Wood Stree | t - | | Church Lane) | . 7 | | Figure 5 Transect AC, N, P, F (west side of river Snow Hill – Church Lane) showing the solution of solutio | | | deposit model and basal geology; 3D model below | | | showing deposit model and basal geology | | | Figure 7 Groundwater Measurements with Data-logging Transducer v. Dip Meter | . J
18 | | Figure 8 Gas sampling for C14 | | | Figure 9 Seasonal Variations in Dissolved Oxygen | | | Figure 10 Carbon Dioxide Concentrations at Locations P and P1 | 29 | | Figure 11 Groundwater Temperature Fluctuations | | | Figure 12 Graph showing total annual rainfall in Nantwich between 2011 and 2015 | | | Figure 13 Groundwater levels at location F1 over five years | | | Figure 14 Eh/pH stability plot at dipwell N, N1 | | | Figure 15 Comparison of groundwater sampling methods at dipwell N1 | | | Figure 16 Comparison of redox probe results from location N, N1 | | | Figure 17 Results for resin/platinum probe from location N, N1 | | | Figure 18 a) Trime Pico 64/160mm probe; b) Pico T3P Profile Probe | | | Figure 19 Soil moisture readings against rainfall from location N, N1 | | | Figure 21 Groundwater elevations plotted against borehole logs | | | Figure 22 Hydrological Map of Nantwich with Groundwater Flow Contours | | | Figure 23 Comparison between Groundwater Fluctuation and Permeability | | | Figure 24 Probability distributions for radiocarbon calibrated date ranges | | | Figure 25 calibration of radiocarbon results from the Nantwich boleholes 2012 seri | | | by the probability method (Stuiver and Reimer 1993) | | | Figure 26 Probability distributions of radiocarbon dates from Snow Hill (AC-1) a | | | Wood Street (AE-1), Nantwich, carpark dipwells. The distributions are t | | | result of simple radiocarbon calibration (Stuiver and Reimer 1993) | | | | | ### **APPENDICES** | Appendix A | Borehole Logs with Archaeological Descriptions | |------------|--| | Appendix B | Borehole Logs with Interpretive Classifications | | Appendix C | Groundwater & Gas Monitoring Data | | Appendix D | Laboratory Results | | Appendix E | Transducer and Rain Gauge Data | ### Status of report: Final Authors Tim Malim, Mark Swain, Ian Panter Date 7th July 2016 Reviewed Historic England Date Review comments received 21st January 2017 Comments Summary, validity of laboratory testing, technical queries Revisions March 2017 The SLR staff involved in the implementation of this project were: Tim Malim BA FSA MCIfA Technical Director QA & Project Management Mark Swain BSc MSc FGS Associate Engineer Monitoring & data processing Caroline Malim BA MPhil Senior Illustrator Report Drawings & GIS Charles Heasman, Phil Murphy, and Nez Ali Project Geologists, monitoring Any Bates BSc, MSc ACIfA Senior Archaeologist Archiving and OASIS submission lan Panter of York Archaeological Trust provided archaeological conservation science input and analysis. John Carrott of Palaeoecological Research Services described and characterized the cores and organic remains. Peter Marshall of Historic England managed the C14 dating of samples. ### **Acknowledgements** SLR is grateful for the assistance of Jennie Stopford and Sue Stallibrass (English Heritage/Historic England) Dr Jill Collens and Mark Leah (Cheshire Shared Services) who steered the project throughout the duration of Phase 1 (2007 – 2010) and during the five years of monitoring (January 2011 – December 2015). ### **Quality Standard** SLR is a Registered Organisation with the ClfA, an audited status which confirms that work is carried out to the highest standards of the profession. SLR operates a quality management system to help ensure all projects are managed in a professional and transparent manner, which enables it to qualify for ISO 9001. SLR is a member of the Federation of Archaeological Managers and Employers. # **Executive Summary** The Nantwich Waterlogged Deposits Phase 2 monitoring programme was conducted over a five year period from 2011 – 2016 and was designed to provide scientifically robust data on how preservation conditions within the urban waterlogged deposits beneath the town changed over time. This programme consisted of 18 groundwater dipwells which have been monitored every three months and sampled annually, while rainfall was recorded daily. Water quality was assessed for changes in dissolved oxygen, conductivity, pH, temperature and redox potential. Gas meter readings were also taken quarterly, staggered with the groundwater testing. Groundwater levels were measured using an audible dipmeter, whilst water quality was assessed by inserting a digital water meter into the dipwell. In addition the water level was measured
automatically on a daily basis at six key locations, so as to provide more detailed data for comparison with the quarterly monitoring. Groundwater samples were taken annually so that they could be tested in a laboratory for what levels of specific chemicals were present. This provided comparative data and a good control, helping provide confidence in the quarterly results of groundwater sampling. This Historic England-funded study is a unique attempt to systematically characterize a specific urban environment in which organic archaeological remains have been well-preserved. In Nantwich, two zones of preservation were found: well-preserved organic remains, in areas bordering the river; and more variable preservation, with some active decay, in a higher part of the town. The first zone is a pH-neutral environment with high sulphide and low nitrate content. It is thus conducive to preservation of organic remains such as wooden artefacts and plant material. The second zone was once also waterlogged, and there is grave concern that the burial environment there is drying out more quickly as a result of modern changes in the town centre. The implications of this research are of value far beyond the Nantwich Supplementary Planning Document for the *Area of Special Archaeological Importance*, which has been produced to guide future development in Nantwich, and which has been included as part of the evidence base for Cheshire East Council's emerging local plan. For example, the issues of ground stability, water management and sustainable development raised by the situation in Nantwich are equally applicable to all urban centres with comparable environments (these are generally those with poor drainage and that are prone to episodic flooding). The success of the Nantwich project in characterizing conditions beneath historic towns makes it a valuable comparator for similar projects in Norway, the Netherlands and other European countries. Indeed, considerable amounts of information and advice have been exchanged at international conferences between these various projects. However the work has also identified the difficulties involved in producing a coherent understanding of all the complex issues that help to preserve, or threaten, buried remains. Equally challenging is the problem of how to influence decisions at a sufficiently strategic level to provide effective long-term management as the best approach is to change behaviour so that future infrastructure, public realm and building projects in the town are designed in such a way as to encourage re-watering of the deposits. The aim is to raise awareness of the issue among decision-makers in the local authority (including spatial planners and engineers), whilst also educating developers in the importance of the archaeological resource and its sensitivity to intrusive works. Standing buildings are threatened if the drying-out of waterlogged deposits results in subsidence, a factor that might ultimately be more persuasive than concern for the buried archaeology itself. ### 1.0 INTRODUCTION This report details the results from a five year programme of monitoring at Nantwich, Cheshire, to assess the variability in hydrological and geochemical conditions within the archaeological deposits that underlie the historic centre of the town. This nationally unique project was funded by Historic England through grant-aid to Cheshire East Council, and has been designed to help establish best practice for a standard methodology for monitoring of waterlogged remains within urban centres. The robust scientific data gathered have allowed analysis of how the conditions conducive to preservation have fluctuated seasonally and annually, and how the unsaturated capillary fringe or vadose zone is an important component in ensuring good preservation conditions for organic remains, in spite of the deposit not being fully saturated. The duration of the monitoring programme has ensured that abnormal results from a single year have not skewed the data, whilst comparison to the baseline established in 2007 has shown that the general burial environment has remained reasonably consistent over the period of investigation. 1 The five years of monitoring have produced a large corpus of data which is summarised in the Appendices of this report and remains available for consultation as metadata through hosting on the Archaeology Data Service (ADS) website¹. This report has focused instead on analysis of trends in the data and the interpretations that derive from that analysis. The monitoring data have used proxy indicators to help interpret the degree to which the burial environment enables agents of decay to act on ancient organic remains. These indicators include the degree of saturation within sediments, water quality parameters, and the ratios of oxygen-reducing chemical species on a scale from aerobic – anoxic conditions. Several papers have been delivered at national and international symposia, and publications from some of these have been produced². These provide interim statements and comparative studies with related types of site and deposits, to complement the final report on completion of the five year programme of monitoring, which is presented in the following chapters. In addition five interim reports have been produced to record the results from the monitoring programme annually, and these reports have been peer reviewed by the project steering group. The need for data compilation and interim report presentation has been extremely beneficial as, together with the challenge and review sessions, it has provided an iterative process which has tested the effectiveness of the methodology and posed research questions as the project progressed, leading to enhanced methods and more robust data sets. In addition, following the success at Nantwich, English Heritage (now Historic England) has commissioned a series of preliminary studies of other urban waterlogged deposits, at Bristol, Berwick, Boston, Carlisle, and Droitwich as part of a tiered approach to help understand the archaeological resource in accordance with a new guidance document³. 1 https://www.google.co.uk/?safe=strict&gws_rd=ssl#safe=strict&q=archaeology+data+service&* ² Malim, T. and Panter, I., 2012 Is preservation in-situ an unacceptable option for development control? Can monitoring prove the continued preservation of waterlogged deposits? *Conservation and Management of Archaeological Sites, Vol. 14 Nos 1–4, 2012, 429–41*; Malim, T., Panter, I., and Swain M. 2015 The hidden heritage at Nantwich and York: Groundwater and the urban cultural sequence *Quaternary International 368, 5-18*; Malim, T., Morgan, D., and Panter, I. 2015 Suspended preservation: particular preservation conditions within the Must Farm - Flag Fen Bronze Age landscape *Quaternary International 368, 19-30*; Malim, T., Swain, M., and Panter. I, 2016 Monitoring and Management options in the preservation of urban waterlogged deposits, Nantwich, UK *Conservation and Management of Archaeological Sites, Vol.18 Nos 1-3, 139-155* ³ https://historicengland.org.uk/images-books/publications/<u>preserving-archaeological-remains/</u> ### 2.0 BACKGROUND ### 2.1 The origins to the first phase of the project In April 2007 Cheshire County Council, with funding from the Historic Environment Enabling Programme, English Heritage, commissioned SLR Consulting to undertake a programme of work on Nantwich's waterlogged deposits, including desktop study, a campaign of field coring, and the preparation of a management strategy. This work aimed to map the extent of waterlogged deposits, to investigate formation processes for the onset of waterlogging, and to characterise the geochemistry and groundwater of the burial environment. One of the outputs was to provide a strategic framework for long-term management and investigation of this rare resource. The results of this project are presented in: - Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations (SLR Consulting Ltd July 2007); - Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation (SLR Consulting Ltd November 2009); and - Nantwich Waterlogged Deposits Report No 3 Management Strategy: Supplementary Planning Document for the Historic Environment and Archaeological Deposits (SLR Consulting Ltd January 2010). # 2.2 Summary results from Phase 1 Investigations in Nantwich over the past 30 years have revealed exceptional finds such as hollowed out oak trunks (known as "salt-ships"), structural timbers and wooden water channels, stave-built barrels and lids, leather shoes, accumulations of organic-rich stable floorings and domestic waste, and deep organic-rich silty deposits. These finds date from the Iron Age - medieval periods. Their distribution throughout the town, however, is not fully understood: the factors that have governed their initial creation and long-term preservation are unknown, and the threats to their continued survival through modern development and hydrological change are of great concern. With limited knowledge about the extent and character of these deposits effective planning control advice has been problematic at times, and the former Historic Environment Team, Cheshire County Council proposed the original project in order to design a well-informed management strategy which could be implemented by the local planning authority. The original project included the compilation of existing information from boreholes and archaeological investigations, so that information on the occurrence and depth of waterlogged deposits could be layered over geological and historical mapping. GIS modelling was employed to suggest the possible sub-surface topography and natural drainage. A desktop report was produced in June 2007 which informed the selection of 30 borehole locations for further investigation; to aid the iterative
process and development of the best methodology this coring programme was undertaken in two stages (in August and September 2007) with a monitoring review between them. A variation was proposed as a consequence of this review process, to improve on the methodology as envisaged in the original project design. This variation from the original scheme permitted the insertion of 11 dipwells, so that baseline data could be gathered on variations in sub-soil water chemistry and movement. This was an innovative idea to add value to the original scope of the project through implementation of an economical method for long-term monitoring. Money was saved by utilizing the drilling of boreholes during the second stage of geoarchaeological investigation in 2007, rather than requiring a separate phase of drilling to install piezometers. Two locations were chosen to act as control points (AB and L) which lie on the western and 3 Results from the coring programme and assessment of soil samples recovered from the boreholes have helped in defining the limits and depth of the waterlogged deposits, as well as characterising their nature. Two distinct zones of preservation dependent on urban hydrology have been identified from the geochemical assessment. A low-lying zone adjacent to the river in which well-preserved organic remains have been recovered⁴, and a secondary zone along the higher slopes in which organic preservation has been detected but active decay appears to be in progress⁵ (Figure 1). The evidence for this comes from poorly preserved invertebrate and diatom remains, as well as high sulphate and nitrate levels in the deposits liable to fluctuation above the present groundwater level. Within this zone, however, it was also noted that sulphate levels decreased and sulphide increased with depth, so that below the water-table good conditions for preservation continued to exist. The implications of the Nantwich research are of value far beyond the application of a supplementary planning document to manage change within the historic core of one town. Keen interest in the methodology and results from the first phase has been expressed by a wide range of individuals and organizations. Issues of ground stability, sustainable development and urban water management raised by this project are equally applicable to all urban centres with known or potential preservation of organic-rich deposits. European collaboration has included the transfer of information and protocols, and the success of the Nantwich project in characterising the burial conditions and preservation beneath the historic town provides a valuable comparison for similar projects undertaken in Norway, The Netherlands and other European countries. However the work has also identified the difficulties in producing a coherent understanding of all the complex issues involved that help to preserve and to threaten such cultural heritage, and the problems of influencing decisions at a sufficiently strategic level to provide effective long-term management. Although the Nantwich Phase 1 project enabled informed decision-making at the highest levels, an assessment of the results of the Phase 1 project identified a series of issues which needed further analysis in order to address the long term sustainable management of fragile waterlogged archaeological deposits. This formed the basis of the aims and objectives of this project design for a second phase. ### 2.3 The sub-surface deposit model The grid of boreholes drilled over the historic core of Nantwich from both phases of the project has allowed a simple model to be created which is presented below in Figures 2 - 6 as a series of transects running north-west – south-east and west – east across the main area of waterlogged deposits. Basal geology comprises Mercian Mudstone with Glacial Till above, which is present across wide areas to the east and west of the River Weaver and forms the main geology beneath Nantwich. The river terrace deposits which overlie the clay consist of sandy silts with clay and gravel, which can extend to 3 – 5m in thickness. Above the natural geological strata, anthropogenic deposits have accumulated up to c.4m in depth from the current ground surface, comprising organic-rich silts, as well as archaeological horizons with carbonized organic remains, and more recent made-ground. Salt-working and flooding, as well as domestic and stable waste, have contributed to the build-up of deposits, which at times are interspersed with redeposited mineral-rich horizons. ⁴ Preservation Zone 1 ⁵ Preservation Zone 2 Figure 1 Preservation Zones (Phase 1) and monitoring locations (Phase 2) within Nantwich Figure 2 Location of dipwells and drawn transects between boreholes n.b. Borehole A is located north of the Public Baths, just beyond the edge of the plan # Dipwell Installation Figure 3 Transect AB, AF, AE, AG, P, S, T, Q, V, F (west and east sides of river Welsh Row – Church Lane) showing deposit model and basal geology Figure 4 Transect C, AF, AE, D, AG, F (west and east sides of river 2nd Wood Street - Church Lane) showing deposit model and basal geology **Dipwell Installation** # Made ground/overburden Archaeological deposit Non carbonised organics Mineral rich deposits Fluvial glacial sands Glacial clay Average water level Figure 5 Transect AC, N, P, F (west side of river Snow Hill – Church Lane) showing deposit model and basal geology; 3D model below ### **Dipwell Installation** Figure 6 Transect D, P, T, U, V (west and east sides of river Wood Street – Church) showing deposit model and basal geology The transects represented in Figures 3-6 are simplified versions of the borehole logs which can be found in Appendices A and B. The original detailed archaeological descriptions and lenses of each core extracted during the borehole investigations are recorded on one set of logs (Appendix A), and then the multiple descriptions have been interpreted and each description assigned to one of five broad categories of deposit (Interpretation boreholes Appendix B): - Made ground, - Archaeological deposit, - Non-carbonised organics, - Mineral-rich deposits, and - Fluvial-glacial sands These are explained in more detail below (section 7.2) and also in the 2nd report (*Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation* SLR Consulting Ltd November 2009), but the distinction between Made ground and Archaeological deposit can be very diffuse (the made ground assumed to be of relatively modern origin). In addition the Mineral-rich deposit has been adjusted to mean deposits that are probably of natural origin, rather than redeposited sand (as was found at the top of the sequence in BH V for example). Interpretation of the origin, rather than descriptive nature, of the deposit has changed the mineral-rich deposit at top of BH V to made ground, because this was located in the churchyard and is assumed to have derived from grave-digging activity, whereas the mineral-rich deposits in BH A are most likely a result of flooding. Non-carbonised organics refer to part of the archaeological sequence that demonstrated clear evidence for inclusion of wood, plant material, or other organic component, as opposed to an Archaeological deposit that was of anthropogenic origin and had bone, pottery, ash or mortar in it, but did not contain specific evidence for organic remains. Borehole investigation allows a keyhole view of the deposit, but does not characterise it entirely, as it is chance as to whether the extracted sample included organic remains or not. For example boreholes that were located in areas where previous archaeological investigation had occurred, sometimes did not include evidence for organic remains, even though the larger-scale excavation had included such evidence (see for example Tables 1 & 2 in the 1st report (*Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations* SLR Consulting Ltd July 2007)). The data from the boreholes logs and subsequent analyses are included within a project database which will be archived and available for study from the Archaeological Data Services (ADS) website. ### 3.0 AIMS AND OBJECTIVES ### 3.1 Aims ### 3.1.1 National The nationally strategic aim of the Nantwich Waterlogged Deposits project was to develop and test a scientifically rigorous methodology for characterizing and monitoring the historic buried remains in urban waterlogged deposits so that bespoke management plans could be designed to secure the long-term conservation of such remains in ancient urban centres where this is viable. # 3.1.2 Regional The regional aim of the project was to protect and conserve the historic core of Nantwich, one of the best preserved towns in the northwest, renowned for its variety of standing 16th century and later timber-frame buildings. The group value of the many listed buildings is recognised as an important resource in the conservation area designation, which acknowledges the role of these assets in attracting tourists and providing an improved quality of life. In addition the town centre is built upon an extensive area of deeply stratified and waterlogged deposits containing a wealth of palaeoenvironmental data and organic remains from Iron Age to post-medieval times. The vulnerability of these deposits from desiccation, and from physical or chemical changes to the burial environment, threatens not only the survival of buried remains, but also the structural stability of the above-ground historic environment. # 3.1.3 Local Locally the aim of the project was to design a revised management strategy to help protect Nantwich as an *Area of Special Archaeological Potential*, and to ensure that this strategy is adopted and implemented by the new arrangements for local government and planning control within Cheshire. This will include a requirement for geoarchaeolgical investigation as part of
development within the town centre, so that new data are constantly added to the baseline established by the Phase 2 project, and against which changes to the waterlogged deposits can be measured. Such an approach will allow a dynamic management tool to be employed in the conservation of Nantwich's historic environment. ### 3.2 Objectives ### 3.2.1 Objective 1 To develop and test an effective methodology for monitoring the preservation of *in situ* waterlogged deposits and organic remains, within the context of extensive urban wetlands. This would be the first such comprehensive methodology to be produced in the UK and would act as a principal guidance document for future projects of a similar nature. # 3.2.2 Objective 2 To develop a management tool that will benefit national and international partners as part of a collaborative effort to enhance the care and conservation of important waterlogged deposits at risk from urban development, changes to water management systems and climate change. This tool would need to embrace the core values of spatial and water management planning in an urban context, and to raise awareness of the needs of the historic environment to be a major consideration as part of such strategic thinking. ### 3.2.3 Objective 3 To gather data on types and rates of change to the burial environment, which can be measured against the baseline data, in order to enable a greater understanding of the dynamics of conditions that are either conducive, or threatening, to continued preservation. This requires sufficient rigour to be statistically acceptable and to be of comparative value for international studies. These data will form the baseline against which geoarchaeological coring data, required as part of the planning process for any future development in the town centre, can be analysed. ### 3.2.4 Objective 4 To disseminate the results from both phases of the project as an integrated study, detailing the methodologies that have been developed and their validity for application to other urban areas, and providing interpretation of the results and the preservation process for the specific case study at Nantwich. # 3.2.5 Objective 5 To revise the supplementary planning advice note so that Cheshire East Council, the successor authority to Crewe and Nantwich Borough Council, can implement a coherent strategy towards its planning decisions within the historic core of Nantwich. This will include development of a proactive management strategy for the preservation of urban waterlogged deposits. ### 3.2.6 Objective 6 To raise awareness of the national and international significance of the buried and built heritage of Nantwich to the local community, and to identify the vulnerability to desiccation or incremental change to the local burial environment, that would lead to degradation of the historic value of the town. ### 3.3 Products and Outcomes The products and outcomes of Objectives 1, 2 and 3 are presented in sections 4-8 below. The products for Objective 4 are listed above under Introduction, and include three international conference papers delivered and published, a published summary in *Historic England Research Online Issue* 4^6 , presentation to an English Heritage workshop on urban waterlogged deposits, five annual interim reports (listed in the bibliography) and this final report. The product for Objective 5 was a supplementary planning document⁷, which has been endorsed as part of the evidence base for the local plan and is available online at Cheshire East Council. The products for Objective 6 include a presentation at a Cheshire Archaeology Day event, and an article in the Nantwich Museum magazine. - ⁶ https://historicengland.org.uk/images-books/publications/historic-england-research-4/ ⁷ http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf ### 4.0 **OBJECTIVE 1: THE NANTWICH METHODOLOGY AND ENHANCEMENTS** ### 4.1 **Summary of Methodological Tasks Undertaken** The Phase 2 project design underwent a number of iterations between the proposals submitted by the designers (SLR Consulting, YAT and Cheshire Council's Historic Environment Team) and the funders (English Heritage) during the period 2009 – 2010. The original project design was rejected due to the limited budget available at EH, and a reduced scheme for three years monitoring, rather than five years, was substituted. Exceptional rainfall in year two, however, meant that justification for a two year extension was accepted by EH as a variation with additional funding, and the full five year programme was then implemented. This section describes the fieldwork methodology undertaken as part of the project since 2011, which comprised the following key elements: - Drilling seven additional boreholes and installing dipwells at each of these locations to increase the grid of monitoring locations across Nantwich (AE, AF on west side of River Weaver, AG and F2 on east side), and to provide multi-level monitoring (at N1, P1, F1) where good organic preservation was identified in Phase 1 (see Figure 1); - Acquiring sediment samples for geochemical and palaeoenvironmental analysis from two cores (AE, AF); - Installing water level data loggers in key selected dipwells in order to take daily groundwater measurements (AB, AE, AF, N1, P, and F1)8; - Installing a rain gauge and barometer at Nantwich Museum to collect daily rainfall and atmospheric pressure measurements; - Undertaking in situ permeability testing at all fifteen separate dipwell locations; - Collecting groundwater samples from each of the fifteen separate dipwell locations for geochemical laboratory analysis on an annual basis; and - Conducting quarterly monitoring at seventeen dipwells for groundwater level, water quality parameters and ground gas concentrations. The approach for each task is detailed below along with any methodological improvements that were developed to address specific issues that arose during the monitoring programme. In addition two separate English Heritage value-added projects were conducted in 2012 at Location N, N1, designed to compare different methods for monitoring redox⁹, and to evaluate methods for measuring moisture content within sediments 10. The methodology and results from Nantwich have also been used to inform the development of Historic England guidance and related case studies¹¹. ⁸ F1 and F2 were drilled in Phase 2, because in Phase 1 stage 1 no dipwell was installed at Location F. As the organic remains recovered from Location F identified this as a target for the Phase 2 monitoring programme, two new dipwells were required, F1 screened for the non-carbonised organic remains cultural horizon only and to host the transducer, whilst F2 was screened for the full depth of the dipwell to retrieve data comparable with the majority of other dipwells. At Location P a dipwell had been installed in 2011 which was screened for the full sequence beneath the bentonite seal, and P1 was drilled in Phase 2 so that only the non-carbonised organic remains cultural horizon could be screened. Unfortunately P1 was above the watertable, and so the transducer and all measurements had to be taken from the original Phase 1 dipwell at BH P. ⁹ Panter, I., and Davies, G. March 2015 Preservation in situ guidance – redox potential measurement Final Report York Archaeological Trust Conservation Department Report No: 2013/54, English Heritage project No. 6524 ¹⁰ Panter, I., and Davies, G. March 2015 Preservation in situ guidance – Soil Moisture Measurement Final Report York Archaeological Trust Conservation Department Report No: 2014/70, English Heritage project No. 6523 ¹¹ https://historicengland.org.uk/images-books/publications/preserving-archaeological-remains/ ### 4.2 Borehole Drilling and Monitoring Well Installation The drilling of the seven additional boreholes was completed using the same methodology as applied in Phase 1. Before drilling each location was checked for underground services using a cable avoidance tool, in addition to checking all manhole covers in the vicinity and referring to the services drawings provided by the utilities companies. Safety barriers were set up around the work area to prevent the general public being injured by the window sampling rig. The concrete or tarmacadam hard surfacing was then cut out and removed using a rotary coring device attached to the window sampling rig to enable the percussive drilling of soils to proceed. A 100mm steel cutting tool containing a plastic core liner was advanced into the ground with a percussive hammer. The percussive hammer was repeatedly lifted and dropped by a revolving chain on the window sampler pushing the window sampler into the ground at an increment of a few centimetres until a depth of one metre had been reached. A tubular steel cylindrical casing was advanced simultaneously outside the cutting tool to prevent loose material collapsing back into the hole. The cutting tool was then extracted from the hole using a hydraulic extraction system and the plastic core liner containing the sediment core sample was pulled out of the cutting tool. A new plastic core liner was then inserted into the cutting tool ready for the next sample. The empty cutting tool was then placed back into the hole ready to progress the hole by another metre. A steel rod was then screwed into the base of the cutting tool and an additional length of casing was connected to the length already in the ground. The next metre was then advanced using the percussive hammer and the next core sample was extracted using the winch on the rig. This process was repeated until the desired depth was reached, and the casing was not extracted until the groundwater monitoring-well installation was complete. A 50 mm diameter slotted PVC monitoring well was then installed into each borehole to provide a means of monitoring groundwater and soil gas, and obtaining groundwater and gas samples as required. Although
well screens were positioned to target specific archaeological horizons in three locations (F1, N1, P1) and intercept water levels within the underlying sedimentary sequence, most dipwells included a well screen that extended to the full depth below the 1m deep bentonite plug at the top. The top one metre of each borehole was secured with a length of blank casing, and the annulus between blank casing and the borehole was sealed with bentonite and cement to prevent surface water entering the well. A rubber bung with a gas tap was placed on top of each well to allow natural soil gases to accumulate and be monitored using a gas analyser. Each hole was capped off with a stopcock cover set in concrete. The sediment cores were immediately taken to the Palaeoecology Research Services laboratory in Hull for detailed recording and sampling. # 4.2.1 Methodological enhancement The condition of several monitoring dipwell covers and gas taps gradually deteriorated over time, particularly in areas with high traffic volumes. Ongoing maintenance of the headworks was therefore required to ensure that the wells remained accessible. Generally the survival of the dipwells and lack of vandalism was remarkable, but unfortunately location AG was eventually lost in 2015 due to resurfacing work in the Bowers Row/Crown Hotel car park. # 4.3 Characterization of deposits from Phase 2 borehole investigation ### 4.3.1 Geochemical Soil Analysis In order to characterise the nature of the burial environment, six additional soil samples were submitted to an accredited laboratory for analysis. Samples were selected following on site assessment of each core in discussion with the project palaeoenvironmentalist. Samples were selected from those deposits that appeared to be "archaeological" and also from deposits that appeared to have an organic component. Although no samples were collected from location AG or the additional boreholes at location F, N and P which had been previously sampled in Phase 1, sufficient samples were taken from a range of deposit types in AE and AF to enable deposit characterisation. Approximately 250g of sediment per sample was extracted from the core and stored in an airtight plastic container which was then kept at a low temperature until despatch to the laboratory. The majority of samples were despatched within 96 hours of sampling. Rapid despatch was necessary to reduce potential for the samples to become oxidised or to dry out, and this process was carried out in accordance with standard practice ¹². The parameters measured in the laboratory by using standard techniques included pH, loss on ignition, conductivity, natural moisture content ratio and assays for total sulphur, sulphide, sulphate, nitrate, nitrite, ammoniacal nitrogen, total iron, sodium, chloride and phosphate. Unfortunately the laboratory was unable to undertake iron II and III assays. ### 4.3.2 Palaeoecological Assessment The boreholes were extracted in one metre plastic sleeves which had to be split in order to examine and describe the sediment sequences on delivery to the laboratory. The properties of the sediments were recorded and a preservation category (PC) assigned to the layers following the state of preservation scale (SOPS) established by NIKU¹³ for the recording of borehole samples. The cores were subdivided into subsamples according to their stratigraphic composition and placed into labelled polythene bags. Where the sediment was consolidated the sampling was undertaken so as to preserve the stratigraphy. Where unconsolidated, the depth range of the sequence was recorded but the internal stratigraphy of the subsample could not be retained. During recording, subsamples were also extracted for chemical analysis, where possible retaining approximately half of the sediment sequence for the preservation study. The positions of organic inclusions (typically of waterlogged wood) within the boreholes were recorded and they were removed as organic 'spot' samples (sensu Dobney et al. 1992) for identification, recording and subsequent submission as possible candidates for radiocarbon dating. Samples were selected for processing based on their potential to address the project aims (i.e. to provide information on the waterlogged preservation of organic remains in the deposits under Nantwich). - ¹² This procedure derived from the BS5930 code of practice for site investigation (BSI 1999) ¹³ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits Subsamples were processed for the recovery of plant and invertebrate macrofossils, broadly following the techniques of Kenward et al. (1980). The weights of the subsamples were recorded prior to processing. For each of the processed macrofossil subsamples small quantities of sediment (a few tens of grammes) were extracted for a parallel investigation of microfossil preservation. The assessment techniques were the same as those adopted for Phase 1, as discussed in the report produced on conclusion of the initial project in 2010 (see above in Section 2, Background). # 4.4 Groundwater Monitoring and Sampling 2011 - 2015 All of the groundwater monitoring wells installed during the coring programme have been monitored on a quarterly basis and sampled annually between February 2011 and December 2015. The depth to groundwater and the base of the well were measured using a dip meter during each monitoring and sampling visit. The annual sampling for geochemical indicators was designed in order to provide comparative data for the quarterly monitoring. The quarterly monitoring round and daily monitoring by transducers, were included in the monitoring regime to provide data for understanding seasonal variation, as well as relationship to rainfall events. ## 4.4.1 Annual sampling For the annual sampling round groundwater samples were taken in accordance with USEPA guidelines ¹⁴ using a peristaltic pump discharging through a flow cell connected to a YSI 556 [™] digital water quality meter. Properties including pH, eH (redox Potential), conductivity, temperature and dissolved oxygen were recorded using the water quality meter, and each dipwell was purged of stagnant water until the water quality parameters stabilised. The flow cell was then disconnected to avoid cross contamination, and the sample containers supplied by the laboratory were filled using the peristaltic pump, and all of the sample containers containing preservatives were filled with water filtered in the field using a 45 micron filter. The preservatives included hydrochloric acid, nitric acid and zinc acetate. The analysis for pH, conductivity, sulphide, sulphate, nitrate, ammoniacal nitrogen, total dissolved iron, iron II, iron III, dissolved manganese, manganese II, manganese IV, sodium, chloride, phosphate and dissolved methane was completed at an accredited laboratory, Jones Environmental Forensics of Deeside. # 4.4.2 Quarterly monitoring For the quarterly monitoring visits when samples were not required, the water quality parameters were recorded in situ using the YSI 556™ digital water quality meter. The measurement probes were placed into the monitoring well using a 4m long cable, instead of using the flow cell and peristaltic pump. The probes were left in situ for approximately 15 minutes until the readings had stabilised and the results for each parameter were recorded. This approach was adopted at the project design stage to save time and reduce costs. ### 4.4.3 Comparison of Methodologies for Monitoring Water Quality Parameters A comparison of the techniques for measuring water parameters including redox, dissolved oxygen, electrical conductivity and pH was undertaken at location N as part of a separate ¹⁴ USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504 English Heritage funded project completed between July 2012 and June 2013, and the results are also of value to this project (see further details in section 6.7 below). Four methods for comparative water monitoring were undertaken: - A YSI water quality meter was used to measure these parameters in situ before purging; - a flow through cell connected to a peristaltic pump; - sample collection using a passive bailer after purging; and - in situ after purging. The tests were repeated on a monthly basis in both monitoring wells at location N, N1, which were screened at different depths in order to target different layers within the deposits. The tests revealed that although the different techniques had little impact on the pH or redox results, the bailing process, however, was found to oxygenate the water samples. Another problem with the bailing process was that it caused a reduction in water level which then drew in more saline water from a deeper layer and caused a significant increase in conductivity. In contrast the results from both the in situ monitoring and the low flow purging using the flow cell (which generally draws in water horizontally from the surrounding deposits), were broadly consistent (apart from some fluctuations in redox), which helps support the validity of using the less time-intensive technique of in situ monitoring with a water quality meter. ### 4.4.4 Daily monitoring and Rainfall Data Logger Daily monitoring was employed at selected locations by installing transducers (data loggers), at three locations on either side of the river, to monitor more detailed changes to water levels than could be achieved on a quarterly interval. The data loggers were also set to automatically record groundwater temperature on a daily basis. The six transducers were installed in dipwells F1, N1, P, AB (as a control on the edge of the Preservation Zone), AE and AF. The transducer that was intended for installation in dipwell AG was moved to AB because no waterlogged deposits were recorded in Bowers Row Car
Park, and a transducer was installed in dipwell P instead of P1, because P1 contained insufficient water. The data loggers were installed at the base of each monitoring well, and the data were downloaded using an optical reader connected to a field laptop computer on a quarterly basis. The water level was measured manually using an audible dip meter during installation and at each subsequent data download event to confirm the actual depth to water. A barometric pressure data logger was also installed at Nantwich Museum in order to calibrate the readings from the water level data loggers. A rain gauge connected to a digital data logger was also installed to the rear of Nantwich Museum. The rain gauge consisted of a calibrated tipping bucket mechanism connected to a data logger that counted the number of tips caused by rainfall. ### 4.4.5 Methodological issues and enhancements ### Water quality meter Several reliability issues occurred with the YSI 556™ digital water quality meter during the project, and consequently it was not always possible to collect a full data set during each monitoring visit. Additionally some measurements taken on a particular round (pH and dissolved oxygen) appear substantially elevated from the norm (see Table 2 below), which suggest there might have been a defective probe. Sufficient data were collected over the course of the project, however, for this not to present a significant issue overall. ### redox An additional issue was the need to correct measurements taken in the field by the platinum redox electrode by adjustment to the standard hydrogen electrode (SHE) reference measurements. This correction is necessary because it is impractical to use SHE electrodes in the field, and therefore more field-suitable reference electrodes are used. However, this means that field redox measurements then need to be converted to the values that would have been recorded using a SHE electrode in accordance with BS ISO 11271. The difference is generally 211mV lower than the field measurement, but this is temperature dependent. SHE corrections were therefore included into the data processing phase. ### Calibration of transducer data A comparison with the manual dip data (see **Figure 7** below) confirmed that it was necessary to calibrate the information from the water level data-loggers on a regular basis to account for drift in the measurement device and movement of transducers during downloading events. This was achieved by correcting the transducer data to correlate with the manual dip readings. ### Rectification of transducer data errors During 2014 it was noticed that some of the groundwater level data-loggers were becoming unreliable. In order to eliminate the gaps in the data set additional data-loggers were installed in the multilevel monitoring points (Locations F1, N1 and P), and the number of measurements was increased to four readings per day to provide additional back up data. The increased sampling frequency successfully resolved the issue, although the additional data loggers provided an effective backup system. As the data set grew substantially, quality control procedures (data checking through visual inspection of the dataset) became increasingly important in eliminating human error for the increasing amount of data processing that was required. 19 Rain gauge and more frequent monitoring visits The location of the rain gauge at Nantwich Museum was not ideal due to the amount of rain shadow caused by the surrounding buildings and trees, but unfortunately there were no other suitable locations to securely store the device within the town centre. Nesting insects and larvae blocked the rain gauge between the 17th June and 19th September 2011 and therefore there is gap in the rainfall information for this period ¹⁵. In order to prevent blockages to the rain gauge, a nylon mesh was fitted to the rain collection device in November 2011. This was successful in preventing the build-up of leaf litter and insect larvae that had caused the rain gauge to stop working. A revised maintenance schedule was also put in place by separating the quarterly water quality and gas monitoring visits by a six week interval. Not only did this allow the rain gauge to be serviced more regularly, but it also enabled additional rounds of groundwater monitoring to be completed using a dip meter to supplement the daily water level data from the six transducer monitoring points. # 4.5 Permeability Testing In situ permeability testing was undertaken in fifteen of the dipwells during 2011 in order to assess the differences in permeability within the varying soil types encountered during the previous borehole investigations. The tests used a plastic cylindrical slug that had been lowered into the water column to displace a fixed volume from the dipwell. Once the groundwater level had returned to rest conditions the plastic cylindrical slug was removed as quickly as possible. The rate of groundwater recharge was then measured using a pressure transducer to calculate the length of time that the water level took to stabilise. The results were then analysed to calculate the permeability of the deposits at each location. ### 4.6 Gas Monitoring and Sampling Quarterly ground gas monitoring was undertaken in each of the installed seventeen dipwells using a Geotechnical Instruments GA2000 or GA5000 gas analyser. The Gas Analyser was used to measure the concentration of hydrogen sulphide, methane, oxygen, carbon monoxide and dioxide through the gas taps which have been fitted to the majority of dipwells. Methane and hydrogen sulphide are indicators of anaerobic conditions, whilst oxygen, carbon monoxide and carbon dioxide are more indicative of aerobic deposits. Liaison with Historic England's scientific dating team and with SUERC identified an acceptable methodology and equipment for sampling gas, and rapidly processing these samples to extract a radiocarbon determination for the potential age of the origin of the gas. A special round of gas monitoring was conducted when barometric pressures were low enough (below 1000mb) on the 16th September 2015, and two dipwells displayed sufficiently high levels of methane (AC) and carbon-dioxide (AE) for sampling purposes. ¹⁵ data available from John Moore's university has been used as a substitute for this period Sampling was undertaken by pumping through gas taps which seal the dipwells, using a GA5000. The gas was then stored in a 1 litre Tedlar bag, and despatched to SUERC's laboratories next day (**Figure 8**). Figure 8 Gas sampling for C14 # 5.0 OBJECTIVE 2: OPTIMUM APPROACH TO CHARACTERIZATION AND MONITORING In addition to clear documentation on aims, objectives, methodology, parameters, personnel, programme and communications, the results from the monitoring programme have suggested some optimum techniques and methodologies which can be recommended for future monitoring projects in other historic urban centres, or where waterlogged deposits are preserved within the unsaturated or vadose zone. The elements of an effective monitoring programme include: 21 - · appropriately calibrated equipment; - porosity and permeability testing of the sedimentary deposits; - a sufficient network of monitoring points across the extent of waterlogged remains; - a series of georeferenced and levelled borehole logs with descriptions of the deposit sequence detailed enough to identify organic remains, their depths within the sequence, and conditions of preservation (based on the Norwegian protocols); - geochemical analysis of key parameters from the deposit sequence; - redox and TDR measurements from deposit horizons which contain organic remains; - annual geochemical sampling using same suite of parameters as used in baseline; - gas monitoring for carbon monoxide, carbon dioxide, hydrogen sulphide, methane; - water level, dissolved oxygen, electrical conductivity, pH, temperature; and - rainfall measurements The monitoring interval is dependent on issues such as whether annual or seasonal change is being monitored, but the use of data-loggers allows flexibility. Ideally data should be gathered from the specific horizon with organic remains rather than from a wider zone. The suite of groundwater geochemical testing which has been used as proxy indicators of the conditions for preservation within the waterlogged deposits at Nantwich included: - Nitrate - Manganese - Phosphate - Sulphate - Ferric iron (III) - Ferrous iron (II) - Sodium - Ammoniacal nitrogen - Sulphide - Chloride - Calcium carbonate - Carbon The monitoring data and laboratory analyses permit assessment of whether high levels of degradation are probable due to aerobic conditions, or reducing levels of microbial activity with anaerobic conditions. For example if dissolved oxygen concentrates exceed 0.5mg/l it is highly likely that aerobic degradation is present 16 . The ratio of oxidised and reduced species allows assessment of the redox conditions, for example nitrate and ammonium, oxidised and reduced forms of iron, and sulphate to sulphide ratios. In summary the chain of electron receptors (or sequence of preference for degradation by micro-organisms) is oxygen \rightarrow nitrate \rightarrow iron \rightarrow sulphate \rightarrow carbon dioxide. Comparative studies in Norway have ¹⁶ Carey, M.A., Finnamore, J.R., Morrey, M.J.., and Marsland, P.A. 2000 *Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater* Environment Agency R&D Publication 95 suggested that good preservation conditions in sediment require high concentrations of, for example, ammonium (NH₄⁺) >50mg/kg, sulphide (S²⁻) >100mg/kg, sulphate (SO⁴) >500 mg/kg, and less than 80% of reduced iron (Fe²⁺)¹⁷. Poor preservation is characteristically defined by low concentrations, e.g. nitrate (NO₃-) >10mg/kg, sulphate (SO₄) <500 mg/kg, and reduced iron (Fe²⁺) <20%. 22 These chemical analyses inform the initial characterization or
baseline survey stage to inform on the current state of preservation, and also during subsequent monitoring to assess whether conditions conducive for preservation exist within the burial environment ¹⁸. During the Nantwich project the current state of preservation was largely assessed through description of the sediment cores (observation and application of the Norwegian National Standard (NS 9451, 2008 ¹⁹), assessment of palaeoecological and wood structure, permeability testing, and geochemical analysis of sediment samples. The monitoring regime that followed on from the characterization of current preservation, focused on groundwater and water quality testing, gas emissions, and geochemical analyses of water samples to assess whether conditions appeared to be conducive for preservation. The presence of water has long been understood as a major factor in the reasons for preservation of organic remains as it blocks oxygen ingress into the sediment pores, and so significantly reduces decay rates. Unsaturated archaeological deposits, however, can still contain well-preserved organic remains, as seen in Nantwich in dipwells AE and AF for example, where the capillary action through the silts draws moisture up from the watertable into the tension-saturated or vadose zone above. Therefore it is the degree of void space within the sediments which determines how preservation conditions will be affected by oxygen ingress. Recent studies in Bryggen suggest that when the air content of a sediment exceeds 10 -15% by volume, it will have a noticeable effect on decay mechanisms, but that dissolved oxygen brought in by rainwater is of less importance for the introduction of oxygen into the vadose zone 20 . In addition temperature rise accelerates the potential rate of decay for both microbial and chemical reactions, with a 2 - 3 fold increase for a rise of 10° C. 21 This only affected dipwell F1 at Nantwich, as most other dipwells recorded temperature change half this range. The measurement of pH is also important, not only for assessment of redox conditions, but also as an indicator of other chemical changes over time. Studies at Star Carr for example, have recorded a difference in pH between *in situ* measurements and laboratory samples. Increased acidity seems to have been triggered by exposure to oxygen, and even a small reduction in water level or increase in atmospheric oxygen triggered sulphate production²². 1 ¹⁷ Martens, V.V., and Bergersen, O. 2015 *In situ* site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 68-79*. ¹⁸ See for example Matthiesen, H. 2015 Detecting and quantifying ongoing decay or organic archaeological remains: A discussion of different approaches *Quaternary International 368, 43-50* ¹⁹ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits ²⁰ Matthiesen, H., Hollesen, J., Dunlop, R., Seither, A. and De Beer, J. 2015 In situ measurements of oxygen dynamics in unsaturated archaeological deposits *Archaeometry 57, 6, 1078-1094* ²¹ Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen* Riksantikvaren, p.82-3 ²² Boreham, S, Conneller, C., Milner, N., Taylor, B., Needham, A., Boreham, J., and Rolfe, C.J. 2011 Geochemical indicators of preservation status and site deterioration at Star Carr *Journal of Archaeological Science 38, 2833-2857* ### 6.0 OBJECTIVE 3: ANALYSIS OF DATA ### 6.1 Baseline and annual results A series of interim reports were produced each year during Phase 2, and were used by the steering group to review progress and monitor success. The baseline results from the physical assessment of the cores retrieved from the dipwell installation were reported in the first two reports²³. The data gathered during the project have been deposited at ADS. # 6.2 A guide to redox geochemistry of groundwater Dissolved oxygen at levels of 0.5-2 mg/L indicate that aerobic respiration is probably occurring. The Oxygen – Reduction Potential (ORP or Eh) is the relative tendency of a solute to gain or lose electrons, which in groundwater is normally due to the activity of organisms leading to biodegradation. This is measured in electrical current passing through the groundwater and recorded in mV, and calibrated to the standard hydrogen electrode (SHE) so that oxidising conditions occur above c.400mV with increasingly reducing conditions occurring as the measurement drop to -400mV. Proxy indicators assess what chemical reactions are happening in groundwater, and how this compares to the scale of reduction occurring. The presence of methane and hydrogen sulphide generated from obligate and facultative anaerobes indicate a high level reducing environment, whereas the presence of sulphate, ferric iron and magnesium indicate reducing conditions, with nitrates and phosphates indicating a mildly reducing environment. The absence of these indicators is found in oxidising conditions (see Table 1). Table 1 Summary of Principal redox Indicators | Description | Species present/absent | redox value
(mV) | Microbes present | Decreasing rate of decay | | |--------------------|--|---------------------------------|--|--------------------------|--| | Oxidising | Oxygen present | 400 and above | Aerobes | П | | | Mildly reducing | Nitrate, Manganese
(Mn ⁴⁺) decline, | 100 to 400 | Facultative
anaerobes | | | | Reducing | Sulphate, ferric Iron
(Fe ³⁺) present | -100 to 100 | Facultative
anaerobes and
obligate anaerobes | | | | Highly
reducing | Sulphate and ferric Iron (Fe ³⁺) disappear Sulphide (S ²⁻), ammonium (NH ₄ ⁺⁾ , ferrous Fe ²⁺ and methane present | -400 to -100 Obligate anaerobes | | | | | System | redox potential range
(mV) corrected to pH 7 | Microbiology | Burial
environment | | |-----------------------------------|---|-----------------------|-----------------------|--| | Oxygen disappearance | +500 to +350 | Aerobes | Oxic | | | Nitrate disappearance | +350 to +100 | Facultative anaerobes | | | | Manganese ²⁺ formation | Below +400 | Facultative anaerobes | - Sub-oxic | | | Fe ²⁺ formation | Below +400 | Facultative anaerobes | - Sub-Oxic | | | Sulphide formation | 0 to -150 | Obligate anaerobes | America | | | Methane formation | below -150 | Obligate anaerobes | - Anoxic | | _ ²³ January 2011 and November 2011 Nantwich Waterlogged Deposits Cheshire Phase 2 Interim Report No 1 English Heritage HEEP 3839 Main # 6.3 Results of analysis of key parameters A selection of some of the key parameters have been used to review how conducive for preservation the burial conditions have been at each of the monitoring locations over the five year period. A comparison between the observed state of preservation recorded during description of the original cores, and annual summary of groundwater parameters over the five year monitoring period, is presented in Table 2. Table 2 Comparison of Different Monitoring Techniques – Annual Results | Location | Observed
Baseline
Preservation
Conditions | Date | Dissolved
Oxygen
(mg/l) | Dissolved
Methane
(mg/l) | Saturation Conditions of archaeological deposit (hydrographs) | Geochemical
Conditions
from annual
laboratory
analysis | Eh Difference
from Iron
Boundary (mV) | Redox
Environment | |----------|--|--------|-------------------------------|--------------------------------|---|--|---|----------------------| | | | Nov-07 | 0 | 0 | UNSATURATED | OX | -155.4 | RED | | | | Feb-11 | 1.85 | 0 | VADOSE | OX | 3.05 | OX | | AB | LOUSY | Feb-12 | 3.94 | 0.006 | VADOSE | OX | 149.25 | OX | | AD | LOUST | Feb-13 | 0.76 | 0.007 | VADOSE | OX | -52.65 | RED | | | | Feb-14 | 2.85 | 0 | VADOSE | OX | -42.5 | RED | | | | Feb-15 | 0.01 | 0 | VADOSE | OX | -349.5 | RED | | | | Nov-07 | 0 | 0.051 | VADOSE | RED | -226.35 | RED | | | | Feb-11 | 0.77 | 0 | VADOSE | RED | -186.05 | RED | | AC | POOR | Feb-12 | 1.12 | 0.364 | VADOSE | RED | 161.7 | OX | | AC | FOOR | Feb-13 | 0.49 | 0 | VADOSE | RED | -90.85 | RED | | | | Feb-14 | 1.48 | 0 | VADOSE | RED | -183.15 | RED | | | | Feb-15 | 0.17 | 0.0 | VADOSE | RED | -480.2 | RED | | | | Feb-11 | 0.86 | 1.981 | VADOSE | RED | -117 | RED | | | | Feb-12 | 0.7 | 5.273 | VADOSE | RED | 242.1 | OX | | AE | MEDIUM | Feb-13 | 0.47 | 0 | VADOSE | RED | -80.95 | RED | | | | Feb-14 | 1.33 | 0 | VADOSE | RED | -30.25 | RED | | | | Feb-15 | - | 0 | VADOSE | RED | -460.5 | RED | | | POOR | Feb-11 | 0.82 | 3.396 | VADOSE | RED | -153.75 | RED | | | | Feb-12 | 0.65 | 3.765 | VADOSE | RED | 245.7 | OX | | AF | | Feb-13 | 0.51 | 4.019 | VADOSE | RED | -97.55 | RED | | | | Feb-14 | 1.24 | 0.11 | VADOSE | RED | -194.9 | RED | | | | Feb-15 | - | 1.0 | VADOSE | RED | -450.7 | RED | | | | Feb-11 | 1.05 | 0.009 | UNSATURATED | RED | 170.4 | OX | | | | Feb-12 | 1.05 | 0.012 | SATURATED | RED | 170.1 | OX | | AG | MEDIUM | Feb-13 | 0.9 | 0 | SATURATED | RED | -73.8 | RED | | | | Feb-14 | 3.52 | 0 | SATURATED | RED | 51.65 | OX | | | | Feb-15 | - | 1 | SATURATED | RED | -332.9 | RED | | | | Feb-12 | 2.14 | - | VADOSE | - | 179.7 | OX | | F1 | MEDIUM | Feb-13 | 1.63 | - | VADOSE | - | -64.55 | RED | | '' | MEDION | Feb-14 | 5.78 | - | UNSATURATED | - | 0.4 | OX | | | | Feb-15 | - | -
| VADOSE | - | - | - | | | | Feb-11 | 0.94 | 0 | SATURATED | RED | 268.65 | OX | | | | Feb-12 | 1.08 | 0.943 | SATURATED | RED | 217.4 | OX | | F2 | MEDIUM | Feb-13 | 1.03 | 0 | SATURATED | RED | -23.25 | RED | | | | Feb-14 | 2.48 | 0 | SATURATED | RED | -4.7 | RED | | | | Feb-15 | - | 0 | SATURATED | RED | -295.4 | RED | | L | NULL | Nov-07 | 0.95 | 0.003 | UNSATURATED | OX | -113.7 | RED | | Location | Observed
Baseline
Preservation
Conditions | Date | Dissolved
Oxygen
(mg/l) | Dissolved
Methane
(mg/l) | Saturation
Conditions of
archaeological
deposit
(hydrographs) | Geochemical
Conditions
from annual
laboratory
analysis | Eh Difference
from Iron
Boundary (mV) | Redox
Environment | |----------|--|--------|-------------------------------|--------------------------------|---|--|---|----------------------| | | | Feb-11 | 1.21 | 0.032 | UNSATURATED | OX | -37.9 | RED | | | | Feb-12 | 1.12 | 0 | VADOSE | OX | 139.8 | OX | | | | Feb-13 | 0.46 | 0.012 | UNSATURATED | OX | -26.65 | RED | | | | Feb-14 | 6.14 | 0 | UNSATURATED | OX | 81.55 | OX | | | | Feb-15 | - | 0 | UNSATURATED | OX | -289.8 | RED | | | | Nov-07 | 0 | 0.008 | VADOSE | OX? | -84.2 | RED | | | | Feb-11 | 1.17 | 0 | VADOSE | OX? | -46.35 | RED | | | | Feb-12 | 1.25 | 0 | VADOSE | OX? | 181.6 | OX | | М | LOUSY | Feb-13 | 1.24 | 0 | VADOSE | OX? | -50.9 | RED | | | | Feb-14 | 2.24 | 0 | VADOSE | OX? | 77 | OX | | | | Feb-15 | 3.00 | 0 | VADOSE | OX? | -408.6 | RED | | | | Nov-07 | 1.08 | 2.9 | VADOSE | RED | -224.2 | RED | | | | Feb-11 | 0.97 | - | VADOSE | - | -54.2 | RED | | | _ | Feb-12 | 1.12 | - | VADOSE | - | 182.15 | OX | | N | GOOD | Feb-13 | 0.72 | _ | VADOSE | - | -42.95 | RED | | | | Feb-14 | 2.15 | _ | VADOSE | - | 95.9 | OX | | | | Feb-15 | 0.83 | _ | 1715002 | - | -315.3 | RED | | | | Feb-11 | 1.22 | 8.107 | VADOSE | RED | -48.85 | RED | | | | Feb-12 | 1.36 | 6.777 | VADOSE | RED | 180.3 | OX | | N1 | GOOD | Feb-13 | 0.47 | 2.783 | VADOSE | RED | -54.2 | RED | | | | Feb-14 | 1.83 | 2.2 | VADOSE | RED | -45.6 | RED | | | | Feb-15 | 0.07 | 2 | VADOSE | RED | - | - | | | | Nov-07 | 0.07 | 2.2 | VADOSE | RED | -191.85 | RED | | | | Feb-11 | 2.37 | 0 | VADOSE | RED | -20.2 | RED | | | | Feb-12 | 1.13 | 0 | VADOSE | RED | 182.8 | OX | | 0 | POOR | Feb-13 | 0.73 | 0 | VADOSE | RED | -78 | RED | | | | Feb-14 | 1.56 | 0 | VADOSE | RED | 30.75 | OX | | | | Feb-15 | - | 0 | VADOSE | RED | -385 | RED | | | | Nov-07 | 0.00 | 0 | UNSATURATED | OX | -195.95 | RED | | | MEDIUM | Feb-11 | 0.82 | 0.007 | UNSATURATED | OX | 58.55 | OX | | | | Feb-12 | 0.84 | 0.007 | UNSATURATED | OX | 148.45 | OX | | P | | Feb-12 | 0.69 | 0 | UNSATURATED | OX | -80.9 | RED | | | | Feb-14 | 1.94 | 0 | UNSATURATED | OX | -110.15 | RED | | | | Feb-14 | 0.94 | 0 | UNSATURATED | OX | -380 | RED | | | | Nov-07 | 0.51 | 0 | UNSATURATED | OX | -140.05 | RED | | | | Feb-11 | 1.14 | 0 | UNSATURATED | OX | -140.05 | RED | | | | Feb-12 | 2.1 | 0 | UNSATURATED | OX | 168.85 | OX | | Q | NULL | Feb-12 | 0.76 | 0 | UNSATURATED | OX | -53 | RED | | | | Feb-14 | 2.13 | 0.0056 | UNSATURATED | OX | -42.45 | RED | | | | Feb-14 | 2.10 | 0.0030 | UNSATURATED | OX | -387.9 | RED | | | | Nov-07 | 0.00 | 0 | UNSATURATED | OX | -89.7 | RED | | | | Feb-11 | 0.00 | 0.017 | UNSATURATED | OX | 117 | OX | | | | Feb-12 | 1.27 | 0.017 | UNSATURATED | OX | 165.55 | OX | | S | NULL | Feb-12 | 0.88 | 0.005 | VADOSE | OX | -79.95 | RED | | | | Feb-13 | 2.14 | 0.011 | VADOSE | OX | -79.95
-26.7 | RED | | | | | | · · | UNSATURATED | OX | | | | | | Feb-15 | - | 0.00 | UNSATURATED | UX | - | - | | Location | Observed
Baseline
Preservation
Conditions | Date | Dissolved
Oxygen
(mg/l) | Dissolved
Methane
(mg/l) | Saturation
Conditions of
archaeological
deposit
(hydrographs) | Geochemical
Conditions
from annual
laboratory
analysis | Eh Difference
from Iron
Boundary (mV) | Redox
Environment | |----------|--|--------|-------------------------------|--------------------------------|---|--|---|----------------------| | | | Nov-07 | 0.04 | 3 | UNSATURATED | RED | -220.65 | RED | | | | Feb-11 | 0.9 | 2.97 | UNSATURATED | RED | 123.9 | OX | | т . | POOR | Feb-12 | 1.38 | 2.02 | UNSATURATED | RED | 189.15 | OX | | ' | | Feb-13 | 1.4 | 0 | UNSATURATED | RED | -61.95 | RED | | | | Feb-14 | 4.95 | 0 | UNSATURATED | RED | -15.65 | RED | | | | Feb-15 | - | 0.00 | UNSATURATED | RED | - | - | | | | Nov-07 | 0.00 | 0 | VADOSE | RED | -222.9 | RED | | | | Feb-11 | 1.23 | 0.094 | VADOSE | RED | -198.7 | RED | | v | MEDIUM | Feb-12 | 1.42 | 0.026 | VADOSE | RED | 198.7 | OX | | V | WIEDIOW | Feb-13 | 0.68 | 0.006 | VADOSE | RED | -160.2 | RED | | | | Feb-14 | 2.78 | 0 | VADOSE | RED | -87 | RED | | | | Feb-15 | - | 0 | VADOSE | RED | -492.8 | RED | # 6.3.1 Table 2: Criteria for data collection and processing The observed baseline preservation conditions have been taken from the description of the cores, which applied the Norwegian Standard for characterizing deposits²⁴. The dissolved oxygen and redox measurements were taken using a peristaltic pump discharging through a flow cell connected to a YSI 556™ digital water quality meter during the annual sampling round. The redox measurements were then corrected to standard hydrogen electrode (SHE) reference values and then comparing the results against the iron oxidation and reduction boundary (which varies depending on pH values) to determine if the conditions were oxidising or reducing. The saturation conditions were determined by the location of the water table in relation to the archaeological deposits. The archaeological deposits were considered to be saturated or unsaturated if the groundwater was located above or below these deposits (see Appendix C hydrographs). If the water table was recorded within the archaeological deposits the location was considered to be located within the vadose zone. These archaeological deposits include the non-carbonised organic category as well as deposits that were of archaeological origin but did not have evidence for organic remains within the cores extracted. The archaeological deposits do not generally include the uppermost level, which is categorized as made ground. The groundwater samples collected during the annual sampling round were analysed for dissolved methane concentrations by an accredited laboratory (Jones Environmental Forensics of Deeside), and the laboratory results are summarised in Appendix D. The assessment of the geochemical conditions was completed by reviewing the overall suite of geochemical parameters indicative of aerobic and anaerobic processes (also shown in Appendix D). _ ²⁴ Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual.* Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits ### 6.3.2 Table 2: general comments on results of analysis The table shows very interesting results and has been sub-divided into saturated, vadose and unsaturated conditions based on the water level in relation to archaeological deposits. This sub-division is crude because in some instances the organic remains have been found as a particular horizon within the more general description of archaeological deposits, either entirely below the water level, or occasionally above it, but the attribution of whether it is saturated depends on how the water level relates to the compete archaeological sequence. The final two columns show a surprising divergence between results from geochemical proxy indicators taken from samples processed in the laboratory, with the redox readings taken from water *in situ*. The geochemical results suggest more oxidising conditions in many instances, than the redox measurements indicate. The left hand column shows the contrast with how each deposit was described following visual inspection and baseline description when the original cores were extracted. # 6.3.3 Table 2: comparison between baseline and monitoring results Predominantly reducing conditions were recorded over the monitoring period in ten of the groundwater monitoring wells that were fully saturated or located within the vadose zone. Dissolved oxygen and methane concentrations indicate that the most reducing conditions were recorded within the archaeological deposits at locations N, V and AF, and the baseline preservation conditions were all medium or good in these areas. Archaeological deposits with oxidising conditions were detected at locations AB and M, and this is consistent with the baseline lousy preservation conditions recorded from the cores. The groundwater parameter results indicate that archaeological deposits were consistently unsaturated in only three (P, Q and T) out of the seventeen groundwater monitoring wells. Due to the lack of water in the archaeological deposit, this prevents a direct comparison to the baseline conditions from the groundwater preservation parameters at these locations. The unsaturated archaeological deposits in T and vadose archaeological deposits in AC, AF and O recorded poor preservation conditions at baseline, and although the unsaturated deposits at location P recorded medium preservation conditions at baseline, they also exhibited signs of active decay. In summary the dissolved oxygen, dissolved methane, saturation condition and geochemical results were generally consistent with the observed baseline preservation conditions. The redox measurements from the
groundwater quality meter, however, showed a significant amount of fluctuation and the results did not necessarily correlate with the other recorded preservation parameters. Comparison between the baseline data with the monitoring results recorded between 2011 and 2015 indicate that overall conditions have remained generally consistent, although closer analysis of the dissolved oxygen and methane could suggest that there is a trend for slightly increasing levels of oxidation over the five year monitoring period. This is particularly evident in areas with good preservation (N/N1, AE and AF) where dissolved methane concentrations are declining. The apparent trend from the dissolved oxygen, however, is suspect because there are substantially elevated levels recorded for February 2014, which appear inconsistent with previous values and with comparative data. This could reflect a faulty probe used during the data collection round. February 2015 measurements were so erratic that have been removed from Table 2, and it is possible that the apparent drop in eH values during that same data capture round, could be due to an error in the pH probe, which would affect the relationship between the mV measured to the reducing/oxidising iron boundary. Further analysis of the dissolved methane strongly suggests a causal link between elevated measurements and ingress of rain water during the period of abnormally high rainfall between 2012 and 2013. This is not consistent throughout all locations, but could be significant at AB, AC, AE, AF, F2, and T. This trend is also reflected within the seasonal fluctuations, with increased concentrations of dissolved oxygen recorded following the infiltration of oxygen from effective rainfall in winter periods 2012-13 and 2013-14 (See **Figure 9**). Seasonal variations were less evident in the pH and conductivity groundwater data. At the multilevel locations the average value of dissolved oxygen throughout the monitoring period at Church Lane were 2.49mg/l for F1 (targeted to archaeological deposit) and 1.48mg/l for F2, whilst the average value at Snow Hill was 1mg/l at N1 (targeted to archaeological deposit) and 1.4mg/l at N. At F1 the relatively high level of dissolved oxygen could have been caused by the proximity of the dipwell to the car park drainage system c.2-3m to the north, suggesting a direct hydrological relationship between the deposit and rainfall events. At location N1 the archaeological deposit has a reduced amount of dissolved oxygen compared to the adjacent deeper dipwell which includes the underlying groundwater, and thus suggests the lower oxygen concentrations would be more conducive to the preservation of non-carbonised organic remains in the archaeological deposit. Figure 9 Seasonal Variations in Dissolved Oxygen # 6.4 Comparison of data from multilevel dipwell installations Multilevel dipwell installations were installed at locations F1, N1 and P1 to specifically target the cultural horizons (archaeological deposit) and assess the differences between these targeted zones with the more general results from the adjacent dipwells (F2, N and P) that were screened to include both the archaeological deposits and the underlying geological strata. However, there are no groundwater data available for comparison from P1 as the groundwater level remained below the base of the archaeological deposit throughout the monitoring period. The groundwater monitoring data from the water quality meter show that there is a direct correlation in redox and pH values in the multilevel monitoring wells at both locations F1/F2 and N/N1 (Appendix C). This is also generally the case for conductivity values, although location N generally shows an increase in conductivity values when groundwater is drawn in from the deeper deposits with higher salinity contents, in contrast to the values recorded in N1. The gas data from location P (See **Figure 10** below) show that dipwell P1 generally recorded higher concentrations of CO_2 and depleted levels of oxygen compared to dipwell P. As indications of active decay were observed in the archaeological deposits at location P it is possible that increased levels of CO_2 may be caused by the breakdown of organic deposits in this area. This trend is also present at location F1/F2 although it is less evident at location N/N1. The dissolved oxygen (DO) concentrations in monitoring well F1 are typically higher than the deeper well at location F2 and this may be due to the increased influence of oxygenated runoff from the nearby car park drainage system in this area, which is also evident in the water level and temperature data from the transducer. This trend is not replicated at location N/N1 where the DO concentrations are generally consistent in both wells. Figure 10 Carbon Dioxide Concentrations at Locations P and P1 ## 6.5 Groundwater Temperature The data loggers installed in borehole locations AB, AE, AF, F1, N1 and P were also set to record groundwater temperature on a daily basis, and these results are shown in **Figure 11** below: Figure 11 Groundwater Temperature Fluctuations As expected, the groundwater temperature shows a strong correlation with seasonal fluctuation, generally reaching a maximum during October and a minimum in April. The total span for recorded groundwater temperature over all locations showed they remained in a temperate range of 6.6 to 16.3° C. Groundwater temperature can have a significant impact on the speed of oxidisation and reduction processes, but although temperature rise accelerates the potential rate of decay for both microbial and chemical reactions, with a 2-3 fold increase for a rise of 10° C²⁵, such a range only appears to effect dipwell F1 at Nantwich, as most other dipwells recorded temperature change of half this range. The data from locations AB, AE, AF and P show very consistent seasonal trends, with temperature fluctuation of approximately 3 - 4°C. This would suggest that these locations are generally influenced by natural groundwater flow. However, the results from F1 do not seem to follow the same natural cycle. Although a strong seasonal fluctuation is still present, they exhibit a wider range of temperature fluctuation (up to 9.7°C in F1), they reach their seasonal minimums and maximums up to 2 months before the other locations and generally exhibit more erratic temperature trends. This suggests that preferential drainage pathways ²⁵ Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen* Riksantikvaren, p.82-3 have a significant impact on groundwater within this area, which is located in close proximity to car park drainage infrastructure. # 6.6 Duration of monitoring project The initial Phase 2 project design was for a three year programme of monitoring due to budgetary constraints within English Heritage. A variation was agreed in 2013 to extend the monitoring for a further two years, due to the exceptionally variable amounts of rainfall that had occurred in 2012 which risked skewing the data if not balanced against a longer monitoring period than just three years. The results from the monitoring programme demonstrate the validity of a longer duration, as shown in **Figure 12** which compares the total annual rainfall recorded between 2011 and 2015. Figure 12 Graph showing total annual rainfall in Nantwich between 2011 and 2015 Figure 12 shows that the annual rainfall in 2012 was approximately 35% higher than the average rainfall recorded during the five year monitoring period (469mm per year). The average rainfall for the first three years (2011 – 2013 inclusive) was 494mm per year, whereas for the following two year extension (2014 – 2015 inclusive) it was 430mm per year, so it was approximately 14% higher during the initial period. Extending the initial monitoring period by 2 years allows greater confidence to be placed on the impact of oxygenated rainfall on the other data-sets during the monitoring period by reducing the effect of the exceptional rainfall recorded in 2012 on the average data. For example, analysis of dissolved methane (Table 2) shows that the majority of elevated levels were detected during the period effected by higher rainfall. The disparity in results that would have occurred with only three years of data is also shown clearly when groundwater level is plotted for specific dipwells. In **Figure 13** for example, dipwell F1 shows a rapid rise in groundwater level as a response to the exceptionally high level of rainfall in 2012, whereas the level drops again over the succeeding years, which better represents the average conditions. Location F is probably more responsive than most dipwells to rainfall events, as in common with other locations in car parks, it appears as though the run-off and drainage from such zones directly affect the groundwater level in those dipwells in the immediate vicinity. Figure 13 Groundwater levels at location F1 over five years # 6.7 Additional studies: redox measuring techniques and soil moisture #### 6.7.1 Measuring redox (Historic England Project 6524). Additional redox monitoring was carried out by inserting two types of in situ probes into the deposits adjacent to Boreholes N and N1, and collecting readings over a twelve month period from July 2012 to June 2013. The probes were one rigid resin rod, with two platinum rings collecting readings at c. 1.0 m and 1.5 m below ground surface and three platinum-tipped heavy gauge copper wires also inserted to 1.5m below ground surface. Manual readings from the copper probes were collected on a monthly basis using a WTW pH3110[™] meter with a Silver Chloride reference electrode, whilst the resin- made probe was connected to a Hypnos III[™] datalogger collecting readings at hourly intervals. Another silver chloride
reference electrode connected to the data logger was permanently installed in the ground to complete the circuit with the resin probe. A monthly measuring programme was initiated to take readings from the copper probes, download data from the Hypnos datalogger as well as recording groundwater redox values with the YSI ORP probe using four sampling techniques on groundwater samples from the dipwell at N1 thus: - Pre-purge in situ - Low-Flow sample - · Bailer sample - Post-purge in situ The Eh/pH stability plot (**Figure 14**) for these groundwater sampling techniques indicates that throughout the twelve month period groundwater redox values can be described as reducing in character, and mainly neutral to slightly alkaline, with two outliers (a bailed and low flow sample) located above the iron boundary suggesting oxidising conditions, and two further samples (pre-and post-purge samples) reducing and slightly acidic. Figure 14 Eh/pH stability plot at dipwell N, N1 When comparing the annual linear trend for all groundwater sampling methods (**Figure 15**, redox values calibrated to SHE), the broad trend is predominantly moderately reducing conditions, with episodes of more oxidising conditions, followed by slow recovery to a more reducing environment. The highest values were recorded following a period of high rainfall during May 2013, with two samples (from bailing as well as low flow) measuring above 750mV, calibrated to SHE. Figure 15 Comparison of groundwater sampling methods at dipwell N1 The lowest values throughout the year were observed from *in situ* groundwater standing in the dipwell N1 prior to sampling where initially conditions were reducing (less than -100mV), although throughout the twelve months conditions became less reducing as a result of higher rainfall during 2012. A large peak recorded at the end of May 2013 when conditions became highly oxidising coincided with a period of high rainfall during that month. The highest values were recorded from bailed samples, effectively proving that the physical action of bailing introduces oxygen into the sample. Readings taken from groundwater refilling the dipwell following bailing out were also high as the water becomes oxygenated from the air contained in the empty dipwell. This phenomena has been observed before (Caple and Dungworth, 1998, p.28²⁶) who stated that "This demonstrates that the condition of 'fresh' groundwater in purged dipwells is not representative of that found in situ in archaeological burial environments." It is also of interest that the low flow-through cell readings were also higher than the prepurged groundwater. Because of problems inherent in measuring redox from groundwater samples, two types of *in situ* probe were tested during the field trials to identify their potential for redox studies - three copper/platinum probes, and one resin/platinum probe. - ²⁶ Caple, C. & Dungworth, D. 1998 Waterlogged Anoxic Archaeological Burial Environments Unpublished Ancient Monuments Laboratory Report 22/98. Historic Buildings and Monuments Commission, London. Figure 16 Comparison of redox probe results from location N, N1 **Figure 16** shows the linear trend for the three copper/platinum probes during the twelve month field trial, where two probes (P436 and P437) indicated conditions were becoming oxidising whilst the third (P438) suggests that the deposits are in a highly reducing condition. The results are not entirely unexpected as although the cluster of three probes were installed all to the same depth, the installation was not without its problems, due to the pliant nature of the copper used to make the probes and the presence of below ground obstructions that affected the installation process. Other workers in the field have experienced similar problems and have resorted to installing clusters of five probes or more, and either averaging the readings or ignoring single outliers as anomalies. The results from the resin/platinum probe (**Figure 17**) indicate highly reducing conditions were re-established approximately 26 days after the probe had been installed, and continued until the datalogger was flooded with groundwater ten days later, when it ceased to function. Figure 17 Results for resin/platinum probe from location N, N1 However, periodic manual reading using a millivolt meter indicate that reducing conditions continue to be maintained particularly at 1.5m depth below ground surface. Conditions at 1.0m depth were mainly reducing (Table 3) apart from on two occasions when the readings imply an oxidising environment (23rd March 2013 and 27th June 2013), although there appears to be no correlation between excess rainfall on the two dates. Table 3 Calibrated redox values at Location N, N1 | DATE | Calibrated Eh values | (mV) | |------------|----------------------|----------| | DATE | 1.0m bgs | 1.5m bgs | | 26/02/2013 | -217.2 | -172.6 | | 22/03/2013 | -138.9 | -190.3 | | 23/04/2013 | 567.4 | -177.3 | | 31/05/2013 | -201.8 | -182.3 | | 27/06/2013 | 559.8 | -129.6 | ### 6.7.2 Measuring soil moisture (Historic England Project 6524) The volumetric soil moisture content of the below ground deposits at monitoring point N and N1 were measured using Time Domain Reflectometry (TDR) during field trials conducted between March 2013 and March 2014. TDR technology involves measuring the reflectance time for an electromagnetic pulse travelling through a soil or sediment, which is determined by the dielectric properties of the soil which in turn is influenced by the soil moisture content. For the purpose of this study, two TDR devices were evaluated: a Trime™-Pico 64/160mm probe (**Figure 18a**) which was inserted into deposits circa 1.0m below the ground surface, and a Pico T3P™ Profile Probe which was permanently installed into a dry access tube to record soil moistures at specific depths, thereby recording moisture through a vertical profile (Figure 18b) Figure 18 a) Trime Pico 64/160mm probe; b) Pico T3P Profile Probe The TRIME-PICO unit (reference 34687) was installed at a depth of circa 1.0 m below ground level to record volumetric moisture content in the capillary fringe zone at a single location. The hand auger was used to core through the upper deposits, and then the TDR unit was hand pushed into the deposit to ensure close contact between the wave guides and the soil. A bentonite seal was formed around the top of the TRIME-PICO unit to prevent surface water ingress. The unit was then hard-wired to the datalogger. The datalogger was set to capture moisture contents once every 12 hours, and the measuring system was set to operate with a universal calibration for mineral soils (where clay content >50%, organic content >10%, bulk density <1.1kg/dm3 or >1.7kg/dm3) which is pre-programmed into the datalogger. Initially both devices worked well capturing soil moisture data which was transmitted via the datalogger at daily intervals. However, between 13/07/13 and 20/07/13 no data were transmitted from the PICO profile probe sensors. Data were then captured and transmitted from the two uppermost sensors (between 0.95m - 1.06m bgl and 1.20 -1.31 m bgl) until 24/07/13 when no data was captured or transmitted. A fault with the data logger was ruled out as data were being captured and transmitted from the TRIME-PICO 64 unit. A site visit was made on the 8th August 2013 where it was discovered that the access tube was filled with water. The probe unit was removed, dried and electrical contacts cleaned, and attempts were made to bail out the water and insert a new bung to seal the base of the access tube. This proved unsuccessful and as it was impossible to prevent further groundwater ingress into the access tube, this element of the trial was abandoned. The single point TRIME-PICO 64 unit performed well though, and continued to operate throughout the 12 month period. Soil moisture values from the TRIME-PICO 64 unit have been plotted alongside rainfall events during the year (**Figure 19**) showing a slight reduction in soil moisture content (below 43%) during the summer months followed by a gradual increase during the winter months (peaking at over 46%). There is also a broad correlation between increased rainfall events and increased soil moisture (albeit with a slight time lag before the impacts are detected), implying that deposits circa 1.0m bgl are influenced by rainfall and downward surface water percolation. Figure 19 Soil moisture readings against rainfall from location N, N1 Before ceasing to function, the data (**Figure 20**) provided by the PICO T3P sensor units demonstrate increasing soil moisture content with increasing depth, with fully saturated conditions (100% soil moisture content) observed in the zone at between 1.70 and 1.81 m bgl. Within the zone between 1.45 to 1.56m bgl, the soil moisture content is around 60%, and around 50% in the zone between 1.20 to 1.31m bgl.²⁷ $^{^{27}}$ Organic remains were found in BH N from 1.13m – 1.80m bgl, although more abundant and better preserved organic content occurs from 1.88 – 2.85m bgl. A layer of greyish-blue clayey-silt with possible vivianite occurs from 1.80 – 1.88m bgl. Water levels were 1.54m bgl at baseline and in general fluctuated seasonally between c.1.0 – 1.5m bgl over the duration of the monitoring period. One anomaly appears to be data from the zone between 0.95 and 1.06m bgl where soil moisture contents from the profile sensor were between 79% and 95%, which are at variance with data from the TRIME-PICO unit, where soil moisture contents ranged between 43 and 45%. This disparity is likely to be due to the access tube acting as a conduit for surface water ingress, especially if the bentonite seal was of insufficient thickness, thereby creating the false impression of higher than actual soil moisture contents. Voids around the access tube will also produce anomalous results as such pockets can fill with surface water and give the impression of highly saturated conditions.
This reinforces the requirement to ensure that the TDR access tubes are in as close contact with the soil as is possible, for without that intimate contact, erroneous results will occur. Figure 20 Increasing soil moisture with depth bgl at location N, N1 # 7.0 OBJECTIVE 3: CHARACTERIZATION OF THE GEOLOGY, HYDROGEOLOGY & HYDROLOGY EFFECTING NANTWICH'S WATERLOGGED DEPOSITS # 7.1 Geology of Nantwich The British Geological Survey (BGS) indicates that Nantwich is underlain by superficial (drift) deposits consisting of Alluvium, River Terrace Deposits, Glacial Till and undifferentiated Glaciofluvial Deposits. The superficial deposits are underlain by solid geological strata of the Mercian Mudstone Wilkesley Halite Formation. The ground conditions encountered during the investigations completed in 2007 and 2011 were generally as anticipated from the desk study (SLR July 2007), with natural superficial strata of Alluvium, River Terrace Deposits and Glacial Till overlain by made ground in the developed areas. Archaeological deposits were widespread throughout the study area, with layers of waterlogged organic deposits clearly defined within the shallow sequence. The mudstone bedrock of the Wilkesley Halite Formation was not encountered in any of the boreholes during the intrusive investigations. This indicates that the superficial deposits are generally in excess of 4m thick within the study area. The ground conditions are described in detail in the borehole logs shown in Appendix A, and a summary of the superficial strata is provided in the section below. # 7.2 Overview of Stratigraphy The borehole logs in Appendix A show that a diverse range of superficial strata were encountered during the shallow soil investigations, although there were sufficient similarities to enable the deposits to be classified into five broad categories, and the borehole logs showing the categories are presented in Appendix B. These categories enabled comparisons to be made between the various borehole locations and provided a basis for cross sections to be constructed throughout the study area. The five categories for the superficial deposits are summarised below: - Made ground - Archaeological deposits - Non-carbonised organic-rich deposits - Mineral-rich deposits - Fluvio-glacial deposits #### Made Ground A variable thickness of made ground was encountered beneath the developed areas of the town, with typical thicknesses of between 0.2m and 2m recorded. The made ground comprised a variety of naturally sourced soils and sediments (clays, silts, sands and gravels) containing fragments of man-made materials including brick, masonry, ceramics, glass, ash/clinker and wood fragments etc. #### Waterlogged Deposits The archaeological deposits encountered were typically described as moist/wet dark grey or dark brown organic silts. They were divided into two categories: - Archaeological deposits consisting of silts, clays and sands, black light grey in colour, which contained evidence of human activity such as ash, charcoal, pottery, bone, and: - Non-carbonised organic-rich deposits which included plant-microfossils, wood, leather, plant debris and sulphide odours. #### Mineral-rich Deposits and Alluvium Alluvial deposits were typically found in association with the archaeological and organic deposits, between the made ground and glacio-fluvial deposits, in the boreholes drilled close to the river. The Alluvium encountered consisted of cohesive deposits typically comprising occasionally organic clayey silts and sandy silty clays, but did not contain archaeological material, and were therefore designated as mineral-rich deposits. Some boreholes also contained mineral-rich deposits that were not deposited by natural fluvio-glacial processes, and these sediments did not contain organic or archaeological material either. It was assumed that these were re-worked natural deposits, as they were frequently encountered overlying archaeological deposits (e.g. BH U at the churchyard, perhaps due to grave-digging). #### Fluvio-glacial Deposits - The River Terrace Deposits were generally encountered beneath the Alluvium in the vicinity of the river, at elevations below approximately 30m aOD, gradually rising to 38m to 39m aOD beneath the higher ground with distance away from the river. These deposits consisted of predominantly granular materials typically described as slightly clayey sands with occasional gravels. - The Glacial Till was the deepest strata encountered beneath Nantwich. This consisted of a cohesive stratum typically described as very stiff brown clay, occasionally sandy and with occasional gravel. # 7.3 Hydrogeology The regional geology is dominated by the Mercia Mudstone Group, which is generally considered to comprise a non-aquifer. The Wilkesley Halite formation that underlies Nantwich, is a thick saliferous, basinal deposit, that occurs within the Mercian Mudstone of the Cheshire Basin. Groundwater movement within the Halite may occur along fractures, bedding planes and dissolution features. However, due to the limited quantity of groundwater within the formation, and its poor brackish quality, this unit is also considered an unproductive aquifer. The low permeability of the bedrock means that the top of the Wilkesley Halite effectively acts as an aquiclude, with shallow groundwater perched within the superficial fluvio-glacial and alluvial deposits above. This means that the sands and gravels of the River Terrace Deposits form the most significant aquifer beneath Nantwich, although lenses of perched water are also present at even shallower depth within more permeable horizons of the alluvium and made ground. Although groundwater may also be present in the more permeable horizons of glacial sands and gravels within the Glacial Till, the glacial deposits encountered within the boreholes were generally more cohesive in nature with high clay content. Therefore, the Glacial Till is more likely to be unproductive in nature and act as a low permeability aquitard for the more granular deposits above. The lenses of perched water within the made ground and alluvium may exist as isolated pockets or, where permeable deposits are extensive, or hydraulic continuity exists within the River Terrace Deposits, allow some lateral flow of groundwater towards the River Weaver. However, the higher permeability River Terrace Deposits associated with the River Weaver provide preferential flow pathways that control the local hydraulic gradients beneath Nantwich, with groundwater flowing in the general direction of the River Weaver and its northward drainage. The historical drainage systems within Nantwich also appear to exploit the natural flow pathways by culverting small and ephemeral streams, enhancing the preferential flow pathways that were already present (see **Figure 22**). # 7.4 Hydrology The principal surface water feature in the vicinity of the study area is the River Weaver and its broad shallow river valley. The Weaver flows northward through the town, with a number of small tributaries draining the slightly higher ground to the west and east, to join the River Weaver at Nantwich. Cheney Brook flows north westward across the eastern valley side joining the River Weaver north of the town. The River Weaver bisects the town of Nantwich, and the Environment Agency's web-based Flood Map indicates that the extent of the flood plain associated with the River Weaver is limited to a stretch approximately 100m in width. The Shropshire Union Canal also runs approximately parallel to the River Weaver, marking the western extent of the town. It is likely that some leakage of surface water from the canal occurs, and makes some contribution to groundwater flow within the superficial deposits and therefore to surface water springs/issues. Numerous springs, sinks and issues are observed, particularly on the western side of the River Valley. These may reflect the presence of dissolution features in the underlying Halite formation, and the variable permeability of the overlying drift deposits. #### 7.5 Groundwater Monitoring Data The results of the final round of groundwater level monitoring completed in December 2015 are tabulated below, and the results from the previous rounds of monitoring are contained in Appendix C. Permeability and preferential flow paths The permeability test results are shown in the third column of Table 4. The type of sediment in which the water strike occurred and enabled permeability testing is listed in the second column. The average depth to the groundwater level within the anthropogenic deposits was approximately 1.9m below ground level, with evidence from the west side of the river showing groundwater depth increasing towards the River Weaver (2.79m in borehole AF). Deeper groundwater levels were detected in those dipwells located within deposits that contained a high percentage of granular material, reaching a maximum depth of 3.23m below ground level in dipwell S within the free draining sand deposits located around St Mary's Church (See **Figures 21 and 22** below). The figure shows the preferential flow pathways which helps to explain why groundwater depth is deeper for dipwells P, S, and T, as the sandier matrix probably derives from a natural drainage channel in this zone. Table 4 Groundwater Level Monitoring Data | Dipwell No | Predominant Strata
Type at watertable | Permeability
(m/day) | Surface elevation
(m OD) | Depth to
groundwater
(m) | Water elevation
(m OD) | |------------|--|-------------------------|-----------------------------|--------------------------------|---------------------------| | AB | SILT & SAND | 0.5 | 37.93 | 1.93 | 36.00 | | AC | Clayey SAND | 0.1 | 36.42 | 2.50 | 33.92 | | AE | Very sandy SILT | 0.3 | 35.19 | 2.56 | 32.63 | | AF | Sandy SILT | 0.2 | 34.89 | 2.79 | 32.10 | | AG | CLAY | 0.01 | 37.03 | Destroyed | - | | F1 | Sandy SILT & CLAY | - |
39.69 | 1.42 | 38.27 | | F2 | Sandy SILT & CLAY | 0.1 | 39.69 | 1.58 | 38.12 | | L | SAND | 2 | 38.71 | 2.10 | 36.61 | | M | SAND | 3 | 37.81 | 1.42 | 36.40 | | N | SILT & CLAY | 0.02 | 39.17 | 1.42 | 37.74 | | N1 | SILT & CLAY | - | 39.16 | 1.49 | 37.67 | | 0 | CLAY | 0.001 | 39.64 | 1.33 | 38.31 | | P | SAND | 2 | 39.93 | 3.19 | 36.74 | | Q | Silty SAND | 0.7 | 39.22 | 1.68 | 37.54 | | S | SAND | 3 | 39.77 | 3.23 | 36.55 | | Т | SAND | 6 | 39.50 | 3.04 | 36.45 | | V | Slightly clayey SAND | 4 | 39.39 | 1.85 | 37.54 | Depths are below ground measurements made relative to ordnance datum. See borehole logs in Appendix A for detailed data **Figure 21** shows the maximum and minimum groundwater elevations plotted against ten borehole logs from the key borehole locations. This suggests that the Phase 1 conclusions were accurate in suggesting that the saturation of shallow sands overlying boulder clay is a contributing factor to the waterlogging of deposits, whereas areas with deeper sand deposition contribute to rapid drainage. Although the direction of groundwater flow is generally towards the River Weaver, the results from the groundwater monitoring indicate that the higher permeability deposits appear to have a significant influence on local flow direction. This is particularly evident in the area around St Mary's Church where the sand and gravel deposits associated with a former tributary of the River Weaver seem to be acting as a preferential flow pathway (See **Figure 23** below). Figure 21 Groundwater elevations plotted against borehole logs Figure 22 Hydrological Map of Nantwich with Groundwater Flow Contours In order to assess the relationship between permeability and fluctuations in groundwater level following periods of rainfall, additional data logging transducers were installed into BH O and BH T. The results of this comparison are shown in **Figure 23** below. Figure 23 Comparison between Groundwater Fluctuation and Permeability The results indicate that the groundwater fluctuations observed in BH T are similar to those observed in BH P, and the behaviour of BH O was most similar to BH AB. However, neither BH T nor BH O exhibited the high levels of fluctuation observed in boreholes F1, N1, AE or AF. Consequently there does not appear to be a direct relationship between permeability and groundwater fluctuation as the trend observed in BH O does not match the fluctuations observed in other low permeability locations. However, it is possible that the groundwater fluctuations may be influenced by preferential drainage routes and surface runoff as F1, N1, AE or AF are all located in car parks or hard surfaced areas, whereas O, P, T and AB are all located on or close to areas without hard surfacing. For example drainage within the car parks may be via soakaways, or leakage could occur around the drains contributing to sudden pulses from the surface run-off. # 8.0 C14 RESULTS AND THE EARLY MEDIEVAL INCEPTION OF ANTHROPOGENIC DEPOSITS # 8.1 Results of radiocarbon dating The radiocarbon results for the samples submitted during all phases of the project (Phase 1 2007, Phase 2 in 2012, and 2015) are shown in Table 5 below. The table also presents the depth below ground surface and sedimentary context from which they derived, and the type of material used for dating. The following sections include a discussion on the reliability of the results by year of submission, and a general discussion over the implications of the dates for the onset of waterlogged deposits and preservation of organic remains. Table 5 Radiocarbon samples and age determinations | Laboratory
number | Sample
reference and
depth in core | Sediment description | Material
dated | δ ¹³ C
(‰) | Radiocarbon
age (BP) | Calendar
date
(95%
confidence) | |----------------------|--|---|---|--------------------------|-------------------------|---| | | | Borehole F (Church Lan | e) | | | | | OxA-18722 | Spot sample 3,
0.76–0.82m | Moist, very dark grey-brown to black,
crumbly to unconsolidated (working soft),
humic, very slightly sandy slightly clayey
SILT Wood frags, sulphide odour | <i>Ulmus</i> sp. sapwood | -24.6 | 150 ±23 | cal AD
1660–1950 | | SUERC-
18781 | 076100F06,
0.76–1.00m | Moist, very dark grey-brown to black,
crumbly to unconsolidated (working soft),
humic, very slightly sandy slightly clayey
SILT. Wood frags, sulphide odour | hazel nutshell | -25.7 | 775 ±30 | cal AD
1210–1290 | | OxA-18683 | 100125F05,
1.00–1.25m | Moist, very dark grey-brown to black,
crumbly to unconsolidated (working soft),
humic, very slightly sandy slightly clayey
SILT. Wood frags, sulphide odour | ably to unconsolidated (working soft),
ic, very slightly sandy slightly clayey | | 946 ±20 | cal AD
1020–1160 | | SUERC-
18780 | 125150F04,
1.25–1.50m | Moist, very dark grey-brown to black,
crumbly to unconsolidated (working soft),
humic, very slightly sandy slightly clayey
SILT. Wood frags, sulphide odour | sloe stone | -27.1 | 970 ±30 | cal AD
1010–1160 | | OxA-18721 | 150186F03,
1.50–1.86m | Moist, very dark grey-brown to black,
crumbly to unconsolidated (working soft),
humic, very slightly sandy slightly clayey
SILT. Wood frags, sulphide odour | hazel nutshell | -24.3 | 966 ±23 | cal AD
1010–1160 | | | | Borehole N (Snow Hill |) | | | | | OxA-18684 | Spot sample
6A, 2.00–
2.05m | Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus, large wood fragments and also twigs throughout. Overpowering sulphide odour | Salix sp.
wood | -24.8 | 1068 ±23 | cal AD 890–
1020 | | SUERC-
18782 | Spot sample
6B, 2.00–
2.05m | Wet, dark brown, soft, very organic SILT, with a pale blueish-grey clay inclusion. Abundant waterlogged herbaceous detritus, large wood fragments and also twigs throughout. Overpowering sulphide odour | Corylus sp. wood | -27.2 | 1130 ±30 | cal AD 780–
990 | | SUERC-
18783 | Spot sample 8, 2.23–2.33m | Wet, dark brown, soft, very organic SILT,
with a pale blueish-grey clay inclusion.
Abundant waterlogged herbaceous detritus, | Alnus sp.
wood | -27.1 | 1215 ±30 | cal AD 690–
890 | | Laboratory
number | Sample
reference and
depth in core | Sediment description | Material
dated | δ ¹³ C
(‰) | Radiocarbon
age (BP) | Calendar
date
(95%
confidence) | |----------------------|--|--|----------------------------|--------------------------|-------------------------|---| | | | large wood fragments and also twigs
throughout. Overpowering sulphide odour | | | | | | OxA-18723 | Spot sample 9,
2.35–2.40m | Wet, dark brown, soft, very organic SILT,
with a pale blueish-grey clay inclusion.
Abundant waterlogged herbaceous detritus,
large wood fragments and also twigs
throughout. Overpowering sulphide odour | Fraxinus sp. roundwood | -28.5 | 1071 ±24 | cal AD 890-
1020 | | OxA-18724 | Spot sample
10A, 2.62–
2.70m | Moist to wet, very dark grey-brown, crumbly
(works soft), slightly silty, clayey SAND.
Large roundwood (?wattle) inclusions. Very
slight sulphide odour | Salix sp.
roundwood | -28.2 | 1192 ±24 | cal AD 730-
940 | | SUERC-
18784 | Spot sample
10B, 2.62–
2.70m | Moist to wet, very dark grey-brown, crumbly
(works soft), slightly silty, clayey SAND.
Large roundwood (?wattle) inclusions | <i>Salix</i> sp. roundwood | -27.1 | 1215 ±30 | cal AD 690-
890 | | | | Borehole P (Pepper Stre | et) | | | | | SUERC-
18786 | 150163P09,
1.50–1.63m | Just moist, mid to dark, slightly purplish-
brown, amorphous organic humified peat.
Fragments of moss stems and leaves',
sedge (Carex) nulets and rootlets. | hazel nutshell | -25.2 | 865 ±30 | cal AD
1040–1260 | | OxA-18726 | 163173P08,
1.63–1.73m | Just moist, dark brown to dark grey-brown, crumbly (working more or less soft), silty very humified amorphous organic PEAT. | hazel nutshell | -20.6 | 840 ±25 | cal AD
1160–1260 | | SUERC-
18785 | 173191P07,
1.73–1.91m | Moist, dark brown to dark grey-brown, crumbly (working soft), slightly clayey SILT with some charcoal upper interface | hazel nutshell | -27.7 | 910 ±30 | cal AD
1030–1210 | | OxA-18725 | 191200P06,
1.91–2.00m | Humified peat collapsed and loose in core tube. | hazelnut shell | -23.3 | 841 ±24 | cal AD
1160–1260 | | | | Borehole AC (Snow Hil | 1) | | | | | SUERC-
64289 | AC-1 | | Methane gas sample | -30.9 | 1138 <u>+</u> 38 | cal AD 770-
970 | | SUERC-
64290 | AC-2 | | Methane gas sample | -42.0 | 1190 <u>+</u> 38 | cal AD 770-
970 | | | Boreho | ole AD (Welsh Row brushwood trackway: in | road fronting 14 | Welsh R | ow) | | | GrN-31797 | Timber 1
2.3m bgl | sandy and organic-rich deposits | Acer
campestre | -29.6 | 945 ±15 | cal AD
1020–1150 | | GrN-31798 | Timber 2
2.3m bgl | sandy and organic-rich deposits | Alnus sp. | -27.8 | 970 ±15 | cal AD
1025–1160 | | | Corduroy i | roadway from gas main inspection pit adjace | ent 33 Welsh Rov | v (SJ 649 | 00 5239) | | | Laboratory
number | Sample
reference and
depth in core | Sediment description | Material
dated | δ ¹³ C
(‰) | Radiocarbon
age (BP) | Calendar
date
(95%
confidence)
AD 1259 –
95 | |
-----------------------------------|--|---|--------------------------|--------------------------|-------------------------------------|--|--| | lan Tyers ²⁸
Dendro | Welsh Row
trackway
0.75m bgl | yellow sand lenses interleaved with organic-rich dark sandy SILT layers. | Oak, 189
rings, 4 sap | | Measured
sequence
1065 - 1253 | | | | | | Borehole AE (Wood Stre | et) | | | | | | SUERC-
39418 | AE 6T - A
3.4 – 4.0m | Very dense dark grey silty fine SAND with rare patches of black staining | hazelnut shell | -26.9 | 1495 <u>+</u> 30 | cal AD 535
640 | | | OxA-26170 | AE 6T – B
3.4 -4.0m | Very dense dark grey silty fine SAND with rare patches of black staining | plant remains -22 | | 1532 <u>+</u> 29 | cal AD 430
605 | | | SUERC-
64291 | AE-1 | | CO2 gas sample | -14.9 | 3780 <u>+</u> 38 | 2280–2040
cal BC | | | SUERC-
64292 | AE-2 | | CO2 gas sample | -12.2 | 3724 <u>+</u> 38 | 2280–2040
cal BC | | | | | Borehole AF (Wood Stre | et) | | | | | | SUERC-
39419 | AF 17/T – A
2.0 – 2.27m | Very soft dark greyish brown sandy organic SILT with occasional patches of black - sulphide staining. | twig -28 | | 890 <u>+</u> 30 | cal AD
1035-1220 | | | OxA-26232 | AF 17/T – B
2.00 – 2.27m | Very soft dark greyish brown sandy organic SILT with occasional patches of black - sulphide staining. | wood twig | -27.2 | 826 <u>+</u> 30 | cal AD
1160-1270 | | | SUERC-
39423 | AF 19/T – A
2.48 – 3.0m | Very soft greyish brown slightly clayey sandy SILT | hazelnut shell | -28.0 | 875 <u>+</u> 30 | cal AD
1045-1225 | | | OxA-26171 | AF 19/T - B
3.4 – 4.0m | Very soft greyish brown slightly clayey sandy SILT | plant remains | -23.3 | 897 <u>+</u> 27 | cal AD
1035-1215 | | #### 8.2 Discussion #### **8.2.1 Phase 1 sampling results 2007** (John Meadows) Each sample consisted of a single-entity short-lived plant macrofossil or timber (Ashmore 1999). The samples from Boreholes F, N, and P were dated by Accelerator Mass Spectrometry (AMS) radiocarbon dating at the Scottish Universities Environmental Research Centre in East Kilbride (SUERC; technical procedures are described by Vandenputte *et al* (1996), Slota *et al* (1987), and Xu *et al* (2004)), or at the Oxford Radiocarbon Accelerator Unit (OxA; laboratory methods are given by Bronk Ramsey *et al* (2002; 2004)). The Welsh Row timbers were dated by Gas Proportional Counting at the Centre for Isotope Research, Groningen University, The Netherlands, following Mook and Streurman (1983). Internal quality assurance procedures at all three laboratories and international inter-comparisons (Scott 2003) indicate no laboratory offsets, and validate the measurement precision quoted. The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using the program OxCal v4.05(Bronk Ramsey 1995; 1998; 2001; 2008) and the IntCal04 data set (Reimer *et al* 2004), and are quoted in the form recommended by Mook (1986), with the ranges rounded outwards by 10 years, or by 5 years where the ²⁸ Tyers, I., 2008 Tree-ring spot-date from an archaeological sample: Welsh Row Gas Main works, Nantwich *Dendrochronological Consultancy Ltd Report 103* (funded by Cheshire County Council) radiocarbon error is less than ±25. The probability distributions shown in the figure below have been calculated using the probability method (Stuiver and Reimer 1993), and the same data. The four results from **Borehole P** are statistically consistent with a single radiocarbon age (T' = 4.1, T'(5%) = 7.8, v = 3; Ward and Wilson 1978), and could thus be of the same calendar date (during the $11^{th} - 12^{th}$ centuries AD). This is what we would expect to find if the organic deposit between 1.50 and 2.00m depth in this core had accumulated very rapidly. The six results from **Borehole N** are not statistically consistent (T' = 35.4, T'(5%) = 11.1, v = 5), and these samples therefore cannot all be of the same date. You can see from the figure that although SUERC-18783 (spot sample 8) appears to be slightly earlier than the underlying OxA-18723 (spot sample 9), there is a general trend for samples from stratigraphically-earlier levels to be older than those from later levels, which we would expect to find if the samples were not intrusive or residual, and if a period of time had elapsed between deposition at 2.70m and 2.00m. **This suggests that the waterlogged deposit in this section of the borehole dates to the late Saxon period**, an impression reinforced by the statistical consistency between results from the two samples at the top of this deposit, 6A and 6B (OxA-18684 and SUERC-18782; T' = 2.7, T'(5%) = 3.8, v = 1), and those at the base of it, 10A and 10B (OxA-18724 and SUERC-18784; T' = 0.4, T'(5%) = 3.8, v = 1). It is difficult to say precisely when sedimentation at these levels took place, or what time span is represented by the waterlogged deposit between 2.00 and 2.70m; **it could be as little as a few decades in the 9th or 10th centuries AD**. The five results from **Borehole F** fail the test of consistency by a wide margin (T' = 872.1, T'(5%) = 9.5 v = 4), but this is due to the post-medieval elm spot sample 3 (OxA-18722) at 0.76–0.82m depth. The four medieval results are still not consistent, however (T' = 31.0, T'(5%) = 7.8, v = 3), and the nutshell at 0.76–1.00m is appreciably more recent than the three samples from lower in the core. Whether the thirteenth-century date of this sample provides more than just a *terminus post quem* for this deposit is worth thinking about, but at any rate the deposit appears to be significantly later than the waterlogged deposit between 1.86 and 1.00m in the core, which may have accumulated rapidly in the **11**th **or 12**th **centuries AD**; the three results here are statistically indistinguishable (T' = 0.6, T'(5\%) = 6.0, v = 2). The two results from **Borehole AD** are statistically consistent with a single radiocarbon age (T' = 1.4, T'(5%) = 3.8, v = 1); Ward and Wilson 1978), and could thus be of the same calendar date – as expected, given that neither timber had a significant intrinsic age and that the two timbers formed part of the same structure. If we assume that this trackway was built of freshly-felled timber, it was built between the **early-mid 11**th **century and the middle of the 12**th **century cal AD**. This is somewhat later than the post-Roman date permitted by the sherds in the underlying deposit, and a century or two earlier than the dendro-dated corduroy trackway nearby. Figure 24 Probability distributions for radiocarbon calibrated date ranges #### 8.2.2 AE and AF 2012 sampling results (Alex Bayliss) The samples were dated by Accelerator Mass Spectrometry (AMS) at the Scottish Universities Environmental Research Centre in East Kilbride (SUERC-) and the Oxford Radiocarbon Laboratory (OxA-) respectively. The samples dated at SUERC were pre-treated using methods outlined in Stenhouse and Baxter (1983), combusted following Vandeputte et al (1996), graphitized as described by Slota et al (1987), and measured by AMS (Xu et al 2004). The samples processed at ORAU were pre-treated using a standard acid/base/acid method followed by an additional bleaching step (Brock et al 2010), combusted, converted to graphite, and dated as described by Bronk Ramsey et al (2004). Internal quality assurance procedures and international inter-comparisons (Scott 2003; Scott et al 2010) indicate no laboratory offsets and validate the measurement precision quoted. The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using the program OxCal v4.1 (Bronk Ramsey 1995; 1998; 2001; 2009) and the IntCal09 data set (Reimer et al 2009). They quoted in the form recommended by Mook (1986), rounded outwards to 5 years. The probability distributions of the calibrated dates, shown below, have been calculated using the probability method (Stuiver and Reimer 1993), and the same data. Each of the pairs of duplicate radiocarbon measurements from the specific heights in the different boreholes are statistically consistent at 95% confidence: Nantwich borehole AE6/T 340-400 (T'=0.8; (T'(5%)=3.8; v =1; Ward and Wilson 1978); Nantwich borehole AF19/T 248-300 (T'=0.3; (T'(5%)=3.8; v =1; Ward and Wilson 1978); Nantwich borehole AF17/T 200-227 (T'=2.3; (T'(5%)=3.8; v =1; Ward and Wilson 1978). The dated duplicate samples from each bore hole could therefore represent material of the same actual age, for Borehole AE 5th to 6th centuries AD, and for Borehole AF 11th to 13th centuries AD. Figure 25 calibration of radiocarbon results from the Nantwich boleholes 2012 series by the probability method (Stuiver and Reimer 1993) #### 8.2.3 AC and AE 2015 methane and carbon dioxide (Peter Marshall) Samples of methane (CH₄) and carbon dioxide (CO₂) from two dipwells – Snow Hill (AC-1) and Wood Street (AE-1), Nantwich - were submitted to the Scottish Universities Environmental Research Centre for radiocarbon dating. The samples were processed and dated by Accelerator Mass Spectrometry as described in Dunbar *et al* (in press). The results reported are conventional radiocarbon ages (Stuiver and Polach 1977). Replicate measurements are available on samples of the same gas from both dipwells. In both cases the measurements are statistically consistent at 95% confidence (Table 1; Ward & Wilson, 1978). These measurements have therefore been combined by taking a weighted mean before calibration. The calibrated date ranges have been calculated by the maximum intercept method (Stuiver and Reimer 1986), using
the program OxCal v4.2(Bronk Ramsey 1995; 2009) and the IntCal13 data set (Reimer et al 2013), and are quoted in the form recommended by Mook (1986), with the ranges rounded outwards by 10 years. The probability distributions shown in Figure 1 have been calculated using the probability method (Stuiver and Reimer 1993). The wide discrepancy in ages between the CO₂ and CH₄ components suggests that either the gases are derived from different sources or that they are composed from a mixture of sources (Garnett *et al* 2013). The considerable older age of the CO₂ (**Borehole AE**, **Early Bronze Age**) would suggest that it is derived from much deeper organic waterlogged deposits. The methane samples from **Borehole AC** are more consistent with previous radiocarbon determinations from the Nantwich Waterlogged Deposits project and lie within the 8th to 10th centuries AD. Submission of further gas samples from dipwells together with water and peat samples may help in determining the C source of gases and in particular the CO₂ component from the Wood Street dipwell AE (cf Charman *et al* 1999). Figure 26 Probability distributions of radiocarbon dates from Snow Hill (AC-1) and Wood Street (AE-1), Nantwich, carpark dipwells. The distributions are the result of simple radiocarbon calibration (Stuiver and Reimer 1993) ### 8.2.4 Implications for the origins and preservation of waterlogged deposits The earliest radiocarbon dates were those from the CO₂ samples from Borehole AE in Wood Street car park on the west side of the River Weaver. These suggest organic remains of Early Bronze Age date, whilst the proximity of the borehole to the river suggests that the material could derive from river-borne deposition, or inundation of riverside vegetation. The onset and development of waterlogged conditions for the historic salt town at Nantwich range from the Middle Saxon period through to the High medieval period. The earliest indication of waterlogging also comes from Borehole AE in Wood Street car park with a pair of dates in the $5^{th} - 7^{th}$ centuries from 3.4 - 4m below ground level (bgl), from hazelnut shells found when sampling the basal sand, which was not described in the logging as of anthropogenic origin (i.e. as an Archaeological deposit or Non-carbonised organics). This location for the earliest evidence of waterlogging in the historic town is not surprising, as this lies adjacent to the west bank of the River Weaver, in a zone that archaeological evidence has shown had intensive salt-working during the medieval period. Slightly later Saxon dates were recovered from Boreholes N and AC, both located at Snow Hill, just uphill on the east bank of the River Weaver, and an area which historic documentation (1624 Survey of Nantwich: walling lands, wych houses) identifies as the core zone for salt making in the post-medieval period. From Borehole N dates from the 8^{th} to 11^{th} centuries AD have been recovered at c.2m, 2.2-2.4m, and 2.6-2.7m bgl, whereas at Borehole AC methane gas gave two similar dates from the 8^{th} to the 10^{th} centuries. Snow Hill has also produced the earliest radiocarbon dates associated with salt-working, which were structural timbers from the Iron Age found during monitoring by Malcolm Reid prior to the present project²⁹. Dates during the Late Saxon and Norman periods ($9^{th} - 12^{th}$ centuries) were obtained from Borehole F (Church Lane uphill on the east side of the river, from depths between 1-1.86m bgl), and Borehole AD, the brushwood trackway in Welsh Row on the west side of the Weaver (at 2.3m depth bgl). The distance apart of these locations shows how extensive waterlogging had become by the Late Saxon period, both uphill near the church, as well as low down near the river and bridge, where material was laid to form a dry walkway. Medieval dates have been recovered from Boreholes F (Church Lane, from 0.76-1m depth bgl), P (Pepper Street), AF (Wood Street car park), and Welsh Row (dendrochronological _ ²⁹ Reid, M., 2004 Archaeological Observations at Snow Hill Car Park, Nantwich, Cheshire *Journal of the Chester Archaeological Society 79, 25-36* date from a corduroy trackway at 0.75m bgl). The date ranges all end in the 13th century, although start of the range varies between the 11th and 12th centuries. A single post-medieval date was obtained from the upper part of Borehole F (Church Lane, at 0.76 - 0.82m bgl). The depths at which the samples came from within the core sequences at each location, appear to be consistent with the dates calculated in that the early dates come from the deepest deposits, and later dates come from samples higher in the sequence. The type of deposit and state of preservation from which the samples were taken include wet or moist, organic-rich silts and sands with sulphide odour for the Saxon - Norman dates, and just moist, humic sandy-silt or humified peat for the Norman – medieval dates. The state of preservation for all deposits sampled at Borehole F were labelled as A3 (unsaturated with medium preservation), whereas those from Borehole N were C4 (saturated with good preservation) for the higher deposits sampled, and C3 (saturated with medium preservation) for the lowest samples. Borehole P was mostly labelled as A2 (unsaturated with poor preservation), whilst AC varied throughout its sequence from higher deposits labelled as A1 (unsaturated with lousy preservation) to base labelled as B2 (vadose (fluctuation) zone with poor preservation). There was no state of preservation documented for Borehole AD or the corduroy trackway in Welsh Row. Boreholes AE and AF ranged from A4 (unsaturated with good preservation) in the 2-2.27m depth range, changing to vadose zone and saturated conditions lower in the sequence. The possible causes for the onset of waterlogging have been discussed in the 2nd report (*Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation* SLR Consulting Ltd November 2009). In summary changing climatic conditions could have contributed, whilst proximity to the river and salt-working were probably significant factors for the earliest deposits, and infill of dips in the terrain with domestic, industrial and stable rubbish further up the hill. The geological conditions were such that the natural sand became saturated because of a low permeability or impervious clay beneath, inhibiting downward drainage, and therefore allowing waterlogging higher up which prevented decay of the organic components within the rubbish deposits. This led to gradual accumulation over several centuries, until a reversal in the process was effected under Victorian sanitisation programmes in the mid-19th century. Drains were inserted and streets paved over, so that the amount of surface water replenishing the ground-water system was reduced, and desiccation of the deposits began to occur. #### 9.0 CONCLUSIONS #### 9.1 Geochemical Assessment #### 9.1.1 Sediment samples Baseline geochemical conditions were described during the initial borehole survey conducted in 2007, following analysis of samples from sediment samples extracted from window samplers. The concentrations of principal redox sensitive parameters, including sulphates, sulphides, nitrates as well as nutrients such as phosphates were determined using UKAS standards³⁰. The conclusions drawn from these data were that whilst shallow surface sediments were oxidising, deeper sediments could be considered as more reducing in character because the sulphate and nitrate concentrations were low, sulphide was detected in several samples and the pH values were broadly neutral. Taking everything into consideration, the evidence pointed to redox conditions residing between the sulphur and iron boundaries, conditions that, although not optimum, could be conducive to the continued preservation of organic materials, especially where deposits remained saturated and anoxic. Highly reducing conditions would have been indicated by the presence of higher levels of sulphide, and the low levels/absence of sulphides was surprising, especially given the overall good level of preservation of wood and palaeoenvironmental remains in the samples as well as the strong odour of hydrogen sulphide gas detected from a couple of the boreholes. However it is very likely that the perceived low levels/absence of sulphide is due in part to the sampling and testing procedures adopted at this stage of the project despite of following established practice (BS5930). Where possible sediment subsamples were taken after the recording of the sediment profile and packaged in re-sealable polythene bags, after much of the air had been squeezed out. Samples were then stored in a cool box at a temperature initially around 5° C with some rising throughout the day to ambient, and in Phase 2 there was a delay before the samples reached the laboratory. Therefore there is a possibility that samples reacted with atmospheric oxygen and what were once reduced chemical species became oxidised before any subsequent analyses performed at the testing laboratory. Laboratory analysis of samples seldom record sulphide, a phenomenon which is attributed to the unstable nature of sulphide, which will oxidise to sulphate as guickly as it can, and therefore it is not surprising that low levels of sulphides with commensurate high levels of sulphates were recorded from some of these boreholes at Nantwich. Similar results were observed during a recent sampling programme at Guys Hospital, London, where the well preserved remains of a Roman boat were discovered in 1958, and re-evaluated three years ago. Sulphide concentrations were below the detection level, but sulphates and total sulphur were recorded in all six samples taken from three boreholes³¹. The difference between the percentage concentrations of total sulphur and sulphate implied that sulphides were present and conditions could be described as reducing. This conclusion
was supported by the presence of ammoniacal nitrogen, which is often regarded as an indicator of reduced conditions in the natural environment (Christensen et al, 2000³²) ³⁰ (UK Accreditation Service for laboratory testing) ³¹ Report from Derwentside Environmental Testing Services, 11th January 2016 ³² Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes. *Journal of Contaminant Hydrology 45 165-241*. #### 9.1.2 Methodological improvement If geochemical assay of sediment samples continues to be used as one of the suite of techniques used to assess the character of the burial environment it is recommended that the methodology employed recently at Avaldsnes, Norway (Martens and Bergersen 2015³³) is followed. In this study sediment samples were packed in plastic bags which were then inserted into another plastic bag containing an oxygen scavenger to create anaerobic conditions. All samples were stored at 4°C and opened in a nitrogen atmosphere with analysis of redox sensitive parameters also conducted in a nitrogen atmosphere. Whether commercial UKAS approved facilities have this capability will need to be ascertained, as the methodology does not appear to be included with the relevant British Standard (BS 1377, part 3, 1990). A similar problem with potential ingress of atmospheric oxygen into the groundwater sample bottles could be mitigated by the use of vacuum canisters. # 9.1.3 Groundwater samples Further geochemical assays were carried out on groundwater samples collected annually between 2011 and 2015, measuring a suite of redox sensitive parameters including total sulphur, sulphate, sulphide, ferrous and ferric iron and nitrate and the nutrient phosphate. Samples were extracted by peristaltic pump and stored in plastic bottles into which were added preservatives including hydrochloric acid, nitric acid and zinc acetate. Testing was carried out at a UKAS accredited laboratory. In situ testing for dissolved methane gas was also carried out on site at each visit. The results are broadly similar to those obtained from the sediment samples in 2007 (see Table 2 above), and can be characterised as having moderate to high levels of sulphate, low to no sulphide, total sulphur not detected, and iron detected in both states, ferrous and ferric, with low levels of phosphate detected too. Sulphate was recorded in all groundwater samples over the 5 year period, as was phosphate (although occasionally below test detection levels), and nitrates. Sulphide and ferric and ferrous iron were occasionally not detected, and total sulphur levels were either zero or not detected at all. The pH of the groundwater fluctuates slightly on either side of neutral, exhibiting a greater degree of variety then observed in the sediment samples. However this is a function of the larger number of readings taken from groundwater samples as opposed to the sediment samples, and is therefore a truer reflection of the variation in groundwater pH ranges. Groundwater samples collected from borehole N1 have moderate levels of sulphate, slight traces of sulphide, ferrous and ferric iron plus low levels of nitrate. Based on these, the dominating redox process appears to be either sulphur or iron. This is corroborated by the groundwater redox potential measurements which, when plotted on a typical Eh/pH stability chart lie between the sulphur and iron boundaries, where sulphates and ferrous iron would dominate. Therefore conditions can be described as reducing in character. As for the results of analyses, the low levels of sulphide are at first disappointing, as one would have expected higher concentrations especially at N1 where a good level of organic preservation has been recorded. However, whilst there will again be an issue of oxidation of the groundwater as it enters the dipwell (and also when the water is pumped into the sample containers, which could be reduced in future by inline sampling), there is also a possibility _ ³³ Martens, V.V., and Bergersen, O. 2015 In situ site preservation in the unsaturated zone: Avaldsnes Quaternary International 368, 68-79. (identified elsewhere) that the low levels of detected sulphide could be attributed its low solubility when ferrous iron is present in ground water³⁴. 58 # 9.1.4 Gas samples The highest concentrations of dissolved methane gas were recorded from borehole N1 indicating that highly reducing conditions exist somewhere within the locality of the dipwell. Methane gas can travel some distance from its source, and the source of the methane has been confirmed as archaeological material through carbon 14 dating at dipwell AC (other sources for methane gas include fractured gas pipes and buried modern rubbish dumps). Methane gas was also detected in two boreholes installed in the river Weaver floodplain, designated as AE and AF, where concentrations of sulphates would infer reducing rather than highly reducing conditions. The likelihood for highly reducing conditions at borehole N1 is supported by the presence of methane gas and strongly negative redox potential readings recorded from the rigid resin/platinum in situ probe installed to a depth c. 1.5m below ground surface (bgs) for the redox trial (see **Figure 16**). Uncalibrated soil moisture contents, as measured by a TDR profile probe (**Figure 20**) were around 60% at c. 1.5m bgs and 100% at c. 1.70mbgs. Water contents at both depths were fairly static throughout the monitoring period indicating that deposits probably remained anaerobic throughout this period. Further investigation into the use of methane gas as a proxy indicator for defining the dominating redox processes should be actively pursued, although it has to be stressed that methane gas was not detected at all locations where organic materials were preserved. #### 9.2 Validity of measured parameters Some key parameters have been identified, and it is possible to identify the most essential elements from the suite employed during the monitoring programme. This helps for planning the cost effectiveness of future monitoring schemes within waterlogged areas in the UK. From the Nantwich experience a targeted monitoring programme of sufficient rigour to supply valid data for monitoring purposes could be employed comprising the following techniques: #### Essential techniques - Permeability and porosity testing of sediments, and in particular the cultural horizons and sediments vertically adjacent; - Geochemical testing of sediments particularly ammoniacal nitrogen, ferrous and ferric iron, sulphates and sulphides (or percentage difference between total sulpur and sulphates) to establish baseline sample storage and laboratory testing to be done under as oxygen -free conditions as possible); - Redox measurements using in situ rigid resin/platinum probes connected to a datalogger (redox cannot be measured in unsaturated conditions); - Water levels and rainfall on a daily basis; #### Desirable (but not essential) techniques Water quality dip meter testing particularly dissolved oxygen on a quarterly basis; ³⁴ Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology 45 165-241 - Gas monitoring, particularly methane and carbon dioxide on a quarterly basis; - Geochemical analysis of water samples on an annual basis to confirm validity of water testing dip-meter results; - In situ soil moisture testing from sediments which comprise the cultural horizon and from the stratigraphic sequence above and immediately below it, using either TDR or FDR techniques. # 9.3 C14 dating of gas samples The validity of gas emissions in helping to characterize whether conditions conducive for preservation exist, requires accurate scientific dating so that modern contamination does not present misleading data. The Nantwich project has built on previous experimental work to show how this can be achieved, and a detailed methodology for gas sampling is included above. The importance of the accurately dated gas emissions is that the results can be considered as closely related to the organic remains which have been preserved, rather than providing data from more indirect water quality proxy indicators derived from a mixture of sources which have become combined within the dipwell. #### 9.4 How relevant can quantities (mg/l or mg/kg) be for other urban centres? Dissolved oxygen at levels of 0.5-2 mg/L indicate that aerobic respiration is probably occurring. If dissolved oxygen concentrates exceed 0.5mg/l it is highly likely that aerobic degradation is present³⁵. Norwegian studies of sediments have characterized good preservation conditions as including ammonium at levels of over 50 mg/kg, sulphide at over 100 mg/kg, sulphate at over 500mg/kg and reduced iron at over 80%. Poor conditions are represented by nitrate at levels of over 10 mg/kg, sulphate at less than 500 mg/kg, reduced iron at less than 20% ³⁶. Analysis of potentially comparative data sets would be an interesting outcome, but is beyond the scope of the present project. In Table 2 above, however, the relationship between iron reduction and oxidisation at Nantwich is presented, and in these data 91 entries have been made of which c.29% show good reducing conditions (less than -140mV) and c.24% with more highly oxidising conditions (over 100 mV). The rest of the data suggest conditions fluctuate either side of the boundary, and overall c.68% indicate more reducing than oxidising conditions. Compared with the Norwegian example above, it would indicate that Nantwich on average is close to having good preservation conditions. This assessment is not supported by the dissolved oxygen, however, which has 71 out of 84 entries in Table 2 as having concentrations above the 0.5 mg/l threshold. This equates to 84% of the
recorded dissolved oxygen levels as indicative of aerobic degradation occurring. Further research into preservation conditions in urban waterlogged deposits is required to identify key trigger points for minimum and maximum conditions necessary for the continued preservation of organic remains. ³⁵ Carey, M.A., Finnamore, J.R., Morrey, M.J.., and Marsland, P.A. 2000 *Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater* Environment Agency R&D Publication 95 ³⁶ Martens, V.V., and Bergersen, O. 2015 *In situ* site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 71*. # 9.5 The role and importance of the capillary fringe The significance of the vadose zone for preservation of organic remains has often been overlooked in the past, although various studies have been conducted in the last decade aimed at increasing understanding of the role that capillary action can play in producing conditions conducive for preservation. At Nantwich there is clear evidence for the importance of this zone, specifically at dipwells AE and AF. These are located adjacent to the river, in an area where previous archaeological investigations over several decades have produced abundant evidence for well-preserved organic remains, in a deposit zone that lies up to 1.5m above the water-table (generally in a zone of 2.5-3.0m bgl.). The relatively low permeability of the silty sediments beneath the organic remains would inhibit rapid drainage, whilst capillary forces may have contributed to preservation through drawing water up into the voids within the sediments. Anaerobic deposits can therefore exist above the water level if the voids within sediments are sufficiently saturated to exclude the ingress of oxygen. At Location N/N1 soil moisture testing has demonstrated that although the water level fluctuated seasonally to 1.5m bgl, the upper levels with organic remains maintained soil saturation levels of 50 - 60% in the overlying zone from 1.20 - 1.56m bgl. In contrast at location P/P1 organic remains were also found preserved elevated above the water-table (between 3.0-3.5 m bgl), although in this case the predominance of sand content beneath the cultural horizon (at 1.3-2.0 m bgl) contributes to easy drainage. It probably also results in less capillary action, and thus a lower tension-saturated zone, allowing increased rates of decay within the archaeological deposit. # 9.6 River zone v. perched water-table near the church The topography at Nantwich would logically suggest that preservation would deteriorate with increasing altitude, as the lower-lying zone close to the river would be more inclined to become waterlogged than higher ground near the church for example. Good preservation has been found in both zones, however, and the reasons for this are complex. The subsurface deposit sequence and the terrain underlying the superficial deposits contribute to preferential flow paths and retention of water. In addition to the principal drainage provided by the northwards flow of the River Weaver, the southern edge to the waterlogged deposits runs along what was originally slightly higher ground that is followed by Hospital Street. Between this and the northern edge of the waterlogged deposits the original ground surface formed a shallow valley, and within a band running west from the church through dipwells U, T, S, and P a thick deposit of sand underlying archaeological layers is interpreted as representing a former watercourse. During wetter periods such as the late Saxon and early medieval periods, organic matter from domestic, industrial and stable waste accumulated in depressions and gradually raised the level within this part of Nantwich. Although the underlying sand should have acted as an aquifer, glacial clay beneath the sand prevented drainage and allowed the sand to become saturated, thus inhibiting the decay of organic remains. At Locations F, V and O for example, which define the eastern edge to the waterlogged deposits, the monitoring results show that conditions are generally reducing, and therefore conducive for preservation. Location F has evidence for well-preserved organic remains, substantiated by excavations at the adjacent Lamb Hotel in 2004³⁷, a situation which suggests the existence of a perched water-table. ³⁷ Gifford and Partners Ltd 2005 *The Lamb Hotel, Nantwich: An Archaeological Watching Brief* SLR The lower-lying zone on either side of the river was also an area which experienced intensive salt-working during medieval and post-medieval times. This process may have contributed to the deep accumulation of waterlogged deposits, with recharge from rainfall and surface water, as well as capillary action, helping to retain water content within these raised deposits, leading to good organic preservation. The area south-east of the bridge, where the castle once stood, has displayed variable conditions of preservation from archaeological investigations over the years³⁸. This has been attributed to good survival in man-made deep features such as ditches, and poor survival in areas where other activities (such as the castle mound) had been undertaken. #### 9.7 How does the data help with future management of the resource? In the Phase 1 study the conclusions included reasons for why the waterlogged deposits had accumulated and been preserved, as well as what the threat was to them now. Rainfall contributed to a relatively high water-table historically due to the ground absorbing the water. The introduction of drainage and hard surfaces during the Victorian period directed rainfall away from permeating the ground and has led to a lower water-table and thus desiccation of deposits. The increased use of impermeable surfaces during the last 50 years has intensified this problem and added flood risk to the town. The data gathered during the baseline and monitoring programme have allowed a far more detailed understanding of the character and variable nature of the burial environment in Nantwich. This has enabled a sufficiently robust evidence base for design of a management strategy, documented in a Supplementary Planning Document (SPD) which has been endorsed by Cheshire East Council as a supporting document for its local plan. The emphasis of this strategy is for a holistic approach from spatial planners, engineers, developers, utility companies and others engaged in disturbance to below ground conditions and hydrological conditions, to ensure that every opportunity is taken to manage rainfall so that it can be stored and absorbed into the ground, rather than channelled away from the deposits that underlie the historic centre of the town. By preventing gradual desiccation of the waterlogged archaeological deposits not only will the strategy help in preserving archaeological remains, but it will also help prevent subsidence of the built heritage within the Conservation Area, and reduce the likelihood of flash flooding. As appropriate any future development permitted within the Area of Special Archaeological Potential would be required to investigate and monitor the deposits, and such data recovered by these means would help to enhance and revise the existing model derived from the project to date. #### 9.8 Was it all worth it for the results achieved? The Nantwich study has demonstrated the need to adopt an holistic approach to the understanding of the dynamics of the urban waterlogged environment. Neither a single parameter, nor single test will adequately describe the nature of the burial environment and the degree of preservation of the archaeological resource. The study has also revealed the pitfalls inherent in using proxy indicators such as redox and gas measurement, where there are significant risks in "over-interpreting" the results - soil redox reactions are by their very nature highly complex and influenced by external factors. Too much can be read into a set of single spot readings. Although the correlation between good preservation and a highly reducing environment is well established, the precise mechanics of preservation in a highly dynamic urban environment remains less understood. The vadose zone remains one of the least understood environments, and further research, along the lines conducted in Nantwich, ³⁸ SLR July 2007 Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations Cheshire County Council and English Heritage 2663/522 should be initiated to help solve the conundrum of well-preserved organic archaeological materials found above the saturated deposits. Duration of data gathering for monitoring the waterlogged deposits has demonstrated the risks for this over too short a period, and it was necessary to adopt five years at Nantwich to achieve a robust understanding of trends in the data, and to average out particular events which would otherwise have skewed the results. It is recommended that future monitoring programmes gather data over a period of at least five years. Furthermore the results have raised some potential discrepancies between redox measurements and what geochemical conditions would suggest, and this highlights the need for specific research comparing in situ sampling and analysis, with ex situ laboratory testing of samples³⁹. ### 9.9 Legacy The Nantwich database curated by the Archaeological Data Service at York (ADS) provides a dynamic series of data-sets for further analysis with a wealth of research potential and comparative study. The data provide a baseline for the situation in 2016 against which new development within Nantwich town centre can be measured. The Nantwich project has provided internationally comparable data-sets, analyses and reports, in its archive and publications⁴⁰. It has been a major player in the creation of national guidance on preservation of archaeological remains⁴¹, as well as providing a valuable planning tool for the local
authority⁴². _ ³⁹ Feedback received from three geoarchaeologists who reviewed the draft report offered very different opinions and levels of scepticism about the validity of sampling anaerobic deposits and laboratory testing of them. However, the holistic approach adopted at Nantwich allowed for in situ and ex situ complementary techniques so that the effect of potential methodological flaws could be minimised. ⁴⁰ https://h<u>istoricengland.org.uk/images-books/publications/historic-england-research-4/</u> ⁴¹ https://historicengland.org.uk/images-books/publications/preserving-archaeological-remains/ ⁴² http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf #### 10.0 CLOSURE This report has been prepared by SLR Consulting Limited with all reasonable skill, care and diligence, and taking account of the manpower and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid. This report is for the exclusive use of Cheshire East Council and Historic England; no warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR. SLR disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work. #### **BIBLIOGRAPHY** Boreham, S, Conneller, C., Milner, N., Taylor, B., Needham, A., Boreham, J., and Rolfe, C.J. 2011 Geochemical indicators of preservation status and site deterioration at Star Carr *Journal of Archaeological Science 38, 2833-2857* British Standards Institute 1999 BS5930 code of practice for site investigation Caple, C. & Dungworth, D. 1998 Waterlogged Anoxic Archaeological Burial Environments Unpublished *Ancient Monuments Laboratory Report 22/98*. Historic Buildings and Monuments Commission, London. Carey, M.A., Finnamore, J.R., Morrey, M.J., and Marsland, P.A. 2000 Guidance on the Assessment and Monitoring of natural Attenuation of Contaminants in Groundwater *Environment Agency R&D Publication 95* Christensen, T.H., Bjerg, P.L., Banwart, S. A., Jakobsen, R. Heron, G., Albrechtsen, H-J., 2000. Characterisation of redox conditions in groundwater contaminant plumes *Journal of Contaminant Hydrology 45* 165-241 Gifford and Partners Ltd 2005 The Lamb Hotel, Nantwich: An Archaeological Watching Brief Historic England 2016 Preserving archaeological remains: Decision-taking for sites under development Swindon <u>HistoricEngland.org.uk/advice/technical-advice/archaeological-science/preservation-in-situ/</u> Historic England November 2016 Research online No 4 https://historicengland.org.uk/whats-new/research/?utm_source=adestra&utm_medium=newsletter&utm_campaign=December1 Malim, T. and Panter, I., 2012 Is preservation in-situ an unacceptable option for development control? Can monitoring prove the continued preservation of waterlogged deposits? Conservation and Management of Archaeological Sites, Vol. 14 Nos 1–4, 2012, 429–41 Malim, T., Panter, I., and Swain M. 2015 The hidden heritage at Nantwich and York: Groundwater and the urban cultural sequence *Quaternary International 368, 5-18* Malim, T., Morgan, D., and Panter, I. 2015 Suspended preservation: particular preservation conditions within the Must Farm - Flag Fen Bronze Age landscape *Quaternary International* 368, 19-30 Malim, T., Swain, M., and Panter. I, 2016 Monitoring and Management options in the preservation of urban waterlogged deposits, Nantwich, UK *Conservation and Management of Archaeological Sites, Vol. 18 Nos 1-3, 139-155* Martens, V.V., and Bergersen, O. 2015 In situ site preservation in the unsaturated zone: Avaldsnes *Quaternary International 368, 68-79* Matthiesen, H. 2015 Detecting and quantifying ongoing decay or organic archaeological remains: A discussion of different approaches *Quaternary International 368, 43-50* Matthiesen, H., Hollesen, J., Dunlop, R., Seither, A. and De Beer, J. 2015 In situ measurements of oxygen dynamics in unsaturated archaeological deposits *Archaeometry* 57, 6, 1078-1094 Matthiesen, H, Hollesen, J., and Gregory, D. 2015 Chapter 6 Preservation Conditions and Decay Rates in *Monitoring, Mitigation, Management: the groundwater project – safeguarding the world heritage site of Bryggen in Bergen Riksantikvaren, p.82-3* Panter, I., and Davies, G. March 2015 Preservation in situ guidance – redox potential measurement Final Report *York Archaeological Trust Conservation Department Report No.* 2013/54, English Heritage project No. 6524 Panter, I., and Davies, G. March 2015 Preservation in situ guidance – Soil Moisture Measurement Final Report *York Archaeological Trust Conservation Department Report No.* 2014/70, English Heritage project No. 6523 Riksantikvaren and Norsk Institutt for Kulturminneforskning, 2008, *The Monitoring Manual. Procedures and Guidelines for Monitoring, Recording and Preservation Management of Urban Archaeological Deposits* Reid, M., 2004 Archaeological Observations at Snow Hill Car Park, Nantwich, Cheshire *Journal of the Chester Archaeological Society 79, 25-36* SLR Consulting Ltd July 2007 Waterlogged Archaeological Deposits, Nantwich, Cheshire: Desktop study of archaeological and borehole investigations SLR Consulting Ltd November 2009 Nantwich Waterlogged Deposits Report No. 2: The Character and Extent of Archaeological Preservation SLR Consulting Ltd January 2010 Nantwich Waterlogged Deposits Report No 3 Management Strategy: Supplementary Planning Document for the Historic Environment and Archaeological Deposits http://www.cheshirearchaeology.org.uk/wp-content/uploads/Nantwich SPD rev2 final.pdf Tyers, I., 2008 Tree-ring spot-date from an archaeological sample: Welsh Row Gas Main works, Nantwich *Dendrochronological Consultancy Ltd Report 103* (funded by Cheshire County Council) USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504 United States Environmental Protection Agency # BOREHOLE No. **BOREHOLE LOG** Α Client: ### **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 30/07/07 33.29maOD E364931 N352661 Project: # **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 Sheet: | SAI | MPLE | | | | SAMPLES & TESTS | | | | | | STRATA | | | | | | | |--|-----------------------------------|---------|---------|---------|-----------------|------------|------------------|----------------------------|----------------|------------|---------------------------------|----------------------------------|----------------|--|--------------------|---------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | ESCRIPTION | I | | | | | Instrument/ | | | | | | | | | 33.25 | × × | 0.04 | · — | Recovery | | | | | / | 偿 | | | | | | | | | 22.80 | × × × | (0.36) | Roo | ist, mid to da
otlets preser | | n, crumbly (| working sof | t), slightly claye | y SILT. | がある | | | | | | | | | 32.89 | × — × — × | - 0.40 | | ist, light to m | id brown, so | ft (working m | ore or less | plastic), clayey | SILT. | | | | | | | | | | | ×××; | -
- (0.60) | | | | | | | | | | | | | | | | | 32.29 | × × × ; | -
-
1.00 | | | | | | | | | | | | | | | | | 32.23 | ?
X X | 1.06 | V. ** | Recovery | | | | | | K | | | | | | | | | | × × × | - | Moi
CL/ | | ght grey yello | ow/brown stil | ff (working | plastic), very sli | ghtly silty | | | | | | | | 0 | | | | -
(0.94) | | | | | | | | 0.00 | | | | | | | J | | | *X
<u>XX</u> | - | 1.6
san | | continuity of r | noist to wet, | soft to unc | onsolidated, ligh | nt grey, | | | | | | | | | | 31.29 | × × × | 2.00 | | | | | | | | | | | | | | | | | | 7 | _ (0.35) | No | Recovery | | | | | | | | | | | | | | | 30.94 | ò | - 2.35 | | | | | | | | | | | | | | | | | | × × × | - | | | iid brown (wit
king plastic), | | hes of light | to mid orange- | brown), stiff | K | | | | | | | 0 | | | * _ × _ >
× _ > | (0.45) | 2.3 | 5 - 2.65 Ver | | pearance ca | used by pr | esence of indur | ated clay | | | | | | | | | | 30.49 | × × | 2.80 | - | Recovery | | | | | | -15 | | | | | | | | | 30.37 | ?
<u>*-</u> *- | _ 2.92 | | | id brown to d | arev. soft (wo | rkina sliaht | ly sticky and the | en more or | | | | | | | | | | | X X X | -
- (0.56) | less | s plastic), sli | ghtly silty CL | AY. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .y caony and an | | | | | | | | | 0 | | | ^_ × ^-
× ×
× × | - | | 0 - 3.48 Bec | oming slightly | y wetter and | more stick | y. | | | | | | | | | | | 29.81 | ×× | 3.48
-
- | Moi | ist to wet, lig | ht to mid gre | y, unconsolio | dated, fine t | to coarse SANE |) | | | | | | | | 0 | | 00.00 | | _ (0.46) | | | | | | | | | | | | | | | | | 29.39 | | 3.90
 | | ehole comp | lete at 3.90m | 1 | | | | W5 | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | oring Prog | g Progress and Water Observations | | | | | - 1 | Cas | ing | | | Chiselling | | Water | Added | Gen | eral Remar | ks | | Date | Time | | Dept | h | Wate
Dpt | er | Depth | Dia. mr | m Fro | m | То | Hours | From | То | \parallel | All dimensions in metres Scale 1:31.25 Contractor: Sherwood Drilling Scale 1:31.25 Plant: Geotool Hole Size: | | | | | | Logged By: | Approved | =
B t | | | | | | | | | | # BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. AA Project No: Date: Ground
Level: Co-ordinates: 406.0889.00003.005 12/09/07 37.97maOD E364730 N352391 **SLR** Project: Client: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SA | MPLE | | | | | | | | | | ST | RATA | | | | | |-----------|------------|---------|---------|---------|------------|---------|------------------|----------------------------|-----------------------------------|--------|----------------------------------|-------------------------------|--------------------------------|-----------------------------|-----------------------------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DES | CRIPTION | N | | | | | | | | _ | | | | | 37.62 | | -
_ (0.35)
- 0.35 | grey- | psed and
brown, un-
ghout. | loose in core
consolidated | tube - just m
, silty SAND. | oist, mid bro
Abundant b | own to mid to
orick/tile (<55m | dark
nm) | | | | | | | 0 | | | <u></u> | -
- (0.29) | claye | y SILT. | | | • | ing soft), sligh | tly sandy | | | | | | | | | 37.33 | | - 0.64
- | | | shed brick ar | | | : (<20mm).
rown from laye | r above at | | | | | | | 0 | | 36.97 | | (0.36) | 0.64- | 0.74m), ur | nconsolidate
comes dark g | d, SAND. | | | | | | | | | | 0 | | | | -
-
-
-
-
- (1.60) | Moist | i, light to m | nid grey, unco | onsolidated, f | ine SAND. | | | | | | | | | | | 35.37 | | 2.60 | Just r | moist, mid | brown to gre | ey-brown, ver | y stiff (worki | ing plastic), Cl | _AY. | | | | | | | 0 | | 34.97 | | - (0.40)
- 3.00 | | , | 3 | , , . | | 31 | ā
ģ | | } | | | | | | | | | - | Boreł | hole comp | olete at 3.00m | 1 | | | | | | | | | | | | | | -
-
-
-
-
- | | | | | | | | | oring Pro | gress a | nd W | /ater | Obs | ervati | ons | Cas | ing | | C | hiselling | | Water | Added | Gen | eral Remark | | Date | Time | | Dept | h | Wate
Dp | er
t | Depth | Dia. mr | m Froi | m | То | Hours | From | То | | | | | | | | | - | | | | | | | | | | | | | All dime | nsions i | n me | etres | 1 | Contra | actor | : Sherwoo | od Drillir |
ng | Metho | od: Win | idowless S | ampler | | Logged By: | Approved | | | ale 1:31 | | ะแยร | | Plant: | | | Ju Dillill | ig | Hole | | idowiess S | ampiei | | Logged by. | Approved | #### BOREHOLE No. **BOREHOLE LOG** AB Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E364740 N352370 37.93maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SA | MPLE | S& | TES | STS | | | | | | | ST | RATA | | | | | /tuc | |------------|------------|---------|---------|---------|------------|----------|------------------|----------------------------|----------------------------|---------------|--------------------------------|---------------------------------------|---------------|---------------|---------------------|-------------------------|------------| | Depth | Type
No | HS(ppm) | нV(кРа) | PP(kPa) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | ESCRIPTION | N | | | | | netriment/ | | | | I | - | - | | _ | | | | Lig | ht grey SAN | D. Modern fr | agments of b | rick and tile | present (<70n | nm). | Ė | | | | | | | | | | | (0.43) | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | 0 | | 37.50
37.45 | × × | - 0.43
- 0.48 | $\overline{}$ | | k becoming a | | | | | | | | | | | | 0 | | 37.32 | ×o×× | 0.61 | Dai | | pacted ashe | | of conglom | erate 'hard coi | re' (<100 | | | | | | | | | | | × × | | \mn | າ). ັ້ | | | | | / | 1 | | | | | | | 0 | | | × × | (0.39) | | | SILT. Trace n) fragments | | | n), coal (<20mi | m) and | | | | | | | | | | 36.93 | × × ; | 1.00 | 1 | aicoai (>oiiii | ii) iiagiiieiiis | present uno | ugilout. | | | | | 1 | | | | | | | 36.83 | ? | 1.10 | No | Recovery. | | | | | | | | | | | | | | | | × × × | | | ist, dark gre
n/cinder (<10 | | Ity fine SANI | D. Occasion | al black gravel | ls of | | | | | | | | | | | × × × | - | asi | i/oii/dci (+10 | , , , , , , , , , , , , , , , , , , , | | | | | | | | | | | | 0 | | | × × × | (0.63) | | | | | | | | | | | | | | | | | | × × × | - | | | | | | | | | | | | | | | | | 36.20 | × × × | 1.73 | _ | | | | | | | | | | | | | | | | | × × × | (0.27) | 1 | | - | | sandy, sligh | ntly clayey SILT | Г. | ŀ | | 2 | | | | | 1 | | 35.93 | × × × | 2.00 | | 3 - 2.00 Slig | ht sulphide o | dour. | | | | | | 2 | | | | | | 1 | 35.87 | X .X | 2.06 | \ | Recovery. | | | | | | 1 | | | | | | | 0 | = | | × × × | (0.31) | | ist, fine sand
oughout. | dy SILT. Occa | asional round | ded pebbles | (<50 mm) pre | sent | | | | | | | | | | 35.56 | .x . x
x .x | 2.37 | | Jugilout. | | | | | | | | | | | | | | | | | | Мо | ist to wet, lig | ht yellow to b | rown, uncon | solidated, c | oarse SAND. | | | | | | | | | 0 | | | | . (0.42) | | | | | | | | | | | | | | | | | 25 14 | | - 270 | 27 | 0 270 Box | undad nabbla | o (<20 mm) | aamman | | | | | | | | | | | | 35.14 | | 2.79 | $\overline{}$ | | unded pebble
ompacted sa | | | bbles (<60mm |) common | | | 3 | | | | | 0 | | 34.93 | | 3.00 | | oughout. | opaotoa oa | , 02 | touridou po | 22.00 (00 | , | | | | | | | | | | | | -
-
-
- | Во | rehole comp | olete at 3.00m | 1 | | | | | | 4 | | | | | | | | | -
-
-
-
-
- | | | | | | | | | | Soring Pro | dress 3 | nd V | Vate | - Ob | Servati. | one | Cas | ing | -
-
- | | Chiselling | | Water | Added | Gen | eral Remar | ke | | | | _ | | | | | | | | | | | | | - | | | | Date | Time | _ | Dept | ın | Wate
Dp | ť | Depth | Dia. mr | n Fro | m | То | Hours | From | То | Groundw
2.13m bg | ater presen
II. Well | ιa | | | | | | | | | | | | | | | | | headspace
40ppm. | ce concentr | ati | | All dime | | | . 1 | 1 | <u> </u> | <u> </u> | : Sherwoo | l D.::::: | | | | idowless S | 1 | | Logged By: | Approved | | #### BOREHOLE No. **BOREHOLE LOG** AC Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E364963 N352517 36.42maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SA | MPLE | S & | TES | STS | | | | | | | ST | RATA | | | | | | 100 | |------------|------------|---------|---------|----------|-----------|---------|------------------|--|---------------------|--------------|----------------|--|---------------------------------|-------------------------------|------------------------------------|----------------------|-----------------|-------------| | Depth | Type
No | HS(ppm) | НV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | ı | | | | | | lnetri mont | | | | | | | | | | 0000 | (0.46) | | asional frag | lume compo
ments of bric | | | | | | | | | | | | | | | 35.96 | 000 | 0.46 | | mid brown | to dark grey, | firm sandy (| CLAY Occa | sional stone | s (<15 | mm) | - | | | | | | | | | 35.83 | | 0.59 | and | brick/tile (< | 50 mm) fragr | ments preser | nt. | | 3 (10 | | | | | | | | | | | 35.69 | | - 0.73
- | | | ble GRAVEL
to dark grey, | | | nm). | | | | | | | | | | | | 35.42 | | _ (0.27)
1.00 | 0.77 | 7 - 0.80 Bric | k and tile frag | gments (<40 | mm) preser | nt. | | | | | 1 | | | | | | | 00.12 | × ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× | -
-
(0.51) | Moi | st, dark gre | dern glass fra
y, firm to unco
dern pot frag | onsolidated, | ashen, sligh | ntly sandy SII | | tar. | 1 | | | | | | | | | 34.91 | ××× | -
_ 1.51 | | | | | | | | | | | | | | | | 0 | | 34.84 | × | 1.58 | 7 | | I tile rubble of | | | • | | | 7 | | | | | | | 1 | | | × · × × × × × × × × × × × × × × × × × × | - (0.42)
- | Occ | | y, firm to unco
gments of brid | | | | | | | | 2 | | | | | 0 | | 34.42 | × ×
× × × | 2.00 | Moi: | | y, firm to unce | onsolidated, | ashen, sligh | ntly sandy, sli | ightly o | clayey | - | | | | | | | 0 | | 33.90 | × × × | - (0.25)
- 2.52 | plas | stic), clavev | ark grey to gre
SILT.
ted mortar (< | | , , | soft and som | ewhat | | | | | | | | | 0 | | 33.80
33.69 | | 2.62 | | | id grey, crum
ent throughou | | soft and stic | cky), clayey S | SILT. S | Stones | | | | | | | | 0 | <u></u> | 33.55 | _ <u>*</u> | 2.87 | | | id grey, firm
.AY, with a sli | | | | somew | hat | | | 3 | | | | | 1 | | 33.42 | | 3.00 | N | st to wet, lig | ht grey to mi | | | | e claye | | | | | | | | | 0 | | 33.19
33.12 | | -
- 3.23
3.30 | Mois | st, light to m | id grey, stiff a
occasional bla | and slightly s
ack patches f | ticky (workir
from sulphid | ng plastic), ve
le staining let | ery slig
ft by ro | ghtly
otting | | | | | | | | 2 | | 32.98 | | 3.44 | Moi | | ark brown, cru | umbly to unce | onsolidated | , very slightly | / claye | у | | | | | | | | 2 | | | | (0.42) | Moi | st, mid to da | nid grey, soft
ark brown, cru | <u> </u> | | <u> </u> | <u> </u> | | | | | | | | | | | 32.56 | | 3.86 | \SAN
Moi: | | wn to grey-br | own, compa | cted and firm | n (working so | oft), cla | avev | / : | | 4 | | | | | | | 32.42 | ? | 4.00 | 3.55 | 5 - 3.59 Larç | onal fragment
ge stone inclu
ge stone inclu | usions (<60m | nm). | oughout. | | | | | | | | | | | | | | - | | Recovery. | | | | | | | / | | | | | | | | | | | -
-
-
- | Bor | ehole comp | lete at 4.00m | 1 | | | | | | | Boring Pro | gress a | nd V | /ater | Obs | servati | ons | Cas | sing | -
 | (| Chiselling | | Water | Added | Ge | nera | Rema | arks | | Date | Time | | Dept | h | Wat
Dp | er | Depth | Dia. mr | n Fro | m | То | Hours | From | То | Ground | | | nt a | | | | | | | • | | | | | | | | | | 2.83m b
headspa
20 000p | ace c | | rati | | All dime | nsions i | n me | etres | \dashv | Contr | actor | : Sherwo | od Drillin | | Moti | hod: Win | dowless S | ampler | | Logged By | , | pprove | | #### BOREHOLE No. **BOREHOLE LOG** ΑE Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL**
Project No: Ground Level: Co-ordinates: Date: E364917.887 N352428.049 406.00889.00005 10/01/11 35.19maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SA | MPLE | S & | | | | | | | | | ST | TRATA | | | | \$ | |------------|------------|---------|---------|---------------|-----------|----------|------------------|----------------------------|--------------|---------------|------------------------------|-------------------------------|----------------------------|-------------------|--|--------| | Depth | Type
No | HS(ppm) | ну(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | N | | | | 3,000 | | | | _ | _ | _ | | | 35.04 | , | 0.15 | MA | DE GROUN | ND: Tarmac c | ver sub base | 9 | | | | | | | | | | | 33.04 | | - 0.13 | _ | recovery | | | | | | | | | | | | | | | 7 | (0.40) | | | | | | | | | | | | | | | | 34.64 | ۰ | 0.55 | | | | | | | | | | | | | | | | 34.49 | 000 | 0.70 | Ver | y loose darl | k greyish bro | wn silty sand | y medium GR | RAVEL | | | | | | | | | | 34.40 | | 0.79 | $\overline{}$ | | dark grey gr | | | | | | | | | | | | | 34.29
34.19 | °0 0 °0 | 0.90
1.00 | _ | | <u> </u> | | | are brick/tile fragmen
are flecks of mortar | its | | 1 | | | | | | | | × × | | 0.9 | 7 - 1.00La | arge brick/tile | fragment (60 | 0 mm). | | | | | | | | | | | | × × × | - | odc | y son greys
our and rotte | sn brown sar
ed wood fragr | nay SIL I , Witi
nents. | 1 rare brick/tile | e and slight sulphide | | | | | | | | | | | × × × | | | | | | | | | | | | | | | | | | × × × | (1.00) | | | | | | | | | | | | | | | | | × . × | | | | | | | | | | | | | | | | | | × × × } | - | | | | | | | | | 2 | | | | | | | 33.19 | ××× | 2.00 | | | | | | | | | 2 | | | | | | | 33.02 | × × | 2.17 | Ver | | grey slightly s | andy coarse | SILT with fre | quent brick/tile and | | | | | | | | | | 32.88 | ××× | 2.31 | Ver | y soft coars | | | | e mortar fragments | | | | | | | | | | 02.00 | × ·× · × | - 2.01 | | | ery rotted wo | | | sh brown mottling and | 1 1 | | | | | | | | 1 | | × ·× ; | - | | | of brick/tile, i | | | sir brown mottiling and | 1 | | | | | | | | ÷ | | × × × | (0.69) | | | | | | | | | | | | | | | | | ^ × ^ × | - | 2.7 | 0 - 3.00B | ecoming sligl | ntly clayey. | | | | | 3 | | | | | | | 32.19 | · ×· | 3.00 | | | | | | | | | 3 | | | | | | | | | | No | recovery | | | | | | | | | | | | | | | ' - | (0.40) | | | | | | | | | | | | | | | | 31.79 | | 3.40 | 1/ | | d | OAND | h atalaa | file - la - fatatata a | | | | | | | | | | | × · · · | - | Ver | y dense dar | rk grey silty fi | ne SAND wit | n rare patche | s of black staining | | | | | | | | | | | × | (0.60) | | | | | | | | | | | | | | | | | × | - ` ′ | | | | | | | | | 4 | | | | | | | 31.19 | × | 4.00 | | | | | | | | | | | | | | | | | | - | Bor | ehole comp | olete at 4.00m | 1 | | | | | | | | | | | | | | | | · | - | - | | | | | | | | | | | | | | | <u> </u> | | | | | | | T | 1 | _ | | | Boring Pro | | | | | | | Cas | | _ | | Chiselling | | Water | | General Re | emarks | | Date | Time | | Dept | th | Wat
Dp | ť | Depth | Dia. mr | n From | m | То | Hours | From | То | All dime | nsions i | n me | etres | $\overline{}$ | Contra | actor | : Sherwoo | od Drillin | g | Met | hod: Win | ndowless S | ampler | | ogged By: Appr | oved E | | | ale 1:31 | | | | Plant: | | | | - | Hole | | | | | C&IP TM | | #### BOREHOLE No. **BOREHOLE LOG** AF Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 11/01/11 34.89maOD E364899.123 N352463.451 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | S | AMPLE | | | | | | | | | ST | TRATA | | | | | |-----------|------------|---------|---------|---------------|-----------|----------|------------------|----------------------------|----------|------------------------------------|-----------------------------|-------------------|----------------|---------------|---------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTION | N | | | | | | | | _ | | | | | 34.74 | | 0.15 | MADE GROUN | ND: Tarmac o | over sub base | 9 | | | | | | | | | | | 34.59 | ? | 0.30 | No recovery | | | | | | | | | | | | | | 34.46 | 0.00 | 0.43 | Very loose grey | yish brown sl | ightly silty slig | htly sandy o | coarse GRAV | EL | | | | | | | | | | | | Stiff brown CLA | ΑY | | | | | | | | | | | | | | | (0.40) | | | | | | | | | | | | | | | 34.06 | | 0.83 | | | | | | | | 4 | | | | | | | 33.89 | | 1.00 | Firm brown to o | dark grey slig | htly sandy sil | ty CLAY | | | | 1 | | | | | | | | | | 0.98 - 1.00Si
Stiff brown CLA | | gravel fragm | ent. | | | | | | | | | | | | | (0.39) | 1.17 - 1.20C | | nts up to 18 i | mm. | | | | | | | | | | | 33.50 | | 1.39 | | | | | | | | | | | | | | | | | | Firm dark grey
1.52 - 1.56W | - | _ | | y with depth | | | | | | | | | | | × × | (0.61) | 1.52 - 1.50 ۷۷ | rood iraginiei | 113 up to 13 11 | | | | | | | | | | | | | × × - | | 1.72 - 1.78Po | ocket of brov | vn clay. | | | | | 2 | | | | | | | 32.89 | x_x_x_1 | 2.00 | | | | | | | | - | | | | | | | | × × × | | Very soft dark of black - sulphide | greyish brow
e staining. | n sandy orga | nic SILT wit | th occasional | patches of | | | | | | | | | | ^ × ^ } | (0.48) | | 3 | | | | | | | | | | | | | 32.41 | × .× , * | 2.48 | | | | | | | | | | | | | | | 02.11 | ××× | 2.10 | Very soft greyis | sh brown slig | htly clayey sa | andy SILT | | | | | | | | | | | | × ·× · | | | | | | | | | | | | | | | ⊉ | | × × × } | | | | | | | | | 3 | | | | | | | | ^ × ^ * | _ | | | | | | | | | | | | | | | | × · × × | (1.18) | | | | | | | | | | | | | | | | × × × } | | | | | | | | | | | | | | | | | × ^ × } | | | | | | | | | | | | | | | | 31.23 | × × × | 3.66 | | | | | | | | | | | | | | | 31.23 | × × | . 3.00 | Very dense gre | eyish brown t | o dark grey s | lightly clayey | y fine SAND | | | | | | | | | | | | (0.34) | | | | | | | | 1 | | | | | | | 30.89 | | 4.00 | | | | | | | | | | | | | | | | | | Borehole comp | lete at 4.00n | ı | | | | | | | | | | | | | - | - | | | | | | | | | oring Pro | ogress a | nd V | /ater | Obs | servati | ons | Cas | ing | | Chiselling | | Water | Added | Ger | neral Remarks | | Date | Time | | Dept | :h | Wat
Dp | er | Depth | Dia. mn | n From | m To | Hours | From | То | | | | | | | | | م ح | | - | | | | | | | 1 | All dime | ensions i | n m | atros | $\frac{1}{1}$ | Contro | actor | : Sherwoo | nd Drillin | <u> </u> | Method: Win | dowless S | ampler | | Logged By: | Approved I | | , an anni | | | | - 1 | | ~~~ | | | | | | | | | | #### BOREHOLE No. **BOREHOLE LOG** AG Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 11/01/11 37.03maOD E365007.316 N352313.389 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SA | MPLE | | | | | | | | | | ST | RATA | | | | | _ tc | |-----------|------------------|---------|---------|---------|------------|----------|------------------|---------------------------------------|---|-------------|---------------------------|---------------|----------------|--------------|-----------------------|------------|--------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | N | | | | | lnetri ment/ | | | | _ | _ | _ | | _ | 36.88 | , | - 0.15 | MAI | DE GROUN | ID: Tarmac o | ver sub base | 9 | | | | | | | | | | | | 30.00 | | -
-
-
-
(0.75) | Noı | recovery | | | | | | | | | | | | | | | 36.13 | , , , , , , , , , , , , , , , , , , , | -
-
-
0.90 | | | | | | | | | | 1 | | | | | | | 36.03 | ×/0××/0 | 1.00 | | y loose light
recovery | grey slightly | sandy silty o | oarse GRAV | /EL | | | | | | | | | | | | · | (0.90) | | | | | | | | | | | | | | | | | 35.13
35.03 | <u> </u> | 1.90 | Firm | n brown slia | htlv sandv si | ltv gravellv C | LAY with abu | undant dark g | arev/black | _ | | 2 | | | | | | | 34.73 | Ç | (0.30) | Ash. | | | | | | / | 1 | | | | | | | | 1 | 34.73 | <u> </u> | 2.50 | Firm
ash | | | ty gravelly C | LAY with abu | undant dark g | grey/black | | | 3 | | | | | | | 33.03 | | (1.50)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | | | | | | | | | | | | | | | -
-
-
-
-
-
- | Bore | ehole comp | lete at 4.00m | 1 | | | | | | oring Pro | gress a | nd V | Vater | Obs | | | Cas | ing | | (| Chiselling | | Water | Added | Ger | neral Rema | rks | | Date | Time | | Dept | th | Wate
Dp | er
t | Depth | Dia. mr | m Froi | m | То | Hours | From | То | All dime | nsions iale 1:31 | | etres | | Contra | actor | : Sherwo | od Drillir | ıg | Meth | nod: Win | dowless S | ampler | ı | Logged By:
JC & IP | Approve | d E | BOREHOLE No. В Client: #### **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 30/07/07 36.62maOD E364925 N352582 Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 2 | | | | | | | | | | | | | | | | | | 1 01 2 |
------------|------------|---------|---------|---------|-------------|-------|-------------------------|---|-------------------|--------------------|--|--|--|--|---|--|---| | SA | MPLE | S & | | STS | 3 | | | | | | S | RATA | | | | | 3 | | Depth | Type
No | HS(ppm) | ну(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Dep | oth | DESCRIPTION | N | | | | | | | | | | | | | | 36.54
36.50
36.40 | | <u> </u> | 0.22 | Moist, mid broven Fresh grass are Small stones a Second very re Live earthworm 10.06 - 0.08 Bed Moist, mid broven associated roo lowest section. | d associated and occasional cent ground a. coming mid to the coming mid to the case and and the case are the case as a case are the case are the case as a case are the a | rootlet pene
al cinder (<3 surface with
a dark grey-b
y-brown, stiff
vorking soft von from third | etration at comm) and m
fresh (still or
prown.
(working p
with depth.
recent surf | urrer
norta
gree
olastic
Fres | nt ground su
ir/sand flecks
in) grass and
c), sandy CL
sh grass, clo
at interface v | rface. s at 0.05m. clover. AY. ver and with next | | 1 | | | | | | | 35.62
35.48
35.16 | | -
-
- (0.32 | 1.14 | lower interface
Moist, mid to d
clayey SAND.
with light grey-l
fragment declir
section (~100 x
Live earthworn | ark grey-brow
Rootlet penet
brown sand g
ned at approx
x 15-25 x 20 r
n. | ration from the rains through the rains through imately 30 d mm). Rounde | hird recent
hout. Moist
egrees at ir
ed pebble (| land
and
nterfa | surface and
rather rotted
ace with nex
mm) at 0.21 | I flecked
I wood
t lowest
-0.22m. | | | | | | | | | 35.00 | | - | 1.62 | Just moist, mic
soft), slightly si
and brick/tile. 'I | ty, clayey SA
Hard core' pre | ND. Occasions of the ND. Occasion O | onal inclusion
hout. | ons o | of rounded p | ebbles | | -2 | | | | | | | 34.62 | | - (0.38
- | 3)
2.00 | Just moist, mid
soft), slightly si
charcoal.
Just moist, mid | ty, clayey SA | ND. Occasio | onal inclusio | ons o | of soft, very r | otted | | _ | | | | | | | | | (0.44 | - 1/1 | slightly sandy (
throughout. As
Just moist, ligh | CLAY. Make-
bestos fragm
t to mid brow | up/levelling in
ent at 1.44m
n, stiff (worki | nclusions, e
n.
ing plastic) | e.g. k | orick, glass, o | coal, | | | | | | | 0 | | 34.18
33.98 | | - | 2.44 | Just moist, mid
less plastic), sl
Occasional 'bu | brown to gre | y-brown, stif | f and slight
nes slightly | lly sti | ter in lowest | 0.20m. | | | | | | | 0 | | | | -
(0.36 | 5) | 1.94m), glass (
Just moist, mid
less plastic), sl | at 1.93m).
brown to gre
ghtly sandy 0 | y-brown, stif | f and slight
organic inc | lly sti | icky (working
ons at upper | more or interface | | 3 | | | | | | | 33.62 | × × × × × | - | 3.00 | (looks to be 'ar
(modern) tile (a
2.42m).
Just moist, ligh | t 2.26m-2.28 | m), large (<3 | 30 mm) bot | tle g | lass fragmer | nts (at | | | | | | | 0 | | 20.00 | | - (1.00 | | 2.54m. Moist, mid to d mm) and other Just moist, mid soft), slightly cl Small stones fr (<20mm). Rou 3.00 - 4.00 Slice | ark grey- brov
burnt materia
to dark (sligh
ayey, slightly
om 3.70m be
nded edged p | wn, slightly si
al throughou
ntly blueish) of
sandy SILT.
coming mor
oot fragment | ilty, slightly
t but particle
grey, stiff an
Becomes s
e frequent | clayond slight | ey SAND. Ci
y at 2.68m ar
lightly sticky
ttly wetter wit
larger with d | inder (<12
nd 2.85m.
(working
h depth. | | 4 | | | | | 0 | | 32.62 | × × × × × × × × × × × × × × × × × × × | _ (0.35 | 4.00
5)
4.35 | Moist, mid brownid yellow-browd.35m. Occasion | wn, stiff (work
onal very sma | ing plastic),
all stones (<2 | very slightly
2 mm). | y silty | y clay from 4 | .10 - | | | | | | | 0 | | | * - × - > > = × - × - × - × - × - × - × - × - × - × | -
_ (0.65
- | | | | | | | | | | Boring Pro | gress ar | nd W | /ater | Ob | servation | ns | 31.62
Cas | ing | | 5.00 | Chiselling | | Water | Added | | Gene | ral Remarks | | Date | Time | \neg | Dept | | Wate
Dpt | | Depth | Dia. mr | $\frac{1}{m}$ | From | | Hours | From | To | \dashv | All dime | nsions in | | etres | | Contra | | : Sherwo | od Drillir | ng | | Method: Wir | ldowless S | ampler | <u> </u> | Lo | gged By: | Approved I | #### | NA | IN I VVI | ICH | VV A | ΧΙΕ | RLO | GGE | D DEP | OSITS | i | | | | | | | 2 of | 2 | |-------------|------------|---------|---------|---------|-------------------|---------|------------------|----------------------------|-------|------|-----------------------|---------------|----------------|----------------|------------|---------------|-------------| | SAN | //PLES | | TES | STS | | | | | | | ST | RATA | | | | | ent/ | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Dep | oth | DESCRIPTION | I | | | | | Instrument/ | | | | _ | _ | _ | | | 31.44 | 7 | - | 5.18 | No Recovery. | | | | | | | | | | | | | 0 | | 31.27 | ×_×_ | | 1 | Moist to wet, lightly | ht to mid bro | wn, firm to so | oft and sticky | (working | more or les | s is | | | | | | | 0 | | 31.18 | × × | | 5.44 | Moist, light to m | id
yellow-bro | | | very sligh | tly silty CLA | Y. (6) | | | | | | | 0 | | 20.00 | | (0.25 | o) | Moist to wet, ligh | ht to mid bro | wn, soft, san | dy CLAY. | | | | | | | | | | 0 | | 30.93
30.83 | , — · · · · | | | Wet, light to mic | | | | | | | | | | | | | 0 | | 30.67 | × × × | - | 5.95 | Moist to wet, ligi | | - | | | | 29 | | 6 | | | | | 0 | | 30.62 | | | 6.00 | Moist to wet, ligh | ht to mid gre | y, soft to und | onsolidated, | clayey SA | ND. | | | | | | | | | | | | | | Borehole compl | Boring Prog | | _ | | _ | | | Cas | | | | Chiselling | | | Added | G | eneral R | emarks | | Date | Time | | Dept | :h | Wate
Dpt | er
t | Depth | Dia. mi | m | From | То | Hours | From | То | All dimens | sions in | | etres | | Contra
Plant:0 | | : Sherwo | od Drillir | ng | | lethod: Win | dowless S | ampler | L | ogged E | Ву: Арр | roved By: | Form SLR AGS3 UK BH File 406.0889.00003.005 NANTWICH ARCHAELOGICAL LOGS.GPJ 26-05-16 BOREHOLE No. Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 31/07/07 34.87maOD E364827 N352525 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** | SA | MPLE | | | | | | | | | | ST | RATA | | | | | -hut/ | |-----------------------|----------------------|---------|---------|---------|-------------------|-------|---------------------------|---------------------------------------|------------------------|--|-----------------------------|-----------------------------------|--|------------------------------|--|--------------------|-------------| | epth | Type
No | (mdd)SH | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIP | OIT | ١ | | | | | Instrument/ | | | | | | | | | 24.57 | ? | (0.30) | No Recove | ery. | | | | | | 25.52 | | | | | | | | | 34.57
34.52 | × | 0.30 | | | | | ited, slightly | silty SAND. Me | odern | 12 | | | | | | | 1 | | | | _
_ (0.65)
_ | Just moist
slightly silty
ash/cinder | , light
y SAI
through | ND. Modern r
ughout (conc | n to mid to da
ootlet penetr
entration, <9 | ation through
mm, at 0.81 | vn, unconsolic
hout. Probable
m), occasiona
nd from 0.94n | e fine
I stones | | | | | | | | | | 33.87 | × | 1.00 | slightly silty
and 1.68m | y SAI
n, cha | ND. Rootlet c | ontinues to 1
<3mm) at ar | l.06m and al
ound 1.58m. | vn, unconsolic
so seen at 1.4
. Waterlogged | 0m, 1.50m | 10X0X0X | | | | | | | 2 | | | × | (0.90) | 1.47 - 1.52 | 2 Poc | ket of orange | sand. | | | | | | | | | | | | | | × · · · · | - | | | ket of light gr | | nd. | | | | | | | | | | | | 32.97 | × · · · | 1.90 | | | | | | | | R | | | | | | | 2
1
0 | | 32.92
32.87/
32.78/ | × × × × × × × × × × × × × × × × × × × | 1.95
2.00/
2.09/ | | | | | | andy SILT. Ro
vood at 1.95m | | | | | | | | | 2 | | 32.68 | × — × — × | 2.19 | 1.90 - 1.95 | _ | ht sulphide o | | | | / | | | | | | | | | | | × | | soft), silty | SAN | D. Rootlet at | 1.98-1.99m. | | lightly sticky (v | | | | | | | | | 2 | | | × × × | - (0.81) | thixotropic | , sligh | ntly clayey SI | LT. | | and somewha | | | | | | | | | _ | | | * * * * * | _ | | | -brown, soft,
ed at ~15 de | | | f very decayed | d wood | | | | | | | | | | 31.87 | × × × × × | 3.00 | pockets of
2.58-2.60r | clay. | Suplhide sta | ining throug | hout but mar | yey SILT with
kedly at 2.37-
sulting from de | 2.43m, | | | | | | | | | | | × <u>×</u> ×; | - | \rootlet. 2.19 - 3.00 |) Mod | derate sulphic | le odour. | | | / | | | | | | | | 1 | | | × × × ; | -
-
- (1.00) | Moist, mid
SILT. Sma
black patc | grey
all 'thr
hes - | -brown, fairly
ead-like' filan | stiff and stick
nents through
whide staining | hout - ?funga | soft and sticky
al hyphae. Occ
ociated odour | casional | | | | | | | | | | | × × × × × × × × × × × × × × × × × × × | - | | | | | | | | N. C. A. C. | | | | | | | | | 30.87 | × — × | 4.00 | | | | | | | | × × | | | | | | | | | | | - | Borehole o | comp | lete at 4.00m | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | 5 | | | 1-1 | 0: | | | | • | - | <u> </u> | | | 107.1 | A 1.1. 1 | 0 | and Daw | <u></u> | | oring Pro | | | | | | - 1 | Cas | | | Chise | | Цолга | Water | | Gen | eral Rema | rKS | | Date | Time | | Dept | .11 | Wate
Dp | t | Depth | Dia. mi | m From | n To |) | Hours | From | То | Λ II α ¹ : | noiona : | n m | tros | | Contra | note: | · Chomus | مط المناانة | | Mothodi | ۱۸/:۰- | dowless | ample: | 1, | agged D: : | App. 10.11 | | | All dime | nsıons ı
ale 1:31 | | erres | | Contra
Plant:0 | | : Sherwoo | oa Drillir | ıg | Method:
Hole Size | | dowless S | ampier | | _ogged By: | Approve | a E | BOREHOLE No. Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 31/07/07 35.03maOD E364925 N352423 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | 9.0 | MPLE | S & | TF | STS | | | | | | | ТР | RATA | | | | | | ٦٢ | |-----------|--------------------|----------|---------|---------|---------|-------|-------------------------|----------------------------|----------------------|-------------|-------------------------------|--|--------------------------------|-------------------------------|----------------------|-------------------------|------------------|--| | Depth | Type | MS(ppm) | ну(кРа) | PP(kPa) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DI | ESCRIPTION | | | | | | | Instrument | | | | <u> </u> | _ | | | _ | 24.02 | ? | - 0.00 | No | Recovery. | | | | | | | E S | | | | | | | | | 34.83 | × | 0.20
-
- 0.43 | und | consolidated | of matrix (~20
slightly claye | y, silty SANI | D. Mostly br | rick (<75 | 5mm) and | d stone | | | | | | | | 0 | | 34.56
34.33 | 000 | 0.47
-
0.70 | Sm | nall amount consolidated | of matrix (~20
slightly claye | %) of moist,
ey, silty SANI | mid to dark
D with pock | c grey-b
ets of b | rown,
lack ash/ | | | | | | | | | 0 | | 0 1.00 | × — × — × — × | (0.30) | low | est layer fro | y, white, uncom 0.63-0.70n | n. | | | | / | | | 1 | | | | | 0 | | 34.03 | 1 × 1 | 1.00 | slig
cin | htly clayey S
der/ash and | n to mid to d
SILT, with occ
white mortar | asional patc | | | | | | | | | | | | 0 | | 33.81
33.76 | x ·x | _ 1.22
1.27 | | Recovery. | vn to mid to c | lark grev-bro | wn soft to | crumbly | / (working | n soft) | K | | | | | | | 0 | | | × × × × | -
- (0.24) | slig | htly clayey s | andy SILT. C | Occasional as | sh/cinder th | orough | oùt. | / | | | | | | | | 0 | | 33.52
33.43 | 0, S 0, | 1.51 | cin
cin | der/ash cont
der/ash cont | grey to blace
ent. Occasio
ent is less. V | nal mid to da | ırk brown p | atches | where the | e | | | | | | | | 0 | | 33.26 | ×—× | 1.77 | (\Mo | | y, white, unco | | nortar GRA | VEL gra | ades into | next | | | 2 | | | | | 0 | | 33.11
33.03
32.94 | <u>× × </u> | 1.92
2.00
2.09 | Mic | d brown SAN | m 0.63-0.70n
ID. Mostly co
r (at 1.66-1.7 | mposed of d | | | | | E STATE OF THE STA | | | | | | | 0 | | 02.01 | × | (0.28) | Mo | ist, mid brow | n and dark ger common the | rey, sticky (v | vorking soft | t), slightl | ly clayey | SILT. | 2 | | | | | | | 0 | | 32.66 | × 1 . 1 | 2.37 | Мо | ist, mid brow | n, soft (work | ing soft to mo | ore or less | plastic), | silty CLA | AY. Darker | E | | | | | | | | | | | -
-
- (0.63) | Мо | ist, mid brow | erhaps sulph
on to dark green
onal black
poo | y-brown, cru | | | | | 25.00 | | | | | | | 2 | | | | - (0.03) | per | haps sulphic | des. Very rott
ht sulphide o | ed charcoal | | | 311/CIIIUCI | OI | \$ | | | | | | | | | 32.03 | | 3.00 | Mo
sha | ist, varicolou | red (from light
n and grey-b | nt to mid brow | wn to mid to
nsolidated to | o dark g | rey-brow
bly, slight | n in
ly silty | | | | | | | | | | | | - | Mo
Be | ist, mid brow
comes slight | n, firm to cru | mbly (workin increasing o | g soft), slig
lepth. Rotte | htly silty | / clayey S
I present | SAND.
at | | | | | | | | 0 | | | | -
- (1.00)
- | Sat | y clayey SAN | to mid brown | | | | | | | | | | | | | | | | | - | dov | wnwards. | | | | | | | | | 1 | | | | | | | 31.03 | | 4.00 | D | | l-tt 4 00 | | | | | | 25 | | | | | | | | | | | - | BOI | renoie comp | lete at 4.00m | | | | | | | | | | | | | | | | | - | - | | | | | | | | | | | oring Pro | dress at | nd \^ | /ater | Ohe | ervati | one | Cas | ina | -
- | | Chiselling | | Water | Added | | Gene | ral Rema | rks | | Date | Time | _ | Dept | | Wate | | Depth | Dia. mr | n From | | То | Hours | From | То | \parallel | | | _ | | | | | | | الإك | | - | All dime | | | etres | - 1 | | | : Sherwo | od Drillin | ıg | | | dowless S | ampler | | Logge | ed By: | Approve | d B | | | ale 1:31
SLR Co | | | | Plant:0 | | | | | | e Size: | | | | | | | | BOREHOLE No. **E** Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 31/07/07 35.34maOD E364931 N352261 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | | | | | | | | | | | | | | | | 1 of 1 | |-----------|------------|---------|---------|---------|-------------|-------|-------------------------|--|--|---|---|--|---|---|---|--| | SA | MPLE | S & | TES | STS | | | | | | | ST | RATA | | | <u>'</u> | 7 | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | N | | | | | | | | _ | | _ | | _ | 35.23 | ? | 0.11 | No F | Recovery. | | | | | | | 1 | | | | | | | 34.42
34.34 | × × × × × × × × × × × × × × × × × × × | 0.17
(0.75)
 | Clay
Mois
clay
brick
asso | ey sandy S
st, dark bro
ey sandy S
k (<60mm;
ociated white
e or less dr
dern brick (< | ILT. Fresh gr
wn to grey-br
ILT. Modern
notably at 0.2
te flecks of m | rass at 0.11m
rown, slightly
rootlet penet
21-0.32m, 0.3
ortar. | n. Modern ro
humic, crun
ration to 0.3
37-0.44m, 0 | mbly (working
potlet through
mbly (working
86m. Frequen
1.57-0.58m) w | out. soft), slightly t modern ith | | | | | | | 0 | | 33.84
33.60
33.48 | × ·× · × · × · × · × · × · × · × · × · | (0.50)
- 1.50
- (0.24)
- 1.74 | Core
hum
sma
from
(<62
of ol | e section mic, crumbly all and spars 1.25-1.50 mm) at 1.0 ld rootlet at e section m | ostly collapse
(working sof
se from 1.00-
m. Large stor
0-1.06m and
1.44-1.50m. | d. Moist, dau
tt), slightly cla
1.25m becornes including
d very large of | yey sandy s
ming commo
cobble frag
cobble (<90) | grey-brown, s
SILT. Brick fra
on and larger
gments (<50m
mm) at 1.15- | gments
(<42mm)
(m) and slate
1.24m. Trace | | | | | | | 0 | | 33.40 | × | - 1.94 | \ <u></u> | ., | , | , , | wn, stiff (wo | orking plastic), | CLAY. | | 2 | | | | | 0
0
1 | | 33.34
33.22
33.10 | | 2.00
2.12
2.24 | SAN
sect | ND. Abunda
tion. | int rounded p | ebbles (<36r | mm) forming | consolidated,
g approximate | ely half of this | | | | | | | 1 | | 32.93 | × — × · | -
_ 2.41 | M | | | | | orking plastic),
d coarse sand | | | | | | | | | | | | - | (<70
in co | Omm) of stif
plour. | f (working pla | astic) CLAY, I | ooth just mo | oist and light t | o mid brown | | | | | | | 0 | | 32.34 | | - (0.59)
-
-
3.00 | Just
thro | lm.
t moist, darl
ughout, witl | k grey-brown
n occasional | , brittle, slight | ly clayey SI | ILT. Rootlets r | noted | | 3 | | | | | | | 32.16 | ? | 3.18 | Just | t moist, mid | | stiff (working | | _AY. Large br
ered by corer | | | | | | | | 0 | | | | -
-
-
_ (0.80) | Mois | | | | | Becomes wet
nm) througho | | | | | | | | | | | | - | | | | | | | | | 4 | | | | | 0 | | 31.36
31.34/ | | 3.98
4.00 | Mois | st, light grey | /-brown, unco | onsolidated, s | slightly silty | SAND. | | | | | | | | | | | | -
-
-
-
- | Bore | ehole comp | lete at 4.00m | 1 | | | | | oring Pro | gress ar | nd W | /ater | Obs | ervati | ons | Cas | ing | | . (| Chiselling | | Water | Added | Gei | neral Remarks | | Date | Time | | Dept | h | Wate | er | Depth | Dia. mr | m Froi | m | То | Hours | From | То | | | | | | | | | p-' | | | | | | | | | | | | | All dime | nsions i | n me | etres | | Contra | ctor | : Sherwo | od Drillir |
 g | Meth | nod: Win | dowless S | ampler | | Logged By | : Approved E | | | ale 1:31 | | 55 | | Plant:0 | | | | ۷ | Hole | | | | | 55 - 4 Dy | | # BOREHOLE LOG BOREHOLE No. F Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 01/08/07 39.74maOD E365191 N352264 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPLES of Type No Y | | | | | | | ST | RATA | | | |]; | |--|---------|---------|-------------|-------------------------|----------------------------|---|--
--|---|--|---|---| | Depth Type & & & & & & & & & & & & & & & & & & & | HV(kPa) | Y-N | <u>_</u> | | | | | | | | | | | | | է Ծ | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTION | N | | | | | | 3 | | 0003113 | Wate | 39.14
39.07
38.98 | (Thick- | Depth - (0.60) - (0.60) - (0.60) - (0.86) - (0.86) - (0.86) - (1.00) - (1.00) - (1.00) - (1.00) | Moist (dry in tol (0.60m). Moist, light brow CLAY. Abunda Moist, light to make the silvent of t | wn to mid greent stones and grey-brown hid grey-brown hid grey-brown hid greates sulphic y, compacted ht sulphide o a grey-brown hid y, compacted his sulphide o at grey sand i ous organic o hid grey sand i ht grey sand i ous organic o hid sa | y (in shades of brick fragment, stiff (workinal brick fragment, stiff (workinal brick fragment), stiff (workinal brick), cruightly clayey that dour. It oblack, cruightly clayey of degrains. It of grains. It our. | of brown arents (<30m ng soft and nents (<20r mbly to unc SILT. Abun 3-0.81m. o crumbly vombly to unc SILT. Occas (<15mm) if a control of the th | more or less plamm) throughout consolidated (wordant waterlogge rery slightly sand consolidated (wo asional wood charcoghout. The sto horizontal) es to horizontal) es to horizontal) ing more or less ted, SAND. Occorganics or per | slightly silty astic), and sliver orking soft), ad wood dy slightly orking soft), ips and s plastic), asplastic), asplastic), asplastic), asplastic), asplastic), asplastic), asplastic), | | Boring Progress and | Water O | bserva | ations | Cas | ing | | Chiselling | | Water | Added | Gene | eral Remark | | Date Time | Depth | W;
D | ater
Opt | Depth | Dia. mr | n From | | Hours | From | То | | | | All dimensions in r
Scale 1:31.25 | | | tractor | : Sherwo | od Drillin | ig | Method: Wir | dowless S | ampler | | Logged By: | Approved | #### BOREHOLE No. **BOREHOLE LOG** F1 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 10/01/11 39.69maOD E365188.877 N352269.226 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | S | AMPLE | | | | | | | | | STRA | ATA | | | | | |-----------|------------|---------|---------------|---------|----------------------|----------|------------------|----------------------------|---------------|--|---------------|---------------|-------------|--------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTION | | | | | | | | | | _ | - | | _ | | | _ | No recovery | | | | | | | | | | | | | | | | -
- (0.60) | | | | | | | | | | | | | | | | | (0.00) | | | | | | | | | | | | | | | 39.09 | XXXXX | 0.60 | MADE GROUND: | Ctiff light t | to mid brown | arayally Cl | AV Graval is | modium to | | | | | | | | | 38.90 | | 0.79 | coarse (up to 48mi | m) and ar | ngular. | | AT. Graveris | medium to | | 1 | | | | | | | 38.69 | × — × — × — × | 1.00 | Moist soft dark gre
0.79Rootlet at st | trata inter | face. | | | | | ı | | | | | | | 38.56 | <u>/// ////</u> | - 1.13 | | hes of bla | | | on. | / - | | | | | | | | 1 | 38.46
38.31 | × — × — > | 1.23 | \\0.96Bone fragm
\No recovery | nent. | | | | | | | | | | | | <u>±</u> | 30.31 | | - 1.30 | Dark greyish brown herbaceous detritu | us througl | hout. | | | ine | | | | | | | | | | | (0.48) | Soft moist dark gre
1.27
- 1.29Rour | nded pebl | oles present | up to 14mm. | layey SILT | <u> </u> | | | | | | | | | 37.83 | | 1.86 | | avey SAN | D . | | | | | 2 | | | | | | | 37.69 | | 2.00 | 1.58 - 1.61 Rour | nded pebl | oles present | up to 12mm. | | | | | | | | | | | | | - | Borehole complete | | | | | | | | | | | | | | | | -
-
- | | | | | | | | 3 | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | _ | | | | | | | | 4 | | | | | | | | | _ | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | T | | 1 | | | oring Pro | ogress a | | Vater
Dept | | servati
Wat
Dp | | Cas | ing
Dia. mr | m Fro | Chiselling To I | Hours | Water
From | Added | Ger | eral Remark | | Date | Tillie | + | Бері | .11 | <u>Dp</u> | t | Depth | Dia. IIII | 1101 | 10 1 | riours | 110111 | 10 | _ | All dies | ensions | in m | otroo | | Contro | otor | : Sherwo | od Deilli- | 20 | Method: Windo | wdoco C | ampler | 1 | Logged By: | Approved | #### BOREHOLE No. **BOREHOLE LOG** F2 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Date: Ground Level: Co-ordinates: Project No: 10/01/11 406.00889.00005 E365188.877 N352269.226 39.69maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** #### 1 of 1 Instrument/ **SAMPLES & TESTS STRATA** PP(kPa) Backfill Legend HS(ppm SPT-N Water Туре Reduced DESCRIPTION (Thick-Depth Depth Level ness) MADE GROUND: Moist greyish brown slightly silty sandy GRAVEL (poor (1.00)38.69 1.00 No recovery (0.50)38.19 38.10 1.50 1.59 MADE GROUND: Moist greyish brown slightly silty sandy fine to coarse **GRAVEL** MADE GROUND: Moist dark brownish grey SAND with white patches of decayed mortar/lime (up to 10 mm) present throughout. (0.35)Moist grey SAND with brown mottling. 1.72 - 1.75 ...Rounded pebbles present up to 9mm. 1.81 - 1.86 ...Inclusions of light grey clay. 37.69 - 2 1.95 - 2.00 ...Becoming wet. (0.32)No recovery 37.37 Wet greyish brown SAND (0.34)37.03 2.56 - 2.66 ... Becoming slightly clayey with abundant coarse rounded gravel 2.66 up to 60 mm Moist stiff brown CLAY - 3 (1.34)35.69 4.00 Borehole complete at 4.00m File 110509 406.00889.00005 NANTWICH BH LOGS.GPJ General Remarks Boring Progress and Water Observations Casing Chiselling Water Added Water Dpt Date Depth То Hours From Depth Dia. mm All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Logged By: Approved By: Scale 1:31.25 Plant: Geotool Hole Size: Form SLR AGS3 UK BH BOREHOLE No. G Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 01/08/07 39.60maOD E365096 N3523 Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | 147 | -714 1 44 | | V V /- | 11 L | ILO | JOL | D DEF | 00110 | | | | | | | | | 1 of 1 | | |------------|--------------------|---------|---------|---------|------------------|---------|-------------------------|---|--------------------------------|----------------|------------------------------|--|-------------------------------|---------------------------------|-----------------------|----------------------|---------------------|------------| | SA | MPLE | S & | TES | STS | | | | | | | ST | RATA | | | | | | ent/ | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DES | SCRIPTION | ı | | | | | | Instrument | | | | | | | | | 39.33 | × | (0.27) | less
0.00 | dry, mid gr
m, current | ollapsed and
ey-brown, ur
ground surfa
nes, brick, m | consolidated
ce. Modern r | Í, humic, silt
ootlet and c | ty SAND
other her | . Fresh
baceou | grass at | | | | | | | | 0 | | 39.20
39.12
39.07 | | 0.40
0.48
0.53 | Just | moist, mid
Il areas (<1 | grey-brown,
0mm) of mo | unconsolida
st, light brow | ted, slightly
n, stiff (work | silty SAN | ND, with | | | | | | | | | 0
0
0 | | 39.06
39.04 | × × × | 0.54
0.56
(0.44) | Mois
inclu | t, mid to da
sions of bla | ark grey, firm
ack ash/cinde | (working sof
er and traces | t), clayey SI
of rotted br | rick throu | ighout. | | | | · 1 | | | | | | | 38.60 | ^_ X_
X_ X | 1.00 | CLA' | Ý. | l of moist, un | | | | | e-non | 3 | | | | | | | | | 38.35 | ? | (0.25)
1.25 | M 14 | t, very pale | e (off-white), i | | | | | e-rich | | | | | | | | 1 | | 38.12 | × — × — × — × — × — × — × — × — × — × — | 1.48 | some | ewhat plas
common | y-brown to ve
tic), silty CLA
(~10%) throu
ery rotted she | Y. Black ash
ghout, with s | and/or very
ome rotted | y rotted o
charcoa | charcoal
I pieces | l/cinder
(<12mm) | | | | | | | | 0 | | 38.00 | × | - | fragn | | 62-0.66m (< | | | | -0.00111 | , the | | | -2 | | | | | 0 | | 37.61
37.60 | × · · · · · | - (0.39)
-
1.99
2.00/ | plast | ic), sandy | grey, crumb
clayey SILT.
otlets at 1.27 | Black inclusi | ons of very | rotted ch | | omewhat | 222 | | | | | | | Ö | | 37.45 | <u>× </u> | - 2.15 | | | vn, unconsol
ark grey, crur | | | working | soft), sli | ghtly | | | | | | | | 0 | | 37.25
37.16 | × × × × | - 2.35
- 2.44 | claye
fleck | ey, silty SA
s of rotted | ND. Rounded
charcoal at 1
vn, unconsol | d quartz pebl
.81-1.82m. | ole (<15mm | | | | | | | | | | | | | | | - (0.50) | IN | | to grey-brovid grey, firm | | | | olastic), | slightly | | | | | | | | 0 | | | | (0.56)
-
- | Mois | | , compacted | ` | | , , | | AND. | | | 3 | | | | | | | 36.60 | | 3.00 | unco | nsolidated | ollapsed. Moi
, coarse SAN
%) in last 0.0 | ID. Stones (< | | | | ecoming | | | | | | | | | | | | - | Bore | hole comp | lete at 3.00m | ı | | | | | | | | | | | | | | | | - | - | | | | | | | | | | | 4 | | | | | | | | | - | - | - | - | - | | | | | | | | | | | Soring Pro | gress a | nd V | √ater | Obs | | | Cas | ing | | С | Chiselling | | Water | Added | | Gene | ral Rema | rks | | Date | Time | | Dept | :h | Wate
Dpt | er
t | Depth | Dia. mr | m Froi | m | То | Hours | From | То | All dime | | | etres | | | | : Sherwo | od Drillir | ng | | | dowless S | ampler | | Logge | d By: | Approve | d By | | | ale 1:31
SLR Co | | Itina | | Plant:0
Hermo | | | sworth F | Park. Oxor | | Size:
iness Pai | k, Shrews | oury SY3 5 | HJ, Tel: 0 | 01743 2 | 39250 |), Fax: N// | Ą | BOREHOLE No. Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 01/08/07 39.35maOD E365233 N352471 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** | | | | | | | _ | | | | | | | | | | | | |----------|------------|---------|---|---------|--------|-------|------------------|----------------------------|--------------|--------|--------------------------------|----------------------------------|---------------------------------|--------------------------------|---------------------------------|-----------------------|-------------| | SA | MPLE | | | | | | | | | | ST | RATA | | | | | _
hent | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | ESCRIPTION | N | | | | | Instrument/ | | | | | | | | | 39.29 | ?
X — X | 0.06 | \sim | Recovery. | | | | | | | | | | | | | | | 39.15 | - ×> | 0.20 | | | it, mid to dark
penetration t | | nbly (working | g soft), sandy | clayey SILT. | K | | | | | | | 0 | | 38.99 | - × | 0.36 | Top | soil of mois | t, mid brown | crumbly (wo | | andy clayey S | | | | | | | | | 0 | | 38.97
38.89 | × | 0.38 | | | nt to mid brov
its throughou | | it 0.21-0.24n | n. Occasional | modern | | | | | | | | 0 | | 38.86 | × . × . | 0.49 | | | | | | onsolidated S | | | | | | | | | 0 | | | × | (0.51) | | | y, mid to darl
er (<18mm) a | | | slightly silty S | AND. | | | | | | | | | | | × | | | | y, very pale y | | | | | | | | | | | | | | 38.35 | - · · · | 1.00 | Jus | t moist, mid | grey (occasi | onal small ar | eas of mid b | prown), crumb | ly (working | | | | | | | | | | | | (0.40) | \ (at | 0.60-0.63m) |), glass (at 0. | 69-0.71m) ar | nd occasiona | 62-0.54m), mo
al small rounc | ded stones | 100 | | | | | | | | | | [| (0.42) | 1. | 0mm) throu
Recovery. | ghout. | | | | | / (b | | | | | | | | | 37.93 | | 1.42 | | | | | - II - I- 4h 114 | .I OAND | | _[5 | | | | | | | 0 | | 37.83 | | 1.52 | | | nia grey, unce
brown, very | | | clayey SAND. | | -15 | | | | | | | | | | | (0.38) | Jud | t moiot, mia | biowii, vory | oun (wonting | plactic) CE | | | 16 | | | | | | | 0 | | 27.45 | | L ` ´ | | | | | | | | É | | | | | | | | | 37.45
37.35 | ? | 1.90
2.00 | No | Recovery. | | | | | | -Æ | | | | | | | | | | | | | | brown, very | stiff (working | plastic) CLA | λY. | | Ŕ | | | | | | | | | | | _ | | | | | | | | É | | | | | | | | | | <u> </u> | _ | | | | | | | | (F | | | | | | | 0 | | | | -
(1.00) | | | | | | | | | | | | | | | 0 | | | | (1.00) | | | | | | | | | | | | | | | | | | | _ | 36.35 | | 3.00 | | | | ····· / 1 · | | N/ O 1 005 | | _2 | | | | | | | | | | | _ | Jus | it moist, mid
liment in cor | l brown, very
re tube, rest v | stiff
(working
/oid - sedime | plastic) CLA
ent mobile wit | AY. Only 0.35 thin tube so a | metres of
ny depth | 2 | | | | | | | | | | | | rec | ord spurious | 3. | | | | | 2 | | | | | | | | | | | | | | | | | | | 2 | | | | | | | 0 | | | <u> </u> | - (1.00) | | | | | | | | 2 | | | | | | | | | | | - | | | | | | | | 2 | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | 35.35 | | 4.00 | | | | | | | | Ç | | | | | | | | | 35.35 | | 4.00 | | | | | | | | TC. | | | | | | | | | | | - | Bor | ehole comp | lete at 4.00m | 1 | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | ring Pro | gress a | nd W | Vater | Obs | ervati | ons | Cas | ing | | | Chiselling | | Water | Added | Gen | eral Rema | ırks | | Date | Time | _ | Dept | | Wate | - 1 | Depth | Dia. mi | m Froi | | То | Hours | From | То | | | | | | | | | | υρ | | - 1 | | | | | | | | 1 | etres | | | | | od Drillir | ng | | | ndowless S | ampler | | Logged By: | Approve | ed E | | Sc | ale 1:31 | .25 | ns in metres Contractor : Sherwood Drilling 1:31.25 Plant:Geotool | | | | | | | Hole | e Size: | | | | | | | BOREHOLE No. Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 31/07/07 38.96maOD E365308 N3523 Co-ordinates: E365308 N352394 Project: ### **NANTWICH WATERLOGGED DEPOSITS** | 14. | ~(14 44 | ЮП | VVA | 11 □ | KLO | JGL | D DEP | 03113 | | | | | | | | 1 of 1 | | |----------|------------|---------|---------|-------------|------------|---------|------------------|----------------------------|-----------------------|------------|--|---------------------------------|---|----------------------------|---|------------|-------------| | SA | MPLE | | | STS | | | | | | | ST | RATA | | | ' | | ent/ | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DI | ESCRIPTION | N | | | | | Instrument/ | | | | | | - | 1 | | | × | -
-
-
(0.86) | 0.3
0.7 | sent through
7-0.46m and
7-0.86m and | nout - rounde
d 0.62-0.72m | ed to angular. Traces of c (<3mm) at 0. | Decayed ro
inder and co | SAND. Stones
otlet at 0.30-0
al (<7mm) at |).34m, ´ | | | | | | | | 2 | | 38.10
38.00 | × | -
- 0.86
- 0.96 | | ist. light to m | nid brown to | arev-brown. ı | ınconsolidate | ed, SAND witl | n some | 70470 | | | | | | | 3
0 | | 37.96 | × × | - 1.00
- | dis
0.6 | crete mid gre
9-0.72m, sm | ey clay lumps
nall stones at | s (<40mm). L
0.86-0.88m, | arge woody
cinder/ash a | root fragment
at 0.88-0.92m | ts at | | | | | | | | 0 | | 37.59 | × | - (0.37)
- 1.37 | Mo | ist to wet, m | id grey, unco | | lightly silty S | AND. Occasion | | | | | | | | | 0 | | 37.38 | | 1.58 | Co | | | st, light to mid | d brown, unc | onsolidated, | fine to | | | | | | | | 0 | | | | - (0.42) | ı 🖳 | arse SAND.
ist, mid brow | vn to grey-bro | own, very stiff | f (working pla | astic) CLAY. | / | | | | | | | | | | 36.96 | | 2.00 | Jus | st moist, light | tic) CLAY. Ro | tted | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | 0 | | | | - (1.00)
- | | | | | | | | ALTER CA | | | | | | | | | 35.96 | | 3.00 | | st moist, light | tic) CLAY | | | | | | | | | | | | 0 | | | | (0.70) | June | rmoiot, iigin | | | | | | | | | | | | | 0 | | 35.26 | | 3.70 | | | | | | | | | | | | | | | | | | | - | | rehole comp | lete at 3.70m | 1 | | | | | | | | | | | | | | | -
- | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | ring Pro | gress a | nd V | Vater | Obs | servati | ons | Cas | ing | | | Chiselling | | Water | Added | Gen | eral Rema | rks | | Date | Time | | Dept | th | Wate
Dp | er
t | Depth | Dia. mı | m Fro | m | То | Hours | From | То | All dime | | | etres | - 1 | | | : Sherwo | od Drillir | ng | | | idowless S | ampler | L | Logged By: | Approve | d E | | | ale 1:31 | | ltina | | Plant:0 | | | sworth [| Park Ovo | | e Size:
siness Pai | rk Shrewe | hury SV3 5 | H.I Tel· 0 | 1743 23925 | 0 Fax: N// | | BOREHOLE No. J Client: #### **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 E365284 N352296 31/07/07 40.04maOD Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | | | | | | | | OSITS | | | | | | | | | 1 of 1 | | |------------|------------|---------|---------|---------|-------------|-------|------------------|----------------------------|-------------------------|-----|---|-----------------|------------------------------|-----------------------------|-----------|--------------|--------------|------------| | SA | MPLE | S & | TES | STS | | | | | | | ST | RATA | | | | | | ant/ | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | D | ESCRIPTION | I | | | | | | Instrument | | | | _ | | | | | | × × × × | _ (0.36) | roc | st moist, dark
otlet througho | | onsolidated, | silty SAND. | . Moderr | n woody | root and | | | | | | | | 0 | | 39.68
39.60 | | - 0.36
- 0.44 | | real matrix. | Lumps of fur | nace slag/'ha | ard core' (< | 115 mm | ۱). | | 18 | | | | | | | 0 | | | | (0.42) | | odern sand ai
36m. | nd gravel dry | mix hard co | re. Two lay | ers of te | erram me | mbrane at | | | -1 | | | | | 2 | | 39.18
39.04 | 0 \ 0 \ \ | 1.00 | Mo | oist, dark brov
gments of cir | nder (<3mm) | own, crumbly
in 0.86-0.89 | y (working s
m and a fev | soft) CL | AY. Sma |

 - | | | | | | | | 0 | | 38.78 | × | (0.26)
1.26 | Mc | gments throu
pist, mid to da
ghtly silty SAN | irk grey-brow | /n, unconsoli | dated to cru | umbly, s | slightly cla | ayey | 2 | | | | | | | 2 | | | | -
-
- (0.49) | Mc | pist, light brow
ghtly clayey). | n, unconsol | idated, SANI |) (last 0.02r | m slight | ly wetter | and | | | | | | | | | | 38.29 | | 1.75 | | | | 01 | A > 7 / 12 1 /1 | | | 200 | | | - 2 | | | | | 0 | | 38.04 | | (0.25)
2.00 | | oist, mid to mi | | | | | | | | | - | | | | | | | | | - | Ju | st moist, mid | brown, very | stiff and sligh | ntly sticky (v | working | plastic), | CLAY. | 2223 | | | | | | | 0 | | | | - (1.00)
-
-
- | | | | | | | | | 2000 A | | -3 | | | | | | | 37.04 | | 3.00 | Ju: | st moist, mid
00 - 3.20 Sligl
34 - 3.40 Sligl | ntly silty pock | ket. | ntly sticky (v | working | plastic), | CLAY. | | | | | | | | 0 | | | | -
- (1.00)
-
- | 0.0 | 54 - 0.40 Oligi | nty sinty poor | AGL. | | | | | | | 4 | | | | | | | 36.04 | | 4.00 | | | | | | | | | <u>\$</u> | | | | | | | | | | | -
-
-
- | Во | orehole comp | lete at 4.00m | 1 | | | | | | | | | | | | | | | | - | | | | | | | | | | | Boring Pro | | _ | | | | - 1 | Cas | T . | | | Chiselling | | Water | | | Gene | ral Rema | rks | | Date | Time | | Dept | h | Wate
Dpi | | Depth | Dia. mr | m Fro | m | То | Hours | From | То | | | | | | All dime | nsions i | | etres | | Contra | | : Sherwo | od Drillir | ng | | thod: Win
le Size: | dowless S | ampler | | Logge | ed By: | Approve | d By | #### BOREHOLE No. **BOREHOLE LOG** Κ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365021 N352297 406.0889.00003.005 31/07/07 37.14maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SA | AMPLE | | | | | | | | | S | ΓRΑΤΑ | | | | 7+40 | |-----------|------------|--|---------|---------|-------------|-------|------------------|----------------------------|-------------------------|--|----------------------------------|---------------------------------|-------------------------------|----------------------------|--------------| | Depth | Type
No | (mdd)SH | ну(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTIO | N | | | | 1 | | | | <u>. </u> | | | | | | | (0.84) | Largely void, wapproximately) (<22mm). | vith loose stor
followed by a | nes (<55mm)
a mix of brick | from 0.00-0.
(<30mm), co | 35m (very
oal (<50mm) a | 3 | | | | | | | | | 36.30 | 0 0 0 | - 0.84 | Moist, light to r | nid grey-brow | n, crumbly (v | vorking soft a | and somewhat | plastic), | | 1 | | | | | | | 36.14 | | 1.00 | sandy, silty CL
throughout. Di | AY. Crushed
esel oil odour | brick/tile, bla | ck ash/cinde | r and stones (| <12mm) | | | | | | | 0 | | | | -
-
- (1.00)
- | Just moist, mic
grey/black by o | I brown, very
liesel oil cont | stiff (working
amination fro | plastic), CLA
m 1.00-1.04r | AY. Stained da
n. | ırk (C | | 2 | 0 35.14 | | | | | | | | 2.00 | Laura vaida in | tuba alaa a | manima di cat | | | i (a rikin a | | | | | | | 0 | | | | (0.50) | Large voids in plastic), CLAY. 1.00-1.04m. A | Stained dark | grey/black b | y diesel oil c | ontamination f | rom | | | | | | | | | 34.64 | | 2.50 | Large voids in | tube - also co | ontained just | moist, mid br | rown, verv stiff | (working | | | | | | | 0 | | | | (0.50) | plastic), CLAY
1.00-1.04m. A | Stained dark | grey/black b | y diesel oil c | ontamination f | rom | | 3 | | | | | | | 34.14 | | 3.00 | Borehole comp | olete at 3.00n | 1 | | | | | 1 | | | | | | | | | -
-
-
-
- | | | | | | | | | | | | | | | | - | -
-
-
- | | | |
| | | | oring Pro | | | | | | | Casi | | | Chiselling | | Water | 1 | Gene | eral Remarks | | Date | Time | | Dept | in | Wate
Dpt | Ĩ. | Depth | Dia. mn | n Froi | n To | Hours | From | То | | | | All dime | ancione i | n ma | | | 0 1 | | : Sherwoo | | | Method: Wir | | | | ogged By: | Approved E | #### BOREHOLE No. **BOREHOLE LOG** L Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365128 N352544 11/09/07 38.71maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SA | AMPLE | | | | | | | | | | ST | RATA | | | | | ent/ | |--------------------|------------|---------|----------------|---------|----------------------|---------|------------------|---------------------------------------|-----------------------|-----------------------|--------------------------|---------------------------------|------------------------------|------------------------------|------------------------|---------------------------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESC | RIPTION | N | | | | | Instrument/ | | | | | | | | | | °0 °0. | (0.50) | | ed and
hard c | loose in core
ore'. | tube - no ma | atrix. Tarma | c and stone | (<60mm) | | | | | | | | | | 38.21 | | 0.50 | | | | dry, light to | mid grey, st | iff (working | plastic), CLAY | | | | | | | | | | 37.96 | | - 0.75 | No mat | rix. Loos |) 'hard core'.
se 'hard core | | | | | | | 1 | | | | | 0 | | | × × × × × × × × × × × × × × × × × × × | -
-
(0.55) | | | wn to dark gr
ost-medieval/ | | | | shy, slightly
at 0.97-1.00m. | | | | | | | | | | 37.41 | × | 1.30 | | | | | | | | | | | | | | | | | | | - | Just mo | oist, light
at 1.30-1 | t brown, unco
1.38m. | onsolidated, | SAND - staiı | ned darker f | rom layer | | | | | | | | 0 | | | | (0.70) | | | | | | | | | | 2 | | | | | | 1 | 36.71 | | 2.00 | Moist, li
2.00-2.3 | ight brov
35m for | wn, unconsol
ming ~90% o | idated, SANI
f tube conte | D. Abundant
nts at 2.00-2 | t stones (<8
2.20m. | 0mm) at | | | | | | | | 0 | <u></u> | 36.26 | | (0.45)
-
- 2.45 | | | | | | | | | | | | | | | | | 00.20 | | - | Moist, r | nid brow | vn, very stiff (| working plas | etic) CLAY. | | | | | 0 | | | | | | | | | - | | | | | | | | | | 3 | | | | | 0 | | | | -
-
(1.53) | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | 4 | | | | | | | 34.73
34.71/ | | 3.98 | No Rec | overy. | | | | | | | | | | | | | | | | | - | Boreho | le comp | lete at 4.00m | 1 | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | | -
- | | | | | | 1 - | | <u> </u> | | Boring Pro
Date | gress a | | /ater
Dept | | servati
Wat
Dp | | Cas
Depth | ing
Dia. mr | n Fro | | selling
To | Hours | Water
From | Added | | eneral Rem | | | Date | riille | | <u> ը</u>
- | 41 | <u>Dp</u> | t | Беріп | Dia. Mir | II FIO | 11 | 10 | TIOUIS | 110/11 | 10 | 2.28m | bgl. Well
ace concen | | | | ensions i | | | | Contra | | | | | | | | | | | | | BOREHOLE No. Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 11/09/07 37.81maOD E365015 N352549 Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SA | AMPLE | | | STS | | | | | | | ST | RATA | | | | ent/ | |------------|------------|---------|---------|---------|-------------|----------|----------------------------------|--|----------------------------------|----------------------|---|--|--|--------------------------------|---|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | С | DESCRIPTION | N | | | | Instrument/ | | | | _ | | | | | 37.46 | × ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× | - (0.35)
- 0.3 | ur
St | | collapsed an | d loose in up | per 0.18m c | orown sand),
of tube), sandy SILT.
e latter abundant from | | | | | | | | 0
0
0 | | 37.36
37.32
37.29
37.26 | × × × × × × × × × × × × × × × × × × × | - 0.4
- 0.4
- 0.5
- 0.5 | 9 cc
2 cc
5 th | ore section vo | lume). Abund | dant brick/tile | rubble (<38 | SILT (approx. 50% of
Bmm) - approx. 50% of
woody) rootlet common | | | | | | | | 0 | | 37.23
37.01 | <u> </u> | 0.5
0.8 | ~ IIIII | o matrix. All of
24mm). | f section was | of angular, _I | pale grey/gre | ey-brown, stone | | | ·1 | | | | | 0 | | 36.81 | × -× - | 1.0 | U | ry, mid to dark | · , , | | | ournt stones (<12mm). | | | | | | | | 0 | | 36.58 | × × × × × × × × × × × × × × × × × × × | -
- 1.2 | 3 Di | ry, mid to dark | grey-brown
ent (~10%) of | , unconsolida
this section. | ated, ashy sa | andy SILT; very much a ry, angular, brick/tile | | | | | | | | 1 | 1 | 36.37 | × × . | - 1.4 | | ust moist, mid
(12mm) prese | | | tic) CLAY. C | Cinder and ash lumps | | | | | | | | . 1 | <u> </u> | 36.21 | × × × | 1.6
-
- (0.40) | 0 Ju
or
fra | ust moist, mid
r less plastic),
agment (<108 | to dark grey-
silty CLAY. A
mm) at 0.80- | -brown to mic
Abundant fine
-0.88m, with | e ash throug
a little assoc | ey, crumbly (working more phout. Large brick/tile ciated mortar (<10mm). | | | 2 | | | | | 1 | | 35.81 | | 2.0 | 0 sa
1. | andy SILT. Lai | rge lumps (<
erlying a thin | 110mm) of c | onglomerate | nsolidated, very ashy
e ?floor surface at
ular and rounded stones | | | | | | | | 1 | | 35.58 | | 2.2 | 3 M
Fi | loist, very dark
ine ash, rootle
naterial througl | c grey to blace
ets, stones (<
hout. | 12mm) and p | | l, slightly clayey SILT.
er waterlogged organic | | | | | | | | 0 | | | | (0.61) | Me
as
th | sh, rootlet, sto
roughout. Sta | k grey to blace
nes (<12mm
anding ground | k, soft to und
) and possib
d water from | le other wate
~1.50m dow | I, slightly sandy SILT. Fine
erlogged organic material
wnwards. Very rotted | | | | | | | | | | 34.97 | | - 2.8
- | 1. | narcoal (<3mn
.44 - 1.60 Sligl | , | |) at 1.60m. | | | | 3 | | | | | 0 | | 34.81 | | 3.0 | cla | ayey SAND. F
aterlogged org | ine ash, roo
ganic materia | tlet, stones (| <12mm) and | d, slightly silty, slightly
d possible other | | | | | | | | | | | | -
-
- | M | ayey SAND w | c grey to blac
rith small clas | k, soft to und
t of mid brov | vn sand (<10 | I, slightly silty, slightly
0mm). Fine ash, rootlet,
panic material throughout. | | | | | | | | | | | | -
-
- | 2.
W | .00 - 2.23 Very | y slight sulph
d brown, unc | ide odour.
onsolidated, | | ND. Rounded stones | | | 4 | | | | | | | | | _ | | argely void as | | | | natrix of loose, saturated, | | | 7 | | | | | | | | | - | - | orehole comp | -
-
- | | | | | | | | | Boring Pro | gress ar | nd W | √ater | Obs | ervati | ons | Cas | ing | | | Chiselling | | Water | Added | General Rema | rks | | Date | Time | | Dept | h | Wat
Dp | er
t | Depth | Dia. mı | m Fro | om | То | Hours | From | То | Groundwater preser | nt at | | | | | | | | | | | | | | | | | 1.58m bgl. Well headspace concenti 905ppm. | ratio | ensions i | | etres | | | | : Sherwo | od Drillir | ng | | ethod: Win | dowless S | ampler | | Logged By: Approve | d B | | 50 | ale 1:31 | | | | Plant: | | | | | | ole Size: | | 0.40 = | |
 | | BOREHOLE No. N Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 12/09/07 39.17maOD E365016 N352448 Co-ordinates: E365016 N352449 SLR* Sheet: Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 2 | | | | | | | | | | | | | | | | | 1. | |------------|------------|---------|---------|---------|-------------|---------|-----------------------------------|---------------------------------------|--------------------|----------------------|--|---|---|---|---|---| | SA | MPLES | | | | | | | | | | ST | RATA | | | | | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | De | epth D | ESCRIPTION | N | | | | | | | | | | | | | 38.97 | °0 0 0
0 0 0
× · · · | - | 0.20 gr | | | | | ess dry, light an
eces of aggrega | | | | | | | | 0 | | 38.67 | × | (0.3 | sli (50) | | ND. Crushed | d cinder and | coal (<4mm | consolidated, a
n), brick/tile (<28 | | | | | | | | 0 | | 38.54 | == | - | | st moist, mid
rk grey from | | | | Surface discolo | ured to | | 1 | | | | | 0 | | 38.17
38.10 | | (0.3 | Modal Modal Sti | pist (becomin
rk grey-brow
cky), sandy (| g wet from 0
n to dark gre
CLAY, with o | .70 downwar
y to black, so
ccasional sm | rds - standin
oft and slight
all clasts (<2 | ng ground water
tly sticky (works
20mm) of light t
and very rotted | o mid | | | | | | | 0
1 | | 37.95 | × — × | - | \tn | roughout (with | | | | lm).
ey, unconsolida | ated and | | | | | | | 2 | 1 | 37.88 | X1, X1, | | 1.29 \sli | ghtly sticky (v | | | | | ited and | | | | | | | 1 | <u></u> | 37.85/
37.59 | | (0.2 | 26) \cla
1.58 \1. | yey SILT. Ve
13-1.14m) pro | ery rotted woo
esent. | od at 1.08-1. | 10m and co | y sticky), slightly
pal (<3mm) frag |
ments (at | | | | | | | 0
3
2 | | 37.57/
37.42
37.37
37.29 | | - | 1.75 hu
1.80 1.3 | mic, amorphe
25-1.26m. | ous slightly s | ilty organic n | naterial. Bar | ore or less soft)
k fragment (<5 | Omm) at | | 2 | | | | | 0 | | 37.26 | × × | | 1.91 | | | | | erved saturated
t and somewha | | | - | | | | | 4 | | 37.17/ | × × × | (0.4 | thi | xotropic, silty
1.32-1.35m. | sandy CLAY | , perhaps wi | th a little am | norphous orgar | ic content | | | | | | | | | 36.71 | × × × × | - ` | 2.46 sli | ghtly sandy Č
lurated clay. | LAY - granu | les mosity se | em to be sr | mall (<2 mm) lu | mps of | | | | | | | 3 | | 36.56
36.45 | | - | 2.61
2.72 thi | xotropic, silty
1.32-1.35m. | sandy CLAY
Twig fragme | ′, perhaps wi
nts (<3mm d | th a little am
iameter) at | norphous organ | ic content | | 3 | | | | | 2
1 | | 36.32
36.17 | · · · · · · · · · · · · · · · · · · · | - | 3.00 sil | y CLAY. Coa
1.74m and w | al/cinder (<4n
ood fragmer | nm) present
it (saturated | throughout,
and rotted) | bone fragment | (<11mm) | | | | | | | | | | | | da
fra | rk brown to g
gments (<5n | rey-brown, s
nm) present t | ticky (workin
hroughout. | g soft), clay | ey SILT. Small | coal | | | | | | | 0 | | | | 8.0) | 30) cla | ayey SILT. Bli
38 - 1.91 Slig | ue ?vivianite | (<12mm) at | | .,, : Harrio, 3iigr | | | | | | | | | | 35.37 | | - | de | et, dark brow
tritus. Hazelr
91 - 2.00 Ove | ut fragment | at 1.93-1.94r | n. | waterlogged he | erbaceous | | 4 | | | | | 0 | | 35.19
35.17/ | | - | 3.98 Inc | et, dark brow | n, soft, very o | organic SILT | , with a pale | e blueish-grey o
s, large wood f | | | | | | | | | | | | ļ | IV IV | 00 - 2.46 Ove | | | | CAND | | | | | | | | | | | | - | Me | | ry dark grey- | brown, crum | ibly (works s | SAND.
soft), slightly silt
2-2.64m and 2.0 | | | | | | | | | | | | [| 1.00 | 61 - 2.72 Ver
oist. liaht arev | , , , | | v (in shade | s of grey and g | rev-brown) | | | | | | | | | | | Ė | ur | consolidated | , SAND. Larg | ge rounded s | tones (<40r | mm) at 2.73-2.7 | 75m. | | | | | | | | | | | <u> </u> | sh | | and grey-bro | | | mid to dark gre | | | Boring Pro | gress ar | nd W | /ater | Obs | | | Cas | ing | $\perp \mid \perp$ | | Chiselling | | Water | Added | Gen | eral Remarks | | Date | Time | | Dept | h | Wate
Dpi | er
t | Depth | Dia. mr | m | From | То | Hours | From | То | 1.37m bg | ater present a
I. Well
e concentrat | | | | | | | | | | | | | | | | | 80ppm. | | | All dime | nsions ir | n me | etres | | Contra | actor | : Sherwo | od Drillir | ng | Me | thod: Win | dowless S | ampler | | Logged By: | Approved I | | | ale 1:31 | | | - 1 | Plant:0 | | | • | _ | I | le Size: | | | | 55 . 7. | 1 ''' | #### BOREHOLE No. **BOREHOLE LOG N1** Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 10/01/11 39.16maOD E365016 N352449 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | S | AMPLE | | | | | | | | | STRATA | | |-----------|------------|---------------|---------|---------|-----------|----------|------------------|--|--------------------|--|-----------------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTION | | | | | Ι. | | ш. | | | | | -
-
- | No recovery | - | | | | | | | | | | | _ (0.53) | | | | | | | | | | | 38.63
38.60 | | - 0.53
0.56 | MADE GROUND: Soft moist greyish brown gravelly of fragments of brick and tile up to 15mm throughout. | / | | | | | | | | | 38.21 | | _ (0.39)
- | Moist stiff brown CLAY, possibly redeposited, with inc
and ash throughout
0.56 - 0.60Single large stone present (approximate | | | 1 | | | | | | | 38.16
37.99 | ×—× | | Moist dark greyish brown gravelly clayey SILT with at black charcoal and ash throughout | · | | | | | | | | | 37.82 | | -
- 1.34 | No recovery | | | | | | | | | | 0.102 | × — × | - | Moist stiff brown slightly gravelly CLAY, possibly rede
Moist dark grevish black organic sandy clayey SILT v | | | | | | | | | 1 | | × × × × × × × × × × × × × × × × × × × | -
-
_ (0.66) | odour increasing with depth.
1.46 - 1.47Decayed wood fragments
1.63 - 1.65Decayed mortar/lime up to 15mm. | | | | | | | | | - | 37.16 | ^ -x ^ ;
* -x > | -
-
2.00 | 1.92 - 1.94Roundwood fragments up to 35mm. | | | 2 | | | | | | | 37.10 | ? | - 2.30 | No recovery | | | | | | | | | | 36.93 | × | 2.23 | Moist dark greyish black organic sandy clayey SILT v | ith moderate sulphide | | | | | | | | | | × × × ; | -
- , | odour. | in moderate culpines | | | | | | | | | | ×_×; | _ (0.48) | 2.23 - 2.30Large wood inclusion. 2.23 - 2.51Fine herbaceous detritus present. | -
 - | | | | | | | | | 36.45
36.39 | X X | 2.71
2.77 | 2.51 - 2.71 Abundant wood fragments up to 12mm | | | | | | | | | | 36.39 | <u> </u> | - 2.11 | Coarse rounded GRAVEL Light brown very decayed Wood | | | 3 | | | | | | | 36.16 | <u> </u> | 3.00 | 2.89 - 3.00Wood becomes less decayed and dark Borehole complete at 3.00m | er in colour. | | 4 | | | | | | | | | -
-
-
- | | | | | | | | | | | | | -
- | | | | | | | | | | | | | - | | | | | | | | | | | | | -
-
- | | | | oring Pro | ogress a | nd W | /ater | · Oh | servati | ons | Cas | ina | -
-
 | Chiselling Water Added | General Remarks | | Date | Time | $\overline{}$ | Dept | | Wat
Dp | - 1 | Depth | Dia. mr | n Fro | _ | 2331411101114111 | | | | | 1. | | <u>D</u> | #### BOREHOLE No. **BOREHOLE LOG** N Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 E365016 N352449 39.17maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 2 of 2 | SA | AMPLE | S & | TES | STS | | | | | | | SI | TRATA | | | | | ent | |-----------|------------|---------|---------|---------------|-------------|-------|------------------|----------------------------|----------|-----|------------|-----------------------------------|--------|-------|--------------------|--------------------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DI | ESCRIPTION | N | | | | | Instrument/ | | | | _ | _ | | | _ | | , | | | | brown, very | | | | | - | | | | | | | | | | | | | | t to mid grey,
nid grey, stick | | | | | | | | | | | | | | | | • | 1 - | | olete at 4.00m | | ,, | - | • | | | | | | | | | | 3 | | | | | | | | | - | • | 7 | | | | | | | | | - | • | | | | | | | | | | | | | | | | | | | • | 3 | | | | | | | | | - | 9 | | | | | | | | | _ | • | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | oring Pro | gress a | nd V | Vater | Obs | | | Cas | ing | | | Chiselling | | Water | Added | Gei | neral Rema | rks | | Date | Time | | Dept | th | Wate
Dpt | er | Depth | Dia. mn | n Fro | m | То | Hours | From | То | Groundv
1.37m b | vater preser
al. Well | nt a | | | | | | | | | | | | | | | | | headspa
80ppm. | ice concent | ratio | All dime | ensions i | in me | etres | $\frac{1}{1}$ | Contra | octor | : Sherwoo | od Drillin | <u> </u> | Met | thod: Win | ndowless Sa | ampler | | Logged By | : Approve | d P | | | cale 1:31 | | 03 | | Plant: | | | ا اااااا ال | J | Hol | ٧٧11 | | ~pioi | | -cagou Dy | . I , ibbiose | ں ۔ | # BOREHOLE No. O Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 11/09/07 39.64maOD E365184 N352470 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** | SA | MPLE | | | | | | | | | | ST | RATA | | | | | | 1 | |-----------|------------|---------|---------|---------|-------------|----------|----------------------------------|--|---|--|--|---|--|---|------------------------------|---------------------|-----------------------------|------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level
| Legend
(Thick-
ness) | Depth | D | ESCRIPTION | N | | | | | | | | | | | | | | | 39.24 | × ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× | -
- (0.40)
-
0.40 | gre
su
(<; | ey, slightly cla
rface at 0.00-
30mm), morta | ed in tube. So
ayey sandy Southern and a
ar (<15mm),
a of this section | ILT. Fresh gr
ssociated ro-
cinder (<12m | rass and mo
otlet penetr
nm) and larg | oss from co
ration to 0.1 | ırrent g
4m. Bri | ground
ick/tile | | | | | | | | 0
0
0 | | 39.10
38.96
38.85
38.74 | × × × × × × × × × × × × × × × × × × × | - 0.54
- 0.68
- 0.79
- 0.90 | gre
su
(<;
for | ey, slightly cla
rface at 0.00
30mm), morta
med the bulk
50 - 0.52 Poc | ed in tube. So
ayey sandy So
-0.02m and a
ar (<15mm),
a of this section
of the section | ILT. Fresh grassociated ro-
cinder (<12m
on of the core
own sand. | rass and motest penetrem) and larger. | ration to 0.1
ge lumps of | urrent g
4m. Bri | ground
ick/tile | | | | | | | | 0 | | 38.64 | × × × | 1.00 | Mo
slię | oist, dark greg
ghtly clayey s | k/tile which by
y (occasional
silty SAND. R | ly mid to darl
otted mortar | k grey-brow
at 0.62-0.68 | vn), unconso
8m. | | | | | | | | | | 2 | <u>‡</u> | | * * * * * * * * * * * * * * * * * * * | -
-
- (0.57) | sli
(</td <td>ghtly clayey s
20mm).</td> <td>y (occasional
silty SAND. M
t grey, stiff (w</td> <td>ostly compos</td> <td>sed of cinde</td> <td>er, slag, mo</td> <td>rtar and</td> <td>d coal</td> <td></td> | ghtly clayey s
20mm). | y (occasional
silty SAND. M
t grey, stiff (w | ostly compos | sed of cinde | er, slag, mo | rtar and | d coal | | | | | | | | _ | | 37.87 | - *
- *- *-
- * *-
* * | -
1.77 | No
littl | matrix. Almo
le associated
ection collaps | ost entirely co
mortar and t
ed in tube. R | omposed of c
traces of ash
elatively sma | dry, shattere
cinder. | ed brick (<6 | 0 mm), | with a | | | | | | | | 0 | | 37.64 | | -
2.00
- | CL | AY. Mostly o | o dark grey-b
of shattered b
ed in tube. R | rick (<70mm |), also one | piece of ?V | ctorian | pottery | | | | | | | | | | 37.25 | × | - (0.39)
-
2.39 | of
CL
at | moist, mid to
AY. Infreque | o dark grey-b
ent brick/tile a
and fine wate | rown, soft (w
nd stones (< | orking more
10mm), larg | e or less pla
ge lumps of | stic), s
coal (< | ilty
(60mm) | | | | | | | | 0 | | 36.75 | × | (0.50) | dark grey-brown, sticky (working plastic), CLAY. Brick/tile fragme at 1.77m. 1.97 - 2.00 Becomes slightly sandy. | | | | | | | | | | | | | | | 0 | | 36.64 | | 1.97 - 2.00 Becomes slightly sandy. No Recovery. Waterlogged, mid to dark grey-brown, unconsolidated and sl slightly clayey silty SAND. Occasional rounded stones (<15m | | | | | | | | | | | | | | | | 0 | | | | Slightly clayery silty SAND. Occasional rounded stones (<15mm) thro 2.39 - 2.89 Slight sulphide odour. Just moist, mid brown to mid to dark grey-brown, stiff (working plastic) Just moist, mid brown to mid to dark grey-brown, stiff (working plastic) No recovery at 3.36-3.44m. | | | | | | | | | | | | | | | | | | 35.64 | | 4.00 |) | | | | | | | | | | | | | | | | | | 35.64 — 4.00 Borehole complete at 4.00m | | | | | | | | | | | | oring Pro | gress ar | nd W | /ater | Obs | ervati | ons | Cas | ing | | | Chiselling | | Water | Added | G | enera | ıl Rema | rks | | Date | Time | | Dept | h | Wat
Dp | er
t | Depth | Dia. mr | m Fro | m | То | Hours | From | То | 1.44m | bgl. V
bace o | r presei
Vell
concent | All dime | nsions i | n me | etres | 1 | Contra | actor | : Sherwo | od Drillir |
ng | Me | thod: Win | dowless S | ampler | | Logged E | By: A | Approve | ed E | BOREHOLE No. **P** Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 10/09/07 39.93maOD E365098 N3523 Co-ordinates: SLR SLR Sheet: Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | 1172 | -114177 | | V V / | \ | INLO | 00L | D DEF | 00110 | | | | | 1 of 1 | | | | | | | | | | |------------|----------------------|---------|---------|---------|------------------|----------|------------------|--|------------------|---|--------------------------|--|--|----------------|-----------------------------------|----------------|-------------|--|--|--|--|--| | SA | MPLE | S & | | STS | | | | | | | ST | RATA | | | | | ent/ | | | | | | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | ESCRIPTION | N | | | | | Instrument/ | | | | | | | | | | | | 0 | | 39.86 | 0000 | 0.07 | | | y, light to mid
CLAY. Small s | | | stiff (working p | olastic), | | | | | | | | | | | | | 0 | | 39.66
39.61 | | 0.27 | No | real matrix - | perhaps a lit | tle sand thou | igh this may | y be from the tube, mix of | | | | | | | | | | | | | | 0 | | 39.57 | | 0.36 | (<4 | | on becoming | | | m), brick/tile (< | | | | | | | | | | | | | | 0 | | 39.33 | . '' . ' : | (0.24)
0.60 | Moi | re or less dr | y, mid brown | | | es), crumbly (v | vorking soft), | | | | | | | | | | | | | | | | <u></u> | (2.42) | 111111111111111111111111111111111111111 | , , | Coal (<10mm
v. approxima | , ı | | nconsolidated | sand and | 1 | | | | | | | | | | | | 2 | | 20.00 | × -> | (0.40) | sma | all lumps (<8 | 3mm) of mid | to dark grey- | brown claye | | | 1 | | | | | | | 1 | | | | | 2 | | 38.93 | × — × | 1.00 | less | s soft), claye | y SAND. Oc | casional flect | s of coal (< | <3mm) throug | hout. | | | | | | | | | | | | | 3 | | 38.62 | × | - | unc | consolidated | (working sof | t and somew | hat plastic) | rey to mid gre
, silty CLAY. (| Occasional | | | | | | | | | | | | | | | 30.02 | × × × | 1.31 | | gments of br
5-0.70m. | ick/tile (<td>nm) present a</td> <td>and modern</td> <td>n roots noted a</td> <td>at</td> <td>\parallel</td> | nm) present a | and modern | n roots noted a | at | \parallel | | | | | | | | | | | | 2 | | 38.43 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1.50 | | | | | | rey, crumbly (v | | 11. | | | | | | | | | | | | 2 | | 38.30
38.20 | ×1, 11, | - 1.63
- 1.73 | Jus | t moist, mid | grey, crumb | y (working so | oft), slightly | sandy clayey
1.13-1.24m. | SILT, with | 1 | | | | | | | | | | | | 0 | | 38.02 | × × × | 1.91 | 1.1 | 3-1.19m) an | d charcoal (a | at 1.17-1.21n | n) were com | nmon with cha
fragment (<20 | arcoal | | | | | | | | 2 | | | | | 2 | | 37.93 | <u> </u> | 2.00 | 1.3 | 0-1.31m. | | | | | | <u> </u> | | | | | | | | | | | | | | | | - | soft | | humified amo | | | (working more
flecked with b | | | | | | | | | | | | | | 0 | | | | (0.67) | Jus | t moist, mid | to dark, sligh | | | rphous organ | | 1 | | | | | | | | | | | | | | | | Ē | | it. Fragment
tlets. | ts of moss 'st | ems and lea | ves', sedge | (Carex) nulet | ts and | | | | | | | | | | | | | | | 37.26 | | 2.67 | | | | ark grey-brown, crumbly (working more or less orphous organic PEAT. | | | | | | | | | | | | | | | | 0 | | | | (0.33) | | | | grey-brown, crumbly (working soft), slightly clayey (<6mm) at upper interface. | | | | | | | | | | | 3 | | | | | | | 36.93 | | 3.00 | Hur | mified peat o | collapsed and | <6mm) at upper interface. Ind loose in core tube. | _ | | | y, crumbly (w
d works soft a | | | ID, becomes i | more clay at | // | | | | | | | | | | | | 0 | 1 | | | (0.50) | | | vn, unconsoi
ht sulphide o | | clean' SAN | D. | | / | | | | | | | | | | | | | | 36.43 | | 3.50 | | | /-brown than
les (<30mm) | | | ated, very 'clea | an' SAND. | | | | | | | | | | | | | | | | | _ | We | t, mid browr | n, unconsoild | ated, very 'cl | ean' SAND. | . Rounded pe | bbles | | | | | | | | | | | | | 0 | | | | (0.50) | (~4 | omm) comm | non to abund | ant unougno | iut. | | | | | | | | | | - 4 | | | | | | | 35.93 | | 4.00 | | | | | | | | Ì | | | | | | | | | | | | | | | | _ | Bor | ehole comp | lete at 4.00m | 1 | - | _ | _ | _ | | | | | | | | | | | | | | | Boring Pro | aress a | nd \^ | /ater | Ohe | ervati | one | Cas | ina | | <u> </u> | Chiselling | | Water | Added | Ge | neral Rema | arks | | | | | | | Date | Time | | Dept | | Wat
Dp | | Depth | Dia. mr | m Froi | | To | Hours | From | To | - | vater prese | | | | | | | | | | | - 12' | | υþ | | - 26411 | | | | - | | | | 3.33m b | 170ppm | _ | All dime | nsions i
ale 1:31 | | etres | | Contra
Plant: | | : Sherwo | od Drillir | ng | | hod: Win
e Size: | idowless S | ampler | | Logged By | : Approve | ed E | | | | | | | | | | ltina | | | | | loworth E | Park Ovor | | | rk Shrowel | hun, SV3 5 | H I Tal· (| 01743 2392 | 50 Fax: N/ | / A | | | | | | #### BOREHOLE No. **BOREHOLE LOG** P1 Client: **ENGLISH HERITAGE & CHESHIRE EAST COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.00889.00005 E365098 N352374 10/01/11 39.93maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | 11411 [| | TES | STS | | | | | | STRATA | | |-------------------------|------------|---------|---------------|---------|-------------------------|-------|------------------|----------------------------|------------------
--|---| | Depth | Type
No | HS(ppm) | НV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTION |)
Juneaningul | | | | _ | | | | | | - | - | No recovery | | | | | | | | | | | ? | (0.50) | | | | | | | | | | | 39.43 | | 0.50 | | | | | | | | | | | 39.31
39.22 | 0 | 0.62 | Moist greyish brown gravelly SAND | | | | | | | | | | | ×o×× | 0.74 | Moist greyish brown clayey SAND Moist stiff brown redeposited CLAY | | | 1 | | | | | | - | 38.93 | × × °× | _ (0.26)
1.00 | Dry dark greyish brown sandy clayey gravelly SILT with roo throughout. Possibly a former ground surface.
0.77 - 0.84Lump of clay. | tlets and cinder | | | | | | | | | | | -
- | No recovery | | | | | | | | | | | | _ (0.55)
- | | | | | | | | | | - | 38.38 | × _o × | - 1.55
- | Moist grey sandy clayey gravelly SILT | od fragments and | | | | | | | | | 38.21
38.11 | | _ 1.72
_ 1.82 | Dark greyish brown silty gravelly amorphous PEAT with wo | od fragments and | | | | | | | | | | <u> </u> | - | lumps of clay throughout. | | | 2 | | | | | | - | 37.93 | t\ 1\ | 2.00 | Moist dark greyish brown slightly humic slightly sandy SILT herbaceous detritus and organic remains. | with occasional | | | | | | | | | | | - | Borehole complete at 2.00m | | | 3 | | | | | | | | | - | | | | 4 | | | | | | | | | -
-
-
- | | | | 1 | | | | | | | | | - | | | | | ogress a | nd W | <i>V</i> ater | Obs | | | Cas | ing | - | Chiselling Water Added | General Remarks | | 4
Boring Pro
Date | ogress a | | Vater
Dept | | servatio
Wate
Dpt | | Cas
Depth | ing
Dia. mr | | To Hours From To Mo | nitoring well is dry a | | Boring Pro | | | | | | | | | n Fror | To Hours From To Mo | General Remarks
nitoring well is dry a
m depth. | # BOREHOLE No. Q Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 10/09/07 39.22maOD E365196 N352383 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** | SA | MPLE | | | | | | | | | S | ΓRΑΤΑ | | | | | ant | | |----------|----------------------|---------|---------|---------|------------------|---------|------------------|---------------------------------------|-------------------------|--|---|--|--------------------------------|------------------------------------|-------------------------------------|-----------------|--| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIPTIO | N | | | | |
 netriment/ | | | | | | | | | | | × | (0.48) | Collapsed and grey-brown to (<30mm) throu | mid brown, ur | nconsolidated | l, siltỳ SAŇI | | ones | | | | | | | | | | | 38.74
38.68 | × × × × × × × × × × × × × × × × × × × | 0.48 | Just moist, ver
very ashy, sligh
surface in plac
occasional pied | ntly clayey SII
es. Cinder/pa | _T, with some
rt burnt coal (| e light to mid
(<20mm) pr | d brown sand o | n outer | | | | | | | | | | | 38.22 | × × × × × × × × × × × × × × × × × × × | 1.00 | Just moist, dar
sandy in place
slightly silty CL
cinder/coal (<8
at 0.70m. | s) grading into
AY. Small rou | stiff (working
anded pebble | g more or le
s (<12mm) | ess plastic) slig
and occasiona | ntly sandy
I pieces of | | | | | | | | | 0 | | 37.75
37.72 | × × × × × × × × × × × × × × × × × × × | (0.47)
1.47
1.50/ | Just moist, dar
sandy in place
slightly clayey | s) grading into
SILT. | stiff (working | g more or le | ess plastic) slig | ntly sandy | | | | | | | | | 0 | <u></u> | 37.59 | <u> </u> | - 1.63
-
- 1.83 | sandy in place
slightly clayey
abundant. | s) grading into
SILT. Mortar a | stiff (working
and crushed l | g more or le
brick/tile (<1 | | ntly sandy
n to | | | | | | | | | 0 | | 37.22
37.12 | ? | 2.00 | Wet, mid to da
plastic), slightly
grades into ne
present throug | sandy silty C
t lowest sect
hout the rest | CLAY, becomion. Stones (of this section | es more sa
<30mm) co
n | ndy with depth
mmon at 1.53- | and
1.55m and | | | | | | | | | 0 | | 36.74 | × · · · · · · · | - (0.38)
- 2.48 | Wet, mid to da
silty SAND. Oc
Collapsed and
SAND. | casional rour | ided pebbles | (<20mm) tl | hroughout. | , , , | | | | | | | | | 0 | | 36.34
36.24 | | 2.88 | crumbles), slig | htly silty SAN | | | | | | | | | | | | | 0 | | 36.22 | | 2.98
3.00/ | frequent at 2.8
Moist to wet, m | 3-2.88m.
iid brown, stiff | d grey-brown, unconsolidated, coarse SAND. jmm) present throughout but larger (<70mm) and including the state of stat | | | | | | | | | | | | 0 | | | | - (0.80)
- | (<50mm) prese
Core tube brok
(working plastic
(<12mm) at 3.5 | en and only (c), CLAY. Occ |).8m metres l | | | | | | | | | | | | | | 35.42 | | 3.80 | 3.00 - 3.03 Slig
3.21 - 3.24 Poo | cket of moist, | mid brown, u | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | ring Pro | gress ar | nd W | /ater | Obs | ervati | ons | Cas | ing | | Chiselling | | Water | Added | Gen | eral Rema | rks | | | Date | Time | | Dept | | Wat
Dp | er | Depth | Dia. mr | m From | | Hours | From | То | 1.71m bg
headspac | ater preser
. Well
e concenti | | | | | | | | | | | | | | | | | | 170ppm. | | | | | | | | | | | | | | | | | - | 1 | | T | _ | | | All dime | nsions i
ale 1:31 | | etres | | Contra
⊇lant: | | : Sherwo | od Drillir | ng | Method: Wir
Hole Size: | ndowless S | ampler | | Logged By: | Approve | d B | | # BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. R Co-ordinates: E365205 N352362 Project: NANTWICH WATERLOGGED DEPOSITS Sheet: 39.18maOD Ground Level: Date: 10/09/07 406.0889.00003.005 Client: Project No: 1 of 1 | - SF | MPLE | | | _ | | | | | | | 31 | RATA | | | | | ٦ أو | |------------|------------|---------|---------|---------|----------|-------|------------------|---|-----------------------|--|----------------------------------|------------------------------|--------------------------------|--------------------------------|--|--------------------|-----------------| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | D | ESCRIPTION | | | | | |
 netriment/ | | | | | - | | | | | 0000 | (0.50) | bri | | | | | tly moist mix of
centration of bi | | TANK SOLVE | | | | | | | | | 38.68 | | 0.50 | I | -ti-t | dod one c | oft (oulsings | and and alia | ulath calcatic) as | h alimbali. | | | | | | | | 0 | | 20.40 | × × × × × × × × × × × × × × × × × × × | (0.50) | sa
of
(<3 | ndy clayey ŠI
brick/tile (<8m | LT, flecked v
nm) and occ | with occasion
asional stone | ial light colo
es (<9mm) t | ghtly plastic), as
oured sand grai
throughout, mo
art burnt coal (< | ns. Traces
rtar | | | 1 | | | | | | | 38.18
38.09 | 3. | 1.00
1.09 | No | Recovery. | | | | | | | | | | | | | 0 | | 37.82 | × — × — × — × — × — × — × — × — × — × — | (0.27)
1.36 | sa
Oc | ndy clayey SI
casional clas | LT, clecked
ts (<10mm) | with occasion of light to mic | nal light cold
d brown stic | <u> </u> | ins. | PETER ST | | | | | | | 0 | | 37.62 | | 1.56 | _ | ounded pebble | | | | soft, coarse SA | ND. | É | | | | | | | 0 | | 37.58
37.44 | | - 1.60
- 1.74 | \ <u>~</u> | ades from se | | | | liment below.
vhat plastic) CL | AV | | | | | | | | 0 | | 37.31 | | 1.87
| Mo | oist, light to mi | id brown to g | grey-brown, s | oft (working | g more or less | | 16 | | 2 | | | | | 0 | | 37.18 | | 2.00 | _ | AY, with indu | | | , , | (2mm).
soft, coarse SA | ND. | | | _ | | | | | | | | | - | \Ab | undant round | led pebbles | (<35mm). | Cy Diowii, 3 | Joit, coarse ort | / | | | | | | | | | | | ? | (0.50) | 2.50 | | | | | | | | | | | | | | | | 36.68 | | 2.50 | Moist (to wet from 2.35 downwards), mid brown to mid grey-brown, stiff | | | | | | | -6 | | | | | | | 0 | | | | -
_ (0.50) | (working plastic), CLAY. | | | | | | | | | 3 | | | | | | | 36.18 | | 3.00 | | | | | | | | ¥. | | | | | | | | | 36.10 | | 3.08 | | Recovery. | n to mid are | v-brown stiff | (working pl | astic), CLAY. | | K | | | | | | | 0 | | | | -
-
-
(0.92) | | , | 3. | , , | | , | | | | 4 | | | | | | | 35.18 | | 4.00 | | | | | | | | | | • | | | | | | | | | - | Во | rehole compl | ete at 4.00m | 1 | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | Soring Pro | gress a | nd W | /ater | Obs | servatio | ons | Cas | ing | -
-
 | | Chiselling | | Water | Added | Gen | eral Rema | rks | | Date | Time | | Dept | | Wate | | Depth | Dia. mr | n Froi | m | То | Hours | From | То | 1 | | | | | | | | | рр | | - 5641 | _ | | All dime | | | etres | | | | : Sherwoo | od Drillin | ıg | | thod: Wind | dowless S | ampler | | Logged By: | Approve | d E | | Sc | ale 1:31 | .25 | | | Plant:0 | 3eot | ool | | | Ho | le Size: | | | | | | | #### Sheet: 1 of 1 # Project: NANTWICH WATERLOGGED DEPOSITS Client: Project No: | 3 <i>F</i> | MPLE | | | | | 4 | | , | - | | STRATA | | | | _
Jer | | | |------------|------------|---------|---------|---------|-----------|----------|----------------------------------|---------------------------------------|--|---|--|---|--------------------------|--|------------|--|--| | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DESCRIP | | | | | Instrument | | | | | | | | | 0 | | 39.61 | | 0.16 | Just moist, | light brown, unc | onsolidated to | o soft, very ' | 'clean' SAND. | | | | | | | | | | 0 | | | | . (0.65) | | More or less dry
ne (<80mm). | , unconsolida | ted (collaps | ed and loose in tube), | | | | | | | | | | | | 38.96 | × | 0.81 | Just moist, | dark grey-browr | n, crumbly, sli | ghtly ashy, s | slightly silty SAND. | + | | | | 1 | | | | | 0 | | 38.77 | × | 1.00 | | ery, with a little o | | st, mostly m | id to dark grey-brown, | | | | | 2 | | | | | 0 0 0 0 0 | | 37.41
37.33
37.22
37.15 | × × × × × × × × × × × × × × × × × × × | 1.28
(0.72)
2.00
(0.36)
2.36
2.44
2.55
2.62 | occasional
sand at 1.5
of brick/tile
Moist, mos
Small stone
No matrix.
No matrix,
for overlyin
Moist, mid | light brown patci
3m and 1.74m. (
(<7mm) from 1.9
tty mid to dark grees (<8mm) present
Brick surface - la
Angular stone are
g brick surface (
to dark to dark g | hes of sand a
Small stones
90-2.00m.
rey-brown, un
ent throughou
arge fragment
and conglomer
2.36-2.44m).
rey, unconsol | at 1.40m, 1.6 (<8mm) pre | n) - looks to be hardcore | | | | | -3 | | | | | 0 | <u>+</u> | 36.49
35.77 | | (0.66) | Moist, light
SAND. Pos
Moist, light | pist, mid to dark to dark grey, unconsolidated SAND. Flecks of rotted arcoal (<6mm) and small stones (<8mm) present throughout. pist, light brown to light grey-brown, unconsolidated, fairly coarse 'clean' IND. Possibly deliberately laid 'bedding'. pist, light brown to light grey-brown, unconsolidated, fairly coarse 'clean' IND. Abundant rounded pebbles (<20mm) throughout. | | | | | | | | | | | | | | | | - | | Borehole c | omplete at 4.00r | n | | | | | | | Boring Pro | gress a | nd W | /ater | Obs | | | Cas | ing | | Chisel | ling | Water | Added | General Rema | irks | | | | Date | Time | | Dept | :h | Wat
Dp | er
t | Depth | Dia. mn | n From | n To | Hours | From | То | Groundwater prese
3.34m bgl. Well
headspace concent
130ppm. | | | | | All dime | nsions i | n me | etres | | Contra | actor | : Sherwo | od Drillin | a l | Method: | Windowless S | Sampler | | Logged By: Approve | ed B | | | #### BOREHOLE No. **BOREHOLE LOG** Т Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365140 N352352 14/09/07 39.50maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SA | AMPLE | | | | | | | | | | ST | RATA | | | | | | ent/ | |------------|------------|---------|---------|---------------|-----------|----------|------------------|---|--|------------------------------|---|--|---|---|---|------------------------------------|--------------------------------|-------------| | Depth | Type
No | HS(ppm) | нV(кРа) | PP(kPa) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | I | | | | | | Instrument/ | | 1 | | | | | 2 | | | × × × × × × × × × × × × × × × × × × × | -
-
-
-
-
- (1.60) | 1.24
larg
0.70
0.10 | consolidated,
4-1.27m, sto
ger (<60mm)
0m and a ?c | oose in core, slightly clay
nes (<25mm
and commo
tharred bone
asional lump
astic) clay. | ey slightly sil
n) present the
n from 1.00
fragment (< | ty SAND. R
roughout 0.0
-1.60m, ?hu
20mm) at 1 | Rootlets a
.00-1.00
uman sk
I.59m. | at 0.00-0
and bed
cull fragn | 0.24m and
coming
nent at | | | 2 | | | | | 0 | | 37.90
37.70 | × · · · · · · · · · · · · · · · · · · · | 1.60 | Moi
(wo
(<8
1.6 | orking soft), s
0mm) at 1.60
0 - 1.80 Very
lapsed and le | wn to very da
slightly sandy
6-1.73m and
r slight sulph
oose in core | clayey SILT
I brick/tile (<
ide odour.
tube - moist | . Large ?sa
50mm) at 1.
., light browr | ndstone
.68-1.73 | e inclusion
m. | on | | | 3 | | | | | 2 | <u>+</u> | | | -
-
-
-
(1.90)
-
-
-
- | with | | consolidated
depth). Larg | | | | | | | | 4 | | | | | 2 | | 35.80
35.50 | | 3.70 | Moi | ist mid browr | າ, very stiff (v | vorking plast | tic) CLAY. | | | | | | 4 | | | | | | | | | | Bor | rehole compl | lete at 4.00m | | | | | | | | Boring Pro | ogress a | nd W | /ater | Ob: | | | Cas | ing | | | Chiselling | | Water | Added | | Gene | eral Rema | rks | | Date | Time | + | Dept | th | Wat
Dp | er
t | Depth | Dia. mr | n Fro | m | То | Hours | From | То | - 3.10 | 6m bgl. | ter prese
Well | | | | | | | | | | | | | | | | | | | ospace)ppm. | s concent | ıall | | All dime | ensions i | in me | etres | $\frac{1}{1}$ | Contra | actor | : Sherwoo | od Drillin | ıg | Met | hod: Win | dowless S | ampler | | Logge | ed By: | Approve | ed B | BOREHOLE No. U Client: #### **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 14/09/07 E365160 N352349 39.43maOD Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | 14/ | | | *** | \ | INLO | JUL | ט טברי | 00110 | | | | | | | | 1 of 1 | | |-----------------------------|------------|---------|---------|---------|-------------|---------|-------------------------|---------------------------------------|----------------------------|-------------------------------|--|--|--|-----------------------|---
--|-------------------------| | SA | MPLE | S & | TES | STS | | | | | | | ST | RATA | | | I | 7 | | | Depth | Type
No | HS(ppm) | ну(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | D | ESCRIPTION | I | | | | i de la companya l | Instrument/
Backfill | | - | | | | | 0 | | | | -
-
-
- (1.00) | to
fra
(< | dark grey, un
gments of bri | consolidated
ick/tile (<90m | l, slightly silty
nm) present t | clayey SAN hroughout. | to mid grey-b
ND. Stones (<
Animal bone t
n skull (<40mi | 60mm) and fragment | | | -
1
-
- | | | | | 0 | | 38.43 | × × × × × × × × × × × × × × × × × × × | 1.00 | Mo
(w)
(<) | orking soft the | en crumbly),
ieces of coal | slightly claye
(<8mm) thro | y sandy ŠII | ey-brown, sligh
LT. Occasiona
rge ?human s | ıl stones 🔯 | | | -
-
-
- | | | | | 0 | | 37.93
37.86
37.66 | × × × × × × × × × × × × × × × × × × × | 1.50
1.57 | Sir
Mo | ngle large rou
pist to wet, mi | nded cobble
d to dark gre | (<70mm).
y-brown, slig | htly sticky (| y clayey sand
working soft th
tch of light bro | nen | | | -
-2
- | | | | | 2 | | 37.47
37.43
37.26 | × × × × × × × × × × × × × × × × × × × | 1.96
2.00
2.17 | Mo
SII
pe
1.7 | nd at 1.77m.
bist to wet, da
T. Trace of 1
bble (<18mm
77 - 1.96 Sligl | Stones (<15
irk grey-brow
waterlogged
i) present. | mm) present
n, brittle (wor
l organic detr | throughout | | stic), clayey | | | - | | | | | 2 | | 36.43 | | (0.83)
- (0.83)
3.00 | Mo
SII
2.0
Co
(oo | T. Root at 2
00 - 2.17 Sligh
Ilapsed and I
ecasionally sli | .03m.
nt sulphide o
oose in core
ightly sticky), | dour.
tube - moist
slightly claye | to wet, mid | nd slightly plas
brown, uncon
AND. Rotted v
(<60mm) abu | nsolidated wood | | | -3
-
-
-
-
- | | | | | | | | | - | ` | oughout. rehole comp | lete at 3.00m | 1 | | | | | | -
4

- | | | | | | | | | -
-
-
- | | | | | | | | | | - | | | | | | | | | - | | | | | | | | | | Boring Pro | | _ | | | | | Cas | ing | _ | | Chiselling | | Water | | Ger | neral Remarks | 3 | | Boring Pro Date All dimer | Time | | Dept | ih | Wate
Dpf | er
i | Depth | Dia. mr | m Fro | m | То | Hours | From | То | | | | | | ale 1:31 | .25 | | | Plant:0 | Geoto | | | | Но | thod: Win | | | | Logged By: | Approved E | <u>===</u>
Зу: | Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 14/09/07 39.39maOD E365195 N352346 **SLR** BOREHOLE No. ٧ Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | | | | | | | | | | | | | | | | 1 01 1 | _ | |------------|------------|---------|---------|---------|-----------|----------|------------------|----------------------------|---|--|---|---|--|---|---|--------------------------------------|----------------| | SA | MPLE | | | | | | | | | | ST | RATA | | | | | nent/ | | Depth | Type
No | HS(ppm) | нV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Dept | th D | ESCRIPTION | ı | | | | | Instrument/ | | | | _ | | | 3 | | | | -
-
-
- (1.00)
-
- | un
ro | | , SAND. Rou | inded stones | (<20mm) p | mid to dark bro
oresent through | | | | 1 | | | | | 0 | | 38.39 | | -
(0.44) | fro | | | | | , SAND, becom
20mm) present | | | | | | | | | 3 | | 37.95
37.88 | ? | | 1.44
1.51 No | matrix. Larg | e wood fragr | nent at 45 de | arees to ho | orizontal | | - | | | | | | | 3 | 1 | 37.69
37.60 | | | 1.70 sto
1.79 fra | oist, mid to da
ones (<20mm
gments - sev | ark brown, un
n) present thr
reral small pion
mm) at 1.56- | consolidated
oughout and
eces (<15mn
1.63m (rathe | I, slightly cla
two areas v
n) at 1.51-1.
er decayed a | ayey SAND. Rowith waterlogge
.54m and slightand orange-cold | d wood
tly larger / | | | 2 | | | | | 2 | <u>¥</u> | 37.39 | | (0.50) | 2.00 Mo | oist, mid grey
me patches of
71-1.77m and | , crumbly to ι
of mid orange
d large (<60m | unconsolidate
e unconsolida
nm) horizonta | ed (working
ated sand. L
al wood frag | soft), clayey SA
arge stone (<6
ment at 1.75-1.
hat plastic), sa | 0mm) at
79m. | | | | | | | | | | 36.89 | | - 2 | .50 Ha | ccasional rou
alf void - mois | nded pebbles
t, mid brown | s (<15mm) p
, mid grey an | resent.
d mid grey- | brown, unconsc | olidated, | | | 3 | | | | | 0 | | 35.89 | | -
-
-
-
(1.00)
-
-
- | very compacted and with inclusions of stories (<30mm). | | | | | and total
noist, mid | | | | 4 | | | | | 0 | | 34.89 | | -
-
-
-(1.00)
-
-
- | Just moist, mid brown, very stiff (working plastic), CLAY. Pieces of contaminant fresh grass on outer surface of core. | | | | | | | | | | | | | | | | 01.00 | | -
-
- | | orehole comp | lete at 4.50m | 1 | | | | | | Boring Pro | gress ar | nd W | √ater | Obs | | | Cas | sing | | | Chiselling | | Water | Added | Gene | eral Remar | <u>⊥</u>
ks | | Date | Time | | Dept | h | Wat
Dp | er
t | Depth | Dia. mr | m | From | То | Hours | From | То | 1.95m bgl | iter presen
. Well
e concentra | | | All dime | | | etres | - 1 | | | : Sherwo | od Drillir | ng | | thod: Win | dowless S | ampler | | Logged By: | Approved | ==
3 b | | Sc | ale 1:31 | .25 | | | Plant: | Geoto | ool | | | Ho | le Size: | | | | | 1 | | BOREHOLE No. W Client: #### **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 13/09/07 40.03maOD E365214 N352280 Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | | | | | | | | | | | | | | | | 1 01 1 | | | | |-----------|--------------------|---------|---------|---------|-------------|-------|------------------|---------------------------------------|----------------------------|------------------------|--|---|--|------------------------------------|---|-----------------------|--|--|--| | SA | MPLE | | | | | | | | | | ST | RATA | | | | | | | | | Depth | Type
No | HS(ppm) | ну(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | D | ESCRIPTION | I | | | | | | | | | | | • | - | _ | | | | | -
-
- (1.00) | un
po | consolidated, | , SAND. Roo
30mm) at 0. | its and ?orna
50m, stones | mental bar | k brown to grey
k at 0.00-0.15m
resent through | -brown,
, modern | | | | | | | | | | | | 39.03 | | 1.0 | 10 | | | | | | | | | | | 1 | | | | | 3 | | 38.67 | × × × × × × × × × × × × × × × × × × × | _
_ (0.36)
1.3 | Ju
so
pre
1.4 | ft), sandy clay
esent through
18m), single p | yey SILT. Oo
lout, root at 1
loot sherd (<3 | casional stor
1.05-1.10m a
30mm) at ~1. | nes and bri
Ind 1.35m (
20m. | ated (working m
ck/tile fragment
continuing dow | s (<15mm) | | | | | | | | | | 3 | | | | (0.41) | Ro
at | oist, mid brow
oot as noted a
around 1.55n | above contin | grey-brown, oues to 1.48m | crumbly to i
and stone | unconsolidated,
s (<15mm) wer | SAND. | | | | | 2 | | | | | 0 | | 38.26 | | 2.0 | Mo
SA | oist, light to
lig
AND - orange
97-2.00m. | to mid bro | own/orange-b
from ?iron pa | prown, crun
an/oxide. St | nbly to unconso
cone (<55mm) p | lidated,
resent at | | | | | | | | | | 0 | | | | (0.48) | Co | ollapsed and I | rown, crumb | | | t to mid
AND - orange c | olouration | | | | | | | | | | 0 | | 37.55
37.39 | | 2.4 | Sn | | | moist, light to mid slightly blue grey, sticky (working
y sandy CLAY - more sandy at 2.58-2.64m and th
in colour. Most of core section composed of | | | | | | | | | | | | | 0 | | 37.03 | | (0.36) | ∖ab
Ju | undant large | stones (<65 | n in colour. Most of core section composed of | | | | | | | | 3 | | | | | | | | | -
-
-
-
-
- | Во | orehole compl | lete at 3.00m | | | | | | | | | ı | | | | | | | | | -
-
-
- | -
-
- | | | | | | | | | | | | oring Pro | gress ar | nd V | /ater | Obs | | | Cas | ing | | | Chiselling | | Water | Added | Gen | eral Remarks | | | | | Date | Time | | Dept | h | Wate
Dpt | er | Depth | Dia. mr | m Fr | om | То | Hours | From | То | All dimer | | | etres | | | | : Sherwo | od Drillir | ng | - 1 | thod: Win | dowless S | ampler | | Logged By: | Approved | | | | | | ale 1:31
SLR Co | | tina | | Plant:0 | Geot | ool | | | | le Size: | ·k Shrowel | hury SV3 5 | HI Tal· (| 01743 23925 | | | | | # BOREHOLE LOG BOREHOLE No. X Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 13/09/07 37.62maOD E365014 N352321 **SLR** Project: ### **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | 10,001 | | | | | | ים טברי | | | | | | | | | 1 of 1 | | |-----------------------------|---------|-----------|---------|-------------|-------|------------------|----------------------------|-------------------------|--------------|-----------------------------|------------------------------------|----------------------------------|------------------------------|------------------------------------|-------------------|--| | SAMPLE | S & | TES | STS | | | | | | | ST | RATA | | | | | ent/ | | Depth Type | HS(ppm) | НV(кРа) | РР(кРа) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | SCRIPTION | I | | | | | Instrument/ | | | Ī | | | | | 37.28 | | -
_ (0.34)
- 0.34 | Coll | lapsed and I
onsolidated | oose in core
CLAY. Mostl | tube - a little
ly loose angu | matrix of d
ılar 'hard co | lry, light to mi
ore' stones (< | d grey,
45mm). | | | | | | | | | 37.02 | 1/ 1/1/ 1/1/x | (0.26) | TOI
(<3: | PSOIL. Brick
5mm) prese | t/tile (<20mm
nt throughou | ı), mortar (<1
t. | 5mm), mod | solidated, silt
dern rootlets | and stones | | | | | | | 2 | | | | -
-
_ (0.52) | | | | | | with sandy in
0.80-0.85m a | | | | 1 | | | | 0 | | 36.50 | | | | | | d grey-brown | | dark grey, und | consolidated | | | | | | | 0 | | 36.20 | | 1.42 | (<1 | 0mm) prese | nt - particulai | rly at 1.75-1.8 | 85m, also a | Occasional st | tones
ar rock | | | | | | | 0 | | 25.00 | | (0.58) | (<8) | umm) incline | ed at ~45 deç | grees to horiz | zontai at 1.5 | 53-1.59M. | | | | -2 | | | | | | 35.62
35.41 | ? | 2.00 | | Recovery. | n von etiff (| working place | tio) CLAV (| Occasional fo | sirly large | | | | | | | 0 | | | | -
-
(0.63) | | | | d pebble (<6 | | Occasional fa
48-2.55m. | arge | | | | | | | | | 34.78
34.74 | 7 | -
- 2.84
- 2.88 | No. | Recovery. S | ingle large a | angular stone | e (<85mm) | penetrates in | ito underlying | 200
200
200
200
200
200
200
200
200
200 | | 3 | | | | 0 | | 34.62 | | 3.00 | \clay
Moi | to 2.92m - | vertically alig
n, very stiff (| ned relative
working plas | to greatest | | | / 600 | | | | | | | | | | -
-
- | BOI | enoie compi | ete at 3.00m | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | 4 | | | | | | | |
-
- | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | -
-
- | | | | | | | | | | Boring Progress a | and V |
Vater | Obs | servatio | ons | Cas | ing | | | Chiselling | | Water | Added | Ge | eneral Rema | arks | | Date Time | | Dept | h | Wate
Dpt | er | Depth | Dia. mr | n Froi | | То | Hours | From | То | All dimensions
Scale 1:3 | | etres | - 1 | Contra | | : Sherwo | od Drillin | ıg | | hod: Win | dowless S | ampler | | Logged By | y: Approve | ed By | # BOREHOLE LOG CHESHIRE COUNTY COUNCIL BOREHOLE No. Y Co-ordinates: E365057 N352322 Project No: 406.0889.00003.005 Client: Project: NANTWICH WATERLOGGED DEPOSITS Date: 13/09/07 Ground Level: 39.90maOD 1 of 1 | SF. | MPLE | _ | | | | | | | | | | RATA | | | | | |-----------|------------|---------|---------|---------------|-------------|-------|---------------------|----------------------------|--------------------------------------|--|----------------|-------------------------------|-----------------------------|------------------------------|--------------------------------------|-------------| | Depth | Type
No | (mdd)SH | ну(кРа) | PP(kPa) | SPT-N | Water | Reduced
Level | Legend
(Thick-
ness) | Depth | DE | ESCRIPTION | | | | | | | | | | | | | | | | (0.50) | | llapsed and l | | | | rd core' in lump
ND. | os (<80 | | | | | | | | | 39.40 | | 0.50
-
_ (0.33)
- 0.83 | SA | llapsed and le | oose in core
ent moist and | tube - above
d mid brown | e but also wit
in colour. | th large stones | (<80mm), | | 1 | | | | | 0 | | 38.90 | | 1.00 | Col
und
cind | | SAND. Brick | and stone r | | oist, mid to dar
nm), with ?black | | | | | | | | | | | ? | -
-
- (0.80)
- | | , | | | | | 0 | | | | | | | | | 38.10 | | 1.80 | | | | | | | 0 | | | | | | | 0 | | | Ø | _ | | matrix. Dry s | hattered brid | ck (<90mm). | | | 2 | | 2 | | | | | 0 | | 37.90
37.84 | | 2.00 | | matrix. 'Plug | of dry brick | (<100mm). | | | | | | | | | | 0 | | 37.78 ∕ | | 2.12
-
- | crumbly), silty SAND. Crushed brick (<50mm) and black ash/cinder abundal at upper surface. Moist, light brown to light to mid grey-brown (rather orange from 2.12-2.30m | | | | | | | | | | | | | 0 | | 07.45 | | (0.63) | probably from surface contamination from brick above), unconsolidated SAND. 2.75 | | | | | | | | 3 | | | | | 0 | | 37.15
36.90 | | _ (0.25) | Collapsed and loose in core tube - moist, light brown to light to mid grey-brown, unconsolidated SAND. Abundant rounded pebbles (<50mm) for approximately 90% of the volume of this section. | | | | | | 0mm) form | | | | | | | 0 | | | | -
-
-
_ (0.74) | 3.00 approximately 90% of the volume of this section. Moist, light brown to light to mid grey-brown, unconsolidated SAND (slightly reddish area (?iron pan/oxide) at 3.38-3.44m). Occasional rounded pebbles (<40mm) present throughout, small 'lens' of pebbles (<25mm) at 3.44-3.50n rounded pebbles (<25mm) common at interface with layer below | | | | | | pebbles | | | | | | | 0 | | 36.16
35.90 | | - 3.74
- 3.74
- (0.26)
4.00 | Jus | st moist, mid | brown, very | stiff (working | plastic) CLA | AY. | 0 | | 4 | | | | | | | 33.90 | | -
- | Воі | rehole compl | ete at 4.00m | 1 | | | <u> </u> | | | | | | | | | | | -
-
- | | | | | | | | | oring Pro | gress a | nd V | √ater | Obs | servatio | ons | Cas | ing | | | Chiselling | | Water | Added | Gene | eral Remark | | Date | Time | | Dept | :h | Wate
Dpt | er | Depth | Dia. mr | m Fro | m | То | Hours | From | То | All dime | nsions i | n me | etres | $\frac{1}{1}$ | Contra | ctor | : Sherwo | od Drillir | na l | Met | hod: Win | dowless S | ampler | <u> </u> | Logged By: | Approved | #### BOREHOLE No. **BOREHOLE LOG** Ζ **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: 38.46maOD E365079 N352243 13/09/07 Client: File 406.0889.00003.005 NANTWICH ARCHAELOGICAL LOGS.GPJ Form SLR AGS3 UK BH Project No: 406.0889.00003.005 #### Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 Instrument/ **STRATA** SAMPLES & TESTS Backfill Legend SPT-N PP(kPa Water Туре Reduced DESCRIPTION (Thick-Depth Depth Level ness) 000 Collapsed and loose in core tube - a little sand may constitute matrix. Fill consists largely of rounded pebbles (<40mm), with occasional fragments of brick/tile (<15mm) and a little sand - ?ornamental pebble surface? More or (0.25)00.0 38 21 0.25 less dry grass at 0.25m. Just moist, light brown to mid grey (in shades of brown, grey and grey-brown), unconsolidated SAND. Brick/tile fragments (<8mm) at 0.43-0.45m. (0.45)0 37.76 0.70 Just moist, light grey-brown, unconsolidated SAND. Abundant rounded pebbles (<45mm) throughout. (0.30)0 37.46 No Recovery. (0.68)36.78 Just moist, light grey-brown, unconsolidated SAND, with some mid orange areas of ?iron pan/oxide. Abundant rounded pebbles (<45mm) throughout. (0.36)0 36.42 Moist, mid brown, very stiff (working plastic) CLAY. (0.94)0 35.48 35.46 - 3 0 Just moist, light grey-brown, compacted SAND. Rounded pebbles (<20mm) common Borehole complete at 3.00m General Remarks Boring Progress and Water Observations Casing Chiselling Water Added Water Dpt Date Depth То Hours From Depth Dia. mm All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Approved By: Logged By: Scale 1:31.25 Plant: Geotool Hole Size: #### **BOREHOLE No BOREHOLE LOG** Α Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No:
Date: 406.0889.00003.005 30/07/07 33.29maOD E364931 N352661 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | | S & T | EST | S | | | | | <u></u> | | | | | STRAT | A | ent/ | |--------|------------|--------------|----------------|-------------|--------------|--------|--------------|---------|---------------|--------------|---------------------------|---|---------------------------------|--|------------| | Depth | Type
No | Test
Type | Test
Result | | Pres | ervati | ion
4 | Water | Reduc
Leve | ed
Legend | Depth
(Thick-
ness) | | | DESCRIPTION | nstrument/ | | 2 | | SPT | N=0
N=0 | | | | | | 29.8 | | (3.48) | 1.61 - 1.6
soft to un
2.35 - 2.6
caused b
lumps (<: | 65 Very gray presenc 3 mm) with | tinuity of moist to well ted, light grey, sand. ranular appearance se of indurated clay hin the matrix. | | | 4 | | SPT | N=0 | 0 | | | | - | 29.3 | | 3.90 | SAND | complete | e at 3.90m | | | Bor | ing Pr | ogress | and Wate | | | | | | | Chiselling | - | Water | Added | General Rer | marks | | Date T | ime | Dep | oth Dep | Casi
oth | ng
Dia. n | nm | Water
Dpt | F | rom | То | Hours | From | То | _ | | #### **BOREHOLE No BOREHOLE LOG** AA Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 12/09/07 37.97maOD E364730 N352391 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SAMPL | ES & 1 | EST | S | | | | | | | | STRATA | <u> </u> | | |-----------|------------|--------------|----------------|--------------------|----------------|-------|------------------|-----------------|--|-------------------------|-------------|---------------------------------------|------------| | Depth | Type
No | Test
Type | Test
Result | Pres | servation | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION | DN - | | | | SPT | N=0 | ,0 | | | 37.33 | | (0.64)
-
-
-
-
-
-
0.64 | 0.35 - 0.5
fragments | | /ERBURDEN
brick and tile
20mm). | | | 1 | | SPT | N=0 | - | | | | | - | SAND
0.64 - 0.7 | 4 Becomes | s dark greyish | brown. | | 2 | | SPT | N=0 | ,0 | | | | | - (1.96)

-
-
-
-
- | | | | | | 3 | | SPT | N=0 | 0 | | | 35.37 | | 2.60 | CLAY | complete a | nt 3.00m | | | 4 | | | | | | | | | - | | | | | | | oring Pr | 1 | and Water | | | r | | hiselling
To | Hours | _ | Added
To | Genera | al Remarks | | Date | TITTE | Dep | Depti | Casing
1 Dia. n | Wate
nm Dpt | | From | 10 | Hours | From | 10 | | | | All dimen | sions in | metre | s Contra | ctor · She | rwood Drillii | | Meth | od: Win | dowless S | Campler | | ogged By: | Approved E | # **BOREHOLE LOG** BOREHOLE No **AB** Client: #### CHESHIRE COUNTY COUNCIL Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 12/09/07 37.93maOD E364740 N352370 **SLR** Project: ## NANTWICH WATERLOGGED DEPOSITS 1 of 1 Sheet: #### **BOREHOLE No BOREHOLE LOG AC** Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 12/09/07 36.42maOD E364963 N352517 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** #### **BOREHOLE No BOREHOLE LOG** ΑE Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 10/01/11 35.19maOD E364917.887 N352428.049 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | | | | ATERLO | | · \ | | | | | | | | | | 1 of 1 | | |------------|------------|--------------|----------------|-----------------------|-------------|------------|-------------|---------|------------------|-----------|---------------------------|----------|------------|---------------------|----------|---------------| | SAMPLE | S & T | EST | S | | | | | <u></u> | | | | | STRATA | | | ent/ | | Depth | Type
No | Test
Type | Test
Result | Pro | eserva
2 | atior
3 | า
4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPT | ION | lnetri mont/ | | | | | | - | | | | | | | -
- (0.79) | MADE G | ROUND/OV | ÆRBURDE | N | | | | | | | | | | | | 34.40 | | 0.79 | ARCHAE | OLOGICAL | . DEPOSIT | | $\frac{1}{1}$ | | 1 | | | | | | | - | | 34.19 | 71/ 71/ | 1.00 | | | DEPOSIT \ | WITH | | | | | SPT | N=2 | - | 2 | | | | | | -
-
-
-
- | ORGANI | C CONTEN | ı | | | | 2 | | SPT
SPT | N=2
N=2 | - | 2 2 | | - | 1 | | | - | | | | | | | | | SPT | N=3 | | | ●3 | | ₹ | | <u> </u> | -
- | | | | | | | • | | SPT | N=1 | • | | | | | 32.19 | 1, 11, 1 | 3.00 | | | | | | | 3 | | | | - | | | - | | 31.79 | ? | (0.40) | No Recov | ery. | | | | | | | SPT | N=1 | - • 1
- • 1 | | | | - | 31.19 | | - (0.60)
- 4.00 | SAND | | | | | | 4 | | | | | | : | | | 31.13 | | | Borehole | complete a | t 4.00m | | | | Во | oring Pr | ogress | and Water | | | | | | C | hiselling | - | Water | Added | Gene | ral Rema | rks | | Date | Time | Dep | oth Dep | Casing
th Dia. | mm | W | ater
Opt | F | rom | То | Hours | From | То | All dimens | sions in | | | actor : Sh
Geotool | ierwoo | od D | rilling | Ш | Metho | | dowless S | Sampler |
L
J | ogged By:
C & IP | Approve | d E | #### **BOREHOLE No BOREHOLE LOG** AF Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 11/01/11 34.89maOD E364899.123 N352463.451 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | | ., | | 000 | | | | | | | 1 of 1 | | |---|---------------------|----------|--|---------------|-------|-----------------|-------------|-----------------------------------|----------|------------|-----------------------|-------------------------| | SAMPLES | & TEST | S | | | _ | | | | | STRATA | <u> </u> | ent/ | | Depth Ty | ype Test
No Type | | Preserv
1 2 | ration
3 4 | Water | Reduce
Level | d
Legend | Depth
(Thick-
ness) | | | DESCRIPTION | Instrument/
Backfill | | 1 | SPT | N=0 | • | | | | | -
-
-
-
-
- (1.39) | MADE GR | ROUND/O\ | /ERBURDEN | | | - | SPT | N=1 | \\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | 33.50 | | 1.39 | NON CAL | DONICED | DEDOCIT WITH | | | | SPT | N=1 | • 1 | | | | | -
-
- | ORGANIC | C CONTEN | DEPOSIT WITH
IT | | | -2 | SPT | N=1 | Q ' | - | | | <u> </u> | -
- | | | | | | | SPT | N=2 | 2 | | | | <u> </u> | - | | | | | | - | SPT | N=2 | | | | | | -
- (2.21)
- | | | | | | -3 | SPT | N=0 | | | ₹ | | | -
-
-
- | | | | | | aL-92-10 | SPT | N=0 | | | | 31.29 | 9 1/2 1/2 | 3.60 | SAND | | | _ | | 25 - 4 | SPT | N=0 | •0 | | | 30.89 | 9 | - (0.40)
- 4.00 | O/ ((VD | | | | | Boring Date Tim All dimension Scale 1: | | | | | | | | - | Borehole | complete a | at 4.00m | | | Borine | g Progres | s and Wa | ater Observations | i | | (| Chiselling | | Water | Added | General Remar | rks | | Date Tim | ne De | pth D | Casing
Depth Dia. mm | Water
Dpt | F | rom | То | Hours | From | То | | | | AGOS UN BIT OPT. THE 4-00.0 | | | | | | | | | | | | | | | :31.25 | Pla | entractor : Sherwo | | rk O | Hole | Size: | dowless S | | J | ogged By: Approved TM | | #### Sheet: Project: File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ 26-05-16 Form SLR AGS3 UK BH SPT **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 Instrument/ Backfill **SAMPLES & TESTS STRATA** Water Reduced Legend Depth Test Type Type No Test Preservation Depth **DESCRIPTION** (Thick-Result 2 3 ness) MADE GROUND/OVERBURDEN (1.00)36.03 1.00 No Recovery. (0.90)35.13 ARCHAEOLOGICAL DEPOSIT SPT N=3 -2 (0.60)2.50 CLAY SPT N=2 SPT N=1 -3 (1.50)4.00 33.03 Borehole complete at 4.00m General Remarks Boring Progress and Water Observations Water Added Chiselling Water Dpt Date Depth То Hours From Method: Windowless Sampler All dimensions in metres Contractor: Sherwood Drilling Logged By: Approved By: Plant:Geotool Hole Size: Scale 1:31.25 #### **BOREHOLE No BOREHOLE LOG** В Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 30/07/07 E364925 N352582 36.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 2 | SAMPL | ES & 1 | EST | S | | | | | | | <u>ـ</u> | | | | | STRATA | Α | | |-----------|------------|--------------|------|----------|------|-------------|-----------|-------|------------|-----------|-----------------|------------|--------------------------------------|------------------------------------|--------------|--------------------------|--------------| | Depth | Type
No | Test
Type | Tes | t
ult | | | serv
2 | atio/ | n
4 | Water | Reduce
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPT | TON | | 1 | | | | | | | | | | | | | (2.44) | MADE GI
0.06 - 0.0
grey-brow | 8 Becomir | VERBURDE
ng mid to da | N \$ | | 2 | | | | - | | | | | | | 34.1 | 8 | -
-
-
-
-
-
- 2.44 | | | | | | | | SPT | N=(| , • | 0 | | | | | - | | | - | | | L DEPOSIT | | | 3 | | SPT | N=0 | | | | | | | | | | -
-
-
-
- (1.56) | 3.00 - 4.0 | 00 Slight su | ulphide odou | ır. | | 4 | | SPT | N=(|) • | 0 | | | | | | 32.6 | 52 | 4.00 | | nded edge | e pot fragme | nt | | | | SPT | | | 0 | | | | | | | | -
-
-
-
- | \(<11mm)
CLAY | | | | | | | | | - | | : | | | : | <u> </u> | | | - | <u> </u> | | | | | | Boring Pr | 1 | | | | | | | /ater | ╢. | | Chiselling | Ua.: | | Added | Gene | eral Remarks | | Date | Time | Dep | ou I | Depth | | <u>Dĭa.</u> | <u>mm</u> | | <u>Dpt</u> | | From | То | Hours | From | 10 | | | | All dimer | nsions in | metre | s | Contrac | ctor | : Sh | erwo | ood [| Orilling | <u> </u> | Met | hod: Win | dowless S | Sampler | | Logged By: | Approved E | #### **BOREHOLE No BOREHOLE LOG** В Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date:
406.0889.00003.005 E364925 N352582 30/07/07 36.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 2 of 2 | SAMPLE | | | | | | | | | | 숄 | | | | Depth | | | | | | - 5 | |------------|------------|--------------|----------------|-----|-------------|-----------|----------------|-------------|----|-------|-----------------|---------|-----|-------------------|---------|------------|-------------|--------|-----------|----------------| | Depth | Type
No | Test
Type | Test
Result | | | ser\
2 | vatio
3 | on
4 | | Water | Reduce
Level | Lege | end | (Thick-
ness) | | | DES | CRIPTI | ON | /+404111111111 | | | | SPT | | 0 | | | | | - | | | | | (2.00) | CLAY (c | ontinued) | | | | A SECOND | | | | SPT
SPT | N=0
N=0 | 0 | | | | | | | | | | | | | | | | CARCA | | | | SPT
SPT | N=0
N=0 | 0 | | | | | | | | | | | | | | | | CARC | | 6 | | SPT | N=0 | 0 | | - | | | | - | 30.62 | 2 — | | 6.00 | | e complete | at 6.0 | 00m | | R. | 7 | | | | | | | | | | | | | | -
- | • | | | | | | | | • | | | | | | | | | | | | | - | | | | | | | | | 8 | | | | | | | | | | | | | | -
· | - | • | 9 | | | | | | | | | | | | | | -
- | • | - | • | | | | | | | | | | - | and Wate | | | | | Nato | ar | | | Chisell | ing | | | r Added | - | Gene | ral Remar | ks | | Date | Time | Dep | oth Dep | oth | ing
Dia. | mm | ' | Wate
Dpt | -1 | Fr | rom | То | | Hours | From | То | \parallel | All dimens | #### Project: NANTWICH WATERLOGGED DEPOSITS 1 of 1 Sheet: | SAMPLE | ES & 7 | EST | S | | | | _ | | | | | STRATA | 4 | | ent/ | |-----------------------------|------------|---------------------|--|---------|--------------------|-----------------|-------|-----------------|-------------|---------------------------|---|---|--|--------------|-------------------------| | Depth | Type
No | Test
Type | Test
Result | | Prese | ervation
3 4 | Water | Reduce
Level | d
Legend | Depth
(Thick-
ness) | | | DESCRIPT | ION | Instrument/
Rackfill | | | | SPT SPT SPT SPT SPT | N=1
N=2
N=2
N=1
N=0
N=2 | | | 3 4 | | 32.9 | | | 1.47 - 1.5
1.60 - 1.6
sand.
1.72 - 1.7
fragments
NON-CANO
ORGANIO
1.90 - 1.9
1.95 Wat | 2 Pocket of 2 Pocket of 3 Waterlog S. RBONISEE C CONTEN 5 Slight suerlogged w | of orange sai
of light grey-l
gged wood
D DEPOSIT | WITH r. nts. | | | -
-
-
-
-
-4 | | SPT | N=1 | - | ∮ 1 | | - | 30.83 | | 4.00 | | | | | | | | | | | | | | | | | - | Borehole | complete a | at 4.00m | | | | В | oring Pr | ogress | and W | ater Ol | oservatio | | | | Chiselling | | Water | Added | Gene | eral Remar | ks | | Date | Time | Dep | | | ising
 Dia. mi | | er F | From | То | Hours | From | То | _ | | | | | e 1:31. | 25 | Pla | ant:Ge | otool | wood Drill | | Hole | Size: | dowless S | | | Logged By:
JC & IP | Approved | | #### **BOREHOLE No BOREHOLE LOG** D Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 31/07/07 35.03maOD E364925 N352423 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | Depth | Type
No | Test | Test | | _ | | | | | | | | 1 | | | | | |-----------|------------|------------|------------|-------------------|-------------|------|------------|---------|-------|-----------------|------------|---------------------------|--------------------|------------------------|-----------------------|-----------|-------------| | | | Туре | | | Pres
1 2 | | ation
3 | 4 | Water | Reduce
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPT | ION | Instrument/ | | | | | | - | | | | | | | | | MADE GI | ROUND/O | VERBURDE | EN | | | | | SPT | N=0 | •0 | | | | | - | | | (0.70) | | | | | | | | | SPT | N=0 | 0 | | | | |] | 34.3 | 3 XXX | 0.70 | | | | | 9 | | | | SPT | N=0 | • | | | | | | 34.3 | 3 | 0.70 | ARCHAE | OLOGICA
fine ash/ci | L DEPOSIT | ortar. | | | 1 | | | | - | | | | - | | | | - | | | | | | | | | SPT | N=0 | 0 | | | | | - | | | 1 | | | | | | | | | SPT | N=0 | •° | | | | | | | | (1.39) | | | | | 250 | | | | SPT
SPT | N=0
N=0 | 0 | | | | | - | | | } | | | | | | | | | SPT | N=0 | F 0 | | | | | 1 | | | } | | | | | CA | | 2 | | SPT
SPT | | 0 | | | | | - | 32.9 | 4 | 2.09 | 2.00 - 2.0
SAND | 9 Slight su | ulphide odou | r. | | | | | SPT | N=0 | • | | | | | - | 32.6 | 6 | (0.28) | | | | | | | | | | | ļ`` | | | | | 1 | | 1/ 1// 1// | İ | NON-CA | RBONISEI
C CONTE | D DEPOSIT
NT | WITH | | | | | SPT | N=2 | - |) | 2 | | : | | | | (0.63) | | 0 Rotted v | | | 102 | | | | | | | / | | | | | 22.0 | 2 1/2 1/2 | L | | | | | | | 3 | | | | - | / | | | : | - | 32.0 | 3 11, 11, | 3.00 | SAND | | | | | | | | | | 1 / | | | | | | | | - | | | | | NO. | | | | SPT | N-O | / | | | | | | | | (1.00) | | | | | | | | | 371 | N=0 | | | | | | - | | | | | | | | | | | | | | ŀ | | | | | } | | | .[| | | | | 100 | | 4 | | | | | | | | |] | 31.0 | 3 | 4.00 | | | | | 2 | | | | | | | | | | | | | | - | Borehole | complete | at 4.00m | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | - | _ | and Wate | | | | \\/. | ater | | | Chiselling | | | Added | Gene | eral Rema | rks | | Date | Time | Dep | oth De | Casi
pth | Dia. n | nm | Ď | pt | ╢╴ | rom | То | Hours | From | То | - | All dimen | sions in | metre | | tractor
t:Geot | | rwoc | od Dr | rilling | 11 | | nod: Wir | ndowless | Sampler | | Logged By:
JC & IP | Approve | d E | #### **BOREHOLE No BOREHOLE LOG** Ε Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E364931 N352261 31/07/07 35.34maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | Depth | Type
No | T4 | | | | | | | ; | | | | |-------|------------|---------------------------------|---------------------------------|--|----------------|------------------|-----------------------------|------------------------------------|----------|------------|---------------------------|-------------| | | | Test
Type | Test
Result | Preservati | Mater 4 | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION | /+000011450 | | | | | | | | 34.34 | | - (1.00)
- 1.00 | MADE GF | ROUND/O\ | /ERBURDEN | | | 1 | | | | | | | | (0.50) | | | DEPOSIT.
es and slate. | | | | | SPT | N=0 | •0 | | 33.84 | \///\\
-\daggerian \(\) | 1.50 | MINERAL | RICH DE | POSIT | | | 2 | | SPT
SPT
SPT
SPT
SPT | N=0
N=0
N=0
N=0
N=1 | 0 | | | | -
-
_(0.91)
- | | | | | | | | SPT | N=1 | , • • • • • • • • • • • • • • • • • • • | | 32.93 | | 2.41 | | | _ DEPOSIT. | T. | | 3 | | SPT | N=0 | √
• • • • • • • • • • • • • • • • • • • | | | | -
-
-
-
-
- (1.59) | Contains | rragments | of brick and ash. | | | | | SPT | | • | | 31.34 | | -
-
-
-
-
-
4.00 | | | | | | 4 | | SPT | N=0 | | | 31.07 | | | Borehole | complete a | at 4.00m | NZ | | В | | 1 | | r Observations | Matan | С | hiselling | | Water | | General Rem | narks | | Date | Time | Der | oth Dep | Casing oth Dia. mm | Water
Dpt F | rom | То | Hours | From | То | | | # BOREHOLE LOG CHESHIRE COUNTY COUNCIL No: 406.0889.00003.005 Date: 01/08/07 Ground Level: 205-07dinates: E365191 N352264 BOREHOLE No F # Project: NANTWICH WATERLOGGED DEPOSITS Client: Project No: 1 of 1 Sheet: # BOREHOLE NO F1 Client: #### CHESHIRE COUNTY COUNCIL Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 10/01/11 39.69maOD E365188.877 N352269.226 400.0000.0000.000 10/01/11 00.0011100D E000100.01/11002E00.EE0 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 #### **BOREHOLE No BOREHOLE LOG** F2 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365188.877 N352269.226 10/01/11 39.69maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | | T_ | _ | _ | _ | | | <u>⊒</u> | | | Depth | | | | 3 | |------------|------------|--------------|----------------|--------------------|-------------|--------------|------------------|------------------|-----------|------------------|-----------------|------------|----------------------|--------------| | Depth | Type
No | Test
Type | Test
Result | Pr
1 | eserva
2 | ation
3 4 | Water | Reduced
Level | Legend | (Thick-
ness) | | | DESCRIPTION | lactri mont/ | | | | SPT | N=0 | 0 | | | | | | (1.65) | MADE GF | ROUND | | | | 1 | | SPT | N=0 | 0 | | | -
-
-
- | | | | | | | | | | | SPT
SPT | N=0
N=0 | 0 | | | | 38.04 | | 1.65 | ДРСНАЕ | OI OGICAI | L DEPOSIT. | | | 2 | | SPT | N=0 | 0 | | | | 37.69 | | (0.35) | Contains glass. | ash/cinder | r, brick, mortar and | | | - | | SPT | N=0 | 0 | | | | 37.37 | . ? | (0.32) | No recove | ery | | | | | | SPT | N=0 | 0 | | | | | | -
- (0.34) | SAND | | | | | | | SPT | N=0 | 0 | | | | 37.03 | | 2.66 | CLAY | | |
_ | | 3 | | SPT | N=0 N=0 | | | | | | | (1.34) | | | | | | 1 | | | | - | | | _ | 35.69 | | 4.00 | Borehole | complete a | at 4.00m | | | В | oring Pr | ogress | and Water | Observa | ations | | | C | hiselling | - | Water | Added | General Ren | narks | | Date | Time | Dep | oth Dept | Casing
h Dia. | mm | Wate
Dpt | F | From | То | Hours | From | То | | | | All dimens | | | | | | | | | | | | | | | #### **BOREHOLE No BOREHOLE LOG** G Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365096 N352398 01/08/07 39.60maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPLI | T_ | T . (| T | | | | . e | 를 됐다. | D | | Depth | | | | | | |-----------|------------------|---------------------------------|---------------------------------|-----------------------------|--------------|------------|-----------------|--------------------|-----------------|---------------------|---|----------------------------------|--------------------------------------|----------|-----------------------|-------| | Depth | Type
No | Test
Type | Test
Result | 1 | | serva
2 | ation
3 4 | Water | Reduce
Level | ^d Legend | (Thick-
ness) | | | DESC | RIPTION | | | | | | | - | | | | - | 39.33 | | (0.27) | MADE GF | ROUND/O | VERBL | JRDEN | | | 1 | | SPT
SPT
SPT
SPT
SPT | N=0
N=0
N=0
N=0
N=0 | | | | | | 33.34 | | 0.27 | ARCHAE
Contains
and rotted | OLOGICA
ash/cinder
d charcoal. | , brick, | OSIT.
tile fragmer | nts | | ı | | SPT | N=1 | |) 1 | | | | | | (1.72) | | | | | | | | | SPT | N=0 | 6 | | | | | | | - | | | | | | | 2 | | SPT | N=0 | 0 | | | | | 37.6 | 1 | 1.99 | | | | | | | - | | SPT
SPT
SPT | N=0
N=0
N=0
N=0 | 0 0 | | | | | | | · _ · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · · - · | SAND | | | | | | | | SPT | | 0 | | | | | | | (1.01) | | | | | | | 3 | | | | - | | | | - | 36.60 | 0 | 3.00 | | | | | | | | | | | | | | | | | | - | Borehole | complete a | at 3.00 | m | | | 4 | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | | | - | 1 | | | | Date | oring Pr
Time | ogress | and Wate | er Obse
Casir
pth [| | | Wate
Dpt | - - | rom | Chiselling
To | Hours | Water | Added
To | - | General Re | marks | | | | | De | μui L | <u>ла. Г</u> | | υ ρι | | | | | | | | | | | All dimen | | | | | | | | | | | | | | | | | #### **BOREHOLE No BOREHOLE LOG** Н Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 01/08/07 39.35maOD E365233 N352471 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | | <u></u> | 5 | | | | | Decth | , | STRATA | 1 | 2 | |-----------|------------|--------------|----------------|----------------------------------|--------------|------------------|-----------|---------------------------|----------|------------|---------------------|--------| | Depth | Type
No | Test
Type | Test
Result | Preservation 1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION |
 | | | | | | - | | | | - | MADE GF | ROUND/O\ | VERBURDEN | | | | | | | - | - | | | - (0.36) | | | | | | | | SPT | N=0 | 20 | 1 | 38.99 | | 0.36 | ARCHAE | OL OGICAL | L DEPOSIT. | | | | | SPT | N=0 | 0 | + | | | - | Contains | | , brick, mortar and | K | | | | SPT | N=0 | | 1 | | | (0.64) | glass. | | | 15 | | | | SPT | N=0 | 0 : : : : : | - | | | - ` ´ | | | | 6 | | 1 | | | | | 1 | 38.35 | | 1.00 | | | | | | | | | | - | + | | | - | No Recov | ery. | | 15 | | | | | | | 1 | | | (0.42) | | | | Ş | | | | | | <u></u> | + | 37.93
37.83 | | 1.42
1.52 | SAND | | | | | | | SPT | N=0 | Ţ | 1 | 31.03 | | - 1.52 | CLAY | | | | | | | SPT | N=0 | ∳ ∘ | - | | | - | | | | | | | | | - | | 1 | | | | | | | 2 | | 2 | | | | - | - | | | _ | | | | | | | | | | | 1 | | | - | | | | | | | | | | + | - | | | - | | | | | | | | ODT | N O | 0 | 1 | | | - | | | | | | | | SPT | N=0 | | - | | | - | | | | | | | | | | | 1 | | | (2.48) | | | | É | | | | | | ļ | - | | | - | | | | É | | 3 | | | | <u> </u> | 1 | | | _ | | | | Ē | | | | | | ļ | - | | | - | | | | É | | | | | | | 1 | | | - | | | | E | | | | SPT | N=0 | • | - | | | - | | | | | | | | | | | 1 | | | - | | | | | | | | | | ļ | - | | | - | | | | | | 4 | | | | | 1 | 35.35 | | 4.00 | | | | 22 | | • | | | | | | | | - | Borehole | complete a | at 4.00m | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | E | Boring Pr | ogress | and Water | Observations | | С | hiselling | | Water | Added | General Re | marks | | Date | Time | Dep | | Casing Water
th Dia. mm Dpt | F | rom | То | Hours | From | То | | | | | | | 2550 | All dimer | nsions in | metre | e Contra | actor: Sherwood Drilling | ٦. | Moth | od· \Min | dowless S | Compler | 1.1 | Logged By: Appro | oved E | #### **BOREHOLE No BOREHOLE LOG** I Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365308 N352394 31/07/07 38.96maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | est Test
pe Result | Preservation 1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick- | | | DECODIDATION | |-----------------------|-----------------------------|--------------------------------|------------------|--|------------------------------------|------------------------|---------------------------|-------------------------------| | - | | | LCVCI |] | ness) | | | DESCRIPTION | | PT N=1 | • | | | | (0.86) | ARCHAEL
0.00 - 0.86 | _OGICAL [
6 Very slig! | DEPOSIT
ht sulphide odour. | | PT N=3
PT N=0 | 10 ▶3 | | 38.10
38.00 | | 0.86 | | | DEPOSIT WITH IT. Contains | | PT N=0 | 0 | | | > \ \ \ - \ \ - \ \ - \ \ \ \ \ \ \ \ \ \ | (0.41) | ash/cinder | r and wood | ly root fragments. | | PT N=0 | 0 | | 37.59 | | 1.37 | SAND | | | | | | - | 31.30 | | - 1.30 | CLAY | | D D | | PT N=0 | - | | | | -
-
-
- | | | | | PT N=0 | o | | | | (2.12) | | | | | PT N=0 | 0 | | 35.26 | | -
-
-
-
-
-
3.70 | | | | | | | | | | - | Borehole of | complete a | at 3.70m | | ress and Water (| Observations | $\frac{\bot}{\Box}$ | C | hiselling | | Water | Added | General Remark | | Depth Depth | Casing Water
Dia. mm Dpt | F | rom | То | Hours | From | То | | | | | | | | | | | | | | | Contractor : Sherwood Drilling | | | | | | | #### **BOREHOLE No BOREHOLE LOG** J Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365284 N352296 406.0889.00003.005 31/07/07 40.04maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | | LOI | | | — ⊨ | | 1 | 5 | , | STRATA | · | <u>م</u> و | |-----------|------------|--------------|----------------|---------------------------------|-------|------------------|-----------|----------------------------|----------|------------|------------------|-------------| | Depth | Type
No | Test
Type | Test
Result | Preservation
1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION | lnstrument/ | | | | SPT | N=0 | • | | | | - (1.00) | MADE GF | ROUND/O\ | VERBURDEN | | | | | SPT | N=0 | •• | | | | (1.00) | | | | | | 1 | | SPT | N=2 | P ² | | 39.04 | | 1.00 | | | | | | | | SPT | N=0 | | - | | | -
- | SAND | | | | | | | SPT | N=2 | •2 | - | | | - (0.75)
- | | | | | | | | SPT | N=0 | • | | 38.29 | | - 1.75
-
- | CLAY | | | | | 2 | | • | | | | | | - | | | | | | | | SPT | N=0 | 0 | | | | - (2.25) | | | | | | 3 | | SPT | N=0 | •0 | | | | -
-
-
-
- | | | | | | 4 | | | | | - | 36.04 | | 4.00 | | | | | | | | | | | | | | -
-
-
-
-
- | Borehole | complete a | at 4.00m | | | E | Boring Pr | ogress | and Wate | er Observations | | C | hiselling | | Water | Added | General Rem | narks | | Date | Time | Dep | oth De | Casing Water
pth Dia. mm Dpt | | From | То | Hours | From | То | | | | | | | | | | | | | | | | | | All dimer | nsions in | metre | s Cont | tractor : Sherwood Drillin | | Moth | od: \\/in | dowless S | `amples | | ogged By: Approv | rod D | #### **BOREHOLE No BOREHOLE LOG** Κ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365021 N352297 31/07/07 37.14maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | | | | | | | | <u> </u> | | | Depth | | STRATA | ١ | 5 | |-----------|------------|--------------|----------------|-------------------|-----------|------------|--------------|----------|-----------------|------------|------------------|----------|----------|-------------|-------------| | Depth | Type
No | Test
Type | Test
Result | 1 | Pres
2 | ervat
3 | | Water | Reduce
Level | Legend | (Thick-
ness) | | | DESCRIPTION | ON Had | | | | | | - | : | : | : | - | | | * | MADE GF | ROUND/O | VERBURDEN | | | | | | | | | | | | | | * | | | | | | | | | | - | | | : | - | | | × (4.00) | | | | | | | | | | | : | | : | - | | | (1.00) | | | | (S | | | | | | | | | | | | | <u>}</u> | | | | | | 1 | | | | Ŀ | | | : | - | 36.1 | 4 | 1.00 | | | | | | • | | | | - | | | | - | | | - | CLAY | | | Š | | | | | | | | | : | 1 | | | - | | | | (6)
22 | | | | SPT | N=0 | 0 | | | | | | | - | | | | | | | | SFI | N-U | | | | : | | | | - | | | | | | | | | | - | | | | - | | | 1 | | | | Š | | 2 | | | | - | | | | - | | <u> </u> | (2.00) | | | | | | | | | | | | | | | | | ‡ | | | | | | | | SPT | N=0 | | | | : | | | | <u> </u> | | | | | | | | | | - | | | | - | | |
_ | | | | | | | | | | | | | : | | | | - | | | | | | | | SPT | N=0 | | | | | | | F | - | | | | | | 3 | | | | - | - : | | | | 34.1 | 4 | 3.00 | | | | | | | | | | | | | | | | | - | Borehole | complete | at 3.00m | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | 4 | | | | | | | | | | | _ | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | В | oring Pr | ogress | and Water | Obser | vatic | | | | | Chiselling | J | Water | Added | Gener | ral Remarks | | Date | Time | Dep | oth Dep | Casing
th Di | J
a. m | ım | Water
Dpt | | From | То | Hours | From | То | All dimen | sions in | metre | s Contr | actor : S | Sher | wood | l Drillin | na | Meth | od: \\/ir | ndowless S | Sampler | | Logged By: | Approved E | #### **BOREHOLE No BOREHOLE LOG** L Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365128 N352544 406.0889.00003.005 11/09/07 38.71maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 #### **BOREHOLE No BOREHOLE LOG** M Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365015 N352549 11/09/07 37.81maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SPT N=0 | | Reduced
Level | | Depth (Thickness) | | | DESCRIPTIC
ÆRBURDEN | | |---|---|------------------|--|-----------------------|--------------------------|------------------------------|--|-----------| | SPT N=0 | | | | (Thick-
ness) | MADE GF | | | N | | SPT N=0 N=1 | • | 36.58 | | - | MADE GR | ROUND/OV | ÆRBURDEN | | | | 1 | 30.00 | $\times\!\!\times\!\!\times\!\!\times$ | -
-
- 1.23 | | | | | | | | | 1/ 1/1/ 1/V | - 1.23 | ORGANIC | | DEPOSIT W
T. Contains
material. | 'ITH | | SPT N=1 | ₹ | | 71/ 71/
71/ 71/ 7 | (1.00) | 1.23 - 1.4
1.44 - 1.6 | 4 Slight sul
0 Slight sul | phide odour.
phide odour.
phide odour. | | | SPT N=1 | | 05.50 | <u> </u> | -
-
- | 2.00 - 2.2 | 3 Very sligh | nt sulphide od | lour. | | | | 35.58 | | - 2.23
-
- | SAND | | | | | SPT N=0 0 | | | | (0.77) | | | | | | SPT N=0 | | 34.81 | | 3.00 | Danahala | complete a | t 2 00 | | | | | | | -
-
-
-
- | Borenoic | complete a | 10.0011 | | | | | | | -
-
- | | | | | | | | | | - | | | | | | | I | | | - | | | | | | Boring Progress and Water Observations Casing Water | _ | | hiselling | Harris | Water | | | al Remark | | Date Time Depth Casing Water Depth Dia. mm Dpt | F | rom | То | Hours | From | То | Groundwate
1.58m bgl. V
headspace
905ppm. | Vell | | All dimensions in metres Scale 1:31.25 Contractor : Sherwood Drilling Plant:Geotool | | Metho | | dowless S | Sampler | L | | Approved | Form SLR AGS3 UK BH SPT File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ 26-05-16 # **BOREHOLE LOG** BOREHOLE No N Client: #### **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 12/09/07 39.17maOD E365016 N352449 **SLR** Project: #### NANTWICH WATERLOGGED DEPOSITS 1 of 1 Sheet: #### **BOREHOLE No BOREHOLE LOG N1** Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 39.16maOD E365016 N352449 10/01/11 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 nstrument/ **SAMPLES & TESTS STRATA** Water Reduced Legend Depth Backfill Test Test Preservation Туре Depth (Thick-**DESCRIPTION** Ńο Туре Result Level 2 3 ness) MADE GROUND (0.56)SPT N=038.60 0.56 SPT N=0ARCHAEOLOGICAL DEPOSIT. Contains ash/cinder, brick, tile SPT N=0fragments, mortar and rotted charcoal. 0.56 - 0.60 ...Single large stone present (0.78)SPT N=0 (approximately 55mm) SPT N=0 SPT N=037.82 NON-CARBONISED DEPOSIT WITH ORGANIC CONTENT. Contains 11/ waterlogged wood and herbaceous 11, 11, SPT N=2 1.46 - 1.47 ... Decayed wood fragments 1.63 - 1.65 ... Decayed mortar/lime up to 11, 11, 2 1.92 - 1.94 ...Roundwood fragments up 1, 11, 1 SPT N=0 to 35mm. (1.66) 11, 11, 2.23 - 2.30 ...Large wood inclusion. 1, 11, 1 2.23 - 2.51 ...Fine herbaceous detritus present. SPT <u>/ 1/ / 1/</u> N=32.51 - 2.71 ... Abundant wood fragments 1/ 1/1/ 1 up to 12mm. SPT N=011, 11, SPT N=2 36.16 4 44 2.89 - 3.00 ... Wood becomes less 3.00 SPT N=3-3 decayed and darker in colour. Borehole complete at 3.00m General Remarks Boring Progress and Water Observations Chiselling Water Added Water Dpt Casing Depth | Dia Date Depth Hours From All dimensions in metres Contractor: Sherwood Drilling Method: Windowless Sampler Logged By: Approved By: Plant:Geotool Hole Size: Scale 1:31.25 26-05-16 File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ AGS3 UK BH SPT SLR Form #### **BOREHOLE No BOREHOLE LOG** 0 Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365184 N352470 11/09/07 39.64maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPLE | | | | | water u | | | Depth | • | STRAT | / \ | | |-----------|------------|--------------------------|-------------------|----------------------|--------------|------------------|--------------------|-------------------------|----------------------------|-------------------|--|-------------| | Depth | Type
No | Test
Type | Test
Result | Preservation 1 2 3 | n 8 | Reduced
Level | Legend | (Thick-
ness) | | | DESCRIPTION | Instrument/ | | 1 | | SPT
SPT
SPT
SPT | N=0
N=0
N=0 | | | | | -
-
-
- (1.20) | | 4 Brick/tile | e which becomes the ent. | | | | | SPT | N=0 | | | 38.44 | | 1.20 | | | D DEPOSIT WITH | + | | | | SPT | N=2 | • 2 | 1 | 07.07 | | - (0.57)
- | tile, coal f
plant rema | ragments
ains. | NT. Contains brick, and waterlogged ulphide odour. | | | | | SPT | N=0 | •0 | | 37.87 | | 2.00 | ARCHAE | OLOGICA | AL DEPOSIT | | | 2 | | | | | | | ? | - (0.39) | No Recov | very. | | | | | | SPT | N=0 | • | | 37.25 | 71/ 71/
7 71/ 7 | (0.50) | ORGANIC | CONTE | D DEPOSIT WITH
NT
ulphide odour. | | | 3 | | SPT | N=0 | • 0 | | 30.73 | | | CLAY | | | _ | | | | SPT | N=0 | 0 | | 25.04 | | - (1.00)
- (1.00) | | | | | | 4 | | | | : : : | | 35.64 | | 4.00 | Borehole | complete | at 4.00m | | | | | | | | | | | -
-
-
- | | | | | | В | oring Pr | ogress | and Wate | er Observations | | C | hiselling | | Water | Added | General Rema | arks | | Date | Time | Dep | | Casing V | /ater
Dpt | rom | То | Hours | From | То | Groundwater prese | nt a | | | | | | | | | | | | | headspace concent
10ppm. | trati | | All dimen | sions in | metre | s Cont | tractor : Sherwood [|
 | Metho | od: Win | dowless S | Sampler | | Logged By: Approve | ed E | #### **BOREHOLE No BOREHOLE LOG** Ρ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 10/09/07 39.93maOD E365098 N352374 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 #### **BOREHOLE No BOREHOLE LOG P1** Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365098 N352374 406.0889.00003.005 10/01/11 39.93maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 26-05-16 File 406.0889.00003.005 NANTWICH INTERPRETATION LOGS.GPJ Form SLR AGS3 UK BH SPT #### **BOREHOLE No BOREHOLE LOG** Q Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365196 N352383 10/09/07 39.22maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | ES & 1 | EST | S | | | | | | , | STRATA | 4 | | |-----------|------------|--------------|----------------|--------------------------------|---------|------------------|-----------|---------------------------|----------|--------------|--|-----------------| | Depth | Type
No | Test
Type | Test
Result | Preservation
1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION |
 nstrument/ | | | | | | | - | 38.74 | | (0.48) | MADE GF | ROUND/O | VERBURDEN | | | 1 | | | | | | 00.11 | | -(1.02) | | brick, tile, | L DEPOSIT.
cinder/coal and | | | | | SPT | N=0
N=0 | 0 | | 37.72 | | 1.50 | MINIERAI | . RICH DE | POSIT | | | | | SPT
SPT | N=0
N=0 | P ⁰ | <u></u> | 37.39 | | (0.33) | | - 1 (1011 B) | 0011 | | | 2 | | SPT | N=0 | 0 | - | | | - | SAND | | | | | | | SPT | N=0 | 0 | | | | (1.05) | | | | | | | | SPT | N=0 | 0 | - | 36.34 | | 2.88 | | | | | | 3 | | SPT
SPT | N=0
N=0 | 0 | | | | - | CLAY | | | | | | | SPT | N=0 | 0 | | 35.42 | | 3.80 | | | | | | 1 | | | | : : : : | | 33.42 | | -
-
- | Borehole | complete | at 3.80m | | | | | | | | | | | -
-
- | | | | | | F | Soring Pr | nares | and Water | Observations | | | hiselling | - | Water | Added | General Rem | arks | | Date | Time | Dep | | Casing Water
th Dia. mm Dpt | F | rom | То | Hours | From | То | Groundwater prese | | | | | | | | | | | | | | 1.71m bgl. Well
headspace concen
170ppm. | trati | | All dimer | nsions in | metre | s Contra | actor : Sherwood Drilling |] | Meth | od: Win | dowless S | Sampler | <u> </u> | Logged By: Approv | ed B | #### **BOREHOLE No BOREHOLE LOG** R Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: E365205 N352362 406.0889.00003.005 10/09/07 39.18maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | E5 & I | E51 | 5 | | e | | | . | , | STRATA | \ | ةِ | |-----------|------------|--------------|----------------|--|----------
------------------|---|---------------------------|---------------|--------------|--------------------|-----------------| | Depth | Type
No | Test
Type | Test
Result | Preservation
1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION |
 hetriment/ | | | | | | | | | | | MADE GF | ROUND/O\ | VERBURDEN | 2 | | | | | | + | - | | | (0.50) | | | | | | | | | | | 1 | | | | | | | | | | | | | - | - | 38.68 | | 0.50 | | | L DEPOSIT. | | | | | | | † | 1 | | | - | Contains | brick, tile, | cinder/coal and | | | | | SPT | N=0 | • • • • • • • • • • • • • • • • • • • | - | | | | mortar fra | igments. | | | | 1 | | | | † | 1 | | | (0.86) | | | | S | | 1 | | | | ļ | - | | | _ | | | | 6 | | | | SPT | N=0 | 0 : : | + | 07.00 | | 4.00 | | | | Š | | | | | | ļ. i i i i |] | 37.82 | - () — (| 1.36 | MINFRAI | RICH DE | POSIT | | | | | SPT | N=0 | | - | | \ _\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | - | 1011111211012 | - 1 (1011 B) | | | | | | SPT
SPT | N=0
N=0 | 0 | 1 | | ├ ♦ _ ⟨ | (0.51) | | | | Ġ | | | | SPT | N=0 | 0 | - | 37.31 | \ - \ \ - \ \ - \ \ \ \ \ \ \ \ \ \ \ \ | 1.87 | | | | | | 2 | | SPT | N=0 | • | 1 | | | _ | SAND | | | Ŕ | | = | | | | . | + | | | - , | | | | | | | | | | | 1 | | | - (0.63) | | | | 9 | | | | | | ļ | - | 36.68 | | 2.50 | | | | 9 | | | | | | | 1 | 30.00 | | 2.30 | CLAY | | | — <u>[</u> 0 | | | | | | | - | | | _ | | | | 2 | | | | SPT | N=0 | | 1 | | = | _ | | | | 2 | | 3 | | | | [- i i i i i | - | | | | | | | 2 | | | | | | | + | | | _ | | | | | | | | | | |] | | | (1.50) | | | | | | | | | | † | 1 | | | _ | | | | K | | | | SPT | N=0 | 0 |] | | | - | | | | | | | | | | + | + | | | _ | | | | 6 | | | | | | | 1 | 0= 40 | | | | | | 6 | | 4 | | | | | + | 35.18 | | 4.00 | | | | - 2 | | | | | | | | | | - | Borehole | complete a | at 4.00m | | | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | | | |) | | | | <u> </u> | | 1.1 11 | - | 10/-1 | A .l. ll | General Ren | 20110 | | Date | Time | Dep | | Observations Casing Water th Dia. mm Dpt | ╢-, | From | hiselling
To | Hours | Water | To | General Ren | narks | | Date | 111110 | | Dept Dept | th Dia. mm Dpt | ╢. | 10111 | 10 | Tiouro | 1 10111 | 10 | A II .: | | <u> </u> | | | | 1 | , | | | 1. | | , - | | All dimer | nsions in | metre | s Contra | actor : Sherwood Drilling | 7 | Meth | od: Win | dowless S | sampler | I L | Logged By: │ Appro | ved B | #### **BOREHOLE No BOREHOLE LOG** S Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365119 N352343 11/09/07 39.77maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPLE | _5 & I | LOI | | | | | | te | | | Donth | | STRAT | ^ | <u>۾</u> ۾ | |-----------|------------|-------------------|-------------------|-----------------------|-------------|------------|--------------|----------|------------------|-----------|----------------------------|-----------------------|-----------|---|-----------------| | Depth | Type
No | Test
Type | Test
Result | 1 | Preser
2 | vatio
3 | on
4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPTION |
 nstriment/ | | | | SPT | N=0 | 0 | - | | | | | | ·
-
- (0.81) | MADE GF | ROUND/C | OVERBURDEN | | | | | SPT | N=0 | | | | | - | 38.96 | | - 0.81 | | | | | | 1 | | SPT | N=0 | •0
-
-
- | | | | | | | -
-
-
- | | | AL DEPOSIT.
s of brick and tile. | | | 2 | | SPT | N=0 | •0 | | | | | | | -
-
-
-
(2.47) | | | | | | | | SPT | N=0 | P ⁰ | | | | | | | - | | | | | | | | SPT
SPT
SPT | N=0
N=0
N=0 | •0
•0
•0 | | | | | | | - | 2.44 Brick
<130mm) | surface (| (Large fragments | | | 3 | | SPT | N=0 | •• | | | | 1 | 36.49 | | -
-
-
-
3.28 | | | | | | | | | | | | | | | | | - | SAND | | | | | | | SPT | N=0 | •0 | | | | | | | (0.72) | | | | | | 4 | | | | : | | - | : | | 35.77 | , | 4.00 | Borehole | complete | at 4 00m | | | | | | | | | | | | | | -
-
-
-
-
- | 2 2 3 3 3 6 | | | | | В | oring Pr | ogress | and Wate | | | | | | C | hiselling | | Water | Added | General Rem | narks | | Date | Time | Dep | oth Dep | Casing
th Di | a. mm | 1 | Water
Dpt | F | From | То | Hours | From | То | Groundwater press
3.34m bgl. Well
headspace concer
130ppm. | | | All dimen | sions in | metre | s Contr | actor : S | Sherw | rood | Drilling | <u> </u> | Meth | od: Win | dowless S | Sampler | | Logged By: Approv | | #### **BOREHOLE No BOREHOLE LOG** Т Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: 406.0889.00003.005 14/09/07 39.50maOD E365140 N352352 Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 # **BOREHOLE LOG** BOREHOLE No **U** Client: ## **CHESHIRE COUNTY COUNCIL** Project No: Date: Ground Level: Co-ordinates: 406.0889.00003.005 14/09/07 39.43maOD E365160 N352349 **SLR** Project: # **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 Sheet: | ITAITIVIOII | WAILKLO | GGED DEPOSITS | | | | | | | | 1 of 1 | | |---|-----------------------|-------------------------------------|-------|------------------|----------------------------------|---------------------------|-----------------------|-------------------------|---|-------------------|-------------------------| | SAMPLES & TES | STS | | _ | | | | | STRATA | ١ | | ent/ | | Depth Type Te | est Test
pe Result | Preservation
1 2 3 4 | Water | Reduced
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPT | ION | Instrument/
Backfill | | - | | | | | | - | Contains | brick, tile | L DEPOSIT.
and coal fraç
agment (<55 | gments. | | | SF | PT N=0 | • | | | | (1.50) | | | skull fragmer | | | | -1
-1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | PT N=0 | • | | | | -
-
-
- | 1.00 - 1.0
(<80mm) | 8 Large hu | ıman skull fr | agment | | | | | | | 37.93 | | 1.50 | | | | | | | SF | PT N=0
PT N=0 | | | 07.00 | | (0.27) | MINERAL | RICH DE | POSIT | | | | -
-2 | PT N=1
PT N=2 | | | 37.66 | | 1.77 | ORGANIO
1.77 - 1.9 | C CONTEN
6 Sliaht su | D DEPOSIT I
NT
Ilphide odou
Ilphide odou | r. | | | - | PT N=2 | | | 26.42 | 77 77
77 77
77 77
77 77 | 3.00 | | | | | | | - 3
 | | | | 30.43 | | | Borehole | complete a | at 3.00m | | SOUR | | 01-00-07 C45-07-07-07-07-07-07-07-07-07-07-07-07-07- | | | | | | -
-
-
- | | | | | | | | | | | | | -
-
-
- | | | | | | | יייייייייייייייייייייייייייייייייייייי | | | | | | -
-
- | | | | | | | Boring Progre | | r Observations | | С | hiselling | | Water | Added | Gene | eral Remar | ks | | Date Time [| Depth Dep | Casing Water
th Dia. mm Dpt | F | rom | То | Hours | From | То | | | | | Boring Progre Date Time C | | | | | | | | | | | | | All dimensions in me | | ractor : Sherwood Drilling | Ш | | | dowless S | Sampler | | Logged By: | Approved | d By: | | | | Geotool
nes House, Holsworth Pai | rk. O | Hole xon Busii | | k, Shrews | bury SY3 5 | | JC & IP
1743 239250 | TM
), Fax: N/A | | #### **BOREHOLE No BOREHOLE LOG** ٧ Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Date: Project No: E365195 N352346 406.0889.00003.005 14/09/07 39.39maOD Project: Sheet: NANTWICH WATERLOGGED DEPOSITS 1 of 1 #### **BOREHOLE No BOREHOLE LOG** W Client: **CHESHIRE COUNTY COUNCIL** Ground Level: Co-ordinates: Project No: Date: 406.0889.00003.005 E365214 N352280 13/09/07 40.03maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** | SAMPLE | ES & 1 | EST | S | | | | | | | STRATA | | 1 | |-----------|------------|--------------|----------------|-------------------------------|-------|-----------------|-------------|---------------------------|----------|--|-------------------|-------| | Depth | Type
No | Test
Type | Test
Result | Preservation 1 2 3 4 | Water | Reduce
Level | d
Legend | Depth
(Thick-
ness) | | Ι | DESCRIPTION | | | 1 | | | | | - | 39.03 | 3 | - (1.00)
- (1.00) | | | ERBURDEN | | | ı | | SPT | N=3 | •3 | | 38.67 | 7 | -
- (0.36)
- 1.36 | Contains | OLOGICAL
brick and till
le pot sherd | e fragments. | | | | | SPT | N=3 | 3 | - | | | -
-
- | S | | | | | 2 | | SPT | N=0 | | | | | (1.12) | | | | | | | | SPT | N=0 | •0 | - | 37.55 | 5 | -
-
2.48 | | | | | | | | SPT | | 0 | | | | (0.52) | CLAY | | | | | 3 | | G | N=0 | | | 37.03 | 3 | 3.00 | Borehole | complete at | 3.00m | | | 1 | | | | | | | | | | | | | | В | oring Pr | ogress | | r Observations | | (| Chiselling | -
-
- | Water | Added | General Re | marks | | Date | Time | Dep | oth Dep | Casing Water
th Dia.mm Dpt | F | From | То | Hours | From | То | | | | All dimen | oiono in | | | ractor : Sherwood Drilling | | | | | Sampler | | ogged By: Appro | | ## **BOREHOLE No BOREHOLE LOG** Χ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 E365014 N352321 37.62maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | ES & 1 | EST | S | | | | <u>ا</u> | | | | • | STRATA | 4 | | |-----------|------------|--------------|----------------|-----------------|----------------|--------------|----------|-----------------|------------|-------------------------------------|----------|------------|-------------------------|--------------| | Depth | Type
No | Test
Type | Test
Result | Pre | eservation 2 3 | on
4 | Water | Reduce
Level | Legend | Depth
(Thick-
ness) | | | DESCRIPT | ION | | | | | | - | | | -
 27.0 | | - (0.60) | MADE GF | ROUND/O | VERBURDE | N | | 1 | | SPT | N=2 | | 2 | - | - | 37.0 | 2 | 0.60
-
-
-
-
-(0.82) | | | L DEPOSIT. Ind construc | | | | | SPT | N=0 | • | | | | 36.2 | 0 | -
-
- 1.42 | CLAY | | | | | 2 | | SPT | N=0 | 0 | | _ | - | | | -
-
- | | | | | | _ | | | | | | | - | | | -
- (1.58)
-
- | | | | | | | | SPT | | | | | - | 34.6 | | 3.00 | | | | | | 3 | | SPT | N=0 | | | • | - | 04.0 | | - | Borehole | complete a | at 3.00m | | | 4 | | | | | | | | | | -
-
- | | | | | | | | | | | | | | | | -
-
- | | | | | | В | oring Pr | ogress | and Wate | er Observa | tions | | | (| Chiselling | - | Water | Added | Gene | eral Remarks | | Date | Time | Dep | | Casing oth Dia. | | Water
Dpt | F | rom | То | Hours | From | То | All dimen | sions in | metre | s Cont | ractor : Sh | erwood | Drilling | | Meth | and: Win | dowless S | Sampler | <u> </u> | Logged By: | Approved E | ## **BOREHOLE No BOREHOLE LOG** Υ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 E365057 N352322 39.90maOD Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPL | | | | | <u>—</u> ≢ | | | Depth | | STRATA | ` | | |----------|------------|-------------------|-------------------|-----------------------------|------------|-----------------|------------|-----------------------|----------|------------|-----------------------|--------------| | Depth | Type
No | Test
Type | Test
Result | Preservation
1 2 3 4 | Water | Reduce
Level | Legend | (Thick-
ness) | | | DESCRIPT | TION | | 1 | | SPT | N=0 | | | | | (2.06) | MADE GF | ROUND/O | VERBURDE | N | | 2 | | SPT
SPT
SPT | N=0
N=0
N=0 | | | 37.8 | 4 | - 2.06
-
- | SAND | | | | | | | SPT | N=0 | •0 | | | | -
-
- | | | | | | 3 | | SPT | N=0 | •• | - | | | - (1.68)
 | | | | | | | | SPT | N=0 | 0 | | 36.1 | 6 | -
-
-
- 3.74 | | | | | | 4 | | SPT | N=0 | 0 | - | 35.9 | | (0.26)
4.00 | CLAY | | | | | | | | | | | | | - | Borehole | complete a | at 4.00m | | | E | Boring Pr | ogress | | r Observations | | (| Chiselling | | Water | Added | Gene | eral Remarks | | Date | Time | Dep | oth Dep | Casing Wate oth Dia. mm Dpt | i.L | From | То | Hours | From | То | | | | All dime | nsions in | metre | s Conti | ractor : Sherwood Drilli | ng | Meth | nod: Win | dowless S | Sampler |
 L | Logged By:
JC & IP | Approved E | ## **BOREHOLE No BOREHOLE LOG** Ζ Client: **CHESHIRE COUNTY COUNCIL** Date: Ground Level: Co-ordinates: Project No: 406.0889.00003.005 13/09/07 38.46maOD E365079 N352243 Project: Sheet: **NANTWICH WATERLOGGED DEPOSITS** 1 of 1 | SAMPLI | ES & 1 | EST | S | | | | | | <u>_</u> | | | | , | STRATA | 4 | | |-----------|------------|--------------|----------------|--------------|--------------|------|---------|------------|----------|-----------------|-------------|------------------------------|---------|----------|------------|--------------| | Depth | Type
No | Test
Type | Test
Result | , | Pres | | | 4 | Water | Reduce
Level | d
Legend | Depth
(Thick-
ness) | | | DESCRIPT | TION | | | | SPT | N=0 | 0 | | | | | | | | (0.70) | | ROUND/O | VERBURDE | N | | | | SPT | N=0 | 0 | | | | | - | 37.7 | 3 | 0.70 | SAND | | | | | 1 | | | | - | | | | - | - | | | _
-
-
_ (1.34)
- | | | | | | 2 | | SPT | N=0 | 0 | | | | - | - | 36.4 | 2 | -
-
- 2.04 | | | | | | | | | N 2 | 0 | | | | | - | | | (0.96) | CLAY | | | | | | | SPT | N=0 | | - | | | | | 35.4 | | 3.00 | | | | | | 3 | | SPT | N=0 | | · | | | : | | 33.1 | | | | complete | at 3.00m | | | 4 | | | | | | | | | | | | -
-
-
-
-
- | | | | | | | | | | | | | | | | | | -
-
-
- | | | | | | В | oring Pr | ogress | and Water | | | | | | | (| Chiselling | | Water | Added | Gene | eral Remarks | | Date | Time | Dep | oth Dept | Casir
h I | ng
Dia. m | nm | Wa
D | ater
pt | F | From | То | Hours | From | То | | | | All dimen | sions in | metre | s Contra | actor | She | rwoc | od Di | rillina | | Meth | nod: Win | dowless \$ | Sampler | | Logged By: | Approved E | | Location | Easting | Northing | Surface Elevation | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|---------|----------|-------------------|-------------|-----------------|------------|---------------|----------|-------|--------------|-------------| | Location | | | (mOD) | Depth (m) | Elevation (mOD) | | Oxygen (mg/l) | (mV SHE) | ρп | (µS/CM) | (°C) | | AB | 364740 | 352370 | 37.93 | 2.13 | 35.80 | 20/11/07 | 0 | 105.4 | 7.08 | 1253 | 12.1 | | AB | 364740 | 352370 | 37.93 | 1.77 | 36.16 | 01/02/2011 | 1.85 | 262.7 | 7.09 | 706 | 7.89 | | AB | 364740 | 352370 | 37.93 | 2.08 | 35.85 | 12/05/2011 | - | 322 | 7.52 | 344 | 9.33 | | AB | 364740 | 352370 | 37.93 | 2.24 | 35.69 | 18/08/2011 | 0.24 | 118.4 | 7.12 | 1086 | 12.4 | | AB | 364740 | 352370 | 37.93 | 2.27 | 35.66 | 15/11/2011 | 2.22 | 281 | 6.73 | 443 | 11.15 | | AB | 364740 | 352370 | 37.93 | 1.77 | 36.16 | 16/02/2012 | 3.94 | 397.4 | 7.19 | 412 | 8.6 | | AB | 364740 | 352370 | 37.93 | 1.97 | 35.96 | 25/05/2012 | 1.88 | 161.5 | 7.14 | 908 | 7.89 | | AB | 364740 | 352370 | 37.93 | 1.96 | 35.97 | 31/08/2012 | 1.06 | 305.7 | 7.07 | 898 | 10.68 | | AB | 364740 | 352370 | 37.93 | 1.48 | 36.45 | 28/11/2012 | 1.44 | 251.3 | 7.47 | 1105 | 8.55 | | AB | 364740 | 352370 | 37.93 | 1.49 | 36.44 | 26/02/2013 | 0.76 | 188.6 | 7.25 | 780 | 4.92 | | AB | 364740 | 352370 | 37.93 | 1.83 | 36.1 | 12/06/2013 | 1.3 | 269.2 | 7.11 | 639 | 6.58 | | AB | 364740 | 352370 | 37.93 | 1.91 | 36.02 | 20/08/2013 | 1.42 | 242.5 | 7.28 | 797 | 12.41 | | AB | 364740 | 352370 | 37.93 | 1.8 | 36.13 | 26/11/2013 | 1.96 | 325.1 | 7.8 | 862 | 8.88 | | AB | 364740 | 352370 | 37.93 | 1.49 | 36.44 | 26/02/2014 | 2.85 | 236.7 | 6.92 | 1859 | 4.85 | | AB | 364740 | 352370 | 37.93 | 1.776 | 36.154 | 23/05/2014 | 3.26 | 138.1 | 9.85 | 1519 | 10.4 | | AB | 364740 | 352370 | 37.93 | 2.026 | 35.904 | 21/08/2014 | 0.21 | 209 | 7.04 | 2336 | 12.8 | | AB | 364740 | 352370 | 37.93 | 1.86 | 36.07 | 26/11/2014 | 2.44 | 71.9 | 7.11 | 1148 | 9.19 | | AB | 364740 | 352370 | 37.93 | 1.754 | 36.18 | 23/02/2015 | 0.01 | -137 | 7.5 | 1273 | 5.01 | | AB | 364740 | 352370 | 37.93 | 1.859 | 36.07 | 29/05/2015 | 1.81 | 110.9 | 8.64 | 833 | 10.4 | | AB | 364740 | 352370 | 37.93 | 2.164 | 35.77 | 26/08/2015 | 0.38 | 210 | 7.02 | 1350 | 12.6 | | AB | 364740 | 352370 | 37.93 | 1.929 | 36.00 | 02/12/2015 | 0.99 | 355.2 | 8.09 | 680 | 11.9 | | AC | 364963 | 352517 | 36.42 | 2.83 | 33.59 | 20/11/07 | 0 | 79.3 | 6.69 | 3505 | 14.5 | | AC | 364963 | 352517 | 36.42 | 2.63 | 33.79 | 01/02/2011 | 0.77 | 156.4 | 6.37 | 2455 | 9.83 | | AC | 364963 | 352517 | 36.42 | 2.98 | 33.44 | 12/05/2011 | - | 340.4 | 6.84 | 1489 | 10.85 | | AC | 364963 | 352517 | 36.42 | 2.85 | 33.57 | 18/08/2011 | 0.32 | 157.1 | 6.7 | 2614 | 14.9 | | AC | 364963 | 352517 | 36.42 | 2.79 | 33.63 | 15/11/2011 | 0.64 | 247.2 | 6.9 | 1343 | 13.69 | | AC | 364963 | 352517 | 36.42 | 2.42 | 34.00 | 16/02/2012 | 1.12 | 408.7 | 7.2 | 3253 | 8 | | AC | 364963 | 352517 | 36.42 | 2.53 | 33.89 | 25/05/2012 | 1.7 | 371.4 | 6.81 | 3013 | 9.09 | | AC | 364963 | 352517 | 36.42 | 2.56 | 33.86 | 31/08/2012 | 0.79 | 110.2 | 7.17 | 2172 | 13.49 | | AC | 364963 | 352517 | 36.42 | 2.24 | 34.18 | 28/11/2012 | 1.34 | 204 | 7.159 | 2929 | 11.31 | | AC | 364963 | 352517 | 36.42 | 2.45 | 33.97 | 26/02/2013 | 0.49 | 168.8 | 7.09 | 1721 | 6.42 | | AC | 364963 | 352517 | 36.42 | 2.69 | 33.73 | 12/06/2013 | 1.31 | 148.7 | 6.43 | 1356 | 8.87 | | AC | 364963 | 352517 | 36.42 | 2.73 | 33.69 | 20/08/2013 | 1.02 | 115.1 | 7.02 | 1934 | 13.17 | | AC | 364963 | 352517 | 36.42 | 2.69 | 33.73 | 26/11/2013 | 1.31 | 359.7 | 6.43 | 1356 | 8.87 | | AC | 364963 | 352517 | 36.42 | 2.34 | 34.08 | 25/02/2014 | 1.48 | 117.9 | 6.73 | 4338 | 5.46 | | AC | 364963 | 352517 | 36.42 | 2.54 | 33.88 | 23/05/2014 | 2.7 | 108.9 | - | 4425 | 12.1 | | Location | Easting | Northing | Surface Elevation | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|---------|----------|-------------------|-------------|-----------------|------------|---------------|----------|-------|--------------|-------------| | Location | Lasting | Northing | (mOD) | Depth (m) | Elevation (mOD) | | Oxygen (mg/l) | (mV SHE) | рп | (µS/CM) | (°C) | | AC | 364963 | 352517 | 36.42 | 2.744 | 33.676 | 21/08/2014 | 0.73 | 77 | 7.17 | 5669 | 15.7 | | AC | 364963 | 352517 | 36.42 | 2.62 | 33.80 | 26/11/2014 | 2.03 | 330 | 7.1 | 2944 | 11.91 | | AC | 364963 | 352517 | 36.42 | 2.695 | 33.73 | 23/02/2015 | 0.17 | -244.7 | 7.3 | 2785.0 | - | | AC | 364963 | 352517 | 36.42 | 2.754 | 33.67 | 29/05/2015 | 0.12 | 59.5 | 8.23 | 2339 | 11.9 | | AC | 364963 | 352517 | 36.42 | 2.808 | 33.61 | 26/08/2015 | 3.45 | 128.9 | 6.62 | 3061 | 15 | | AC | 364963 | 352517 | 36.42 | 2.498 | 33.92 | 02/12/2015 | 0.69 | 362.2 | 7.65 | 1842 | 14.2 | | AE | 364918 | 352428 | 35.19 | 2.58 | 32.61 | 01/02/2011 | 0.86 | 192.1 | 6.66 | 1405 | 10.87 | | AE | 364918 | 352428 | 35.19 | 2.84 | 32.35 | 12/05/2011 | - | 272.4 | 7.11 | 950 | 11.22 | | AE | 364918 | 352428 | 35.19 | 2.8 | 32.388 | 18/08/2011 | 0.28 | 140.6 | 6.91 | 2018 | 14.5 | | AE | 364918 | 352428 | 35.19 | 2.77 | 32.418 | 15/11/2011 | 0.51 | 177.4 | 7 | 990 | 13.78 | | AE | 364918 | 352428 | 35.19 | 2.58 | 32.61 | 17/02/2012 | 0.7 | 498.3 | 7.12 | 883 | 10.54 | | AE | 364918 | 352428 | 35.19 | 2.65 | 32.54 | 25/05/2012 | 1.67 | 148.9 | 6.92 | 2114 | 10.3 | | AE | 364918 | 352428 | 35.188 | 2.72 | 32.468 | 31/08/2012 | 0.89 | 139.7 | 7.14 | 1484 | 12.11 | | AE | 364918 | 352428 | 35.188 | 2.24 | 32.948 | 28/11/2012 | 0.8 | 216.3 | 7.271 | 1693 | 11.9 | | AE | 364918 | 352428 | 35.188 | 2.58 | 32.608 | 26/02/2013 | 0.47 | 185.6 | 7.03 | 1315 | 7.68 | | AE | 364918 | 352428 | 35.188 | 2.62 | 32.568 | 12/06/2013
| 1.28 | 218.9 | 6.72 | 889 | 9.15 | | AE | 364918 | 352428 | 35.188 | 2.72 | 32.468 | 20/08/2013 | 1.31 | 147.1 | 7.02 | 1032 | 12.26 | | AE | 364918 | 352428 | 35.188 | 2.613 | 32.578 | 26/11/2013 | 2.18 | 343.2 | 6.65 | 1346 | 9.3 | | AE | 364918 | 352428 | 35.188 | 2.54 | 32.648 | 26/02/2014 | 1.33 | 293.8 | 6.53 | 5369 | 7.91 | | AE | 364918 | 352428 | 35.188 | 2.557 | 32.631 | 23/05/2014 | 3.23 | 145.4 | 9.89 | 2834 | 12.5 | | AE | 364918 | 352428 | 35.188 | 2.64 | 32.548 | 21/08/2014 | 0.86 | 104 | 7.56 | 3067 | 15.1 | | AE | 364918 | 352428 | 35.19 | 2.48 | 32.71 | 26/11/2014 | 1.63 | 90.8 | 7.17 | 2518 | 11.79 | | AE | 364918 | 352428 | 35.19 | 2.5 | 32.69 | 23/02/2015 | - | -213.5 | 7.2 | 2045 | - | | AE | 364918 | 352428 | 35.19 | 2.547 | 32.64 | 29/05/2015 | 0.29 | 98.1 | 8.35 | 1593 | 12.4 | | AE | 364918 | 352428 | 35.19 | 2.676 | 32.51 | 26/08/2015 | 0.64 | 154.7 | 6.64 | 1857 | 14.6 | | AE | 364918 | 352428 | 35.19 | 2.556 | 32.63 | 02/12/2015 | 0.17 | 332.9 | 7.89 | 1139 | 14.8 | | AF | 364899 | 352463 | 34.89 | 2.84 | 32.05 | 01/02/2011 | 0.82 | 168 | 6.55 | 2337 | 10.7 | | AF | 364899 | 352463 | 34.89 | 2.99 | 31.90 | 12/05/2011 | - | 373.1 | 7.82 | 1319 | 11.07 | | AF | 364899 | 352463 | 34.89 | 2.83 | 32.06 | 18/08/2011 | 0.36 | 126.5 | 6.86 | 2122 | 15.2 | | AF | 364899 | 352463 | 34.89 | 2.89 | 32 | 15/11/2011 | 0.76 | 416.4 | 7.14 | 1117 | 13.55 | | AF | 364899 | 352463 | 34.89 | 2.77 | 32.12 | 17/02/2012 | 0.65 | 499.6 | 7.14 | 1329 | 9.89 | | AF | 364899 | 352463 | 34.89 | 2.92 | 31.97 | 25/05/2012 | 1.17 | -3.1 | 7.02 | 2303 | 10.05 | | AF | 364899 | 352463 | 34.89 | 2.92 | 31.97 | 31/08/2012 | 0.96 | 153.1 | 7.22 | 1709 | 12.42 | | AF | 364899 | 352463 | 34.89 | 2.67 | 32.22 | 28/11/2012 | 0.7 | 178.9 | 7.065 | 2288 | 11.81 | | AF | 364899 | 352463 | 34.89 | 2.84 | 32.05 | 26/02/2013 | 0.51 | 164.4 | 7.07 | 1445 | 7.07 | | AF | 364899 | 352463 | 34.89 | 2.83 | 32.06 | 12/06/2013 | 1.09 | 123 | 6.83 | 1062 | 8.84 | | AF | 364899 | 352463 | 34.89 | 2.88 | 32.01 | 20/08/2013 | 1.4 | 109.3 | 6.87 | 1496 | 13.13 | | AF | 364899 | 352463 | 34.89 | 2.823 | 32.067 | 26/11/2013 | 1.57 | 363.7 | 7.17 | 1847 | 12.11 | | Location | Easting | Northing | Surface Elevation | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|------------------|------------------|-------------------|----------------|-----------------|--------------------------|-----------------------|-------------------|-------|--------------|----------------| | A.F. | 364899 | 352463 | (mOD) | Depth (m) | Elevation (mOD) | 26/02/2014 | Oxygen (mg/l)
1.24 | (mV SHE)
109.6 | 6.7 | (µS/CM) | (°C)
-101.4 | | AF
AF | | | 34.89 | 2.74 | 32.15
32.097 | | | | 0.7 | 4142 | | | AF
AF | 364899
364899 | 352463
352463 | 34.89
34.89 | 2.793
2.892 | 31.998 | 23/05/2014 21/08/2014 | 2.63
0.58 | 104.9
66 | 7.71 | 3014 | 12.2 | | AF AF | 364899 | 352463 | 34.89 | 2.83 | 32.06 | 26/11/2014 | 1.69 | 67.6 | 7.71 | 4419
2586 | 15.1
12.29 | | AF
AF | 364899 | 352463 | 34.89 | 2.815 | 32.08 | | 1.09 | -215.2 | 7.07 | 2856.0 | 6.84 | | AF
AF | 364899 | 352463 | 34.89 | 2.762 | 32.06 | 23/02/2015
29/05/2015 | 0.26 | 85.6 | 8.17 | 2166 | 11.9 | | AF
AF | 364899 | 352463 | 34.89 | 2.762 | 32.13 | 26/08/2015 | 0.20 | 123.8 | 6.83 | 2660 | 14.9 | | AF AF | 364899 | 352463 | 34.89 | 2.788 | 32.10 | 02/12/2015 | 0.39 | 303.1 | 7.71 | 1520 | 14.9 | | AG AG | 365007 | 352313 | 37.03 | 2.766 | 34.42 | 01/02/2011 | 1.05 | 481.8 | 6.64 | 3336 | 9.4 | | AG | 365007 | 352313 | 37.03 | 2.07 | 34.96 | 12/05/2011 | 1.05 | 279.7 | 7.55 | 3186 | 11.28 | | AG | 365007 | 352313 | 37.03 | 1.54 | 35.4898 | 18/08/2011 | 0.46 | 156 | 6.61 | 4424 | 14.3 | | AG | 365007 | 352313 | 37.03 | 1.57 | 35.4598 | 15/11/2011 | 0.46 | 223.4 | 6.68 | 2355 | 13.07 | | AG | 365007 | 352313 | 37.03 | 1.53 | 35.4596 | 17/02/2012 | 1.05 | 421.7 | 7.16 | 2832 | 8.03 | | AG | 365007 | 352313 | 37.03 | 1.55 | 35.48 | 25/05/2012 | 1.64 | 124.1 | 6.86 | 7274 | 9.81 | | AG | 365007 | 352313 | 37.0298 | 1.56 | 35.4698 | 31/08/2012 | 1.15 | 305.6 | 7.02 | 5348 | 14.18 | | AG | 365007 | 352313 | 37.0298 | 1.47 | 35.5598 | 28/11/2012 | 0.88 | 270.3 | 7.038 | 6817 | 10.41 | | AG | 365007 | 352313 | 37.0298 | 1.67 | 35.3598 | 26/02/2013 | 0.88 | 189.3 | 7.036 | 4517 | 7.18 | | AG | 365007 | 352313 | 37.0298 | 1.58 | 35.4498 | 12/06/2013 | 1.21 | 283.4 | 6.55 | 3646 | 9.74 | | AG | 365007 | 352313 | 37.0298 | 1.68 | 35.3498 | 20/08/2013 | 1.61 | 256.1 | 7.15 | 5186 | 14 | | AG | 365007 | 352313 | 37.0298 | 1.208 | 35.8218 | 26/11/2013 | 1.43 | 339.4 | 7.75 | 4530 | 10.8 | | AG | 365007 | 352313 | 37.0298 | 0.91 | 36.1198 | 26/02/2014 | 3.52 | 246.9 | 7.65 | 2262 | 6.73 | | AG | 365007 | 352313 | 37.0298 | 1.35 | 35.6798 | 23/05/2014 | 1.44 | -40 | 7.00 | 8762 | 12.2 | | AG | 365007 | 352313 | 37.0298 | 1.247 | 35.7828 | 21/08/2014 | 0.27 | 125 | 6.59 | 7562 | 17.2 | | AG | 365007 | 352313 | 37.03 | 0.91 | 36.12 | 26/11/2014 | 1.41 | 124.9 | 7.21 | 7216 | 10.87 | | AG | 365007 | 352313 | 37.03 | 1.365 | 35.66 | 23/02/2015 | - | -85.9 | 7.2 | 13098 | - | | AG | 365007 | 352313 | 37.03 | Destroyed | - | 29/05/2015 | _ | - | - | - | _ | | AG | 365007 | 352313 | 37.03 | Destroyed | - | 26/08/2015 | - | _ | - | _ | - | | AG | 365007 | 352313 | 37.03 | Destroyed | - | 02/12/2015 | - | _ | - | _ | _ | | F1 | 365189 | 352269 | 39.69 | 1.31 | 38.38 | 12/05/2011 | - | 326.1 | 7.33 | 700 | 12.33 | | F1 | 365189 | 352269 | 39.69 | 1.29 | 38.3988 | 18/08/2011 | 1.45 | 117.6 | 6.97 | 1076 | 16.5 | | F1 | 365189 | 352269 | 39.69 | 1.14 | 38.5488 | 15/11/2011 | 1.86 | 148.6 | 7.21 | 421 | 12.57 | | F1 | 365189 | 352269 | 39.69 | 0.98 | 38.71 | 17/02/2012 | 2.14 | 429 | 7.18 | 302 | 5.54 | | F1 | 365189 | 352269 | 39.69 | 1.02 | 38.67 | 25/05/2012 | 3.3 | 197.4 | 7.4 | 560 | 10.05 | | F1 | 365189 | 352269 | 39.6888 | 1.1 | 38.5888 | 31/08/2012 | 2.48 | 223.3 | 7.09 | 389 | 11.24 | | F1 | 365189 | 352269 | 39.6888 | 0.92 | 38.7688 | 28/11/2012 | 1.03 | 312.6 | 7.437 | 1252 | 9.72 | | F1 | 365189 | 352269 | 39.6888 | 0.94 | 38.7488 | 26/02/2013 | 1.63 | 181.3 | 7.21 | 476 | 4.51 | | F1 | 365189 | 352269 | 39.6888 | 1.02 | 38.6688 | 12/06/2013 | 1.06 | 256.2 | 7.42 | 241 | 9.65 | | F1 | 365189 | 352269 | 39.6888 | 1.14 | 38.5488 | 20/08/2013 | | 206.9 | 7.64 | 293 | 14.28 | | Location | Easting | Northing | | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|---------|----------|---------|-------------|-----------------|------------|---------------|----------|-------|--------------|-------------| | | | | (mOD) | Depth (m) | Elevation (mOD) | | Oxygen (mg/l) | (mV SHE) | | (µS/CM) | (°C) | | F1 | 365189 | 352269 | 39.6888 | 1.6 | 38.08 | 26/11/2013 | 2.61 | 390.4 | 8.44 | 375 | 8.79 | | F1 | 365189 | 352269 | 39.6888 | 1.51 | 38.1788 | 26/02/2014 | 5.78 | 277.3 | 6.94 | 917 | 5.57 | | F1 | 365189 | 352269 | 39.6888 | 1.422 | 38.2668 | 23/05/2014 | 4.66 | 82.4 | - | 812 | 12.9 | | F1 | 365189 | 352269 | 39.6888 | 1.55 | 38.1388 | 21/08/2014 | 2.89 | 144 | 7.35 | 1121 | 15.43 | | F1 | 365189 | 352269 | 39.69 | 1.42 | 38.27 | 26/11/2014 | 4.61 | 85.7 | 7.07 | 431 | 9.46 | | F1 | 365189 | 352269 | 39.6888 | 1.307 | 38.38 | 23/02/2015 | - | -90.9 | - | 1772 | - | | F1 | 365189 | 352269 | 39.69 | 1.6 | 38.09 | 29/05/2015 | - | - | - | - | - | | F1 | 365189 | 352269 | 39.69 | 1.628 | 38.06 | 26/08/2015 | 0.68 | 258.1 | 6.74 | 2323 | 14.9 | | F1 | 365189 | 352269 | 39.69 | 1.42 | 38.27 | 02/12/2015 | 2.79 | 363.5 | 8.36 | 294.2 | 12 | | F2 | 365189 | 352269 | 39.69 | 1.44 | 38.25 | 01/02/2011 | 0.94 | 590.4 | 6.55 | 1421 | 7.44 | | F2 | 365189 | 352269 | 39.69 | 1.34 | 38.35 | 12/05/2011 | - | 317.9 | 7.38 | 847 | 12.17 | | F2 | 365189 | 352269 | 39.69 | 1.32 | 38.3718 | 18/08/2011 | 0.24 | 138.8 | 6.8 | 1918 | 13.8 | | F2 | 365189 | 352269 | 39.69 | 1.16 | 38.5318 | 15/11/2011 | 0.76 | 169.4 | 7.32 | 354 | 11.72 | | F2 | 365189 | 352269 | 39.69 | 1.05 | 38.64 | 17/02/2012 | 1.08 | 473.6 | 7.12 | 415 | 7.56 | | F2 | 365189 | 352269 | 39.69 | 1.01 | 38.68 | 25/05/2012 | 0.99 | 40.9 | 7.13 | 1501 | 8.99 | | F2 | 365189 | 352269 | 39.6918 | 1.13 | 38.5618 | 31/08/2012 | 1.53 | 208.8 | 6.99 | 496 | 13.82 | | F2 | 365189 | 352269 | 39.6918 | 0.76 | 38.9318 | 28/11/2012 | 5.96 | 252.3 | 7.613 | 3.24 | 7.74 | | F2 | 365189 | 352269 | 39.6918 | 1.07 | 38.6218 | 26/02/2013 | 1.03 | 234.1 | 7.11 | 519 | 4.27 | | F2 | 365189 | 352269 | 39.6918 | 1.11 | 38.5818 | 12/06/2013 | 1.11 | 188.9 | 6.98 | 510 | 8.8 | | F2 | 365189 | 352269 | 39.6918 | 1.18 | 38.5118 | 20/08/2013 | 0.71 | 159.4 | 7.47 | 574 | 13.56 | | F2 | 365189 | 352269 | 39.6918 | 1.61 | 38.08 | 26/11/2013 | 1.64 | 325.7 | 8.24 | 1244 | 10.5 | | F2 | 365189 | 352269 | 39.6918 | 1.55 | 38.1418 | 26/02/2014 | 2.48 | 290.6 | 6.78 | 1349 | 6.52 | | F2 | 365189 | 352269 | 39.6918 | 1.535 | 38.1568 | 23/05/2014 | 1.87 | -0.1 | - | 1939 | 11.6 | | F2 | 365189 | 352269 | 39.6918 | 1.615 | 38.0768 | 21/08/2014 | 2.11 | 187 | 7.06 | 1709 | 16.6 | | F2 | 365189 | 352269 | 39.69 | 1.65 | 38.04 | 26/11/2014 | 1.81 | 66.9 | 7.08 | 1857 | 10.44 | | F2 | 365189 | 352269 | 39.69 | 1.592 | 38.10 | 23/02/2015 | - | -48.4 | 7.2 | 1756 | - | | F2 | 365189 | 352269 | 39.69 | 1.582 | 38.11 | 29/05/2015 | 1.98 | 174.7 | 8.06 | 1171 | 12.9 | | F2 | 365189 | 352269 | 39.69 | 1.605 | 38.09 | 26/08/2015 | 0.23 | 162.2 | 6.77 | 662 | 16.3 | | F2 | 365189 | 352269 | 39.69 | 1.575 | 38.12 | 02/12/2015 | 0.25 | 309.4 | 7.75 | 1231 | 13.3 | | L | 365128 | 352544 | 38.71 | 2.28 | 36.43 | 20/11/07 | 0.95 | 87.3 | 7.6 | 1644 | 12.8 | | L | 365128 | 352544 | 38.71 | 2.26 | 36.45 | 01/02/2011 | 1.21 | 266.6 | 6.7 | 1275 | 8.34 | | L | 365128 | 352544 | 38.710 | 2.35 | 36.36 | 12/05/2011 | - | 351.6 | 6.99 | 260 | 9.88 | | L | 365128 | 352544 | 38.710 | 2.28 | 36.43 | 18/08/2011 | 0.39 | 151.8 | 6.78 | 1807 | 13.3 | | L | 365128 | 352544 | 38.710 | 2.21 | 36.5 | 15/11/2011
 1.44 | 346.1 | 6.52 | 491 | 11.81 | | L | 365128 | 352544 | 38.710 | 1.18 | 37.53 | 16/02/2012 | 1.12 | 382.2 | 7.24 | 821 | 7.97 | | L | 365128 | 352544 | 38.710 | 2.13 | 36.58 | 25/05/2012 | 2.1 | 267.1 | 7.15 | 838 | 8.36 | | L | 365128 | 352544 | 38.71 | 2.24 | 36.47 | 31/08/2012 | 1.35 | 243.4 | 7.22 | 762 | 11.84 | | L | 365128 | 352544 | 38.71 | 2.09 | 36.62 | 28/11/2012 | 1.24 | 294.6 | 7.363 | 1267 | 9.15 | | Location | Easting | Northing | Surface Elevation (mOD) | Groundwater
Depth (m) | Groundwater
Elevation (mOD) | Date | Dissolved
Oxygen (mg/l) | REDOX
(mV SHE) | рН | Conductivity (µS/CM) | Temperature (°C) | |----------|---------|----------|-------------------------|--------------------------|--------------------------------|------------|----------------------------|-------------------|-------|----------------------|------------------| | L | 365128 | 352544 | 38.71 | 2.16 | 36.55 | 26/02/2013 | 0.46 | 216.9 | 7.23 | 564 | 4.04 | | L | 365128 | 352544 | 38.71 | 2.21 | 36.5 | 12/06/2013 | 0.48 | 277.3 | 6.92 | 470 | 7.59 | | L | 365128 | 352544 | 38.71 | 2.23 | 36.48 | 20/08/2013 | 0.6 | 194.9 | 7.47 | 709 | 11.52 | | L | 365128 | 352544 | 38.71 | 2.17 | 36.54 | 26/11/2013 | 4.19 | 422.5 | 7.9 | 1553 | 9.96 | | L | 365128 | 352544 | 38.71 | 2.12 | 36.59 | 26/02/2014 | 6.14 | 368.8 | 6.85 | 822 | 4.56 | | L | 365128 | 352544 | 38.71 | 2.131 | 36.579 | 23/05/2014 | 0.78 | -74.1 | - | 1908 | 10.6 | | L | 365128 | 352544 | 38.71 | 2.248 | 36.462 | 21/08/2014 | 0.66 | 78 | 7.77 | 4018 | 13.4 | | L | 365128 | 352544 | 38.71 | 2.23 | 36.49 | 26/11/2014 | 1.77 | 404.5 | 6.49 | 1594 | 9.84 | | L | 365128 | 352544 | 38.71 | 2.219 | 36.49 | 23/02/2015 | - | -77.3 | 7.5 | 1488 | - | | L | 365128 | 352544 | 38.71 | 2.155 | 36.56 | 29/05/2015 | 0.87 | 139.2 | 8.65 | 707 | 10.5 | | L | 365128 | 352544 | 38.71 | 2.245 | 36.47 | 26/08/2015 | 0.68 | 254.4 | 6.88 | 1762 | 13.6 | | L | 365128 | 352544 | 38.71 | 2.103 | 36.61 | 02/12/2015 | 0.54 | 394.5 | 7.9 | 787 | 12.3 | | M | 365015 | 352549 | 37.81 | 1.58 | 36.23 | 20/11/07 | 0 | 236.4 | 6.56 | 1577 | 12.9 | | M | 365015 | 352549 | 37.81 | 1.55 | 36.26 | 01/02/2011 | 1.17 | 257 | 6.71 | 1259 | 7.66 | | M | 365015 | 352549 | 37.810 | 1.68 | 36.13 | 12/05/2011 | - | 341.2 | 7.2 | 865 | 10.74 | | M | 365015 | 352549 | 37.810 | 1.63 | 36.18 | 18/08/2011 | 0.93 | 198.1 | 6.62 | 1464 | 13.2 | | M | 365015 | 352549 | 37.810 | 1.53 | 36.28 | 15/11/2011 | 1.49 | 419.2 | 6.52 | 664 | 11.82 | | M | 365015 | 352549 | 37.810 | 1.47 | 36.34 | 17/02/2012 | 1.25 | 430.9 | 7.18 | 693 | 9.14 | | M | 365015 | 352549 | 37.810 | 1.45 | 36.36 | 25/05/2012 | 3.71 | 423.3 | 6.99 | 1230 | 8.91 | | M | 365015 | 352549 | 37.81 | 1.54 | 36.27 | 31/08/2012 | 1.15 | 161.9 | 7.11 | 804 | 12.17 | | M | 365015 | 352549 | 37.81 | 1.39 | 36.42 | 28/11/2012 | 0.99 | 247.3 | 7.297 | 1213 | 9.44 | | M | 365015 | 352549 | 37.81 | 1.51 | 36.3 | 26/02/2013 | 1.24 | 191.5 | 7.24 | 650 | 3.55 | | M | 365015 | 352549 | 37.81 | 1.57 | 36.24 | 12/06/2013 | 1.24 | 285.2 | 6.39 | 590 | 7.33 | | M | 365015 | 352549 | 37.81 | 1.56 | 36.25 | 20/08/2013 | 0.98 | 199 | 7.22 | 785 | 11.82 | | M | 365015 | 352549 | 37.81 | 1.32 | 36.49 | 26/11/2013 | 3.91 | 402.1 | 7.81 | 1088 | 9.89 | | M | 365015 | 352549 | 37.81 | 1.47 | 36.34 | 26/02/2014 | 2.24 | 413.7 | 6.42 | 1771 | 3.78 | | M | 365015 | 352549 | 37.81 | 1.477 | 36.333 | 23/05/2014 | 2.04 | -42.8 | - | 2058 | 10.8 | | M | 365015 | 352549 | 37.81 | 1.546 | 36.264 | 21/08/2014 | 0.63 | 194 | 6.98 | 2637 | 14.4 | | M | 365015 | 352549 | 37.81 | 1.46 | 36.36 | 26/11/2014 | 2.38 | 342.8 | 6.49 | 1551 | 10.14 | | M | 365015 | 352549 | 37.81 | 1.495 | 36.32 | 23/02/2015 | 3.00 | -161.6 | 7.2 | 1313 | 3.51 | | M | 365015 | 352549 | 37.81 | 1.482 | 36.33 | 29/05/2015 | 1.56 | 131.6 | 8.4 | 1077 | 11.1 | | M | 365015 | 352549 | 37.81 | 1.485 | 36.33 | 26/08/2015 | 2.12 | 227.5 | 6.69 | 1479 | 14 | | M | 365015 | 352549 | 37.81 | 1.415 | 36.40 | 02/12/2015 | 0.81 | 407.8 | 7.97 | 1001 | 12.5 | | N | 365016 | 352449 | 39.17 | 1.37 | 37.80 | 20/11/07 | 1.08 | 52.7 | 6.94 | 731 | 13.4 | | N | 365016 | 352449 | 39.16 | 1.71 | 37.45 | 01/02/2011 | 0.97 | 192.8 | 7.2 | 1204 | 9.59 | | N | 365016 | 352449 | 39.165 | 1.8 | 37.37 | 12/05/2011 | - | 359.8 | 6.92 | 533 | 11.13 | | N | 365016 | 352449 | 39.16 | 1.67 | 37.485 | 18/08/2011 | 0.3 | 164 | 6.98 | 7939 | 14.1 | | N | 365016 | 352449 | 39.16 | 1.57 | 37.585 | 15/11/2011 | 0.75 | 370.4 | 6.52 | 286 | 12.8 | | Lasation | Faating | N a utla i a a | Surface Elevation | Groundwater | Groundwater | Doto | Dissolved | REDOX | | Conductivity | Temperature | |----------|---------|----------------|-------------------|-------------|-----------------|------------|---------------|----------|------|--------------|-------------| | Location | Easting | Northing | (mOD) | Depth (m) | Elevation (mOD) | Date | Oxygen (mg/l) | (mV SHE) | рН | (µS/CM) | (°C) | | N | 365016 | 352449 | 39.16 | 1.55 | 37.61 | 17/02/2012 | 1.12 | 434.9 | 7.15 | 484 | 8.82 | | N | 365016 | 352449 | 39.16 | 1.61 | 37.55 | 25/05/2012 | 1.54 | 329.6 | 7.03 | 797 | 9.8 | | N | 365016 | 352449 | 39.155 | 1.27 | 37.885 | 31/08/2012 | 1.3 | 138.7 | 6.83 | 372 | 12.21 | | N | 365016 | 352449 | 39.155 | 1.38 | 37.775 | 28/11/2012 | 4.28 | 299.9 | 8.05 | 427 | 9.8 | | N | 365016 | 352449 | 39.165 | 1.47 | 37.695 | 26/02/2013 | 0.72 | 182.2 | 7.39 | 370 | 5.18 | | N | 365016 | 352449 | 39.165 | 1.49 | 37.675 | 12/06/2013 | 0.45 | 111.3 | 7.11 | 343 | 9.14 | | N | 365016 | 352449 | 39.165 | 1.57 | 37.595 | 20/08/2013 | 0.65 | 206.1 | 7.39 | 356 | 13.36 | | N | 365016 | 352449 | 39.165 | 1.561 | 37.604 | 26/11/2013 | 2.32 | 394.9 | 7.23 | 518 | 10.23 | | N | 365016 | 352449 | 39.165 | 1.57 | 37.595 | 25/02/2014 | 2.15 | 382 | 6.86 | 1085 | 8.14 | | N | 365016 | 352449 | 39.165 | 1.534 | 37.631 | 23/05/2014 | 1.24 | -69.4 | - | 1021 | 12.4 | | N | 365016 | 352449 | 39.165 | 1.553 | 37.612 | 21/08/2014 | 1.65 | 289 | 6.86 | 754 | 15.2 | | N | 365016 | 352449 | 39.17 | 1.33 | 37.83 | 26/11/2014 | 2.05 | 94.1 | 7.13 | 765 | 10.77 | | N | 365016 | 352449 | 39.16 | - | - | 23/02/2015 | 0.83 | -102.8 | 7.5 | 809 | 7.99 | | N | 365016 | 352449 | 39.17 | 1.48 | 37.69 | 29/05/2015 | 1.53 | 229.4 | 8.73 | 662 | 11.6 | | N | 365016 | 352449 | 39.17 | 1.491 | 37.67 | 26/08/2015 | 0.14 | 206 | 6.97 | 793 | 14.5 | | N | 365016 | 352449 | 39.17 | 1.423 | 37.74 | 02/12/2015 | 3.21 | 373.5 | 8.48 | 280.3 | 13.2 | | N1 | 365016 | 352449 | 39.16 | 1.73 | 37.43 | 01/02/2011 | 1.22 | 215.4 | 7.05 | 1023 | 9.65 | | N1 | 365016 | 352449 | 39.16 | 1.81 | 37.35 | 12/05/2011 | - | 355.7 | 7.14 | 645 | 11.53 | | N1 | 365016 | 352449 | 39.165 | 1.71 | 37.455 | 18/08/2011 | 0.28 | 119.8 | 6.92 | 1183 | 14.9 | | N1 | 365016 | 352449 | 39.165 | 1.53 | 37.635 | 15/11/2011 | 2.34 | 396.1 | 6.51 | 355 | 11.54 | | N1 | 365016 | 352449 | 39.165 | 1.54 | 37.63 | 16/02/2012 | 1.36 | 431.9 | 7.16 | 490 | 9.21 | | N1 | 365016 | 352449 | 39.165 | 1.68 | 37.49 | 25/05/2012 | 1.56 | 461.1 | 7.21 | 1005 | 9.76 | | N1 | 365016 | 352449 | 39.165 | 1.28 | 37.885 | 31/08/2012 | 0.42 | 61.5 | 7.4 | 846 | 11.82 | | N1 | 365016 | 352449 | 39.165 | 1.4 | 37.765 | 28/11/2012 | 2.25 | 292.6 | 6.51 | 744 | 9.46 | | N1 | 365016 | 352449 | 39.155 | 1.48 | 37.675 | 26/02/2013 | 0.47 | 179 | 7.32 | 310 | 4.69 | | N1 | 365016 | 352449 | 39.155 | 1.48 | 37.675 | 12/06/2013 | 0.41 | 195.8 | 6.92 | 307 | 8.9 | | N1 | 365016 | 352449 | 39.155 | 1.66 | 37.495 | 20/08/2013 | 0.6 | 79.9 | 7.43 | 412 | 13.19 | | N1 | 365016 | 352449 | 39.155 | 1.63 | 37.595 | 26/11/2013 | 1.46 | 240 | 8.33 | 539 | 9.7 | | N1 | 365016 | 352449 | 39.155 | 1.64 | 37.515 | 25/02/2014 | 1.83 | 224.4 | 7 | 996 | 6.81 | | N1 | 365016 | 352449 | 39.155 | 1.471 | 37.684 | 23/05/2014 | 2.42 | -48.6 | - | 1016 | 12.3 | | N1 | 365016 | 352449 | 39.155 | 1.625 | 37.53 | 21/08/2014 | 0.9 | 58 | 7 | 1732 | 15.5 | | N1 | 365016 | 352449 | 39.16 | 1.37 | 37.78 | 26/11/2014 | 1.64 | 87.1 | 7.32 | 665 | 9.94 | | N1 | 365016 | 352449 | 39.16 | 1.545 | 37.61 | 23/02/2015 | 0.07 | -157.6 | - | 798 | - | | N1 | 365016 | 352449 | 39.16 | 1.615 | 37.64 | 29/05/2015 | 0.15 | 60.4 | 8.72 | 671 | 12 | | N1 | 365016 | 352449 | 39.16 | 1.547 | 37.61 | 26/08/2015 | 0.41 | 111.5 | 6.96 | 852 | 15 | | N1 | 365016 | 352449 | 39.16 | 1.485 | 37.67 | 02/12/2015 | 0.22 | 303.1 | 8.39 | 405.9 | 12.5 | | 0 | 365184 | 352470 | 39.64 | 1.44 | 38.20 | 20/11/07 | 0.07 | 77 | 7.01 | 1981 | 13.5 | | 0 | 365184 | 352470 | 39.64 | 1.49 | 38.15 | 01/02/2011 | 2.37 | 268.2 | 6.84 | 1026 | 9.39 | | Location | Faating | No wile in a | Surface Elevation | Groundwater | Groundwater | Dete | Dissolved | REDOX | | Conductivity | Temperature | |----------|---------|--------------|-------------------|-------------|-----------------|------------|---------------|----------|-------|--------------|-------------| | Location | Easting | Northing | (mOD) | Depth (m) | Elevation (mOD) | Date | Oxygen (mg/l) | (mV SHE) | рН | (µS/CM) | (°C) | | 0 | 365184 | 352470 | 39.642 | 1.57 | 38.07 | 12/05/2011 | - | 341.1 | 7.3 | 352 | 11.6 | | 0 | 365184 | 352470 | 39.642 | 1.51 | 38.132 | 18/08/2011 | 0.35 | 140.6 | 6.89 | 1557 | 14 | | 0 | 365184 | 352470 | 39.642 | 1.48 | 38.162 | 15/11/2011 | 1.19 | 261.2 | 6.6 | 348 | 12.51 | | 0 | 365184 | 352470 | 39.642 | 1.49 | 38.15 | 16/02/2012 | 1.13 | 422.9 | 7.26 | 486 | 8.47 | | 0 | 365184 | 352470 | 39.642 | 1.5 | 38.14 | 25/05/2012 | 1.62 | 427.1 | 7.12 | 572 | 9.9 | | 0 | 365184 | 352470 | 39.642 | 1.55 | 38.092 | 31/08/2012 | 1.21 | 201.6 | 7.01 | 401 | 13.36 | | 0 | 365184 | 352470 | 39.642 | 1.38 | 38.262 | 28/11/2012 | 1.65 | 249.6 | 7.305 | 1105 | 10.03 | | 0 | 365184 | 352470 | 39.642 | 1.49 | 38.152 | 26/02/2013 | 0.73 | 185.1 | 7.06 | 738 | 7.16 | | 0 | 365184 | 352470 | 39.642 | 1.5 | 38.142 | 12/06/2013 | 0.43 | 180.1 | 6.81 | 638 | 8.95 | | 0 | 365184 | 352470 | 39.642 | 1.48 | 38.162 | 20/08/2013 | 1.14 | 139.9 | 7.5 | 363 | 13.06 | | 0 | 365184 | 352470 |
39.642 | 1.4 | 38.242 | 26/11/2013 | 3.3 | 362.5 | 8.19 | 883 | 10.48 | | 0 | 365184 | 352470 | 39.642 | 1.38 | 38.262 | 26/02/2014 | 1.56 | 318 | 6.85 | 734 | 6.24 | | 0 | 365184 | 352470 | 39.642 | 1.447 | 38.195 | 23/05/2014 | 0.78 | -155.1 | - | 1677 | 12.4 | | 0 | 365184 | 352470 | 39.642 | 1.421 | 38.221 | 21/08/2014 | 0.54 | 81 | 7.22 | 1554 | 15.6 | | 0 | 365184 | 352470 | 39.64 | 1.39 | 38.25 | 26/11/2014 | 1.57 | 357.4 | 7.05 | 1036 | 10.69 | | 0 | 365184 | 352470 | 39.64 | 1.465 | 38.18 | 23/02/2015 | - | -161 | 7.4 | 700 | - | | 0 | 365184 | 352470 | 39.64 | 1.48 | 38.16 | 29/05/2015 | 0.9 | 139.5 | 8.81 | 429 | 12.2 | | 0 | 365184 | 352470 | 39.64 | 1.39 | 38.25 | 26/08/2015 | 1.97 | 146.1 | 6.84 | 1245 | 14.7 | | 0 | 365184 | 352470 | 39.64 | 1.334 | 38.31 | 02/12/2015 | 0.19 | 338 | 8.02 | 682 | 13.3 | | Р | 365098 | 352374 | 39.93 | 3.33 | 36.60 | 20/11/07 | 0.00 | 135 | 6.47 | 1284 | 14.17 | | Р | 365098 | 352374 | 39.93 | 3.29 | 36.64 | 01/02/2011 | 0.82 | 463.1 | 5.83 | 885 | 10.35 | | Р | 365098 | 352374 | 39.925 | 3.42 | 36.51 | 12/05/2011 | - | 346 | 7.01 | 698 | 12.12 | | Р | 365098 | 352374 | 39.925 | 3.38 | 36.545 | 18/08/2011 | 0.5 | 164.8 | 6.28 | 1055 | 14.4 | | Р | 365098 | 352374 | 39.925 | 3.27 | 36.655 | 15/11/2011 | 0.94 | 278.2 | 6.66 | 565 | 13.06 | | Р | 365098 | 352374 | 39.925 | 2.36 | 37.57 | 16/02/2012 | 0.84 | 387.4 | 7.27 | 574 | 10.7 | | Р | 365098 | 352374 | 39.925 | 3.24 | 36.69 | 25/05/2012 | 1.08 | 245.5 | 6.36 | 1401 | 11.02 | | Р | 365098 | 352374 | 39.925 | 3.26 | 36.665 | 31/08/2012 | 1.34 | 311.3 | 6.8 | 1030 | 11.99 | | Р | 365098 | 352374 | 39.925 | 3.16 | 36.765 | 28/11/2012 | 2.08 | 273.1 | 6.718 | 1153 | 11.08 | | Р | 365098 | 352374 | 39.925 | 3.18 | 36.745 | 26/02/2013 | 0.69 | 198.3 | 6.92 | 895 | 8.23 | | Р | 365098 | 352374 | 39.925 | 3.27 | 36.655 | 12/06/2013 | 1.22 | 266.7 | 5.42 | 724 | 9.52 | | Р | 365098 | 352374 | 39.925 | 3.31 | 36.615 | 20/08/2013 | 1.22 | 149.1 | 6.55 | 770 | 11.2 | | Р | 365098 | 352374 | 39.925 | 3.2 | 36.725 | 26/11/2013 | 1.83 | 296.5 | 6.56 | 711 | 11.44 | | P | 365098 | 352374 | 39.925 | 3.16 | 36.765 | 26/02/2014 | 1.94 | 246.1 | 6.25 | 1623 | 7.37 | | Р | 365098 | 352374 | 39.925 | 3.204 | 36.721 | 23/05/2014 | 2.12 | 39.9 | _ | 1260 | 12.6 | | Р | 365098 | 352374 | 39.925 | 3.287 | 36.638 | 21/08/2014 | 0.92 | 198.3 | 6.98 | 2184 | 14.5 | | Р | 365098 | 352374 | 39.93 | 3.23 | 36.70 | 26/11/2014 | 1.46 | 359.5 | 6.71 | 916 | 11.44 | | Р | 365098 | 352374 | 39.93 | 3.275 | 36.65 | 23/02/2015 | 0.94 | -75.5 | 6.7 | 848 | 6.70 | | Р | 365098 | 352374 | 39.93 | 3.264 | 36.76 | 29/05/2015 | 0.35 | 149.6 | 8.04 | 1559 | 12.1 | | Location | Easting | Northing | | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|------------------|------------------|------------------|--------------|-----------------|--------------------------|---------------|----------------|--------------|--------------|---------------| | | 265000 | 252274 | (mOD) | Depth (m) | Elevation (mOD) | 26/09/2015 | Oxygen (mg/l) | (mV SHE) | 6.14 | (µS/CM) | (°C) | | P | 365098 | 352374 | 39.93 | 3.293 | 36.63 | 26/08/2015 | 1.66 | 152.9 | 6.14 | 1321 | 14.3 | | | 365098 | 352374 | 39.93 | 3.19 | 36.74 | 02/12/2015 | 0.19 | 279.9 | 8.23 | 448.8 | 14.2 | | Q | 365196 | 352383 | 39.22 | 1.71 | 37.51 | 20/11/07 | 0.51 | 144.9 | 6.87 | 1030 | 13.21 | | Q | 365196 | 352383 | 39.22 | 1.86 | 37.36 | 01/02/2011 | 1.14 | 226.7 | 6.5 | 2430 | 8.53 | | Q | 365196 | 352383 | 39.215 | 1.88 | 37.34 | 12/05/2011 | - 0.47 | 323.5 | 7.16 | 684 | 11.34 | | Q | 365196 | 352383 | 39.215 | 1.85 | 37.365 | 18/08/2011 | 0.17 | 127.6 | 6.82 | 3246 | 15.5 | | Q | 365196 | 352383 | 39.215 | 1.82 | 37.395 | 15/11/2011 | 0.77 | 270.7 | 6.63 | 653 | 13.48 | | Q | 365196 | 352383 | 39.215 | 1.82 | 37.40 | 16/02/2012 | 2.1 | 414.7 | 7.21 | 1254 | 7.79 | | Q | 365196 | 352383 | 39.215 | 1.82 | 37.40 | 25/05/2012 | 1.62 | 447.9 | 6.78 | 1533 | 9.71 | | Q | 365196 | 352383 | 39.215 | 1.82 | 37.395 | 31/08/2012 | 1.48 | 155.1 | 6.94 | 548 | 13.91 | | Q | 365196 | 352383 | 39.215 | 1.27 | 37.945 | 28/11/2012 | 1.84 | 228.9 | 7.214 | 2253 | 10.09 | | Q | 365196 | 352383 | 39.215 | 1.82 | 37.395 | 26/02/2013 | 0.76 | 173.3 | 7.38 | 2662 | 5.14 | | Q | 365196
365196 | 352383
352383 | 39.215 | 1.98
1.97 | 37.235 | 12/06/2013 | 0.32 | 174.1
149.4 | 6.68
7.11 | 1799
3143 | 8.73
13.27 | | Q | 365196 | 352383 | 39.215
39.215 | 1.93 | 37.245
37.29 | 20/08/2013 | 0.93
2.54 | 370.5 | 7.11 | 1772 | 11.01 | | | 365196 | | | 1.95 | 37.29 | | 2.13 | 251.7 | 6.79 | | 6.34 | | Q | 365196 | 352383
352383 | 39.215
39.215 | 1.843 | 37.372 | 25/02/2014
23/05/2014 | 0.58 | -174.9 | 0.79 | 1978
1453 | 12.2 | | Q | 365196 | 352383 | | 1.851 | | | 0.56 | 193 | 7.21 | 2082 | 16.6 | | | 365196 | 352383 | 39.215
39.22 | 1.63 | 37.364
37.59 | 21/08/2014
26/11/2014 | 2.03 | 345 | 6.42 | 1498 | 11.08 | | Q | 365196 | 352383 | 39.22 | 1.770 | 37.45 | 23/02/2015 | 2.03 | -140.9 | 7.2 | 1294 | 11.00 | | | | | | 1.770 | 37.43 | | - 0.25 | | | | - 40.4 | | Q | 365196
365196 | 352383
352383 | 39.22
39.22 | 1.764 | | 29/05/2015
26/08/2015 | 0.35 | 135.6 | 8.39 | 1563 | 13.1
16.3 | | Q | 365196 | 352383 | 39.22 | 1.675 | 37.84 | 02/12/2015 | 1.74 | 237.4 | 6.5 | 1297 | | | Q | | - | | | 37.54 | | 0.36 | 390
207.9 | 8 | 717 | 13.6 | | S | 365119
365119 | 352343
352343 | 39.77
39.77 | 3.34
3.35 | 36.43 | 20/11/07 | 0.00 | | 6.76
6.48 | 828
944 | 13.02
8.67 | | S
S | 365119 | 352343 | 39.770 | 3.44 | 36.42
36.33 | 01/02/2011 | 0.91 | 446.8
355.5 | 6.77 | 781 | 10.27 | | S | 365119 | 352343 | 39.770 | 3.42 | 36.35 | 18/08/2011 | 0.52 | 125.9 | 7.06 | 1372 | 14.2 | | S | 365119 | 352343 | 39.770 | 3.36 | 36.41 | 15/11/2011 | | 293 | 6.64 | 501 | 12.55 | | S | 365119 | 352343 | 39.770 | 3.32 | 36.45 | 16/02/2012 | 0.95
1.27 | 404.5 | 7.27 | 886 | 8.52 | | S | 365119 | 352343 | 39.770 | 3.26 | 36.51 | 25/05/2012 | 0.92 | 211.3 | 6.66 | 2386 | 7.26 | | S | 365119 | 352343 | 39.77 | 3.32 | 36.45 | 31/08/2012 | | 315.6 | 6.92 | 964 | 11.99 | | S | 365119 | 352343 | 39.77 | 3.2 | 36.57 | 28/11/2012 | 0.96 | 255.2 | 6.931 | 1635 | 10.04 | | S | 365119 | 352343 | 39.77 | 3.21 | 36.56 | 26/02/2013 | 0.88 | 191.2 | 6.99 | 920 | 7.29 | | S | 365119 | 352343 | 39.77 | 3.29 | 36.48 | 12/06/2013 | 0.66 | 279.3 | 6.21 | 834 | 8.19 | | S | 365119 | 352343 | 39.77 | 3.29 | 36.48 | 20/08/2013 | 1.11 | 233.8 | 6.84 | 1199 | 11.18 | | S | 365119 | 352343 | 39.77 | 3.31 | 36.46 | 26/11/2013 | 2.16 | 453.7 | 7.34 | 1034 | 10.25 | | S | 365119 | 352343 | 39.77 | 3.15 | 36.62 | 25/02/2014 | 2.16 | 287 | 6.62 | 2437 | 8.04 | | | | | | | 36.547 | | | | | | | | S | 365119 | 352343 | 39.77 | 3.223 | 30.547 | 23/05/2014 | 2.62 | 8.9 | 12.88 | 2680 | 11.7 | | Location | Easting | Northing | Surface Elevation | Groundwater | Groundwater | Date | Dissolved | REDOX | рН | Conductivity | Temperature | |----------|----------|----------|-------------------|----------------|-----------------|------------|---------------|----------|-------|--------------|-------------| | Location | Lastilly | Northing | (mOD) | Depth (m) | Elevation (mOD) | | Oxygen (mg/l) | (mV SHE) | рп | (μS/CM) | (°C) | | S | 365119 | 352343 | 39.77 | 3.289 | 36.481 | 21/08/2014 | 0.4 | 157 | 6.91 | 2935 | 14.5 | | S | 365119 | 352343 | 39.77 | 3.23 | 36.54 | 26/11/2014 | 1.72 | 351.7 | 6.74 | 1173 | 10.49 | | S | 365119 | 352343 | 39.77 | 3.287 | 36.48 | 23/02/2015 | - | - | 7.3 | - | - | | S | 365119 | 352343 | 39.77 | Not accessible | ı | 29/05/2015 | - | - | - | - | - | | S | 365119 | 352343 | 39.77 | 3.231 | 36.54 | 26/08/2015 | 1.1 | 239.5 | 6.58 | 856 | 14 | | S | 365119 | 352343 | 39.77 | 3.225 | 36.55 | 02/12/2015 | 0.42 | 393.4 | 8.13 | 471.1 | 13 | | Т | 365140 | 352352 | 39.50 | 3.16 | 36.34 | 20/11/07 | 0.04 | 71.2 | 6.81 | 784 | 12.56 | | Т | 365140 | 352352 | 39.50 | 3.14 | 36.36 | 01/02/2011 | 0.9 | 465.2 | 6.38 | 548 | 8.38 | | Т | 365140 | 352352 | 39.495 | 3.22 | 36.28 | 12/05/2011 | - | 341.9 | 7.23 | 466 | 9.23 | | T | 365140 | 352352 | 39.495 | 3.22 | 36.275 | 18/08/2011 | 0.74 | 150.2 | 6.85 | 853 | 12.3 | | Т | 365140 | 352352 | 39.495 | 3.13 | 36.365 | 15/11/2011 | 2.81 | 277.1 | 6.63 | 304 | 10.97 | | Т | 365140 | 352352 | 39.495 | 3.12 | 36.38 | 16/02/2012 | 1.38 | 430.4 | 7.25 | 321 | 7.89 | | Т | 365140 | 352352 | 39.495 | 3.06 | 36.44 | 25/05/2012 | 2 | 184.2 | 6.83 | 520 | 8.41 | | T | 365140 | 352352 | 39.495 | 3.13 | 36.365 | 31/08/2012 | 1.65 | 281.6 | 6.87 | 357 | 10.67 | | T | 365140 | 352352 | 39.495 | 3.04 | 36.455 | 28/11/2012 | 1.51 | 259.5 | 8.31 | 632 | 9.13 | | Т | 365140 | 352352 | 39.495 | 3.03 | 36.465 | 26/02/2013 | 1.4 | 200 | 7.07 | 325 | 6.25 | | T | 365140 | 352352 | 39.495 | 3.09 | 36.405 | 12/06/2013 | 0.66 | 258.6 | 6.38 | 285 | 7.09 | | Т | 365140 | 352352 | 39.495 | 3.12 | 36.375 | 20/08/2013 | 1.57 | 195.9 | 7.16 | 369 | 9.25 | | Т | 365140 | 352352 | 39.495 | 3.03 | 36.465 | 26/11/2013 | 5.43 | 408.5 | 7.76 | 378 | 9.12 | | Т | 365140 | 352352 | 39.495 | 2.96 | 36.535 | 25/02/2014 | 4.95 | 280.8 | 6.77 | 689 | 5.34 | | Т | 365140 | 352352 | 39.495 | 3.051 | 36.444 | 23/05/2014 | 3.47 | 14 | - | 693 | 10.3 | | Т | 365140 | 352352 | 39.495 | 3.135 | 36.36 | 21/08/2014 | 0.43 | 117 | 7.27 | 1282 | 12.7 | | Т | 365140 | 352352 | 39.50 | 3.02 | 36.47 | 26/11/2014 | 5.55 | 301 | 6.88 | 394 | 9.32 | | Т | 365140 | 352352 | 39.50 | 3.075 | 36.42 | 23/02/2015 | - | - | 7.3 | - | - | | Т | 365140 | 352352 | 39.50 | 3.037 | 36.46 | 29/05/2015 | 0.97 | 152.3 | 8.21 | 914 | 10.5 | | Т | 365140 | 352352 | 39.50 | 3.136 | 36.36 | 26/08/2015 | 1.51 | 188.3 | 6.71 | 545 | 12.2 | | Т | 365140 | 352352 | 39.50 | 3.042 | 36.45 | 02/12/2015 | 3.47 | 416.3 | 8.43 | 233.3 | 11.9 | | V | 365195 | 352346 | 39.39 | 1.95 | 37.44 | 20/11/07 | 0.00 | 102.3 | 6.52 | 471 | 12.68 | | V | 365195 | 352346 | 39.39 | 1.75 | 37.64
 01/02/2011 | 1.23 | 223.1 | 5.68 | 740 | 6.99 | | V | 365195 | 352346 | 39.390 | 2.09 | 37.30 | 12/05/2011 | - | 309.3 | 6.54 | 274 | 9.75 | | V | 365195 | 352346 | 39.390 | 2.25 | 37.14 | 18/08/2011 | 0.24 | 147.2 | 6.71 | 979 | 12.3 | | V | 365195 | 352346 | 39.390 | 2.04 | 37.35 | 15/11/2011 | 1.16 | 263.9 | 6.62 | 335 | 11.59 | | V | 365195 | 352346 | 39.390 | 1.66 | 37.73 | 16/02/2012 | 1.42 | 445.7 | 7.2 | 726 | 7.37 | | V | 365195 | 352346 | 39.390 | 1.9 | 37.49 | 25/05/2012 | 1.12 | 98.8 | 6.47 | 1001 | 8.1 | | V | 365195 | 352346 | 39.39 | 1.98 | 37.41 | 31/08/2012 | 1.38 | 175.5 | 6.79 | 587 | 11.27 | | V | 365195 | 352346 | 39.39 | 1.43 | 37.96 | 28/11/2012 | 3.07 | 254.4 | 6.481 | 1473 | 8.68 | | V | 365195 | 352346 | 39.39 | 1.55 | 37.84 | 26/02/2013 | 0.68 | 185.7 | 6.34 | 161 | 3.46 | | V | 365195 | 352346 | 39.39 | 1.97 | 37.42 | 12/06/2013 | 0.54 | 193.9 | 5.83 | 253 | 6.74 | | Location | Easting | Northing | Surface Elevation (mOD) | Groundwater
Depth (m) | Groundwater
Elevation (mOD) | Date | Dissolved
Oxygen (mg/l) | REDOX
(mV SHE) | рН | Conductivity (µS/CM) | Temperature
(°C) | |----------|---------|----------|-------------------------|--------------------------|--------------------------------|------------|----------------------------|-------------------|------|----------------------|---------------------| | V | 365195 | 352346 | 39.39 | 2.16 | 37.23 | 20/08/2013 | 1.3 | 125.7 | 6.81 | 392 | 10.34 | | V | 365195 | 352346 | 39.39 | 1.85 | 38.14 | 26/11/2013 | 2.34 | 315.1 | 7.39 | 615 | 9.52 | | V | 365195 | 352346 | 39.39 | 1.47 | 37.92 | 25/02/2014 | 2.78 | 291.1 | 6.06 | 421 | 6.55 | | V | 365195 | 352346 | 39.39 | 1.931 | 37.459 | 23/05/2014 | 1.9 | -29.1 | - | 1005 | 10.3 | | V | 365195 | 352346 | 39.39 | 2.096 | 37.294 | 21/08/2014 | 0.3 | 88 | 7.52 | 1475 | 13.3 | | V | 365195 | 352346 | 39.39 | 1.91 | 37.48 | 26/11/2014 | 1.72 | 258.3 | 6.33 | 779 | 9.8 | | V | 365195 | 352346 | 39.39 | 1.816 | 37.57 | 23/02/2015 | - | -165.3 | 6.5 | 799 | 3.70 | | V | 365195 | 352346 | 39.39 | 2.015 | 37.38 | 29/05/2015 | 0.18 | 115.4 | 8.17 | 1070 | 10.7 | | V | 365195 | 352346 | 39.39 | 2.081 | 37.31 | 26/08/2015 | 2.03 | 126 | 6.54 | 937 | 12.8 | | V | 365195 | 352346 | 39.39 | 1.846 | 37.54 | 02/12/2015 | 0.24 | 317.7 | 8.26 | 514 | 12.4 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|---------|----------|----------------------------|--------------------------|------------------|------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | AB | 364740 | 352370 | 37.93 | 1.64 | 3.84 | 08/03/2011 | -0.2 | 1012 | -0.3 | 0 | 0 | 20 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 2.08 | 3.84 | 12/05/2011 | -0.2 | 1018 | 0.34 | 0 | 0.3 | 19.7 | 5 | 0 | | AB | 364740 | 352370 | 37.93 | 2.24 | 3.84 | 18/08/2011 | 0.1 | 1013 | 0.12 | 0 | 0.3 | 20.2 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 2.27 | 3.84 | 15/11/2011 | 0 | 1011 | 0 | 0 | 0.2 | 20.9 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.87 | 3.84 | 15/03/2012 | 0 | 1019 | 0 | 0 | 0.1 | 20.7 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.7 | 3.84 | 03/07/2012 | 0 | 1007 | 0 | 0 | 0.7 | 19.4 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.59 | 3.84 | 04/10/2012 | 0 | 1002 | 0 | 0 | 0.3 | 20.7 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.49 | 3.84 | 26/02/2013 | 0 | 1036 | 0.3 | 0 | 0.2 | 20.9 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.721 | 3.81 | 24/04/2013 | 0 | 1019 | 0 | 0 | 0.3 | 20.2 | 1 | 0 | | AB | 364740 | 352370 | 37.93 | 2.035 | 3.83 | 23/07/2013 | -0.1 | 1007 | 0.05 | 0 | 0.5 | 19.7 | 3 | 0 | | AB | 364740 | 352370 | 37.93 | 1.908 | 3.84 | 31/10/2013 | | 1010 | 0 | 0 | 1.5 | 18.4 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.47 | 3.85 | 28/01/2014 | 0.1 | 974 | -0.21 | 0.2 | 1.2 | 20.3 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.725 | 3.83 | 15/04/2014 | 0.2 | 1028 | 0.05 | 0 | 1.3 | 20.1 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | - | 3.83 | 31/07/2014 | -0.1 | 1007 | 0 | 0.2 | 2.8 | 20.3 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.945 | 3.83 | 28/10/2014 | -0.2 | 1003 | 0.02 | 0 | 10.5 | 3.4 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.638 | 3.83 | 23/01/2015 | 0.0 | 1015 | 0.00 | 0.4 | 1.2 | 21.3 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 1.857 | 3.83 | 01/05/2015 | 0 | 999 | -0.05 | 0.1 | 0.6 | 20.6 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 2.025 | 3.84 | 14/07/2015 | 0.1 | 1016 | -0.03 | 0 | 1.5 | 19.7 | 0 | 0 | | AB | 364740 | 352370 | 37.93 | 2.156 | 3.84 | 22/10/2015 | | 1014 | 0.03 | 0 | 0.7 | 21.2 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.49 | 3.98 | 08/03/2011 | 0 | 1013 | 0 | 4 | 2.9 | 2.7 | 3 | 0 | | AC | 364963 | 352517 | 36.42 | 2.98 | 3.98 | 12/05/2011 | 0 | 1017 | -0.23 | 4.7 | 4.6 | 1.7 | 5 | 0 | | AC | 364963 | 352517 | 36.42 | 2.85 | 3.98 | 18/08/2011 | 0 | 1011 | -0.03 | 4.4 | 4.2 | 7.8 | 0 | 5 | | AC | 364963 | 352517 | 36.42 | 2.79 | 3.98 | 15/11/2011 | 0 | 1011 | 0 | 1.8 | 1.6 | 14.7 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.52 | 3.98 | 15/03/2012 | | 1017 | 0 | 2.7 | 2.9 | 7.8 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 1.44 | 3.98 | 03/07/2012 | | 1007 | 0 | 3.7 | 3.5 | 8 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.28 | 3.98 | 04/10/2012 | | 1002 | 0 | 5.9 | 4.6 | 2.8 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.45 | 3.98 | 26/02/2013 | | 1035 | -0.2 | 3.8 | 2.5 | 5.5 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.741 | 3.97 | 24/04/2013 | 0.1 | 1018 | 0.02 | 3.9 | 3.5 | 0.2 | 3 | 0 | | AC | 364963 | 352517 | 36.42 | 2.91 | 3.99 | 23/07/2013 | 0.1 | 1010 | 0.1 | 2.1 | 5.6 | 4.8 | 4 | 0 | | AC | 364963 | 352517 | 36.42 | 2.216 | 3.97 | 31/10/2013 | -0.1 | 1013 | -0.05 | 6.5 | 5.5 | 0.4 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.128 | 3.84 | 28/01/2014 | 0 | 972 | -0.17 | 7.3 | 4.5 | 1.7 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.576 | 3.99 | 15/04/2014 | 0 | 1028 | -0.07 | 2.8 | 2.6 | 9.9 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | - | 3.99 | 31/07/2014 | 0 | 1007 | 0.02 | 5.4 | 6.2 | 1.9 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|------------------|------------------|----------------------------|--------------------------|------------------|--------------------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | AC | 364963 | 352517 | 36.42 | 2.624 | 4 | 28/10/2014 | 0.1 | 1003 | 0 | 5.1 | 4.6 | 3.5 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.558 | 4 | 23/01/2015 | 0.0 | 1018 | 0.05 | 5.4 | 3.3 | 4.1 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.840 | 4.00 | 01/05/2015 | 0.1 | 999 | 0.03 | 2 | 2.9 | 8.4 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.268 | 4.00 | 14/07/2015 | 0.1 | 1015 | 0.02 | 0 | 0 | 20.9 | 0 | 0 | | AC | 364963 | 352517 | 36.42 | 2.908 | 3.99 | 22/10/2015 | 0 | 1014 | -0.03 | 5.4 | 5.6 | 0.4 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.94 | 3.93 | 08/03/2011 | 0 | 1014 | 0 | 0 | 4.4 | 14.9 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.84 | 3.93 | 12/05/2011 | -0.1 | 1019 | -0.02 | 0.1 | 10.1 | 8.9 | 7 | 0 | | AE | 364918 | 352428 | 35.19 | 2.8 | 3.93 | 18/08/2011 | 0 | 1012 | 0 | 0 | 11.7 | 7.4 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.77 | 3.93 | 15/11/2011 | 0 | 1011 | 0 | 0 | 3.6 | 18 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.68 | 3.93 | 15/03/2012 | | 1019 | 0 | 0 | 0.1 | 20.7 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.56 | 3.93 | 03/07/2012 | 0 | 1007 | 0 | 0.1 | 8.3 | 9.2 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.45 | 3.93 | 04/10/2012 | 0 | 1002 | 0 | 0 | 10.2 | 6.9 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.58 | 3.93 | 26/02/2013 | | 1037 | -0.1 | 0 | 6.7 | 14.8 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.68 | 3.93 | 24/04/2013 | | 1019 | 0.05 | 0 | 8.9 | 12.1 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.712 | 3.95 | 23/07/2013 | 0.1 | 1007 | 0 | 0 | 11.4 | 7.3 | 3 | 0 | | AE | 364918 | 352428 | 35.19 | 2.48 | 3.85 | 31/10/2013 | 0.1 | 1010 | 0 | 0 | 12.8 | 3.8 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.205 | 3.95 | 28/01/2014 | 0.2 | 974 | -0.12 | 0.2 | 10.2 | 7.6 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.639 | 3.93 | 15/04/2014 | 0.2 | 1028 | -0.02 | 0 | 11.3 | 10 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | - 0.04 | 3.93 | 31/07/2014 | 0 | 1007 | 0.12 | 4.7 | 14.4 | 5.2 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.61 | 3.93 | 28/10/2014 | -0.1 | 1003 | 0.14 | 0.2 | 1.5 | 18.1 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.600 | 3.93 | 23/01/2015 | | 1016 | 0.03 | 0.4 | 9.1 | 10.9 | 0 | 0 | | AE | 364918 | 352428 | 35.19 | 2.669 | 3.93 | 01/05/2015 | 0.1 | 999 | 0.15 | 0 | 7.4 | 13.2
4 | 0 | 1 | | AE | 364918 | 352428 | 35.19
35.19 | 2.636
2.735 | 3.92 | 14/07/2015 | | 1016 | 0.05 | 0 | 14.8 | 9.9 | 0 | 0 | | AE | 364918 | 352428 | 34.89 | | 3.90 | 22/10/2015 | | 1016 | 0.05 | 0 | 8.7 | 17.2 | 0 | 0 | | AF
AF | 364899
364899 | 352463
352463 | 34.89 | 2.8
2.99 | 4 | 08/03/2011
12/05/2011 | 0 | 1013
1019 | -0.17
-0.02 | 0.1 | 0.9 | 16.4 | 4 | 0 | | AF | 364899 | 352463 | 34.89 | 2.83 | 4 | 18/08/2011 | 0.1 | 1019 | -0.02 | 0.1 | 4.2 | 14.7 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.89 | 4 | 15/11/2011 | 0.1 | 1012 | 0 | 0.8 | 7.4 | 11.9 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.81 | 4 | 15/03/2012 | 0 | 1019 | 0 | 0.0 | 3 | 16.5 | 0 | 0 | | AF | 364899 |
352463 | 34.89 | 2.81 | - | 03/07/2012 | | 1007 | 0 | 0.4 | 2 | 16.8 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.73 | 4 | 04/10/2012 | | 1007 | 0 | 0.4 | 2.5 | 15.9 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.84 | 4 | 26/02/2013 | | 1037 | -0.07 | 0.1 | 0.8 | 18.8 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.792 | 3.96 | 24/04/2013 | | 1019 | 0.07 | 0.1 | 4 | 12.1 | 2 | 0 | | AF | 364899 | 352463 | 34.89 | 2.881 | 4.04 | 23/07/2013 | | 1007 | 0.05 | 0 | 5.7 | 15.1 | 1 | 0 | | AF | 364899 | 352463 | 34.89 | 2.8 | 4.06 | 31/10/2013 | | 1010 | 0 | 0 | 8.9 | 10.2 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.558 | 3.89 | 28/01/2014 | | 974 | 0.06 | 6.1 | 3.6 | 14.6 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.836 | 4.02 | 15/04/2014 | 0.1 | 1028 | -1.75 | 0 | 2.3 | 19.2 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | - | 4.02 | 31/07/2014 | | 1007 | 0.07 | 0.8 | 11.9 | 18.7 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.84 | 4.02 | 28/10/2014 | | 1003 | -0.07 | 0 | 9.7 | 8.4 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.782 | 4.02 | 23/01/2015 | | 1016 | 0.09 | 0.4 | 0.3 | 21.9 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.844 | 4.02 | 01/05/2015 | 0.1 | 999 | 0.07 | 0 | 3.9 | 16.8 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.862 | 4.05 | 14/07/2015 | | 1016 | 1.32 | 0 | 1.7 | 18.5 | 0 | 0 | | AF | 364899 | 352463 | 34.89 | 2.862 | 3.80 | 22/10/2015 | | 1014 | 0.03 | 0 | 4.7 | 14.1 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 2.7 | | 08/03/2011 | -0.2 | 1012 | -0.3 | 0 | 4.3 | 15.3 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 2.07 | 4.03 | 12/05/2011 | 0.3 | 1018 | 0.4 | 0 | 8 | 10.9 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.54 | 4.03 | 18/08/2011 | -0.3 | 1012 | 0.11 | 0 | 10.3 | 5.2 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|---------|----------|----------------------------|--------------------------|------------------|------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | AG | 365007 | 352313 | 37.03 | 1.57 | 4.03 | 15/11/2011 | 0 | 1011 | 0 | 0 | 7.4 | 9.6 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.83 | 4.03 | 15/03/2012 | 0 | 1018 | 0 | 0 | 0.8 | 18.3 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.38 | 4.03 | 03/07/2012 | 0 | 1007 | 0 | 0 | 2.7 | 15.3 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.29 | 4.03 | 04/10/2012 | 0 | 1002 | 0 | 0 | 0 | 20.9 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.67 | 4.03 | 26/02/2013 | 0 | 1033 | -0.1 | 0 | 3.8 | 15.9 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.763 | 4.02 | 24/04/2013 | 0 | 1018 | 0.11 | 0 | 4.3 | 15.6 | 2 | 0 | | AG | 365007 | 352313 | 37.03 | 1.556 | 4.08 | 23/07/2013 | -0.1 | 1007 | 0 | 0 | 11.1 | 4.3 | 2 | 0 | | AG | 365007 | 352313 | 37.03 | 0.835 | 3.94 | 31/10/2013 | 0.1 | 1010 | 0.12 | 0 | 3.5 | 9.4 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 0.555 | 3.87 | 28/01/2014 | 0.2 | 974 | 0.15 | 0.2 | 0.6 | 19.6 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.585 | 3.56 | 15/04/2014 | 0.2 | 1028 | 0.02 | 0 | 4.7 | 14.3 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | - | 3.56 | 31/07/2014 | 0.4 | 1007 | -0.09 | 0 | 1.7 | 20.5 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.13 | 3.47 | 28/10/2014 | -0.9 | 1003 | -4.92 | 0.3 | 6.4 | 7.8 | 0 | 0 | | AG | 365007 | 352313 | 37.03 | 1.115 | 3.47 | 23/01/2015 | 0.0 | 1016 | 0.10 | 0.8 | 1.5 | 18.3 | 3 | 0 | | AG | 365007 | 352313 | 37.03 | 1.542 | 3.47 | 01/05/2015 | 0.1 | 999 | 0.09 | 0 | 2.9 | 17.1 | 1 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.4 | 1.98 | 08/03/2011 | -0.3 | 1014 | 0 | 0 | 2 | 17.7 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.31 | 1.98 | 12/05/2011 | 0 | 1017 | -0.01 | 0 | 2 | 18.3 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.29 | 1.98 | 18/08/2011 | -0.1 | 1012 | -0.01 | 0 | 3.2 | 16.8 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.14 | 1.98 | 15/11/2011 | 0 | 1011 | 0 | 0 | 0.6 | 20.5 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.06 | 1.98 | 15/03/2012 | 0 | 1018 | 0 | 0 | 1 | 19.6 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 0.76 | 1.98 | 03/07/2012 | 0 | 1007 | 0 | 0 | 1.6 | 18.9 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 0.79 | | 04/10/2012 | 0 | 1003 | 0 | 0 | 0.9 | 17.3 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 0.94 | 1.98 | 26/02/2013 | | 1035 | -0.3 | 0 | 1.4 | 19.2 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.208 | 1.97 | 23/07/2013 | 0.1 | 1008 | 0.05 | 0 | 2.9 | 16.6 | 3 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.34 | 1.555 | 28/01/2014 | 0 | 974 | 0.03 | 0.2 | 0.7 | 20.8 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.56 | 1.96 | 15/04/2014 | 0 | 1028 | -1.82 | 0 | 1.8 | 16.8 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | - | 1.96 | 31/07/2014 | 0.2 | 1007 | 0.09 | 0 | 2 | 17.6 | 0 | 1 | | F1 | 365189 | 352269 | 39.69 | 1.634 | 1.98 | 28/10/2014 | 0.1 | 1003 | 0.1 | 0 | 0.1 | 20.6 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.598 | 1.98 | 23/01/2015 | 0.0 | 1015 | -0.09 | 0.4 | 1 | 21.1 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.634 | 1.98 | 01/05/2015 | 0.1 | 999 | 0 | 0 | 1.4 | 19.9 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.685 | 1.97 | 14/07/2015 | | 1016 | 0.31 | 0 | 4.2 | 16.2 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.651 | 1.96 | 22/10/2015 | | 1015 | 0.29 | 0 | 4.5 | 13.6 | 0 | 0 | | F1 | 365189 | 352269 | 39.69 | 1.025 | 1.84 | 24/04/2013 | | 1017 | 0.27 | 0 | 0 | 20.8 | 5 | 1 | | F1 | 365189 | 352269 | 39.69 | 1.358 | 1.97 | 31/10/2013 | | 1013 | 0 | 0 | 2 | 16.2 | 0 7 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.095 | 3.49 | 24/04/2013 | -0.1 | 1017 | 0.27 | 0 | 0.5 | 20.1 | , | 0 | | F2 | 365189 | 352269 | 39.69 | 1.492 | 3.82 | 31/10/2013 | | 1013 | 0 | 0 | 1.1 | 18.1 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.4 | | 08/03/2011 | -0.1 | 1014 | 0 | 0 | 0 | 20 | ' | 0 | | F2 | 365189 | 352269 | 39.69 | 1.34 | 3.96 | 12/05/2011 | -0.1 | 1017 | 0 | 0.1 | 0.8 | 19.6 | 3 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.32 | 3.96 | 18/08/2011 | 0 | 1012 | 0 | 0 | 1.9 | 18 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.16 | 3.96 | 15/11/2011 | 0 | 1011 | 0 | 0 | 2.1 | 18.3 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.16 | 3.96 | 15/03/2012 | | 1018 | 0 | 0 | 0.1 | 20.6 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 0.97 | | 03/07/2012 | 0 | 1007 | 0 | 0.1 | 0.5 | 20.1 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 0.96 | | 04/10/2012 | | 1003 | 0 | 0 | 0.6 | 18.8 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.07 | 3.96 | 26/02/2013 | | 1035 | -0.3 | 0 | 1.2 | 19.1 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.248 | 3.82 | 23/07/2013 | | 1008 | 0.05 | 0 | 1.7 | 18.3 | 2 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.31 | 1.999 | 28/01/2014 | -0.2 | 974 | -0.3 | 0.3 | 1.5 | 19 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.601 | 3.74 | 15/04/2014 | 0.1 | 1028 | -0.67 | 0 | 3 | 18.5 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |--------------|------------------|------------------|----------------------------|--------------------------|------------------|--------------------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | F2 | 365189 | 352269 | 39.69 | - | 3.74 | 31/07/2014 | 0.2 | 1007 | 0.7 | 0 | 2.5 | 17.1 | 0 | 1 | | F2 | 365189 | 352269 | 39.69 | 1.659 | 3.75 | 28/10/2014 | 0 | 1003 | 0.24 | 0 | 2 | 18.3 | 0 | 1 | | F2 | 365189 | 352269 | 39.69 | 1.652 | 3.96 | 01/05/2015 | 0.1 | 999 | 0 | 0 | 1.9 | 18.8 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.660 | 3.79 | 14/07/2015 | 0.1 | 1016 | 0.12 | 0 | 2.8 | 18.1 | 0 | 0 | | F2 | 365189 | 352269 | 39.69 | 1.660 | 3.72 | 22/10/2015 | 0 | 1015 | -0.09 | 0 | 1.5 | 19.58 | 0 | 0 | | L | 365128 | 352544 | 38.71 | 2.13 | 3.9 | 08/03/2011 | -0.2 | 1014 | 0.11 | 0 | 1 | 19.6 | 2 | 0 | | L | 365128 | 352544 | 38.71 | 2.35 | 3.9 | 12/05/2011 | -0.2 | 1018 | 0.03 | 0 | 0.7 | 20.2 | 5 | 0 | | L | 365128 | 352544 | 38.71 | 2.28 | 3.9 | 18/08/2011 | 0 | 1011 | 0.01 | 0 | 0.05 | 19.8 | 0 | 1 | | L | 365128 | 352544 | 38.71 | 2.21 | 3.9 | 15/11/2011 | 0 | 1013 | 0 | 0 | 0.7 | 20.3 | 0 | 0 | | L_ | 365128 | 352544 | 38.71 | 2.22 | 3.9 | 15/03/2012 | | 1017 | 0 | 0 | 0.9 | 19.9 | 0 | 0 | | <u>L</u> | 365128 | 352544 | 38.71 | 2.09 | 3.9 | 03/07/2012 | 0 | 1007 | 0 | 0 | 0.8 | 20.1 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71 | 2.14 | 3.9 | 04/10/2012 | 0 | 1003 | 0 | 0 | 0.8 | 20.4 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71 | 2.16 | 3.9 | 26/02/2013 | 0 | 1037 | -0.3 | 0 | 0 | 21.2 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71 | 2.229 | 3.89 | 24/04/2013 | | 1020 | 0.06 | 0 | 1 | 19.8 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71 | 2.272 | 3.88 | 23/07/2013 | 0.1 | 1010 | 0.01 | 0 | 1.6 | 18.4 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71
38.71 | 2.135 | 1.88 | 31/10/2013 | 0 | 1013
974 | 0 | 0 | 1.8 | 18.3
20.9 | 0 | 0 | | <u> </u> | 365128
365128 | 352544
352544 | 38.71 | 3.049
2.174 | 3.89
3.88 | 28/01/2014
15/04/2014 | 0.1
0.2 | 1028 | 0.09
0.02 | 0.2 | 1.6
1.2 | 20.9 | 0 | 0 | | ├ | 365128 | 352544 | 38.71 | 2.17 4 | 3.88 | 31/07/2014 | -0.1 | 1028 | 0.02 | 0 | 2.2 | 18.3 | 0 | 0 | | | 365128 | 352544 | 38.71 | 2.253 | 3.9 | 28/10/2014 | 0.2 | 1007 | 0.09 | 0 | 2.4 | 18.9 | 0 | 0 | | | 365128 | 352544 | 38.71 | 2.233 | 3.9 | 23/01/2015 | | 1018 | 0.02 | 0.4 | 1.4 | 21.2 | 0 | 0 | | | 365128 | 352544 | 38.71 | 2.251 | 3.90 | 01/05/2015 |
0.1 | 999 | 0.02 | 0.4 | 1.3 | 19.8 | 0 | 0 | | - | 365128 | 352544 | 38.71 | 2.267 | 3.90 | 14/07/2015 | | 1013 | 0 | 0 | 0 | 18.8 | 0 | 0 | | <u> </u> | 365128 | 352544 | 38.71 | 2.238 | 3.88 | 22/10/2015 | | 1013 | 0.09 | 0 | 2.7 | 18.7 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.52 | 3.84 | 08/03/2011 | 0 | 1013 | 0 | 0 | 0.4 | 20.3 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.68 | 3.84 | 12/05/2011 | 0 | 1017 | -0.23 | 0.1 | 2.1 | 17.9 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.63 | 3.84 | 18/08/2011 | 0.2 | 1012 | -0.08 | 0 | 1.4 | 20.4 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.53 | 3.84 | 15/11/2011 | 0 | 1014 | 0 | 0 | 1.3 | 19.8 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.52 | 3.84 | 15/03/2012 | 0 | 1017 | 0 | 0 | 0.3 | 20.8 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.34 | 3.84 | 03/07/2012 | 0 | 1007 | 0 | 0 | 3.2 | 17.6 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.42 | | 04/10/2012 | | 1002 | 0 | 0 | 1.4 | 18.5 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.51 | 3.84 | 26/02/2013 | 0 | 1034 | -0.008 | 0 | 0.3 | 19.8 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.542 | 3.82 | 24/04/2013 | -0.2 | 1020 | 0.06 | 0 | 0.7 | 19.1 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.59 | 3.81 | 23/07/2013 | -0.1 | 1010 | 0.01 | 0 | 0.4 | 19.9 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.28 | 3.79 | 31/10/2013 | | 1013 | -0.23 | 0 | 2.9 | 16.3 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.331 | 3.8 | 28/01/2014 | 0.1 | 975 | 0.1 | 0.2 | 0.9 | 21.1 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.504 | 3.81 | 15/04/2014 | | 1028 | -0.02 | 2 | 1.9 | 12.5 | 0 | 0 | | M | 365015 | 352549 | 37.81 | - | 3.81 | 31/07/2014 | | 1007 | 0.09 | 0 | 2.3 | 18.6 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.489 | 3.83 | 28/10/2014 | | 1003 | -0.03 | 4.4 | 4.8 | 14.1 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.467 | 3.83 | 23/01/2015 | | 1018 | -0.07 | 0.5 | 0.4 | 21.6 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.537 | 3.83 | 01/05/2015 | 0.1 | 999 | 0.02 | 0 | 2.3 | 18.9 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.516 | 3.81 | 14/07/2015 | | 1015 | 0.09 | 0 | 2.3 | 18.9 | 0 | 0 | | M | 365015 | 352549 | 37.81 | 1.551 | 3.81 | 22/10/2015 | | 1011 | -0.1 | 0 | 4.1 | 15 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.7 | 3.93 | 08/03/2011 | 0.4 | 1014 | -0.2 | 0 | 4.8 | 10.5 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.8 | 3.93 | 12/05/2011 | 0.5 | 1017 | 0 | 0.1 | 4.9 | 12.7 | 3 | 0 | | N | 365016 | 352449 | 39.17 | 1.53 | 3.93 | 15/11/2011 | 0 | 1013 | 0 | 0 | 2.2 | 18.2 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|------------------|------------------|----------------------------|--------------------------|------------------|--------------------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | N | 365016 | 352449 | 39.17 | 1.71 | 3.93 | 15/03/2012 | 0 | 1017 | 0 | 0 | 2.5 | 17.4 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.49 | 3.93 | 03/07/2012 | 0 | 1007 | 0 | 0 | 2.3 | 17.8 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.43 | 3.93 | 04/10/2012 | 0 | 1002 | 0 | 0 | 0 | 20.6 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.47 | 3.93 | 26/02/2013 | 0 | 1037 | -0.3 | 0 | 2.9 | 17.6 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.678 | 3.91 | 23/07/2013 | -0.1 | 1007 | 0 | 0 | 3.9 | 14.2 | 3 | 0 | | N | 365016 | 352449 | 39.17 | 1.276 | 3.91 | 28/01/2014 | 0 | 974 | 0.05 | 0.3 | 0.6 | 20.9 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.636 | 3.91 | 15/04/2014 | 0 | 1028 | -0.02 | 0 | 0.2 | 19.2 | 0 | 0 | | N | 365016 | 352449 | 39.17 | - | 3.91 | 31/07/2014 | 0 | 1007 | 0.17 | 0 | 2 | 19.9 | 0 | 0 | | N | 365016 | 352449 | 39.17 | - | 3.91 | 28/10/2014 | 0.2 | 1003 | 0.03 | 0 | 2.2 | 19 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.555 | 3.91 | 23/01/2015 | 0.0 | 1018 | 0.00 | 0.4 | 0.2 | 22.1 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.649 | 3.91 | 01/05/2015 | 0.1 | 999 | -0.02 | 0 | 1 | 19.2 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.596 | 3.91 | 14/07/2015 | 0 | 1015 | -0.03 | 0.1 | 0.1 | 20.6 | 0 | 1 | | N | 365016 | 352449 | 39.17 | 1.556 | 3.91 | 22/10/2015 | 0.1 | 1016 | -0.03 | 0 | 0.6 | 20.5 | 0 | 0 | | N | 365016 | 352449 | 39.17 | 1.71 | 3.93 | 18/08/2011 | 0.1 | 1012 | 0 | 0 | 3.6 | 16.4 | 0 | 0 | | N | 365016 | 352449 | 39.16 | 1.504 | 3.91 | 24/04/2013 | -0.2 | 1019 | 0.16 | 0 | 0.1 | 20.2 | 5 | 0 | | N | 365016 | 352449 | 39.16 | 1.42 | 3.91 | 31/10/2013 | 0 | 1012 | 0.04 | 0 | 0.4 | 19.7 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.67 | 3 | 18/08/2011 | 0 | 1012 | -0.16 | 0 | 7.4 | 11.4 | 0 | 0 | | N1 | 365016 | 352449 | 39.17 | 1.548 | 2.72 | 24/04/2013 | -0.1 | 1019 | 0.22 | 0 | 1.2 | 19.1 | 5 | 0 | | N1 | 365016 | 352449 | 39.17 | 1.43 | 2.65 | 31/10/2013 | -0.1 | 1012 | 0.04 | 0 | 1.6 | 15 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.69 | 3 | 08/03/2011 | 0 | 1014 | -0.2 | 0 | 0.5 | 19.6 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.81 | 3 | 12/05/2011 | 0 | 1017 | -0.27 | 0.1 | 1.6 | 17.9 | 2 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.57 | 3 | 15/11/2011 | 0 | 1013 | 0 | 0 | 7.6 | 9.3 | 0 | 0 | | N1 | 365016 | 352449
352449 | 39.16
39.16 | 1.75
1.5 | 3 | 15/03/2012 | 0 | 1017
1007 | 0 | 0 | 0.9 | 20.9
19.2 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.46 | 3 | 03/07/2012
04/10/2012 | 0 | 1007 | 0 | 0.1 | 0.9 | 20.5 | 0 | 0 | | N1
N1 | 365016 | | 39.16 | 1.48 | 3 | | | 1002 | _ | 0 | | | 0 | 0 | | | 365016
365016 | 352449
352449 | 39.16 | 1.725 | 2.67 | 26/02/2013
23/07/2013 | -0.1 | 1007 | -0.3
0.05 | 0 | 0.8
2.7 | 19.1
16.6 | 2 | 0 | | N1
N1 | 365016 | 352449 | 39.16 | 1.725 | 2.65 | 28/01/2013 | 0.1 | 974 | -0.12 | 0.2 | 1.6 | 20.7 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.681 | 2.64 | 15/04/2014 | 0.1 | 1028 | 0.02 | 0.2 | 2 | 19 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.001 | | 31/07/2014 | | 1007 | -0.1 | 0.1 | 2.4 | 17.8 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.64 | 2.63 | 28/10/2014 | 0.1 | 1007 | -0.03 | 0 | 1.7 | 19.8 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.638 | 2.63 | 23/01/2015 | | 1018 | -0.05 | 0.4 | 1 | 21.3 | 0 | 0 | | N1 | 365016 | 352449 | 39.16 | 1.676 | 2.63 | 01/05/2015 | 0.0 | 999 | -0.03 | 0.4 | 5.6 | 14.6 | 0 | 1 | | N1 | 365016 | 352449 | 39.16 | 1.735 | 2.56 | 14/07/2015 | | 1015 | 0.02 | 0.2 | 2.8 | 17.4 | 0 | 1 | | N1 | 365016 | 352449 | 39.16 | 1.663 | 2.58 | 22/10/2015 | | 1016 | -0.05 | 0 | 2.6 | 18.9 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.46 | | 08/03/2011 | -0.2 | 1014 | 0 | 0 | 0.2 | 20 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.57 | 3.7 | 12/05/2011 | -0.1 | 1017 | 0.05 | 0.1 | 0.1 | 20.6 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.51 | 3.7 | 18/08/2011 | -0.5 | 1011 | 0 | 0 | 0 | 20.6 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.48 | 3.7 | 15/11/2011 | 0 | 1012 | 0 | 0 | 0.2 | 20.8 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.49 | 3.7 | 15/03/2012 | | 1017 | 0 | 0 | 0.3 | 20.7 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.44 | | 03/07/2012 | 0 | 1007 | 0 | 0 | 0.1 | 20.6 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.44 | | 04/10/2012 | | 1003 | 0 | 0 | 0.4 | 20.2 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.49 | 3.7 | 26/02/2013 | | 1032 | -0.3 | 0 | 0.3 | 20.6 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.509 | 3.67 | 24/04/2013 | | 1020 | 0.08 | 0 | 0.3 | 20.2 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.509 | 3.66 | 23/07/2013 | | 1010 | 0.01 | 0 | 0.6 | 19.3 | 4 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.308 | 3.68 | 31/10/2013 | 0.1 | 1013 | 0 | 0 | 0.6 | 19.6 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate (I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|------------------|------------------|----------------------------|--------------------------|------------------|--------------------------|-------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | 0 | 365184 | 352470 | 39.64 | 1.305 | 3.67 | 28/01/2014 | 0.1 | 974 | 0.15 | 0.2 | 0.5 | 21.8 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.422 | 3.68 | 15/04/2014 | 0.2 | 1028 | 0.12 | 0 | 0.4 | 20.7 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | - | 3.68 | 31/07/2014 | 0.1 | 1007 | -0.02 | 0.1 | 0.2 | 20.1 | 0 | 1 | | 0 | 365184 | 352470 | 39.64 | 1.384 | 3.69 | 28/10/2014 | 0 | 1003 | -0.02 | 0 | 0.7 | 20.5 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.439 | 3.69 | 23/01/2015 | 0.0 | 1017 | 0.00 | 0.4 | 0.5 | 21.7 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.495 | 3.69 | 01/05/2015 | 0.2 | 999 | 0 | 0 | 1.2 | 20.4 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.512 | 3.66 | 14/07/2015 | 0.1 | 1015 | 0.05 | 0 | 0.4 | 21 | 0 | 0 | | 0 | 365184 | 352470 | 39.64 | 1.483 | 3.66 | 22/10/2015 | 0.1 | 1013 | 0.14 | 0 | 0.3 | 20.9 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.26 | 3.92 | 08/03/2011 | 0.2 | 1013 | -0.32 | 0 | 0 | 19.9 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.42 | 3.92 | 12/05/2011 | 0.2 | 1017 | 0.05 | 0 | 0.2 | 20.1 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.38 | 3.92 | 18/08/2011 | 0 | 1012 | 0.01 | 0 | 3.2 | 16.9 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.27 | 3.92 | 15/11/2011 | 0 | 1011 | 0 | 0 | 0.2 | 20.8 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.32 | 3.92 | 15/03/2012 | 0 | 1017 | 0 | 0 | 0 | 20.9 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.16 | 3.92 | 03/07/2012 | 0 | 1007 | 0 | 0 | 0 | 20.6 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.14 | 3.92 | 04/10/2012 | 0 | 1003 | 0 | 0 | 0 |
20.5 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.18 | 3.92 | 26/02/2013 | 0 | 1032 | -0.3 | 0 | 0 | 20.8 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.26 | 3.84 | 24/04/2013 | 0.1 | 1017 | 0.12 | 0 | 4.5 | 16.1 | 6 | 0 | | Р | 365098 | 352374 | 39.93 | 3.321 | 3.91 | 23/07/2013 | 0 | 1008 | 0.05 | 0 | 2.7 | 18.7 | 3 | 0 | | Р | 365098 | 352374 | 39.93 | 3.175 | 3.91 | 31/10/2013 | 0 | 1012 | 0.05 | 0 | 0.3 | 19.6 | 0 | 0 | | P | 365098 | 352374 | 39.93 | 3.235 | 3.91 | 15/04/2014 | 0.2 | 1028 | -0.1 | 0 | 0.3 | 21.1 | 0 | 0 | | P | 365098 | 352374 | 39.93 | - | 3.91 | 31/07/2014 | 0.1 | 1007 | 0 | 0 | 1.5 | 19.1 | 0 | 0 | | P | 365098 | 352374 | 39.93 | 3.268 | 3.9 | 28/10/2014 | 0.1 | 1003 | 0 | 0 | 0.9 | 20 | 0 | 0 | | P | 365098 | 352374 | 39.93 | 3.223 | 3.9 | 23/01/2015 | 0.1 | 1015 | 0.02 | 0.4 | 0.2 | 21.8 | 0 | 0 | | P | 365098 | 352374 | 39.93 | 3.295 | 3.90 | 01/05/2015 | 0.1 | 999 | 0.03 | 0 | 2.8 | 18.5 | 0 | 0 | | P | 365098 | 352374 | 39.93 | 3.311 | 3.39 | 14/07/2015 | 0 | 1015 | 0.24 | 0 | 0 | 21.3 | 0 | 0 | | Р | 365098 | 352374 | 39.93 | 3.328 | 3.88 | 22/10/2015 | 0 | 1015 | 0.07 | 0 | 0 | 20.5 | 0 | 0 | | • | 365098 | 352374 | 39.93 | 3.095 | 3.77 | 28/01/2014 | 0 | 975 | -0.05 | 0.2 | 0.2 | 22 | 0 | 0 | | P1 | 365098 | 352374 | 39.93
39.93 | 1.975 | 2.04 | 28/01/2014 | 0.2 | 975 | 0.05 | 0.2 | 3.7
2.8 | 17.6 | 0 | 0 | | P1 | 365098 | 352374 | | Dry | 2.05 | 08/03/2011 | 0 | 1013 | 0.32 | 0 | | 18 | 5 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.05 | 12/05/2011 | Ů | 1017 | 0 | 0 | 3.3 | 16.2 | _ | · | | P1 | 365098 | 352374 | 39.93 | Dry | 2.05 | 18/08/2011 | 0.2 | 1012 | 0 | 0 | 1.9 | 18.4 | 0 | 0 | | P1
P1 | 365098
365098 | 352374
352374 | 39.93
39.93 | Dry
Dry | 2.05
2.05 | 15/11/2011
15/03/2012 | 0 | 1011
1017 | 0 | 0 | 2.2
0.2 | 18.3
20.7 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.05 | 03/07/2012 | 0 | 1007 | 0 | 0 | 0.2 | 20.7 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | | 04/10/2012 | 0 | 1007 | 0 | 0 | 1.4 | 19.1 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | | 26/02/2013 | 0 | 1032 | -0.3 | 0 | 0.3 | 20.6 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.03 | 24/04/2013 | 0.1 | 1017 | 0.08 | 0 | 0.3 | 20.8 | 3 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.04 | 23/07/2013 | -0.1 | 1008 | 0.08 | 0 | 7.5 | 13.2 | 2 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | | 31/10/2013 | 0 | 1012 | 0.05 | 0 | 1.2 | 18.5 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.04 | 15/04/2014 | 0.2 | 1028 | 0.07 | 0 | 2.2 | 18.5 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.03 | 31/07/2014 | 0.2 | 1007 | 0.05 | 0 | 1.9 | 20.3 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.03 | 28/10/2014 | 0.1 | 1007 | -0.03 | 0 | 2.3 | 18.2 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.03 | 23/01/2015 | 0.1 | 1015 | -0.03 | 0.4 | 0.2 | 21.8 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | Dry | 2.03 | 01/05/2015 | 0.1 | 999 | 0.03 | 0.4 | 0.6 | 20.7 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | DRY | 2.05 | 14/07/2015 | 0.1 | 1015 | 0.03 | 0 | 4.1 | 10.2 | 0 | 0 | | P1 | 365098 | 352374 | 39.93 | DRY | 2.03 | 22/10/2015 | | 1015 | 0.07 | 0 | 5.2 | 15.1 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |--------------|------------------|------------------|----------------------------|--------------------------|------------------|--------------------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | Q | 365196 | 352383 | 39.22 | 1.76 | 3.62 | 08/03/2011 | 0 | 1015 | 2.35 | 0 | 0.5 | 19.5 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.88 | 3.62 | 12/05/2011 | -0.4 | 1017 | 0 | 0.1 | 0.1 | 20.7 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.85 | 3.62 | 18/08/2011 | 0 | 1012 | 0 | 0.1 | 0.1 | 20.6 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.82 | 3.62 | 15/11/2011 | 0 | 1012 | 0 | 0 | 0.2 | 20.8 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.79 | 3.62 | 15/03/2012 | 0 | 1017 | 0 | 0 | 0.1 | 20.9 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.74 | 3.62 | 03/07/2012 | 0 | 1007 | 0 | 0 | 0.2 | 20.5 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.78 | 3.62 | 04/10/2012 | 0 | 1003 | 0 | 0 | 1.6 | 17.7 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.82 | 3.62 | 26/02/2013 | | 1034 | -0.7 | 0 | 0.3 | 20.6 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.975 | 3.58 | 24/04/2013 | | 1019 | 0.25 | 0 | 1.4 | 18.8 | 1 | 0 | | Q | 365196 | 352383 | 39.22 | 1.928 | 3.56 | 23/07/2013 | 0.1 | 1010 | 0.01 | 0 | 1.3 | 18.6 | 3 | 0 | | Q | 365196 | 352383 | 39.22 | 1.841 | 3.55 | 31/10/2013 | | 1013 | 0 | 0 | 3.3 | 12.8 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.861 | 3.57 | 28/01/2014 | | 974 | 0.02 | 0.2 | 5 | 16.9 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.952 | 3.54 | 15/04/2014 | 0.1 | 1028 | -0.13 | 0 | 0.7 | 20.4 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | - | 3.54 | 31/07/2014 | 0.1 | 1007 | 0.05 | 0 | 0.5 | 20.7 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.808 | 3.55 | 28/10/2014 | 0 | 1003 | 0.29 | 0 | 3.3 | 15.8 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.764 | 3.55 | 23/01/2015 | 0.0 | 1017 | 0.02 | 0.4 | 4 | 18.3 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.863 | 3.55 | 01/05/2015 | 0.1 | 999 | 0.02 | 0 | 1.5 | 20.6 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.865 | 3.54 | 14/07/2015 | 0.2 | 1015 | 0.09 | 0 | 3.8 | 15.2 | 0 | 0 | | Q | 365196 | 352383 | 39.22 | 1.757 | 3.51 | 22/10/2015 | | 1014 | 0.22 | 0 | 2.9 | 17 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.31 | 3.84 | 08/03/2011 | 0 | 1014 | 0 | 0 | 0 | 20 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.44 | 3.84 | 12/05/2011 | 0 | 1017 | -0.02 | 0 | 4.3 | 16.4 | 3 | 0 | | S | 365119 | 352343 | 39.77 | 3.42 | 3.84 | 18/08/2011 | 0.2 | 1012 | 0.03 | 0 | 2.5 | 17.8 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.36 | 3.84 | 15/11/2011 | 0 | 1012 | 0 | 0 | 3.6 | 18 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.37 | 3.84 | 15/03/2012 | 0 | 1018 | 0 | 0 | 0.2 | 20.6 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.19 | 3.84 | 03/07/2012 | | 1007 | 0 | 0 | 2.9 | 17.6 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.18 | 3.84 | 04/10/2012 | 0 | 1003 | 0 | 0 | 4.7 | 14 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.21 | 3.84 | 26/02/2013 | | 1032 | -0.3 | 0 | 2.3 | 17.9 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.295 | 3.96 | 24/04/2013 | 0.2 | 1018 | 0.12 | 0 | 1.2 | 19.4 | 4 | 0 | | S | 365119 | 352343 | 39.77 | 3.351 | 3.87 | 23/07/2013 | -0.1 | 1008 | 0.05 | 0 | 1.8 | 17.9 | 1 | 0 | | 3 | 365119 | 352343 | 39.77
39.77 | 3.204 | 3.86
3.86 | 31/10/2013 | | 1013
975 | 0.04 | 0 | 5.4
3.8 | 14.4
17.8 | 0 | 0 | | S | 365119
365119 | 352343
352343 | 39.77 | 3.158
3.25 | 3.86 | 28/01/2014
15/04/2014 | | 1028 | -0.1 | 0.2 | 2 | 18.1 | 0 | | | S | 365119 | 352343 | 39.77 | 3.23 | 3.86 | 31/07/2014 | | 1028 | 0.05 | 0 | 1.7 | 18.5 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.278 | 3.87 | 28/10/2014 | | 1007 | -0.1 | 0 | 2.8 | 18 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.226 | 3.87 | 23/01/2015 | 0.0 | 1017 | 0.07 | 0.4 | 3.9 | 17.7 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.329 | 3.87 | 01/05/2015 | 0.0 | 999 | -0.14 | 0.4 | 2.9 | 18.3 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.353 | 3.68 | 14/07/2015 | | 1015 | -0.14 | 0 | 4.6 | 15.5 | 0 | 0 | | S | 365119 | 352343 | 39.77 | 3.377 | 2.85 | 22/10/2015 | | 1013 | 0.21 | 0 | 6.2 | 14.3 | 0 | 0 | | T | 365140 | 352352 | 39.50 | 3.11 | 3.91 | 08/03/2011 | 0.6 | 1015 | 3.16 | 0 | 0.2 | 19.9 | 0 | 0 | | T . | 365140 | 352352 | 39.50 | 3.22 | 3.91 | 12/05/2011 | -0.1 | 1017 | 0 | 0 | 0.2 | 20.4 | 3 | 0 | | T T | 365140 | 352352 | 39.50 | 3.22 | 3.91 | 18/08/2011 | 0.4 | 1017 | 0 | 0 | 0.2 | 20.4 | 0 | 0 | | <u>'</u> | 365140 | 352352 | 39.50 | 3.13 | 3.91 | 15/11/2011 | 0.4 | 1012 | 0 | 0 | 0.4 | 21 | 0 | 0 | | T T | 365140 | 352352 | 39.50 | 3.14 | 3.91 | 15/03/2012 | | 1018 | 0 | 0 | 1.1 | 19.9 | 0 | 0 | | T . | 365140 | 352352 | 39.50 | 3.06 | 3.91 | 03/07/2012 | | 1007 | 0 | 0 | 0.5 | 20.2 | 0 | 0 | | T . | 365140 | 352352 | 39.50 | 3.05 | | 04/10/2012 | | 1007 | 0 | 0 | 1.6 | 18.8 | 0 | 0 | | † | 365140 | 352352 | 39.50 | 3.03 | 3.91 | 26/02/2013 | | 1032 | -0.3 | 0 | 2.4 | 18.6 | 0 | 0 | | Location | Easting | Northing | Surface
Elevation (mOD) | Groundwater
Depth (m) | Hole Base
(m) | Date | Flow Rate
(I/min) | Atmospheric
Pressure (mbar) | Relative
Pressure (mbar) | Methane
(%) | Carbon
Dioxide (%) | Oxygen
(%) | Carbon
Monoxide (ppm) | Hydrogen
Sulphide (ppm) | |----------|---------|----------|----------------------------|--------------------------|------------------|------------|----------------------|--------------------------------|-----------------------------|----------------|-----------------------|---------------|--------------------------|----------------------------| | Т | 365140 | 352352 | 39.50 | 3.092 | 3.88 | 24/04/2013 | 0.4 | 1018 | 0.23 | 0 | 0.8 | 19.8 | 2 | 0 | | Т | 365140 | 352352 | 39.50 | 3.145 | 3.87 | 23/07/2013 | -0.1 | 1008 | 0.05 | 0 | 1.4 | 19.1 | 3 | 0 | | Т | 365140 | 352352 | 39.50 | 3.025 | 3.98 | 31/10/2013 | 0.1 | 1012 | 0.04 | 0 | 2.1 | 18.1 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | 2.985 | 3.89 | 28/01/2014 | 0 | 975 | 0.02 | 0.2 | 1.7 | 20.6 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | 3.052 | 3.88 | 15/04/2014 | 0.2 | 1028 | -0.14 | 0 | 4 | 15.3 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | - | 3.88 | 31/07/2014 | 0.1 | 1007 | 0.02 | 0 | 2.6 | 19.5 | 0 | 1 | | Т | 365140 | 352352 | 39.50 | 3.079 | 3.88 | 28/10/2014 | 0.2 | 1003 | 0.05 | 0 | 2.8 | 18.6 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | 3.039 | 3.88 | 23/01/2015 | 0.0 | 1017 | -0.05 | 0.4 | 1.9 | 20.4 | 0 | 0 | | Т | 365140 | 352352 |
39.50 | 3.100 | 3.88 | 01/05/2015 | 0.1 | 999 | 0.02 | 0 | 1.9 | 19.9 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | 3.140 | 3.89 | 14/07/2015 | 0.1 | 1016 | 0.02 | 0 | 3 | 19.2 | 0 | 0 | | Т | 365140 | 352352 | 39.50 | 3.180 | 3.90 | 22/10/2015 | 0 | 1015 | 0.29 | 0 | 1.9 | 19.8 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.64 | 3.98 | 08/03/2011 | 0 | 1015 | -0.22 | 0 | 2.2 | 18.5 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 2.09 | 3.98 | 12/05/2011 | 0 | 1017 | 0 | 0.1 | 1.8 | 18.9 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 2.25 | 3.98 | 18/08/2011 | 0 | 1012 | 0 | 0 | 0.4 | 20.2 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 2.04 | 3.98 | 15/11/2011 | 0 | 1012 | 0 | 0 | 2.7 | 18.6 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.81 | 3.98 | 15/03/2012 | 0 | 1018 | 0 | 0 | 1.8 | 19.4 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.9 | 3.98 | 03/07/2012 | 0 | 1007 | 0 | 0 | 1.7 | 19.2 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.74 | 3.98 | 04/10/2012 | 0 | 1003 | 0 | 0 | 1 | 19.5 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.55 | 3.98 | 26/02/2013 | 0 | 1036 | -0.5 | 0 | 0 | 20.6 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.799 | 3.98 | 24/04/2013 | -0.1 | 1018 | 0.02 | 0 | 0.5 | 19.8 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 2.155 | 3.98 | 23/07/2013 | 0.2 | 1010 | 0.17 | 0 | 1.7 | 15.7 | 2 | 0 | | V | 365195 | 352346 | 39.39 | 1.92 | 3.9 | 31/10/2013 | 0 | 1013 | 0 | 0 | 4.3 | 16.6 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.392 | 3.992 | 28/01/2014 | 0 | 975 | 0 | 2.1 | 2 | 20.9 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.742 | 4.01 | 15/04/2014 | 0.1 | 1028 | -0.03 | 0 | 3.5 | 17.8 | 0 | 0 | | V | 365195 | 352346 | 39.39 | - | 4.01 | 31/07/2014 | 0 | 1007 | 0.05 | 0 | 2.7 | 18.1 | 0 | 1 | | V | 365195 | 352346 | 39.39 | 1.979 | 3.98 | 28/10/2014 | 0 | 1003 | 0.24 | 0 | 3.5 | 18.1 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.740 | 3.98 | 23/01/2015 | 0.0 | 1017 | 0.02 | 0.4 | 3.1 | 19.8 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.851 | 3.98 | 01/05/2015 | 0.1 | 999 | -0.07 | 0 | 1.4 | 20.4 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 2.104 | 4.00 | 14/07/2015 | 0.2 | 1015 | 0.15 | 0 | 3.2 | 18.9 | 0 | 0 | | V | 365195 | 352346 | 39.39 | 1.994 | 3.94 | 22/10/2015 | 0 | 1014 | -0.03 | 0 | 3.3 | 18.6 | 0 | 0 | Client Name: SLR Consulting Ltd Report : Solid Reference: Nantwich deposit model Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub | JE Job No.: | 11/2015 | | | | | | | | | | | |---|--------------|-------------|-------------|--------------|-------------|---------------|--------------|--|---------------|----------------|------------------------| | J E Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | Sample ID | BHAE/2 | BHAE/4 | BHAF/10 | BHAF/13 | BHAF/15 | BHAE/17 | BHAF/20 | | | | | | Depth | 2.17-2.26 | 2.55-2.78 | 2.70-3.00 | 0.83-1.00 | 1.39-1.70 | 2.0-2.27 | 3.0-3.2 | | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | abbrevi | ations and a | cronyms | | Containers | Т | Т | Т | Т | Т | Т | Т | | | | | | Sample Date | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | | | | | | Sample Type | Soil | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | LOD | Units | Method | | Date of Receipt | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | | 200 | Onito | No. | | Sulphur | 1.02 | 0.45 | 0.02 | 0.14 | 0.32 | 1.12 | 0.49 | | <0.01 | % | TM63/PM15 | | | | | | | | | | | | | | | Ammoniacal Nitrogen as N | 11.2 | 5.7 | 1.3 | 4.8 | 4.9 | 5.0 | 12.8 | | <0.6 | mg/kg | TM38/PM20 | | Chloride #M | 428 | 78 | 108 | 134 | 197 | 743 | 81 | | <2 | mg/kg | TM38/PM20 | | Nitrate as NO3 #M | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | | <2.5 | mg/kg | TM38/PM20 | | Nitrite as NO2 ^{#M} Ortho Phosphate as PO4 | <0.05
6.5 | 0.07
8.9 | 0.13
1.7 | <0.05
1.1 | 0.15
2.2 | <0.05
<0.3 | 0.11
19.5 | | <0.05
<0.3 | mg/kg | TM38/PM20
TM38/PM20 | | Sulphate as SO4 #M | 468.8 | 52.8 | 42.0 | 30.7 | 88.5 | 139.7 | <1.5 | | <1.5 | mg/kg
mg/kg | TM38/PM20 | | Suipriale as SU4 | 700.0 | 52.0 | 72.0 | 50.1 | 00.0 | 100.1 | -1.5 | | 1.5 | mg/kg | . 10100/1 10120 | | Loss on Ignition# | 27.6 | 2.5 | 2.0 | 5.4 | 12.8 | 23.5 | 2.2 | | <1.0 | % | TM22/PM0 | | pH ^{#M} | 7.37 | 7.99 | 8.21 | 7.60 | 6.93 | 7.30 | 8.12 | | <0.01 | pH units | TM73/PM11 | | Sulphide* | <10 | <10 | <10 | 23 | <10 | 55 | <10 | | <10 | mg/kg | TM0/PM0 | Client Name: SLR Consulting Ltd Report : Solid Reference: Nantwich deposit model Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub | JE Job No.: | 11/2015 | | | | | | | | | | | |-------------------------------|------------|------------|------------|------------|------------|------------|------------|--|---------|--------------|-----------| | J E Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | Sample ID | BHAE/2 | BHAE/4 | BHAF/10 | BHAF/13 | BHAF/15 | BHAE/17 | BHAF/20 | | | | | | Depth | 2.17-2.26 | 2.55-2.78 | 2.70-3.00 | 0.83-1.00 | 1.39-1.70 | 2.0-2.27 | 3.0-3.2 | | | e attached r | | | COC No / misc | | | | | | | | | abbrevi | ations and a | cronyms | | Containers | Т | Т | Т | Т | Т | Т | Т | | | | | | Sample Date | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | | | | | | Sample Type | Soil | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | LOD | Units | Method | | Date of Receipt | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | | LOD | Ollits | No. | | Iron | 14050 | 10260 | 28260 | 35470 | 17360 | 9550 | 15660 | | <20 | mg/kg | TM30/PM15 | | Sodium | 2411 | 165 | 394 | 288 | 1465 | 2356 | 255 | | <5 | mg/kg | TM30/PM15 | | Electrical Conductivity @25C# | 1300 | 100 | 775 | <100 | 750 | 1800 | 525 | | <100 | uS/cm | TM76/PM0 | + | Client Name: SLR Consulting Ltd Report : Solid Reference: Nantwich deposit model Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub | JE Job No.: | 11/2015 | | | | | | | | | | | |-------------------------------|------------|------------|------------|------------|------------|------------|------------|--|---------|--------------|-----------| | J E Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | Sample ID | BHAE/2 | BHAE/4 | BHAF/10 | BHAF/13 | BHAF/15 | BHAE/17 | BHAF/20 | | | | | | Depth | 2.17-2.26 | 2.55-2.78 | 2.70-3.00 | 0.83-1.00 | 1.39-1.70 | 2.0-2.27 | 3.0-3.2 | | | e attached r | | | COC No / misc | | | | | | | | | abbrevi | ations and a | cronyms | | Containers | Т | Т | Т | Т | Т | Т | Т | | | | | | Sample Date | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | | | | | | Sample Type | Soil | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | LOD | Units | Method | | Date of Receipt | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | | LOD | Ollits | No. | | Iron | 14050 | 10260 | 28260 | 35470 | 17360 | 9550 | 15660 | | <20 | mg/kg | TM30/PM15 | | Sodium | 2411 | 165 | 394 | 288 | 1465 | 2356 | 255 | | <5 | mg/kg | TM30/PM15 | | Electrical Conductivity @25C# | 1300 | 100 | 775 | <100 | 750 | 1800 | 525 | | <100 | uS/cm | TM76/PM0 | + | Client Name: SLR Consulting Ltd Report : Solid Reference: Nantwich deposit model Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub | JE Job No.: | 11/2015 | | | | | | | | | | | |---|--------------|-------------|-------------|--------------|-------------|---------------
--------------|--|---------------|----------------|------------------------| | J E Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | Sample ID | BHAE/2 | BHAE/4 | BHAF/10 | BHAF/13 | BHAF/15 | BHAE/17 | BHAF/20 | | | | | | Depth | 2.17-2.26 | 2.55-2.78 | 2.70-3.00 | 0.83-1.00 | 1.39-1.70 | 2.0-2.27 | 3.0-3.2 | | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | abbrevi | ations and a | cronyms | | Containers | Т | Т | Т | Т | Т | Т | Т | | | | | | Sample Date | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | | | | | | Sample Type | Soil | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | LOD | Units | Method | | Date of Receipt | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | 19/01/2011 | | 200 | Onito | No. | | Sulphur | 1.02 | 0.45 | 0.02 | 0.14 | 0.32 | 1.12 | 0.49 | | <0.01 | % | TM63/PM15 | | | | | | | | | | | | | | | Ammoniacal Nitrogen as N | 11.2 | 5.7 | 1.3 | 4.8 | 4.9 | 5.0 | 12.8 | | <0.6 | mg/kg | TM38/PM20 | | Chloride #M | 428 | 78 | 108 | 134 | 197 | 743 | 81 | | <2 | mg/kg | TM38/PM20 | | Nitrate as NO3 #M | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | | <2.5 | mg/kg | TM38/PM20 | | Nitrite as NO2 ^{#M} Ortho Phosphate as PO4 | <0.05
6.5 | 0.07
8.9 | 0.13
1.7 | <0.05
1.1 | 0.15
2.2 | <0.05
<0.3 | 0.11
19.5 | | <0.05
<0.3 | mg/kg | TM38/PM20
TM38/PM20 | | Sulphate as SO4 #M | 468.8 | 52.8 | 42.0 | 30.7 | 88.5 | 139.7 | <1.5 | | <1.5 | mg/kg
mg/kg | TM38/PM20 | | Suipriale as SU4 | 700.0 | 52.0 | 72.0 | 50.1 | 00.0 | 100.1 | -1.5 | | 1.5 | mg/kg | . 10100/1 10120 | | Loss on Ignition# | 27.6 | 2.5 | 2.0 | 5.4 | 12.8 | 23.5 | 2.2 | | <1.0 | % | TM22/PM0 | | pH ^{#M} | 7.37 | 7.99 | 8.21 | 7.60 | 6.93 | 7.30 | 8.12 | | <0.01 | pH units | TM73/PM11 | | Sulphide* | <10 | <10 | <10 | 23 | <10 | 55 | <10 | | <10 | mg/kg | TM0/PM0 | SLR Consulting Ltd Client Name: Report : Liquid 406.00889.00005 Reference: Location: NANTWICH Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 11/2257 | | | | | | H=H ₂ SO ₄ , 2 | Z=ZnAc, N= | NaOH, HN | HN0₃ | | | | |------------------------------|---------------|------------------|----------------|----------------|------------------|-----------------|--------------------------------------|-----------------|----------------|----------------|---------------|---------------|----------------------| | J E Sample No. | 1-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | | | | | Sample ID | AB | AC | AE | AF | AG | F2 | L | М | N | 0 | | | | | Depth | 1.77 | 2.65 | 2.58 | 2.84 | 2.61 | 1.44 | 2.26 | 1.55 | 1.73 | 1.49 | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | | | abbrevi | ations and ad | cronyms | | Containers | VHPG | | | | Sample Date | 01/02/2011 | 01/02/2011 | 01/02/2011 | 01/02/2011 | 01/02/2011 | 01/02/2011 | 02/02/2011 | 02/02/2011 | 02/02/2011 | 02/02/2011 | | | | | Sample Type | Liquid | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Method | | Date of Receipt | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | 04/02/2011 | LOD | Units | No. | | Dissolved Iron # | <0.02 | 13.55 | 0.25 | 0.10 | 0.24 | <0.02 | <0.02 | <0.02 | 0.07 | <0.02 | <0.02 | mg/l | TM30/PM14 | | Dissolved Manganese # | 0.007 | 3.516 | 1.663 | 0.920 | 0.543 | 1.353 | 0.643 | 0.148 | 0.476 | 1.365 | <0.002 | mg/l | TM30/PM14 | | Dissolved Sodium# | 64.7 | 505.9 | 145.1 | 467.2 | 604.4 | 176.0 | 151.5 | 196.5 | 114.3 | 141.2 | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | | | | | Sulphate # Chloride # | 44.94
90.6 | 171.73
1051.9 | 62.12
228.6 | 12.39
787.0 | 311.67
1488.6 | 222.30
325.3 | 153.71
298.5 | 104.96
368.1 | 86.18
176.5 | 41.96
201.6 | <0.05
<0.3 | mg/l
mg/l | TM38/PM0
TM38/PM0 | | Nitrate as NO3 [#] | 25.3 | 5.4 | <0.2 | <0.2 | <0.2 | <0.2 | 9.7 | 3.1 | 1.2 | 3.4 | <0.3 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 # | 9.91 | <0.06 | 11.78 | 10.95 | <0.06 | 0.82 | 0.89 | 7.79 | 0.41 | 1.24 | <0.06 | mg/l | TM38/PM0 | | Sulphide Aquakem | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | mg/l | TM38/PM0 | | | | | | | | | | | | | | | | | Ammoniacal Nitrogen as NH4 # | 0.03 | 1.52 | 21.36 | 46.22 | 5.27 | 4.71 | 21.52 | 0.23 | 4.48 | 10.19 | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | <0.001 | <0.001 | 1.981 | 3.396 | 0.009 | <0.001 | 0.032 | <0.001 | 8.107 | <0.001 | <0.001 | mg/l | TM25/PM0 | | Discontou inicalano | 0.001 | 0.001 | 1.001 | 0.000 | 0.000 | 0.001 | 0.002 | 0.001 | 0.107 | 0.001 | 0.001 | 9 | 111126111110 | | Total Alkalinity as CaCO3# | 434 | 480 | 708 | 868 | 552 | 476 | 476 | 352 | 466 | 592 | <1 | mg/l | TM75/PM0 | | | | | | | | | | | | | | | | | pH# | 8.10 | 7.43 | 7.82 | 7.73 | 7.49 | 7.70 | 7.93 | 7.54 | 7.93 | 7.78 | <0.01 | pH units | TM73/PM0 | l | | | <u> </u> | | | | Client Name: SLR Consulting Ltd Report : Liquid Reference: 406.00889.00005 Location: NANTWICH Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 11/2257 | | | | | H=H ₂ SO ₄ , | Z=ZnAc, N= | | | | | |--|----------------|----------------|----------------|----------------|----------------|------------------------------------|------------|--|-----------------|--------------|------------------------| | J E Sample No. | | 56-60 | 61-65 | 66-70 | 71-75 | | | | | | | | Sample ID | Р | Q | s | Т | V | | | | Ì | | | | Depth | 3.29 | 1.86 | 3.35 | 3.14 | 1.75 | | | | Please se | e attached n | notes for all | | COC No / misc | | | | | | | | | | ations and a | | | Containers | VHPG | VHPG | VHPG | VHPG | VHPG | | | | 1 | | | | Sample Date | | 01/02/2011 | | 01/02/2011 | 01/02/2011 | | | | l | | | | Sample Type | | Liquid | | Liquid | Liquid | | | | 1 | | | | | | | Liquid | | | | | | | 1 | T 1 | | Batch Number | | 1 | 1 | 1 | 1 | | | | LOD | Units | Method
No. | | Date of Receipt | | | | | | | | | -0.00 | | | | Dissolved Iron [#] Dissolved Manganese [#] | <0.02
1.313 | <0.02
0.154 | <0.02
0.213 | <0.02
0.786 | <0.02
4.041 | | | | <0.02
<0.002 | mg/l
mg/l | TM30/PM14
TM30/PM14 | | Dissolved Sodium # | 14.9 | 661.9 | 104.8 | 31.0 | 18.3 | | | | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | - | | | Sulphate # | 468.44 | 59.37 | 56.09 | 20.25 | 396.31 | | | | <0.05 | mg/l | TM38/PM0 | | Chloride # | 16.9 | 1075.0 | 202.1 | 68.6 | 15.5 | | | | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3# | 16.5 | 6.0 | 2.0 | 1.8
12.44 | <0.2 | | | | <0.2 | mg/l | TM38/PM0
TM38/PM0 | | Ortho Phosphate as PO4 # Sulphide Aquakem | 16.26
<0.3 | 6.00
<0.3 | 7.73
<0.3 | <0.3 | <0.06
<0.3 | | | | <0.06
<0.3 | mg/l
mg/l | TM38/PM0 | | | 3.0 | 3.0 | 3.0 | 5.5 | 3.5 | | | | 5.5 | g/i | 53/1 1410 | | Ammoniacal Nitrogen as NH4 # | 0.12 | 0.15 | 0.29 | 3.99 | 1.24 | | | | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | 0.007 | <0.001 | 0.017 | 2.970 | 0.094 | | | | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3# | 246 | 282 | 342 | 304 | 78 | | | | <1 | mg/l | TM75/PM0 | | рН# | 6.98 | 7.45 | 7.31 | 7.36 | 6.36 | | | | <0.01 | pH units | TM73/PM0 | 1 | - | | | | | | | | | | | | | - | <u> </u> | | | Client Name: SLR Consulting Ltd Report : Liquid 406.00889.00005 Reference: NANTWICH Location: Tim Malim Contact: Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 12/1723 | | | | | | H=H ₂ SO ₄ , | Z=ZnAc, N= | NaOH, HN | =HN0 ₃ | _ | | | |---------------------------------------|-------------|--------------|--------------|--------------------|-------------|---------------|------------------------------------|-------------|-------------|-------------------|---------------|--------------|----------------------| | J E Sample No. | 1-6 | 7-12 | 13-18 | 19-24 | 25-30 | 31-36 | 37-42 | 43-48 | 49-54 | 55-60 | | | | | Sample ID | AB | AC | AE | AF | AG | F2 | L | М | N1 |
0 | | | | | Depth | 1.77 | 2.42 | 2.58 | 2.77 | 1.53 | 1.05 | 1.18 | 1.47 | 1.54 | 1.49 | Please se | e attached r | notes for all | | COC No / misc | | | | | | | | | | | abbrevi | ations and a | cronyms | | Containers | V H HCL Z P | | | | Sample Date | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | | | | | Sample Type | Liquid | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Method | | Date of Receipt | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | LOD | Units | No. | | Total Dissolved Iron | <0.0047 | <0.0047 | 0.0105 | 0.0206 | 0.0211 | 0.0583 | 0.0268 | 0.0304 | 0.1682 | 0.0234 | <0.0047 | mg/l | TM30/PM14 | | Dissolved Manganese | <0.0015 | 2.0510 | 1.2410 | 0.9210 | 0.8265 | 0.4455 | 0.4951 | 0.2375 | 0.5999 | 1.2010 | <0.0015 | mg/l | TM30/PM14 | | Dissolved Sodium | 66.2 | 2071.0 | 196.9 | 408.5 | 1705.0 | 90.7 | 141.4 | 207.9 | 64.0 | 73.2 | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | | | | | Sulphate | 55.76 | 186.08 | 9.89 | 12.18 | 271.66 | 38.04 | 119.21 | 133.55 | 74.66 | 28.48 | <0.05 | mg/l | TM38/PM0 | | Chloride | 96.1 | 2803.6 | 307.4 | 592.9 | 3047.8 | 102.0 | 222.3 | 300.5 | 79.1 | 76.2 | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3 Ortho Phosphate as PO4 | 8.5
9.99 | 0.4
<0.06 | 0.9
11.43 | <0.2
8.61 | 2.5
0.19 | <0.2
13.64 | 6.4
1.44 | 6.0
7.09 | 1.5
0.12 | 0.3
4.95 | <0.2
<0.06 | mg/l
mg/l | TM38/PM0
TM38/PM0 | | orato i nospitate as FO4 | 5.55 | -0.00 | 11.43 | 0.01 | 0.18 | 13.04 | 1.44 | 7.09 | 0.12 | 4.50 | -0.00 | my/I | T IVISO/P'IVIU | | Ammoniacal Nitrogen as NH4 | <0.03 | 2.63 | 24.23 | 49.88 ⁺ | 1.52 | 1.85 | 20.91 | 0.09 | 3.54 | 8.06 | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | 0.006 | 0.364 | 5.273 | 3.765 | 0.012 | 0.943 | <0.001 | <0.001 | 6.777 | <0.001 | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 | 490 | 428 | 850 | 942 | 564 | 308 | 462 | 394 | 468 | 450 | <1 | mg/l | TM75/PM0 | | Sulphide | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | mg/l | TM106/PM0 | | Calphiae | -0.01 | -0.01 | -0.01 | 10.01 | 10.01 | 10.01 | 10.01 | 10.01 | 10.01 | -0.01 | -0.01 | mgn | Client Name: SLR Consulting Ltd Report : Liquid Reference: 406.00889.00005 Location: NANTWICH Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle **JE Job No.:** 12/1723 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HN0; | JE Job No.: | 12/1723 | | | | | H=H ₂ SO ₄ , | Z=ZnAc, N= | NaOH, HN | =HN0 ₃ | | | | |----------------------------|--------------|----------------|---------------|---------------|--------------|------------------------------------|------------|----------|-------------------|--------------|--------------|----------------------| | J E Sample No. | 61-66 | 67-72 | 73-78 | 79-84 | 85-90 | | | | | | | | | Sample ID | Р | Q | S | Т | V | | | | | | | | | Depth | 2.36 | 1.82 | 3.32 | 3.12 | 1.66 | | | | | Please se | e attached r | notes for all | | COC No / misc | | | | | | | | | | | ations and a | | | Containers | V H HCL Z P | | | | | | | | | Sample Date | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | | | | | | | | | Sample Type | Liquid | Liquid | Liquid | Liquid | Liquid | | | | | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | | | | | | | Method | | Date of Receipt | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | | | | | LOD | Units | No. | | Total Dissolved Iron | <0.0047 | 0.0131 | 0.0156 | 0.0844 | 1.9220 | | | | | <0.0047 | mg/l | TM30/PM14 | | Dissolved Manganese | 2.3170 | 0.0336 | 0.3080 | 1.0960 | 8.6010 | | | | | <0.0015 | mg/l | TM30/PM14 | | Dissolved Sodium | 22.8 | 549.6 | 310.8 | 44.9 | 38.4 | | | | | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | | | | Sulphate
Chlorido | 876.01 | 57.52
750.0 | 71.68 | 29.81
75.9 | 974.34 | | | | | <0.05 | mg/l | TM38/PM0 | | Chloride
Nitrate as NO3 | 23.2
32.0 | 750.0
23.7 | 577.0
15.9 | 75.9
<0.2 | 34.5
<0.2 | | | | | <0.3
<0.2 | mg/l
mg/l | TM38/PM0
TM38/PM0 | | Ortho Phosphate as PO4 | 14.90 | 10.61 | 5.04 | 13.55 | <0.06 | | | | | <0.06 | mg/l | TM38/PM0 | | | | | | | | | | | | | | | | Ammoniacal Nitrogen as NH4 | 0.40 | <0.03 | 0.17 | 5.96 | 1.83 | | | | | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | <0.001 | <0.001 | 0.005 | 2.024 | 0.026 | | | | | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 | 242 | 374 | 308 | 378 | NDP | | | | | <1 | mg/l | TM75/PM0 | | Sulphide | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | | | | | <0.01 | mg/l | TM106/PM0 | SLR Consulting Ltd Client Name: Report : Liquid 406.00889.00005 Reference: Location: NANTWICH Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 12/1723 | | | | | | H=H ₂ SO ₄ , 2 | Z=ZnAc, N= | NaOH, HN= | =HN0₃ | | | | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------|-------------|-------------|-------------|---------|---------------|----------| | J E Sample No. | 1-6 | 7-12 | 13-18 | 19-24 | 25-30 | 31-36 | 37-42 | 43-48 | 49-54 | 55-60 | | | | | Sample ID | AB | AC | AE | AF | AG | F2 | L | М | N1 | 0 | | | | | Depth | 1.77 | 2.42 | 2.58 | 2.77 | 1.53 | 1.05 | 1.18 | 1.47 | 1.54 | 1.49 | | e attached no | | | COC No / misc | | | | | | | | | | | abbrevi | ations and ac | ronyms | | Containers | V H HCL Z P | | | | Sample Date | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | | | | | Sample Type | Liquid | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | LOD | Units | Method | | Date of Receipt | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | LOD | Offics | No. | | pH¹ | 8.38 | 8.04 | 8.27 | 7.97 | 7.63 | 8.39 | 8.28 | 8.34 | 8.28 | 8.42 | <0.01 | pH units | TM73/PM0 | 1 | | l . | - | <u> </u> | | Client Name: SLR Consulting Ltd Report : Liquid Reference: 406.00889.00005 Location: NANTWICH Contact: Tim Malim Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 12/1723 | | | | | H=H ₂ SO ₄ , 2 | Z=ZnAc, N= | NaOH, HN= | HN0₃ | | | | |-----------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------|------------|-----------|------|-----------|---------------|--------------| | J E Sample No. | 61-66 | 67-72 | 73-78 | 79-84 | 85-90 | | | | | | | | | Sample ID | Р | Q | S | Т | V | | | | | | | | | Depth | 2.36 | 1.82 | 3.32 | 3.12 | 1.66 | | | | | Please se | e attached no | otes for all | | COC No / misc | | | | | | | | | | abbrevia | ations and ac | ronyms | | Containers | V H HCL Z P | | | | | | | | | Sample Date | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | 16/02/2012 | | | | | | | | | Sample Type | Liquid | Liquid | Liquid | Liquid | Liquid | | | | | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | | | | | | | Method | | Date of Receipt | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | 21/02/2012 | | | | | LOD | Units | No. | | pH¹ | 8.08 | 8.30 | 8.07 | 8.22 | 3.41 | | | | | <0.01 | pH units | TM73/PM0 |
 | <u>I</u> | | <u>I</u> | <u>I</u> | | | | | | | | Client Name: SLR Consulting Ltd Report : Liquid 406.00889.00005 Reference: Location: NANTWICH Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 13/2410 | | | | | | H=H ₂ SO ₄ , 2 | Z=ZnAc, N= | NaOH, HN= | :HN0 ₃ | | | | |----------------------------|-----------------|------------------|-----------------|---------------|------------------|----------------|--------------------------------------|----------------|---------------|-------------------|---------------|--------------|----------------------| | J E Sample No. | 1-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-31 | 32-36 | 37-41 | 42-47 | 48-52 | | | | | Sample ID | AB | AC | AE | AF | AG | F2 | L | М | N1 | 0 | | | | | Depth | 1.44 | 2.45 | 2.58 | 2.84 | 1.67 | 1.07 | 2.16 | 1.51 | 1.48 | 1.49 | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | | | | ations and a | | | Containers | VHZG | | | | Sample Date | 27/02/2013 | 27/02/2013 | 27/02/2013 | 27/02/2013 | 27/02/2013 | 26/02/2013 | 27/02/2013 | 28/02/2013 | 26/02/2013 | 28/02/2013 | | | | | Sample Type | Ground Water | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Method | | Date of Receipt | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | 02/03/2013 | LOD | Units | No. | | Total Dissolved Iron # | <0.02 | 9.41 | <0.02 | 0.03 | 0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | mg/l | TM30/PM14 | | Dissolved Manganese # | <0.002 | 3.028 | 2.098 | 1.088 | 1.184 | 0.769 | 0.033 | 0.178 | 1.071 | 1.310 | <0.002 | mg/l | TM30/PM14 | | Dissolved Sodium# | 111.9 | 582.1 | 180.4 | 399.9 | 1595.0 | 138.7 | 29.5 | 170.2 | 22.0 | 119.5 | <0.1 | mg/l | TM30/PM14 | | 0.1.1.# | 105.47 | 100.70 | 470.47 | 0.40 | 000 50 | 40.00 | 40.00 | 07.00 | 00.00 | 00.70 | .0.05 | | Th 400 / Dh 40 | | Sulphate # Chloride # | 185.47
265.3 | 166.70
1094.1 | 178.47
521.9 | 8.10
683.2 | 263.53
3924.5 | 48.83
246.0 | 48.66
28.5 | 97.02
292.5 | 69.26
28.2 | 29.73
150.1 | <0.05
<0.3 | mg/l
mg/l | TM38/PM0
TM38/PM0 | | Nitrate as NO3# | 99.8 | <0.2 | 1.4 | <0.2 | 0.8 | 0.3 | 11.8 | 10.9 | <0.2 | <0.2 | <0.3 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 # | 9.47 | <0.06 | 9.90 | 14.03 | 0.74 | 9.80 | 6.49 | 5.66 | 0.48 | 2.98 | <0.06 | mg/l | TM38/PM0 | | | | | | | | | | | | | | | | | Total Ammonia as NH4# | <0.03 | 1.89 | 11.77** | 40.34** | 1.35 | 2.19 | 5.54 | 0.04 | 1.16 | 9.59 | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | 0.007 | <0.001 | <0.001 | 4.019 | <0.001 | <0.001 | 0.012 | <0.001 | 2.783 | <0.001 | <0.001 | ma/l | TM25/PM0 | | Dissolved Methane | 0.007 | <0.001 | <0.001 | 4.019 | <0.001 | <0.001 | 0.012 | <0.001 | 2.703 | <0.001 | <0.001 | mg/l | TIVI25/FIVIO | | Total Alkalinity as CaCO3# | 498 | 528 | 828 | 860 | 640 | 300 | 114 | 312 | 392 | 436 | <1 | mg/l | TM75/PM0 | | | | | | | | | | | | | | | | | pH# | 7.30 | 6.76 | 6.98 | 7.09 | 6.84 | 7.04 | 6.79 | 7.04 | 7.10 | 7.14 | <0.01 | pH units | TM73/PM0 | | Culabida | 40.2 | 40.2 | 40.2 | 40.0 | 40.2 | 40.2 | 40.2 | 40.2 | 40.0 | 10.2 | 50.2 | | TM106/PM0 | | Sulphide | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | mg/l | TIVITUO/PIVIU | i | Client Name: SLR Consulting Ltd Report: Liquid Reference: 406.00889.00005 Location: NANTWICH Contact: Mark Swain Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle **JE Job No.:** 13/2410 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃ | JE Job No.: | 13/2410 | | | | | H=H ₂ SO ₄ , 2 | Z=ZnAc, N= | NaOH, HN= | HN0 ₃ | | | | |-----------------------------|------------|------------|------------|------------|------------|--------------------------------------|------------|-----------|------------------|-----------|------------------|----------------| | J E Sample No. | 53-57 | 58-62 | 63-67 | 68-72 | 73-77 | | | | | | | | | Sample ID | Р | Q | s | Т | V | | | | | | | | | Depth | 3.18 | 1.82 | 3.21 | 3.03 | 1.55 | | | | | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | | | ations and a | | | Containers | VHZG | VHZG | VHZG | VHZG | VHZG | | | | | | | | | Sample Date | 28/02/2013 | 27/02/2013 | 28/02/2013 | 28/02/2013 | 27/02/2013 | | | | | | | | | Sample Type | | | | | | | | | | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | | | | | | | I | | Date of Receipt | | | | | | | | | | LOD | Units | Method
No. | | Total Dissolved Iron # | 0.03 | <0.02 | <0.02 | <0.02 | 15.45 | | | | | <0.02 | ma/l | TM30/PM14 | | Dissolved Manganese # | 3.746 | 0.058 | 0.305 | 0.504 | 1.169 | | | | | <0.02 | mg/l
mg/l | TM30/PM14 | | Dissolved Sodium# | 21.4 | 880.5 | 257.8 | 35.2 | 27.2 | | | | | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | , and the second | | | Sulphate # | 1117.14 | 52.64 | 79.60 | 107.35 | 127.49 | | | | | <0.05 | mg/l | TM38/PM0 | | Chloride# | 26.6 | 1379.8 | 427.9 | 51.8 | 22.2 | | | | | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3# | 9.6 | 12.2 | 9.4 | 6.3 | <0.2 | | | | | <0.2 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 # | 7.88 | 6.71 | 6.19 | 9.77 | 17.99 | | | | | <0.06 | mg/l | TM38/PM0 | | Total Ammonia as NH4 # | 0.22 | 0.15 | 0.29 | 2.71 | 0.18 | | | | | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | <0.001 | <0.001 | 0.011 | <0.001 | 0.006 | | | | | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 # | 254 | 232 | 368 | 288 | 66 | | | | | <1 | mg/l | TM75/PM0 | | Total Aikalifility as CaCOS | 254 | 232 | 300 | 200 | 00 | | | | | - 1 | mg/i | TIVIT S/T IVIO | | pH# | 6.30 | 6.92 | 6.90 | 6.87 | 5.75 | | | | | <0.01 | pH units | TM73/PM0 | | Sulphide | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | | | | | <0.3 | mg/l | TM106/PM0 | Client Name: SLR Consulting Ltd Reference: 406.00889.00005 Reference: 406.00889.0 Location: Nantwich Contact: Mark Swain JE Job No.: 14/3458 Report : Liquid Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | J E Sample No.
Sample ID | 1-6
AB | 7-12 | 13-18 | 19-24 | 25-30 | 31-36 | 37-42 | 43-48 | 49-54 | 55-60 | | | | |--|--------------|------------|------------|------------|--------------|------------|---------------|------------|------------|---------------|---|--------------|------------------------| | | AB | ۸. | | | | | | | | | | | | | | | AC | AE | AF | AG | F2 | L | М | N1 | 0 | | | | | Depth | 2.65 | 3.2 | 3.25 | 3.25 | 2.3 | 2.65 | 2.9 | 2.6 | 2.2 | 2.45 | Please se | e attached n | otes for all | | COC No / misc | | | | | | | | | | | Please see attached notes for all
abbreviations and acronyms | | | | Containers | V H HN Z P | | | | Sample Date | | | | | | | | 26/02/2014 | | | | | | | Sample Type | Liquid | | | | | | | | - | | | - | - | | | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | LOD | Units | Method
No. | | Date of Receipt | | | | | | | | 01/03/2014 | | 01/03/2014 | | | | | Total Dissolved Iron Dissolved Manganese | <0.02 | 19 | 0.18 | 5.8 | 0.037 | 0.04 | <0.02
0.03 | 0.037 | 0.84 | 0.029
0.75 | <0.02 | mg/l | TM30/PM14 | | Dissolved Manganese Dissolved Potassium | <0.002
15 | 3.2
51 | 3.9
65 | 1.7
57 | 0.044
5.2 | 0.35 | 14 | 0.12
24 | 11 | 17 | <0.002
<0.1 | mg/l
mg/l | TM30/PM14
TM30/PM14 | | Dissolved Foldasaum Dissolved Sodium | 110 | 510 | 270 | 350 | 390 | 91 | 21 | 150 | 24 | 29 | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | | | | | Sulphate | 95 | 170 | 320 | 6.3 | 31 | 44 | 41 | 110 | 51 | 32 | <0.05 | mg/l | TM38/PM0 | | Chloride | 210 | 920 | 790 | 600 | 490 | 150 | 27 | 240 | 29 | 18 | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3 | 53 | 0.75 | 1.7 | 0.80 | 2.0 | 1.7 | 22 | 13 | 0.80 | 2.2 | <0.2 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 | 9.4 | <0.06 | 9.2 | 12 | <0.06 | 6.3 | 6.3 | 2.5 | 0.55 | 4.6 | <0.06 | mg/l | TM38/PM0 | | Ammoniacal Nitrogen as NH4 | <0.03 | 3.0 | 13 | 41 | 0.11 | 1.6 | 0.54 | 0.033 | 1.3 | 1.6 | <0.03 | mg/l | TM38/PM0
| | Dissolved Methane | <0.001 | <0.001 | <0.001 | 0.11 | <0.001 | <0.001 | <0.001 | <0.001 | 2.2 | <0.001 | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 | 450 | 530 | 840 | 830 | 140 | 280 | 88 | 350 | 400 | 260 | <1 | mg/l | TM75/PM0 | | Manganese II | 20 | 3.9 | 4.6 | 1.4 | <0.02 | 0.36 | 0.023 | 0.11 | 0.97 | 0.75 | <0.02 | mg/l | TM62/PM0 | | рН | 7.4 | 6.9 | 7.1 | 7.3 | 7.7 | 7.3 | 7.0 | 7.2 | 7.5 | 7.5 | <0.01 | pH units | TM73/PM0 | | | | | | | | | | | | | | | | | Sulphide | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | mg/l | TM106/PM0 | | Dissolved Iron II | 0.30 | 0.03 | 0.05 | 0.03 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | mg/l | TM48/PM0 | | Dissolved Iron III | <0.02 | 18.97 | 0.13 | 5.77 | 0.04 | 0.04 | <0.02 | 0.04 | 0.84 | 0.03 | <0.02 | mg/l | TM30/TM48/PM0 | | Manganese IV (by calculation) | <0.40 | <0.10 | <0.10 | 0.30 | 0.22 | <0.02 | <0.02 | 0.05 | <0.02 | <0.02 | <0.02 | mg/l | TM62/TM30/PM0 | Client Name: SLR Consulting Ltd Reference: 406.00889.00005 Location: Nantwich Contact: Mark Swain JE Job No.: 14/3458 Report: Liquid Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE JOB NO.: | 14/3436 | | | | | |
 | iva∪⊓, ⊓iv- |
 | | | |---------------------------------------|------------|------------|------------|------------|------------|---|------|-------------|--------------|--------------|------------------------| | J E Sample No. | 61-66 | 67-72 | 73-78 | 79-84 | 85-90 | | | | | | | | Sample ID | Р | Q | s | Т | V | | | | | | | | Depth | 3.5 | 2.75 | 3.4 | 3.5 | 2.7 | | | | Diago oo | e attached n | otoo for all | | COC No / misc | | | | | | | | | | ations and a | | | Containers | | V H HN 7 P | Sample Date | | | | | | | | | | | | | Sample Type | | Liquid | Liquid | Liquid | Liquid | | | | | | 1 | | Batch Number | 1 | 1 | 1 | 1 | 1 | | | | LOD | Units | Method
No. | | Date of Receipt | 01/03/2014 | 01/03/2014 | 01/03/2014 | 01/03/2014 | 01/03/2014 | | | | | | | | Total Dissolved Iron | 0.37 | 0.27 | <0.02 | 0.077 | 0.83 | | | | <0.02 | mg/l | TM30/PM14 | | Dissolved Manganese | 0.47 | 0.026 | 0.20 | 0.084 | 0.31 | | | | <0.002 | mg/l | TM30/PM14 | | Dissolved Potassium Dissolved Sodium | 32
17 | 11
250 | 29
240 | 11
34 | 0.46
29 | | | | <0.1
<0.1 | mg/l
mg/l | TM30/PM14
TM30/PM14 | | Dissolved Sodialii | 17 | 230 | 240 | 34 | 29 | | | | ~ 0.1 | mg/i | 110130/110114 | | Sulphate | 520 | 25 | 70 | 45 | 66 | | | | <0.05 | mg/l | TM38/PM0 | | Chloride | 22 | 290 | 430 | 62 | 36 | | | | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3 | 11 | 8.4 | 15 | 13 | 0.97 | | | | <0.2 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 | 7.8 | 11 | 4.7 | 5.6 | 19 | | | | <0.06 | mg/l | TM38/PM0 | | Ammoniacal Nitrogen as NH4 | 0.15 | 0.04 | 0.41 | 0.18 | 0.093 | | | | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | <0.001 | 0.0056 | <0.001 | <0.001 | <0.001 | | | | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 | 230 | 280 | 330 | 220 | 86 | | | | <1 | mg/l | TM75/PM0 | | Manganese II | 0.62 | 0.036 | 0.22 | 0.15 | 0.26 | | | | <0.02 | mg/l | TM62/PM0 | | pH | 6.7 | 7.0 | 7.1 | 7.1 | 6.2 | | | | <0.01 | pH units | TM73/PM0 | | | | | | | | | | | | - | | | Sulphide | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | | | | <0.3 | mg/l | TM106/PM0 | | Dissolved Iron II | <0.02 | <0.02 | <0.02 | <0.02 | 0.02 | | | | <0.02 | mg/l | TM48/PM0 | | Dissolved Iron III | 0.37 | 0.27 | <0.02 | 0.08 | 0.81 | | | | <0.02 | mg/l | TM30/TM48/PM0 | | Manganese IV (by calculation) | <0.02 | <0.02 | 0.02 | <0.02 | 0.06 | | | | <0.02 | mg/l | TM62/TM30/PM0 | • | | | | | • | | | • | • | | Client Name: SLR Consulting Ltd Report : Liquid Reference: 406.00889.00005 Location: Nantwich Town Contact: Mark Swain 15/4279 JE Job No.: Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | Sample No. 1-7 8-14 15-21 22-28 29-35 36-42 43-49 50-56 57-63 64-70 | | |---|----------------------| | Depth 3.5 2.2 3.5 3.8 2.8 2.5 2.5 2.8 3.287 2.8 Please see attache abbreviations and COC No / misc Containers VHN HCL Z P G | | | COC No / misc Containers | | | Containers | notes for all | | Sample Date 23/02/2015 23/02/2015 23/02/2015 23/02/2015 23/02/2015 23/02/2015 24/02/ | acronyms | | Sample Type Liquid Li | | | Batch Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LOD/LOR Units Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 | | | Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 | | | Date of Receipt 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 28/02/2015 | Method | | Total Dissolved Iron 17 0.39 0.78 5.4 <0.02 <0.02 0.66 0.12 <0.02 29 <0.02 mg/l | No. | | | TM30/PM14 | | Dissolved Manganese 2.4 0.57 0.85 1.1 <0.002 0.22 1.3 0.017 0.16 5.0 <0.002 mg/l | TM30/PM14 | | Dissolved Sodium 470 _A 25 180 420 _A 110 180 46 200 200 28 <0.1 mg/l | TM30/PM14 | | Sulphate 180 86 69 0.94 96 110 12 21 65 420 <0.05 mg/l | TM38/PM0 | | Chloride 780 28 370 730 170 340 39 240 270 25 <0.3 | TM38/PM0
TM38/PM0 | | Ortho Phosphate as PO4 4.3 1.3 10 15 9.8 7.6 8.8 14 5.6 0.14 <0.06 mg/l | TM38/PM0 | | Ammoniacal Nitrogen as NH4 | TM38/PM0 | | | | | Dissolved Methane <0.001 2.300 <0.001 1.000 <0.001 <0.001 <0.001 0.005 <0.001 0.010 <0.001 mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 520 430 660 820 450 320 330 310 350 110 <1 mg/l | TM75/PM0 | | Sulphide <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | TM106/PM0 | | Dissolved Iron II 15 _A 0.42 0.87 5.5 _A <0.02 <0.02 0.31 <0.02 0.10 26 _D <0.02 mg/l | TM48/PM0 | | Dissolved Iron III 2.00 _A <0.02 <0.02 <0.10 _A <0.02 <0.02 0.35 0.12 <0.02 3.00 _D <0.02 mg/l | TM30/TM48/PM0 | | Manganese II 4.2 _A 0.63 1.0 _A 1.7 _A <0.02 0.22 1.4 _A 0.03 1.2 _A 8.0 _D <0.02 mg/l | TM62/PM0 | | Dissolved Manganese IV (by calculation) | TM62/TM30/PM0 | | pH 7.3 7.5 7.2 7.3 7.5 7.2 7.4 7.2 7.3 6.5 <0.01 pH un | TM73/PM0 | | | | Client Name: SLR Consulting Ltd Report : Liquid Reference: 406.00889.00005 Location: Nantwich Town Contact: Mark Swain 15/4279 JE Job No.: Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle | JE Job No.: | 15/4279 | | | | |
H=H ₂ SO ₄ , A | Z=ZNAC, N= | NaOH, HN= | HINU ₃ | | | | |---|----------------|----------------|--------------------|--------------------|----------------|--|------------|-----------|-------------------|-----------|--------------|---------------| | J E Sample No. | 71-77 | 78-84 | 85-91 | 92-98 | 99-105 | | | | | | | | | Sample ID | Т | L | AG | F1 | P1 | | | |
 | | | | Depth | 3.075 | 3.2 | 2.4 | 2.6 | 3.75 | | | | | Please se | e attached n | otos for all | | COC No / misc | | | | | | | | | | | ations and a | | | Containers | V HN HCL Z P G | | | | | | | | | Sample Date | 24/02/2015 | 26/02/2015 | 26/02/2015 | 26/02/2015 | 26/02/2015 | | | | | | | | | Sample Type | Liquid | Liquid | Liquid | Liquid | Liquid | | | | | | | | | Batch Number | 1 | 1 | 1 | 1 | 1 | | | | | | | Mathad | | Date of Receipt | | | | 28/02/2015 | | | | | | LOD/LOR | Units | Method
No. | | Total Dissolved Iron | 0.10 | 0.07 | 0.04 | <0.02 | <0.02 | | | | | <0.02 | mg/l | TM30/PM14 | | Dissolved Manganese | 0.12 | 0.74 | 2.9 | 0.73 | 0.43 | | | | | <0.002 | mg/l | TM30/PM14 | | Dissolved Sodium | 31 | 170 | 5500 _E | 120 | 13 | | | | | <0.1 | mg/l | TM30/PM14 | | | | | | | | | | | | | g | | | Sulphate | 30 | 98 | 250 | 360 | 310 | | | | | <0.05 | mg/l | TM38/PM0 | | Chloride | 42 | 200 | 9000 | 230 | 15 | | | | | <0.3 | mg/l | TM38/PM0 | | Nitrate as NO3 | 8.0 | 0.8 | 0.7 | 9.3 | 18 | | | | | <0.2 | mg/l | TM38/PM0 | | Ortho Phosphate as PO4 | 5.4 | 1.8 | <0.06 | 3.2 | 16 | | | | | <0.06 | mg/l | TM38/PM0 | | Ammoniacal Nitrogen as NH4 | 0.52 | 16.66 | 4.95 | 1.98 | 0.04 | | | | | <0.03 | mg/l | TM38/PM0 | | Dissolved Methane | <0.001 | 0.047 | 0.970 | 0.003 | <0.001 | | | | | <0.001 | mg/l | TM25/PM0 | | Total Alkalinity as CaCO3 | 230 | 390 | 400 | 320 | 200 | | | | | <1 | mg/l | TM75/PM0 | | Sulphide | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | | | | | <0.3 | mg/l | TM106/PM0 | | Dissolved Iron II | 0.05 | 0.04 | 2.2 | 1.6 | 2.0 | | | | | <0.02 | mg/l | TM48/PM0 | | Dissolved Iron III | 0.05 | 0.03 | <0.02 | <0.02 | <0.02 | | | | | <0.02 | mg/l | TM30/TM48/PM0 | | Manganese II | 0.16 | 0.85 | 6.0 _D | 5.5 _D | 0.89 | | | | | <0.02 | mg/l | TM62/PM0 | | Dissolved Manganese IV (by calculation) | <0.02 | <0.02 | <0.20 _D | <0.20 _D | <0.02 | | | | | <0.02 | mg/l | TM62/TM30/PM0 | | рН | 7.3 | 7.5 | 7.2 | 7.2 | 6.7 | | | | | <0.01 | pH units | TM73/PM0 | <u> </u> | # harrisontestin PROJECT NAME: 2015 BH/TP No.: N/A PROJECT NUMBER: L15646 Depth (m): N/A CLIENT: Jones Environmental Laboratory Sample No.: DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | |------|------|--------|--------|------|--------|--------|------|--------|--------|---------| | | | SILT | | SAND | | | | | | | | | _ | | | - | | | - | | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 100 | | 10.0 | 99 | | 6.30 | 96 | | 5.00 | 90 | | 3.35 | 87 | | 2.00 | 80 | | 1.18 | 75 | | 0.600 | 70 | | 0.425 | 67 | | 0.300 | 60 | | 0.212 | 51 | | 0.150 | 44 | | 0.063 | 34 | | 0.020 | 22 | | 0.006 | 11 | | 0.002 | 4 | | Sample Description | | | | | | | | |--|--|--|--|--|--|--|--| | MADE GROUND (Dark grey slightly clayey silty gravelly SAND. Gravel is of | | | | | | | | | brick, clinker and wood fragments) | Sample Proportions % | | | | | | | | | |----------------------|------|--|--|--|--|--|--|--| | | | | | | | | | | | Cobbles | 0.0 | | | | | | | | | Gravel | 19.7 | | | | | | | | | Sand | 46.7 | | | | | | | | | Silt | 29.1 | | | | | | | | | Clay | 4.4 | | | | | | | | | | | | | | | | | | | Remarks | | |---------|--| | | | | | | | | | | | | | | | | | | #### **Harrison Geotechnical Engineering** Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2:1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2:1990:CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | |------|------|--------|--------|------|--------|--------|------|--------|--------|---------| | | | SILT | | | SAND | | | GRAVEL | | | | | I | | | | | | |--------------------|--------------------|--|--|--|--|--| | Particle Size (mm) | Percentage Passing | | | | | | | 75.0 | 100 | | | | | | | 63.0 | 100 | | | | | | | 50.0 | 100 | | | | | | | 37.5 | 100 | | | | | | | 28.0 | 100 | | | | | | | 20.0 | 100 | | | | | | | 14.0 | 100 | | | | | | | 10.0 | 100 | | | | | | | 6.30 | 100 | | | | | | | 5.00 | 100 | | | | | | | 3.35 | 100 | | | | | | | 2.00 | 100 | | | | | | | 1.18 | 100 | | | | | | | 0.600 | 99 | | | | | | | 0.425 | 98 | | | | | | | 0.300 | 95 | | | | | | | 0.212 | 84 | | | | | | | 0.150 | 65 | | | | | | | 0.063 | 33 | | | | | | | 0.020 | 15 | | | | | | | 0.006 | 7 | | | | | | | 0.002 | 4 | | | | | | | Sample Description | |--------------------------------------| | Dark grey slightly clayey silty SAND | | | | | | | | | | | | | | Sample Proportions % | | | | | | |----------------------|------|--|--|--|--| | Oakklas | 0.0 | | | | | | Cobbles | | | | | | | Gravel | 0.0 | | | | | | Sand | 67.3 | | | | | | Silt | 29.0 | | | | | | Clay | 3.7 | | | | | | | | | | | | | Remarks | |---------| | | | | | | | | | | | | | | #### Harrison Geotechnical Engineering Unit 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: 01603 416333 Fax: 01603 416443 email: laboratory@ harrisongroupuk.com DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | | |--------------------------------------|------|--------|------------|------|--------|-------------------|----------------|--------|--------|---------|--| | | | SILT | | | SAND | | | GRAVEL | | | | | | | | | | | Sai | mple Descript | ion | | | | | Particle Size (mm) Percentage Passin | | ng M | ADE GROUNE | | F F | avelly slightly s | andy silty CL/ | λY. | | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 100 | | 10.0 | 97 | | 6.30 | 96 | | 5.00 | 95 | | 3.35 | 95 | | 2.00 | 94 | | 1.18 | 94 | | 0.600 | 93 | | 0.425 | 92 | | 0.300 | 90 | | 0.212 | 86 | | 0.150 | 83 | | 0.063 | 74 | | 0.020 | 66 | | 0.006 | 50 | | 0.002 | 37 | | s % | |------| | | | 0.0 | | 5.9 | | 19.9 | | 36.9 | | 37.4 | | | Gravel is of sandstone and occasional clinker fragments) | Remarks | |---------| | | | | | | | | | | #### **Harrison Geotechnical Engineering** Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS DATE OF ISSUE: 16/02/2011 Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | |---|------|------|--------|--------|------|--------|--------|------|--------|--------|---------| | | | | SILT | | | SAND | | | GRAVEL | | | | - | - | | | | | | | | | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 100 | | 10.0 | 99 | | 6.30 | 97 | | 5.00 | 96 | | 3.35 | 94 | | 2.00 | 92 | | 1.18 | 90 | | 0.600 | 88 | | 0.425 | 86 | | 0.300 | 73 | | 0.212 | 55 | | 0.150 | 44 | | 0.063 | 34 | | 0.020 | 31 | | 0.006 | 24 | | 0.002 | 16 | | Sample Description | |---| | MADE GROUND (Dark grey clayey silty gravelly SAND. Gravel is of sandstone, brick and clinker fragments) | | | | Sample Proportions | % | |--------------------|------| | 2 | 0.0 | | Cobbles | 0.0 | | Gravel | 8.0 | | Sand | 58.2 | | Silt | 17.9 | | Clay | 15.9 | | | | | | Remarks | |---|---------| | | | | | | | | | | | | | | | | ı | | #### **Harrison Geotechnical Engineering** Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | | |---|------|------|--------|--------|------|--------|--------|------|--------|--------|---------|--| | | | | SILT | | | SAND | | | GRAVEL | | | | | _ | | | | | | | | | | | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 98 | | 10.0 | 95 | | 6.30 | 93 | | 5.00 | 91 | | 3.35 | 88 | | 2.00 | 87 | | 1.18 | 85 | | 0.600 | 83 | | 0.425 | 80 | | 0.300 | 73 | | 0.212 | 62 | | 0.150 | 53 | | 0.063 | 41 | | 0.020 | 24 | | 0.006 | 14 | | 0.002 | 5 | | Sample Description | | | | | | |
--|--|--|--|--|--|--| | MADE GROUND (Dark grey slightly gravelly sandy clayey SILT. Gravel is of flint, brick and clinker fragments) | Sample Proportions % | | | | | | | | |----------------------|------|--|--|--|--|--|--| | | | | | | | | | | Cobbles | 0.0 | | | | | | | | Gravel | 13.0 | | | | | | | | Sand | 46.0 | | | | | | | | Silt | 36.3 | | | | | | | | Clay | 4.7 | | | | | | | | | | | | | | | | | Remarks | |---------| | | | | | | | | | | | | #### **Harrison Geotechnical Engineering** Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2 : 1990 : CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | SILT SAND GRAVEL | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | |------------------|------|------|--------|--------|------|--------|--------|------|--------|--------|---------| | | | | CILT | | | SAND | | | GRAVEL | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 99 | | 10.0 | 98 | | 6.30 | 95 | | 5.00 | 93 | | 3.35 | 90 | | 2.00 | 86 | | 1.18 | 84 | | 0.600 | 80 | | 0.425 | 77 | | 0.300 | 71 | | 0.212 | 58 | | 0.150 | 45 | | 0.063 | 25 | | 0.020 | 15 | | 0.006 | 2 | | 0.002 | 1 | | Sample Description | | | | | | |---|--|--|--|--|--| | MADE GROUND (Dark brown slightly clayey silty gravelly SAND. Gravel is of | | | | | | | wood and clinker fragments) | Sample Proportions % | | | | | | | | | |----------------------|------|--|--|--|--|--|--|--| | | | | | | | | | | | Cobbles | 0.0 | | | | | | | | | Gravel | 13.5 | | | | | | | | | Sand | 61.3 | | | | | | | | | Silt | 24.4 | | | | | | | | | Clay | 0.8 | | | | | | | | | | | | | | | | | | | Remarks | | | | | | | |---------|--|--|--|--|--|--| #### **Harrison Geotechnical Engineering** Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443 email: laboratory@harrisongroupuk.com DATE OF ISSUE: 16/02/2011 DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2:1990: CLAUSE 9.2 - WET SIEVING & BS1377: PART 2:1990:CLAUSE 9.4 - SEDIMENTATION BY PIPETTE | CLAY | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | FINE | MEDIUM | COARSE | COBBLES | |------|------|--------|--------|------|--------|--------|------|--------|--------|---------| | | | SILT | | | SAND | | | GRAVEL | | | | Particle Size (mm) | Percentage Passing | |--------------------|--------------------| | 75.0 | 100 | | 63.0 | 100 | | 50.0 | 100 | | 37.5 | 100 | | 28.0 | 100 | | 20.0 | 100 | | 14.0 | 100 | | 10.0 | 100 | | 6.30 | 100 | | 5.00 | 100 | | 3.35 | 100 | | 2.00 | 100 | | 1.18 | 100 | | 0.600 | 100 | | 0.425 | 100 | | 0.300 | 99 | | 0.212 | 95 | | 0.150 | 84 | | 0.063 | 47 | | 0.020 | 23 | | 0.006 | 18 | | 0.002 | 9 | | Sample Description | | | | | | | | | | |-----------------------------|--|--|--|--|--|--|--|--|--| | Dark grey sandy clayey SILT | Sample Proportions % | | | | | | | | | |----------------------|------|--|--|--|--|--|--|--| | | | | | | | | | | | Cobbles | 0.0 | | | | | | | | | Gravel | 0.0 | | | | | | | | | Sand | 53.3 | | | | | | | | | Silt | 38.2 | | | | | | | | | Clay | 8.5 | | | | | | | | | | | | | | | | | | #### Harrison Geotechnical Engineering Unit 1 & 2 Alston Road Norwich Norfolk NR6 5DS Tel: 01603 416333 Fax: 01603 416443 email: laboratory@ harrisongroupuk.com | | | Groundwa | ter Depth (ı | m below gro | ound level) | | Rainfall (mm) Data From | | |--------------------------|-----------------|--------------------|------------------|--------------------|------------------|-----------------|-------------------------|----------------------------------| | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores University | | 26/01/2011 | 1.191 | 3.27147 | 1.658 | 1.72983 | 2.517 | 2.784 | 0 | | | 27/01/2011 | 1.273 | 3.28025 | 1.689 | 1.74794 | 2.617 | 2.850 | 0.402 | | | 28/01/2011 | 1.299 | 3.27382 | 1.699 | 1.74481 | 2.624 | 2.849 | 0 | | | 29/01/2011 | 1.298 | 3.27454 | 1.704 | 1.75165 | 2.611 | 2.839 | 0 | | | 30/01/2011 | 1.298 | 3.2794 | 1.712 | 1.75907 | 2.623 | 2.845 | 0 | | | 31/01/2011 | 1.305 | 3.28611 | 1.721 | 1.76605 | 2.631 | 2.851 | 0 | | | 01/02/2011 | 1.309 | 3.28742 | 1.726
1.732 | 1.77287 | 2.581 | 2.841 | 0
1.407 | | | 02/02/2011
03/02/2011 | 1.413
1.425 | 3.28416
3.29351 | 1.732 | 1.70773
1.72298 | 2.746
2.746 | 2.829
2.834 | | | | 04/02/2011 | 1.425 | 3.29331 | 1.737 | 1.72627 | 2.688 | 2.798 | 0 | | | 05/02/2011 | 1.419 | 3.29734 | 1.742 | 1.73566 | 2.716 | 2.812 | 0.402 | | | 06/02/2011 | 1.400 | 3.30278 | 1.751 | 1.75063 | 2.766 | 2.843 | 0.402 | | | 07/02/2011 | 1.422 | 3.30351 | 1.755 | 1.75098 | 2.743 | 2.828 | 1.809 | | | 08/02/2011 | 1.471 | 3.31245 | 1.764 | 1.76653 | 2.807 | 2.867 | 0 | | | 09/02/2011 | 1.450 | 3.30596 | 1.761 | 1.76451 | 2.747 | 2.833 | 0 | | | 10/02/2011 | 1.456 | 3.31055 | 1.763 | 1.77312 | 2.734 | 2.824 | 0.804 | | | 11/02/2011 | 1.337 | 3.3001 | 1.704 | 1.77588 | 2.722 | 2.818 | 4.02 | | | 12/02/2011 | 1.280 | 3.28985 | 1.669 | 1.78192 | 2.724 | 2.820 | 0.402 | | | 13/02/2011 | 1.351 | 3.28717 | 1.659 | 1.77077 | 2.661 | 2.784 | 4.02 | | | 14/02/2011 | 1.132 | 3.27127 | 1.467 | 1.76427 | 2.649 | 2.784 | 5.427 | | | 15/02/2011 | 1.150 | 3.26598 | 1.610 | 1.74371 | 2.610 | 2.744 | 2.613 | | | 16/02/2011 | 1.164 | 3.27391 | 1.628 | 1.73933 | 2.618 | 2.753 | 0 | | | 17/02/2011 | 1.194 | 3.28095 | 1.651 | 1.73478 | 2.706 | 2.799 | 0.603 | | | 18/02/2011 | 1.209 | 3.28757 | 1.676 | 1.73428 | 2.759 | 2.831 | 0 | | | 19/02/2011 | 1.176 | 3.28321 | 1.683 | 1.72602 | 2.717 | 2.804 | 0 | | | 20/02/2011 | 1.085 | 3.28242 | 1.629 | 1.72967 | 2.748 | 2.823 | 4.422 | | | 21/02/2011 | 1.097 | 3.28383 | 1.660 | 1.72396 | 2.721 | 2.802 | 0 | | | 22/02/2011 | 1.101 | 3.28463 | 1.670 | 1.72266 | 2.725 | 2.802 | 0.201 | | | 23/02/2011 | 1.113 | 3.28604 | 1.678 | 1.72527 | 2.725 | 2.801 | 1.005 | | | 24/02/2011 | 1.061 | 3.2836 | 1.626 | 1.72805 | 2.741 | 2.814 | 3.216 | | | 25/02/2011
26/02/2011 | 1.082
0.942 | 3.28825
3.24676 | 1.658
1.595 | 1.72619
1.71505 | 2.737
2.647 | 2.808
2.754 | 0 | | | 27/02/2011 | 1.131 | 3.23903 | 1.536 | 1.68043 | 2.553 | 2.754 | 15.075 | | | 28/02/2011 | 1.249 | 3.24495 | 1.604 | 1.65724 | 2.534 | 2.654 | 1.809 | | | 01/03/2011 | 1.305 | 3.24954 | 1.633 | 1.64106 | 2.589 | 2.716 | 0.201 | | | 02/03/2011 | 1.338 | 3.24852 | 1.651 | 1.62769 | 2.605 | 2.753 | 0 | | | 03/03/2011 | 1.365 | 3.25071 | 1.658 | 1.61986 | 2.617 | 2.784 | 0 | | | 04/03/2011 | 1.388 | 3.25444 | 1.670 | 1.62332 | 2.632 | 2.798 | 0 | | | 05/03/2011 | 1.411 | 3.2546 | 1.677 | 1.6239 | 2.635 | 2.804 | 0 | | | 06/03/2011 | 1.409 | 3.26296 | 1.688 | 1.63196 | 2.668 | 2.823 | 0.201 | | | 07/03/2011 | 1.430 | 3.26254 | 1.696 | 1.63844 | 2.675 | 2.826 | 0 | | | 08/03/2011 | 1.402 | 3.26041 | 1.695 | 1.642 | 2.641 | 2.802 | 0 | | | 09/03/2011 | 1.4734 | 3.3329 | 1.7612 | 1.697 | 2.6124 | 2.8873 | 0.603 | | | 10/03/2011 | 1.4897 | 3.3388 | 1.7678 | 1.7096 | 2.6087 | 2.9474 | 0.201 | | | 11/03/2011 | 1.4918 | 3.3368 | 1.7785 | 1.7177 | 2.6404 | 2.9352 | 0.402 | | | 12/03/2011 | 1.4897 | 3.3402 | 1.7702 | 1.7259 | 2.5947 | 3.0296 | 0.603 | | | 13/03/2011 | 1.401 | 3.336 | 1.7428 | 1.7425 | 2.6659 | 3.0396 | 0 | | | 14/03/2011 | 1.4451 | 3.3511 | 1.7827 | 1.7563 | 2.747 | 2.9292 | 4.824 | | | 15/03/2011 | 1.442 | 3.3499 | 1.7915 | 1.7591 | 2.7107 | 2.9293 | 0 | | | 16/03/2011 | 1.4469 | 3.3521 | 1.8011 | 1.7664 | 2.7068 | 2.9302 | 0 | | | 17/03/2011 | 1.4549 | 3.3617 | 1.8043 | 1.7791 | 2.7159 | 2.9195 | 0 | | | 18/03/2011 | 1.4585 | 3.3692 | 1.8132 | 1.7891 | 2.7473 | 2.852 | 0 | | | 19/03/2011
20/03/2011 | 1.463
1.4358 | 3.3701
3.3706 | 1.8251
1.8245 | 1.7974
1.8017 | 2.7725
2.7356 | 2.7705 | 0 | | | 21/03/2011 | 1.4358 | 3.3706 | 1.8382 | 1.8017 | 2.7636 | 2.7839
2.757 | 1.206 | | | 22/03/2011 | 1.4927 | 3.3854 | 1.85 | 1.822 | 2.7844 | 2.712 | 0 | | | 23/03/2011 | 1.5079 | 3.3868 | 1.857 | 1.8296 | 2.7681 | 2.6885 | 0 | | | 24/03/2011 | 1.492 | 3.3868 | 1.8582 | 1.8307 | 2.7202 | 2.7267 | 0 | | | 25/03/2011 | 1.4729 | 3.3846 | 1.8479 | 1.8359 | 2.6792 | 2.8401 | 0 | | | 26/03/2011 | 1.4641 | 3.3837 | 1.8434 | 1.8372 | 2.7022 | 2.8947 | 0 | | | 27/03/2011 | 1.4628 | 3.3876 | 1.8526 | 1.8457 | 2.7255 | 2.9166 | 0 | | | 28/03/2011 | 1.4615 | 3.3918 | 1.8611 | 1.8534 | 2.7483 | 2.9157 | 0 | | | 29/03/2011 | 1.453 | 3.3946 | 1.8621 | 1.8612 | 2.7302 | 2.9575 | 0 | | | 30/03/2011 | 1.3912 | 3.3822 | 1.8588 | 1.861 | 2.7228 | 2.9555 | 0 | | | 31/03/2011 | 1.4278 | 3.3869 | 1.814 | 1.8767 | 2.774 | 2.9534 | 2.814 | | | 01/04/2011 | 1.5257 | 3.3828 | 1.8391 | 1.8791 | 2.7843 | 2.9699 | 3.015 | | | 02/04/2011 | 1.5793 | 3.3901 | 1.8459 | 1.887 | 2.7789 | 2.956 | 0.201 | | | | 1.6108 | 3.3948 | 1.8555 | 1.8944 | 2.8042 | 2.9709 | 0 | | | 04/04/2011 | 1.5832 | 3.3859 | 1.8473 | 1.8899 | 2.8067 | 2.9885 | 1.407 | | | 05/04/2011 | 1.6286 | 3.3978 | 1.8592 | 1.9036 | 2.8233 | 2.9762 | 1.608 | | | 06/04/2011 | 1.6524 | 3.4001 | 1.8752 | 1.9111 | 2.8518 | 3.0071 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------
----------------------------|------------------|---------------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 07/04/2011 | 1.6677 | 3.4009 | 1.8805 | 1.9151 | 2.8775 | 3.0191 | 0 | | | 08/04/2011 | 1.6675 | 3.4033 | 1.8849 | 1.9226 | 2.8438 | 3.0297 | 0 | | | 09/04/2011 | 1.6653 | 3.4033 | 1.8856 | 1.9269 | 2.8185 | 3.0081 | 0 | | | 10/04/2011
11/04/2011 | 1.6745
1.6577 | 3.4063
3.4052 | 1.8875
1.8857 | 1.9318
1.9342 | 2.8222
2.8146 | 2.9958
2.9952 | 0 | | | 12/04/2011 | 1.6602 | 3.411 | 1.8914 | 1.9423 | 2.859 | 3.0031 | 1.005 | | | 13/04/2011 | 1.6558 | 3.404 | 1.8815 | 1.9414 | 2.7799 | 3.0084 | 1.005 | | | 14/04/2011 | 1.6699 | 3.4081 | 1.8878 | 1.9473 | 2.7984 | 2.9676 | 0 | | | 15/04/2011 | 1.6764 | 3.4113 | 1.8967 | 1.9553 | 2.8188 | 2.9817 | 0 | | | 16/04/2011 | 1.6878 | 3.416 | 1.9045 | 1.9628 | 2.8437 | 2.994 | 0 | | | 17/04/2011 | 1.6913 | 3.4189 | 1.9093 | 1.9681 | 2.8491 | 3.0085 | 0 | | | 18/04/2011 | 1.6755 | 3.4168 | 1.9083 | 1.9715 | 2.7984 | 3.0071 | 0 | | | 19/04/2011 | 1.6677 | 3.4234 | 1.9117 | 1.9784 | 2.8089 | 2.9725 | 0 | | | 20/04/2011
21/04/2011 | 1.6869
1.6897 | 3.4251
3.4249 | 1.9152
1.9182 | 1.9858
1.9915 | 2.8219
2.8172 | 2.9857
2.9928 | 0 | | | 22/04/2011 | 1.6895 | 3.4249 | 1.9195 | 1.9986 | 2.8016 | 2.9834 | 0 | | | 23/04/2011 | 1.4951 | 3.4241 | 1.8496 | 2.0018 | 2.8513 | 2.9814 | 0 | | | 24/04/2011 | 1.497 | 3.4242 | 1.8723 | 2.0081 | 2.8794 | 3.0097 | 5.025 | | | 25/04/2011 | 1.4938 | 3.4306 | 1.889 | 2.0138 | 2.8843 | 3.0242 | 0 | | | 26/04/2011 | 1.4847 | 3.426 | 1.895 | 2.0147 | 2.8729 | 3.0274 | 0 | | | 27/04/2011 | 1.4819 | 3.4306 | 1.9047 | 2.021 | 2.8565 | 3.0183 | 0 | | | 28/04/2011 | 1.4684 | 3.432 | 1.9071 | 2.0253 | 2.8231 | 3.0099 | 0 | | | 29/04/2011 | 1.4617 | 3.4333 | 1.9099 | 2.032 | 2.8046 | 2.9795 | 0 | | | 30/04/2011 | 1.4662 | 3.4348 | 1.9091 | 2.0419 | 2.8164 | 2.9735 | 0 | | | 01/05/2011 | 1.4716 | 3.4338 | 1.9115 | 2.0445 | 2.8302 | 2.9789 | 0 | | | 02/05/2011 | 1.4789 | 3.4265 | 1.9181 | 2.0514 | 2.8477 | 2.9869 | 0 | | | 03/05/2011
04/05/2011 | 1.4875
1.4931 | 3.4369
3.44 | 1.9229
1.9271 | 2.0573
2.0601 | 2.8679
2.8711 | 2.9995
3.0107 | 0 | | | 05/05/2011 | 1.4888 | 3.4415 | 1.9304 | 2.063 | 2.8472 | 3.0042 | 0 | | | 06/05/2011 | 1.4719 | 3.444 | 1.9341 | 2.0698 | 2.8469 | 2.98 | 0 | | | 07/05/2011 | 1.3277 | 3.4336 | 1.8656 | 2.0725 | 2.8268 | 2.985 | 1.407 | | | 08/05/2011 | 1.2307 | 3.4248 | 1.7798 | 2.0777 | 2.8514 | 2.9731 | 6.834 | | | 09/05/2011 | 1.27 | 3.4228 | 1.8102 | 2.084 | 2.8782 | 3.0015 | 5.226 | | | 10/05/2011 | 1.2731 | 3.4222 | 1.8205 | 2.0875 | 2.89 | 3.0126 | 2.613 | | | 11/05/2011 | 1.2994 | 3.4246 | 1.8231 | 2.084 | 2.8539 | 3.0137 | 1.005 | | | 12/05/2011 | 1.3083 | 3.4216 | 1.8113 | 2.0807 | 2.8445 | 2.9927 | 0 | | | 13/05/2011 | 1.3232 | 3.3607 | 1.7951 | 2.0603 | 2.7697 | 2.8951 | 0.201 | | | 14/05/2011 | 1.3335 | 3.3596 | 1.7814 | 2.0604 | 2.7566 | 2.898 | 0 | | | 15/05/2011
16/05/2011 | 1.3004 | 3.366
3.3719 | 1.7927 | 2.0678 | 2.7961 | 2.9168 | 1.206 | | | 17/05/2011 | 1.3174
1.3255 | 3.3719 | 1.8039
1.8036 | 2.0759
2.079 | 2.7786
2.7602 | 2.9061
2.8964 | 2.412
0.603 | | | 18/05/2011 | 1.3337 | 3.3741 | 1.8053 | 2.079 | 2.7381 | 2.885 | 0.201 | | | 19/05/2011 | 1.3348 | 3.3759 | 1.8058 | 2.0849 | 2.7745 | 2.9068 | 1.608 | | | 20/05/2011 | 1.3512 | 3.3766 | 1.8115 | 2.092 | 2.7692 | 2.9057 | 0 | | | 21/05/2011 | 1.3727 | 3.3775 | 1.8199 | 2.0938 | 2.7905 | 2.9052 | 0 | | | 22/05/2011 | 1.3403 | 3.3751 | 1.811 | 2.0984 | 2.7313 | 2.8955 | 0 | | | 23/05/2011 | 1.3499 | 3.3817 | 1.8212 | 2.1055 | 2.7997 | 2.9153 | 2.211 | | | 24/05/2011 | 1.3513 | 3.3853 | 1.8153 | 2.1081 | 2.8085 | 2.9398 | 1.206 | | | 25/05/2011 | 1.3832 | 3.3831 | 1.8254 | 2.1128 | 2.8296 | 2.9217 | 0 | | | 26/05/2011 | 1.3467 | 3.3806 | 1.8124 | 2.1156 | 2.7068 | 2.8671 | 0 | | | 27/05/2011
28/05/2011 | 1.2597
1.2473 | 3.3801
3.3773 | 1.7738
1.7639 | 2.1209
2.124 | 2.7921
2.7558 | 2.9207
2.8921 | 5.226
2.01 | | | 29/05/2011 | 1.2473 | 3.3773 | 1.7639 | 2.124 | 2.7558 | 2.8921 | 0.201 | | | 30/05/2011 | 1.3197 | 3.3885 | 1.7801 | 2.1299 | 2.7728 | 2.9069 | 0.201 | | | 31/05/2011 | 1.1338 | 3.3717 | 1.6745 | 2.1326 | 2.7802 | 2.9248 | 6.231 | | | 01/06/2011 | 1.2968 | 3.3793 | 1.7359 | 2.1369 | 2.8311 | 2.9456 | 3.417 | | | 02/06/2011 | 1.4115 | 3.3889 | 1.7579 | 2.1456 | 2.8447 | 2.9535 | 0.201 | | | 03/06/2011 | 1.4956 | 3.3883 | 1.7633 | 2.1472 | 2.8319 | 2.9369 | 0 | | | 04/06/2011 | 1.5346 | 3.3895 | 1.757 | 2.1507 | 2.7857 | 2.9034 | 0 | | | 05/06/2011 | 1.4962 | 3.3848 | 1.7451 | 2.1516 | 2.7463 | 2.8687 | 0 | | | 06/06/2011 | 1.43 | 3.3792 | 1.7214 | 2.1544 | 2.7006 | 2.8537 | 2.412 | | | 07/06/2011 | 1.5058 | 3.3813 | 1.7239 | 2.1549 | 2.7003 | 2.85 | 0.804 | | | 08/06/2011
09/06/2011 | 1.5391
1.6045 | 3.3858 | 1.7268 | 2.1572 | 2.7136
2.7801 | 2.8667
2.9142 | 0
1.005 | | | 10/06/2011 | 1.6045 | 3.3925
3.3895 | 1.7437
1.7513 | 2.1628
2.1631 | 2.7801 | 2.9142 | 1.005 | | | 11/06/2011 | 1.6334 | 3.3915 | 1.7513 | 2.1657 | 2.7896 | 2.9176 | 0.201 | | | 12/06/2011 | 1.5821 | 3.3874 | 1.7554 | 2.1668 | 2.7892 | 2.8956 | 0.201 | | | 13/06/2011 | 1.2225 | 3.3712 | 1.6461 | 2.1718 | 2.7172 | 2.8942 | 7.236 | | | 14/06/2011 | | 3.3794 | 1.7092 | 2.1718 | 2.8015 | 2.9188 | 2.211 | | | 1 1/00/2011 | | | | | 2.7598 | 2.888 | 0.201 | | | 15/06/2011 | 1.3152 | 3.3839 | 1.7286 | 2.1773 | 2.7590 | 2.000 | 0.201 | | | | 1.3152
1.3046
1.2712 | 3.3839
3.383 | 1.7286
1.7325
1.736 | 2.1774 | 2.743 | 2.8821 | 0.603
2.211 | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|-------------------------------------| | 18/06/2011 | 1.2354 | 3.3774 | 1.7291 | 2.1791 | 2.6983 | 2.8588 | | 1.2 | | 19/06/2011 | 1.2241 | 3.3846 | 1.7245 | 2.1819 | 2.7707 | 2.9131 | | 0.8 | | 20/06/2011 | 1.2274 | 3.3839 | 1.7203 | 2.1828 | 2.7842 | 2.9054 | | 0 | | 21/06/2011 | 1.1222 | 3.3841 | 1.6965 | 2.1876 | 2.737 | 2.8856 | | 4 | | 22/06/2011
23/06/2011 | 1.1353
1.1101 | 3.3802
3.3801 | 1.6989
1.6771 | 2.1858
2.1841 | 2.7304
2.7631 | 2.8861
2.913 | | 1.2
4 | | 24/06/2011 | 1.1526 | 3.3816 | 1.6946 | 2.1794 | 2.8004 | 2.9257 | | 0 | | 25/06/2011 | 0.9898 | 3.3525 | 1.5875 | 2.1782 | 2.7363 | 2.8961 | | 4.6 | | 26/06/2011 | 1.0572 | 3.3625 | 1.643 | 2.1729 | 2.7629 | 2.8951 | | 1.2 | | 27/06/2011 | 1.0996 | 3.3633 | 1.6696 | 2.1721 | 2.723 | 2.8706 | | 0 | | 28/06/2011 | 1.1256 | 3.3642 | 1.6833 | 2.1689 | 2.7519 | 2.8883 | | 0 | | 29/06/2011 | 1.1799 | 3.3635 | 1.695 | 2.1664 | 2.7696 | 2.905 | | 0 | | 30/06/2011 | 1.2299 | 3.3669 | 1.7091 | 2.1661 | 2.7849 | 2.9156 | | 0 | | 01/07/2011 | 1.2738 | 3.37 | 1.7208 | 2.1711 | 2.7919 | 2.9163 | | 0 | | 02/07/2011
03/07/2011 | 1.2896
1.3032 | 3.3704
3.3767 | 1.7227
1.7285 | 2.1701
2.1779 | 2.7631
2.75 | 2.8913
2.8919 | | 0 | | 04/07/2011 | 1.3239 | 3.3801 | 1.736 | 2.1779 | 2.7624 | 2.8964 | | 0 | | 05/07/2011 | 1.3316 | 3.3817 | 1.7395 | 2.1862 | 2.7485 | 2.8833 | | 0 | | 06/07/2011 | 1.2954 | 3.3726 | 1.7323 | 2.1875 | 2.7129 | 2.8664 | | 8 | | 07/07/2011 | 1.2263 | 3.3704 | 1.7073 | 2.1884 | 2.6958 | 2.8649 | | 4.4 | | 08/07/2011 | 1.2502 | 3.3775 | 1.7138 | 2.1929 | 2.7387 | 2.8803 | | 6 | | 09/07/2011 | 1.2329 | 3.3741 | 1.7279 | 2.1955 | 2.7716 | 2.9149 | | 2.6 | | 10/07/2011 | 1.2217 | 3.3798 | 1.7389 | 2.1955 | 2.8229 | 2.9402 | | 0 | | 11/07/2011 | 1.2209 | 3.3812 | 1.7474 | 2.1962 | 2.8296 | 2.9438 | | 0 | | 12/07/2011 | 1.2518 | 3.3847 | 1.7515 | 2.201 | 2.8204 | 2.9361 | | 0 | | 13/07/2011 | 1.2835 | 3.3872 | 1.7546 | 2.2042 | 2.8161 | 2.9331 | | 0 | | 14/07/2011 | 1.3172 | 3.389 | 1.7556 | 2.2068 | 2.8093 | 2.9282 | | 0 | | 15/07/2011
16/07/2011 | 1.3382
1.3328 | 3.3912
3.387 | 1.7548
1.7438 | 2.21
2.2153 | 2.7993
2.7301 | 2.9169
2.8638 | | 0.6 | | 17/07/2011 | 1.2629 | 3.3851 | 1.7286 | 2.2168 | 2.7003 | 2.8619 | | 4.8 | | 18/07/2011 | 0.9101 | 3.3509 | 1.3904 | 2.2132 | 2.7197 | 2.884 | | 5.6 | | 19/07/2011 | 0.929 | 3.347 | 1.4402 | 2.2044 | 2.7394 | 2.9021 | | 3 | | 20/07/2011 | 1.0244 | 3.3471 | 1.5898 | 2.1936 | 2.7706 | 2.9137 | | 1.2 | | 21/07/2011 | 1.1199 | 3.3502 | 1.6292 | 2.1906 | 2.782 | 2.9242 | | 1.2 | | 22/07/2011 | 1.1828 | 3.355 | 1.654 | 2.19 | 2.8043 | 2.9287 | | 0.2 | | 23/07/2011 | 1.0747 | 3.3366 | 1.4535 | 2.1815 | 2.761 | 2.9009 | | 0.4 | | 24/07/2011 | 1.103 | 3.339 | 1.6005 | 2.1813 | 2.7319 | 2.8867 | | 0.4 | | 25/07/2011 | 1.1377 | 3.3404 | 1.6287 | 2.1824 | 2.7285 | 2.8869 | | 0.4 | | 26/07/2011
27/07/2011 | 1.1876
1.232 | 3.3492
3.3555 | 1.6585
1.6811 | 2.1878
2.1934 | 2.7639
2.8058 | 2.9138
2.9365 | | 0.2 | | 28/07/2011 | 1.2591 | 3.3569 | 1.695 | 2.1934 | 2.8017 | 2.9388 | | 0.2 | | 29/07/2011 | 1.2876 | 3.3613 | 1.7074 | 2.2001 | 2.8054 | 2.9367 | | 0 | | 30/07/2011 | 1.298 | 3.3616 | 1.7111 | 2.2012 | 2.7927 | 2.9243 | | 0 | | 31/07/2011 | 1.3014 | 3.3644 | 1.7102 | 2.206 | 2.7565 | 2.9011 | | 0 | | 01/08/2011 | 1.3178 | 3.3718 | 1.7153 | 2.2131 | 2.7601 | 2.9057 | | 0 | | 02/08/2011 | 1.3308 | 3.3748 | 1.7167 | 2.2141 | 2.7742 | 2.9189 | | 2.2 | | 03/08/2011 | 1.3417 | 3.3764 | 1.723 | 2.2193 | 2.7958 | 2.926 | | 1.2 | | 04/08/2011 | 1.3468 | 3.3774 | 1.7241 | 2.2229 | 2.7726 | 2.9126 | | 0 | | 05/08/2011 | 1.2392
1.2684 | 3.3744 | 1.6502 | 2.2256
2.2264 | 2.7867 | 2.9371 | | 1.2 | | 06/08/2011
07/08/2011 | 1.2849 | 3.3695
3.3755 | 1.6793
1.6859 | 2.2278 | 2.766
2.7407 | 2.9122
2.9079 | | 0.2 | | 08/08/2011 | 1.2597 | 3.3751 | 1.6288 | 2.2276 | 2.7726 | 2.9382 | | 4.2 | | 09/08/2011 | | 3.384 | 1.676 | 2.2354 | 2.8613 | 2.9955 |
 0.2 | | 10/08/2011 | 1.3228 | 3.3805 | 1.707 | 2.2321 | 2.8556 | 2.9641 | | 0.2 | | 11/08/2011 | 1.0916 | 3.3636 | 1.4788 | 2.2379 | 2.7542 | 2.9099 | | 5.2 | | 12/08/2011 | 1.1301 | 3.3674 | 1.6066 | 2.2367 | 2.7707 | 2.9187 | | 1.8 | | 13/08/2011 | 1.1451 | 3.3653 | 1.6345 | 2.2369 | 2.734 | 2.8971 | | 1.4 | | 14/08/2011 | 1.1897 | 3.3709 | 1.6512 | 2.2376 | 2.752 | 2.913 | | 0 | | 15/08/2011 | 1.2472 | 3.3751 | 1.672 | 2.238 | 2.8018 | 2.9427 | | 1 | | 16/08/2011 | 1.2632 | 3.3739 | 1.6921 | 2.242 | 2.7949 | 2.9394 | | 1.8 | | 17/08/2011
18/08/2011 | 1.2684
1.2932 | 3.379
3.3802 | 1.703
1.7126 | 2.2427
2.2425 | 2.8119
2.8021 | 2.9507
2.9376 | | 0.4 | | 19/08/2011 | 1.2932 | 3.3772 | 1.6201 | 2.2425 | 2.7801 | 2.9376 | | 0 | | 20/08/2011 | 1.3908 | 3.3822 | 1.6255 | 2.3045 | 2.7784 | 2.9316 | | 0 | | 21/08/2011 | 1.3842 | 3.3814 | 1.6273 | 2.3057 | 2.7579 | 2.9257 | | 0 | | 22/08/2011 | 1.41 | 3.3881 | 1.6393 | 2.3086 | 2.8098 | 2.9562 | | 0.6 | | 23/08/2011 | 1.4144 | 3.3895 | 1.6461 | 2.3142 | 2.793 | 2.9352 | | 0 | | 24/08/2011 | 1.4268 | 3.3891 | 1.6433 | 2.3146 | 2.7681 | 2.9273 | | 0 | | 25/08/2011 | 1.4369 | 3.3824 | 1.6436 | 2.3164 | 2.7681 | 2.9304 | | 0.4 | | 26/08/2011 | 1.3909 | 3.3819 | 1.6357 | 2.3168 | 2.7591 | 2.9201 | | 1.2 | | 27/08/2011 | 1.2814 | 3.3705 | 1.3241 | 2.3206 | 2.7763 | 2.9422 | | 12.4 | | 28/08/2011 | 1.065 | 3.3498 | 1.2518 | 2.3104 | 2.7374 | 2.9294 | | 9.4 | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|-------------------------------------| | 29/08/2011 | 1.1196 | 3.3477 | 1.4536 | 2.3053 | 2.7421 | 2.9251 | | 0.2 | | 30/08/2011 | 1.1532 | 3.3477 | 1.4854 | 2.3039 | 2.7403 | 2.9181 | | 1.2 | | 31/08/2011 | 1.2042 | 3.3481 | 1.507 | 2.3032 | 2.7343 | 2.9086 | | 0.4 | | 01/09/2011
02/09/2011 | 1.2469
1.268 | 3.3523
3.3536 | 1.522
1.5301 | 2.3057
2.3068 | 2.7369
2.717 | 2.9031
2.8964 | | 0 | | 03/09/2011 | 1.200 | 3.3562 | 1.5428 | 2.3117 | 2.717 | 2.891 | | 0 | | 04/09/2011 | 1.3196 | 3.364 | 1.5476 | 2.3129 | 2.722 | 2.8928 | | 6.8 | | 05/09/2011 | 1.334 | 3.3619 | 1.559 | 2.3118 | 2.7207 | 2.9091 | | 0.8 | | 06/09/2011 | 1.3257 | 3.3598 | 1.5734 | 2.3139 | 2.7259 | 2.9073 | | 3.2 | | 07/09/2011 | 1.3333 | 3.3718 | 1.5841 | 2.3173 | 2.7641 | 2.9291 | | 0.4 | | 08/09/2011 | 1.3283 | 3.3685 | 1.5959 | 2.3199 | 2.7599 | 2.9255 | | 1.2 | | 09/09/2011 | 1.3477 | 3.374 | 1.6066 | 2.3257 | 2.7712 | 2.9351 | | 0.2 | | 10/09/2011 | 1.3233 | 3.3745 | 1.6122 | 2.3293 | 2.7533 | 2.9091 | | 0 | | 11/09/2011
12/09/2011 | 1.3311
1.3214 | 3.3783
3.3733 | 1.6123
1.6181 | 2.3284
2.3309 | 2.7474
2.7359 | 2.918
2.9224 | | 0.4
1.4 | | 13/09/2011 | 1.3423 | 3.3858 | 1.6321 | 2.3324 | 2.8283 | 2.9665 | | 2.6 | | 14/09/2011 | 1.3686 | 3.3901 | 1.6405 | 2.3326 | 2.8497 | 2.9868 | | 1 | | 15/09/2011 | 1.3951 | 3.3901 | 1.6494 | 2.3361 | 2.8654 | 2.9923 | | 0 | | 16/09/2011 | 1.4028 | 3.3909 | 1.6478 | 2.3385 | 2.832 | 2.9509 | | 0 | | 17/09/2011 | 1.308 | 3.3828 | 1.6052 | 2.3416 | 2.7692 | 2.9182 | | 4.2 | | 18/09/2011 | 1.2369 | 3.3759 | 1.4581 | 2.3377 | 2.7609 | 2.9253 | | 1.4 | | 19/09/2011 | 1.2773 | 3.3871 | 1.565 | 2.3431 | 2.8152 | 2.9527 | | 1.4 | | 20/09/2011 | 1.0396 | 3.3903 | 1.5925 | 2.3429 | 2.825 | 2.9606 | | 0 | | 21/09/2011 | 1.1054 | 3.3705 | 1.4426 | 2.3384 | 2.8111 | 2.9544 | 0 | | | 22/09/2011 | 1.1892 | 3.3744 | 1.5168 | 2.3406 | 2.8096 | 2.9362 | 0.603 | | | 23/09/2011
24/09/2011 | 1.2102
1.2449 | 3.3764
3.3787 | 1.5475
1.5544 | 2.3403
2.342 | 2.8117
2.7818 | 2.9475
2.9256 | 0 | | | 25/09/2011 | 1.2825 | 3.3828 | 1.5671 | 2.3441 | 2.7973 | 2.9201 | 0.201 | | | 26/09/2011 | 1.3427 | 3.39 | 1.5844 | 2.3476 | 2.8175 | 2.9259 | 0.402 | | | 27/09/2011 | 1.3599 | 3.3915 | 1.6046 | 2.3463 | 2.865 | 2.9734 | 0 | | | 28/09/2011 | 1.3705 | 3.3963 | 1.616 | 2.3523 | 2.853 | 2.9741 | 0 | | | 29/09/2011 | 1.3831 | 3.3965 | 1.6174 | 2.3539 | 2.8333 | 2.9575 | 0 | | | 30/09/2011 | 1.3955 | 3.3991 | 1.6213 | 2.3565 | 2.8295 | 2.9524 | 0 | | | 01/10/2011 | 1.4117 | 3.3997 | 1.6269 | 2.3581 | 2.8472 | 2.956 | 0 | | | 02/10/2011 | 1.4204 | 3.4001 | 1.6328 | 2.3591 | 2.8522 | 2.9664 | 0 | | | 03/10/2011 | 1.4077 | 3.401 | 1.6328 | 2.3623 | 2.8253 | 2.9498 | 0 | | | 04/10/2011 | 1.438 | 3.4025 | 1.6346 | 2.3609 | 2.8429 | 2.9319 | 0.603 | | | 05/10/2011 | 1.4331
1.3867 | 3.4003
3.3993 | 1.6333
1.624 | 2.3644
2.3628 | 2.821
2.7957 | 2.9503
2.927 | 0 | | | 06/10/2011
07/10/2011 | 1.239 | 3.3815 | 1.2906 | 2.3627 | 2.8339 | 2.9479 | 3.216 | | | 08/10/2011 | 1.1508 | 3.3693 | 1.3664 | 2.3624 | 2.8381 | 2.9703 | 15.477 | | | 09/10/2011 | 1.0249 | 3.3565 | 1.1511 | 2.3638 | 2.7806 | 2.9342 | 2.211 | | | 10/10/2011 | 1.0877 | 3.3504 | 1.3792 | 2.3529 | 2.7529 | 2.9007 | 9.447 | | | 11/10/2011 | 1.1504 | 3.3547 | 1.4658 | 2.354 | 2.7692 | 2.901 | 0 | | | 12/10/2011 | 1.1736 | 3.3546 | 1.5045 | 2.349 | 2.7987 | 2.9214 | 0.804 | | | 13/10/2011 | 1.2083 | 3.355 | 1.5355 | 2.3454 | 2.839 | 2.9433 | 0.603 | | | 14/10/2011 | 1.2215 | 3.3521 | 1.5552 | 2.346 | 2.8427 | 2.9613 | 0 | | | 15/10/2011 | 1.2419 | 3.3464 | 1.5552 | 2.3404 | 2.8111 | 2.9384 | 0 | | | 16/10/2011 | 1.2776 | 3.3433 | 1.5586 | 2.3406 | 2.7885 | 2.9196 | 0 | | | 17/10/2011
18/10/2011 | 1.2448
1.1931 | 3.3465
3.3329 | 1.5696
1.5134 | 2.3438
2.3407 | 2.7882
2.7422 | 2.9196
2.8878 | 0
2.01 | | | 19/10/2011 | 1.1931 | 3.3329 | 1.5134 | 2.3407 | 2.7422 | 2.8878 | 2.814 | | | 20/10/2011 | 1.1933 | 3.3263 | 1.4797 | 2.3424 | 2.8514 | 2.9522 | 4.623 | | | 21/10/2011 | 1.1954 | 3.3252 | 1.5179 | 2.3408 | 2.8068 | 2.9459 | 1.206 | | | 22/10/2011 | 1.1963 | 3.3277 | 1.5457 | 2.3412 | 2.785 | 2.9187 | 0 | | | 23/10/2011 | 1.2252 | 3.3293 | 1.5502 | 2.3423 | 2.7416 | 2.882 | 0 | | | 24/10/2011 | 1.2383 | 3.3324 | 1.5559 | 2.3449 | 2.7208 | 2.8717 | 0 | | | 25/10/2011 | 1.2578 | 3.3319 | 1.5644 | 2.3437 | 2.7386 | 2.8709 | 0 | | | 26/10/2011 | 1.2858 | 3.3313 | 1.5799 | 2.343 | 2.8008 | 2.9122 | 1.005 | | | 27/10/2011 | 1.2667 | 3.3308 | 1.595 | 2.3438 | 2.8345 | 2.9386 | 0.201 | | | 28/10/2011 | 1.2113 | 3.3269 | 1.5171 | 2.3462 | 2.8885 | 2.9676 | 3.417 | | | 29/10/2011
30/10/2011 | 1.2101
1.2532 | 3.3204
3.3299 | 1.5623
1.5711 | 2.3403
2.3433 | 2.8547
2.8206 | 2.9744
2.9351 | 1.407
0 | | | 31/10/2011 | 1.2532 | 3.3299 | 1.5864 | 2.3433 | 2.8206 | 2.9351 | 0.201 | | | 01/11/2011 | 1.2451 | 3.3182 | 1.5804 | 2.3412 | 2.7853 | 2.9075 | 0.201 | | | 02/11/2011 | 1.1371 | 3.3056 | 1.4788 | 2.3334 | 2.7881 | 2.9185 | 7.236 | | | 03/11/2011 | 1.1365 | 3.3103 | 1.5101 | 2.3336 | 2.7197 | 2.8656 | 0 | | | 04/11/2011 | 1.0867 | 3.2977 | 1.4609 | 2.3272 | 2.7363 | 2.8622 | 3.417 | | | 05/11/2011 | 1.0316 | 3.2844 | 1.2081 | 2.3211 | 2.8075 | 2.9111 | 0.603 | | | 06/11/2011 | 1.1077 | 3.288 | 1.4546 | 2.3106 | 2.8679 | 2.9565 | 7.035 | | | 07/11/2011 | 1.1461 | 3.2818 | 1.5093 | 2.2962 | 2.8508
2.7831 | 2.9683 | 0 | | | 08/11/2011 | 1.1536 | 3.2865 | 1.5264 | 2.3017 | | 2.9175 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------------------------------| | 09/11/2011 | 1.1793 | 3.288 | 1.5342 | 2.2978 | 2.7764 | 2.9004 | 0.402 | | | 10/11/2011 | 1.193 | 3.2955 | 1.5508 | 2.3001 | 2.8042 | 2.9128 | 0 | | | 11/11/2011 | 1.2276 | 3.2923 | 1.5572 | 2.2945 | 2.7987 | 2.9202 | 0.201 | | | 12/11/2011 | 1.1433 | 3.2615 | 1.1815 | 2.2924 | 2.8066 | 2.914 | 0 | | | 13/11/2011 | 1.1146 | 3.2731 | 1.4619 | 2.2836 | 2.8263 | 2.9448 | 11.055 | | | 14/11/2011 | 1.1204 | 3.2737 | 1.5091 | 2.2761 | 2.7887 | 2.9155 | 0 | | | 15/11/2011 | 1.1412 | 3.2744 | 1.5321 | 2.2726 | 2.768 | 2.8926 | 0 | | | 16/11/2011
17/11/2011 | 1.1393
1.1572 | 3.294
3.2951 | 1.5259
1.5332 | 2.2671
2.2653 | 2.7014
2.6983 | 2.871
2.8643 | 0 | | | 18/11/2011 | 1.1863 | 3.3024 | 1.5455 | 2.2667 | 2.7113 | 2.8736 | 0 | | | 19/11/2011 | 1.21 | 3.3067 | 1.5543 | 2.2677 | 2.7231 | 2.8813 | 0 | | | 20/11/2011 | 1.2317 | 3.3062 | 1.5633 | 2.2617 | 2.7439 | 2.8956 | 0 | | | 21/11/2011 | 1.2328 | 3.3104 | 1.5661 | 2.2656 | 2.7232 | 2.8893 | 0 | | | 22/11/2011 | 1.2276 | 3.3118 | 1.5683 | 2.2682 | 2.7348 | 2.8915 | 0.201 | | | 23/11/2011 | 1.2384 | 3.3099 | 1.5758 | 2.2632 | 2.7774 | 2.9207 | 2.01 | | | 24/11/2011 | 1.2549 | 3.3217 | 1.5929 | 2.2718 | 2.7798 | 2.9289 | 0 | | | 25/11/2011 | 1.2381 | 3.3264 | 1.5836 | 2.2586 | 2.7368 | 2.9047 | 0 | | | 26/11/2011 | 1.1791 | 3.3147 | 1.5262 | 2.2657 | 2.7713 | 2.9259 | 5.628 | | | 27/11/2011 | 1.1629 | 3.3169 | 1.5391 | 2.2703 | 2.6982 | 2.8912 | 0 | | | 28/11/2011 | 1.2206 | 3.3203 | 1.5682 | 2.2629 | 2.7855 | 2.9347 | 0 | | | 29/11/2011 | 1.1881 | 3.3259 | 1.5576 | 2.2726 | 2.6891 | 2.8794 | 0 | | | 30/11/2011 | 1.2059 | 3.3174 | 1.4589 | 2.2639 | 2.7647 | 2.8559 | 0.402 | | | 01/12/2011 | 1.1733 | 3.3258 | 1.5017 | 2.2633 | 2.6741 | 2.8867 | 0.804 | | | 02/12/2011
03/12/2011 | 1.1896
1.1861 | 3.3146
3.3137 | 1.4858
1.5032 | 2.2604
2.267 | 2.7279
2.6631 | 2.8956
2.8681 | 0.402
0.201 | | | 04/12/2011 | 1.1963 | 3.3167 | 1.5032 | 2.2619 | 2.7064 | 2.8701 | 0.201 | | | 05/12/2011 | 1.2064 | 3.3177 | 1.5232 | 2.2602 | 2.7198 | 2.8675 | 0.201 | | | 06/12/2011 | 1.2199 | 3.3194 | 1.5303 | 2.2622 | 2.7277 | 2.8898 | 0 | | | 07/12/2011 | 1.2191 | 3.3242 | 1.534 | 2.26 | 2.7016 | 2.8805 | 0 | | | 08/12/2011 | 1.2379 | 3.3141 | 1.5066 | 2.2593 | 2.7815 | 2.9152 | 0.201 | | | 09/12/2011 | 1.1851 | 3.3158 | 1.4811 | 2.2592 | 2.7315 | 2.8701 | 0 | | | 10/12/2011 | 1.2065 | 3.3144 | 1.5173 | 2.2559 | 2.76 | 2.8998 | 0 | | | 11/12/2011 | 1.1995 |
3.3169 | 1.5162 | 2.2588 | 2.7268 | 2.8941 | 0 | | | 12/12/2011 | 1.1562 | 3.3115 | 1.4353 | 2.2523 | 2.6949 | 2.8566 | 0.201 | | | 13/12/2011 | 1.0923 | 3.3009 | 1.3431 | 2.2487 | 2.5963 | 2.8189 | 0 | | | 14/12/2011 | 1.0567 | 3.2932 | 1.371 | 2.2405 | 2.65 | 2.8225 | 0 | | | 15/12/2011 | 1.0685 | 3.2886 | 1.4209 | 2.2325 | 2.6481 | 2.8295 | 0.804 | | | 16/12/2011
17/12/2011 | 1.0377 | 3.2797
3.2752 | 1.4428 | 2.217 | 2.6466 | 2.8207 | 5.025
15.276 | | | 18/12/2011 | 1.0348
0.7608 | 3.2421 | 1.2782
1.2189 | 2.2036
2.1614 | 2.7544
2.7145 | 2.8878
2.8628 | 5.829 | | | 19/12/2011 | 0.7608 | 3.2296 | 1.2923 | 2.1313 | 2.6627 | 2.7982 | 8.442 | | | 20/12/2011 | 0.7862 | 3.2223 | 1.201 | 2.1042 | 2.613 | 2.7996 | 1.407 | | | 21/12/2011 | 0.8358 | 3.2121 | 1.2254 | 2.064 | 2.5951 | 2.7898 | 3.618 | | | 22/12/2011 | 0.8614 | 3.2176 | 1.3364 | 2.0419 | 2.6428 | 2.8023 | 0 | | | 23/12/2011 | 0.9025 | 3.2153 | 1.3982 | 2.0164 | 2.5772 | 2.7496 | 10.854 | | | 24/12/2011 | 0.8231 | 3.1887 | 1.1694 | 1.9814 | 2.5715 | 2.7271 | 0.603 | | | 25/12/2011 | 0.864 | 3.1891 | 1.3154 | 1.9564 | 2.4965 | 2.6636 | 0.804 | | | 26/12/2011 | 0.9146 | 3.1974 | 1.4162 | 1.9472 | 2.5265 | 2.6579 | 0 | | | 27/12/2011 | 0.9378 | 3.1986 | 1.4642 | 1.9323 | 2.5271 | 2.6341 | 0 | | | 28/12/2011 | 0.9048 | 3.1875 | 1.4761 | 1.9126 | 2.4467 | 2.5971 | 0 | | | 29/12/2011 | 0.9798 | 3.1982 | 1.5015 | 1.9126 | 2.5259 | 2.6132 | 1.809 | | | 30/12/2011
31/12/2011 | 0.9393 | 3.1974
3.1906 | 1.4925
1.2399 | 1.9094
1.9041 | 2.5122
2.4582 | 2.6034
2.5872 | 5.226
3.015 | | | 01/01/2012 | 0.8488 | 3.1906 | 1.3918 | 1.9041 | 2.4562 | 2.5872 | 2.211 | | | 02/01/2012 | 0.8653 | 3.1886 | 1.381 | 1.8913 | 2.4685 | 2.6259 | 2.613 | | | 03/01/2012 | 0.8473 | 3.1767 | 1.3465 | 1.8783 | 2.4409 | 2.6274 | 9.849 | | | 04/01/2012 | 0.8407 | 3.1772 | 1.2562 | 1.877 | 2.5171 | 2.6475 | 0.201 | | | 05/01/2012 | 0.7898 | 3.1623 | 1.1738 | 1.8547 | 2.3818 | 2.6318 | 7.437 | | | 06/01/2012 | 0.8644 | 3.1683 | 1.2544 | 1.8419 | 2.5354 | 2.688 | 0.402 | | | 07/01/2012 | 0.8408 | 3.1664 | 1.3044 | 1.8256 | 2.4695 | 2.6769 | 1.407 | | | 08/01/2012 | 0.8865 | 3.1722 | 1.4147 | 1.8171 | 2.5189 | 2.7027 | 1.206 | | | 09/01/2012 | 0.8967 | 3.1758 | 1.4613 | 1.8089 | 2.534 | 2.7233 | 1.206 | | | 10/01/2012 | 0.9028 | 3.1794 | 1.4817 | 1.8056 | 2.5617 | 2.7324 | 0 | | | 11/01/2012 | 0.9249 | 3.1871 | 1.4956 | 1.8061 | 2.5574 | 2.731 | 1.809 | | | 12/01/2012 | 0.8968 | 3.185 | 1.4844 | 1.8038 | 2.5259 | 2.7209 | 0.201 | | | 13/01/2012
14/01/2012 | 0.9518
0.9566 | 3.1924
3.1873 | 1.5067
1.5018 | 1.8062
1.7987 | 2.5869
2.5661 | 2.744
2.7243 | 0 | | | 15/01/2012 | 0.9366 | 3.1916 | 1.5147 | 1.8035 | 2.5414 | 2.7243 | 0 | | | 16/01/2012 | 1.0055 | 3.1910 | 1.5263 | 1.8124 | 2.5629 | 2.7334 | 0 | | | 17/01/2012 | 1.0277 | 3.2066 | 1.5336 | 1.8194 | 2.5864 | 2.7487 | 0 | | | 18/01/2012 | 1.0305 | 3.2113 | 1.5408 | 1.8267 | 2.5672 | 2.752 | 0.603 | | | 19/01/2012 | 1.0363 | 3.2213 | 1.5275 | 1.8378 | 2.5775 | 2.7574 | 3.015 | | | | | | | | | | | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|---------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 20/01/2012 | 0.9887 | 3.2191 | 1.4353 | 1.8486 | 2.5932 | 2.7716 | 12.462 | | | 21/01/2012 | 0.7584 | 3.1933 | 1.227 | 1.8328 | 2.4967 | 2.7257 | 0.804 | | | 22/01/2012 | 0.8671 | 3.1975 | 1.3761 | 1.824 | 2.5053 | 2.7346 | 0.201 | | | 23/01/2012 | 0.9238 | 3.2051 | 1.4354 | 1.8216 | 2.5491 | 2.7526 | 0 | | | 24/01/2012 | 0.9457 | 3.2067 | 1.4722 | 1.8145 | 2.5712 | 2.7544 | 6.834 | | | 25/01/2012 | 0.851 | 3.2002 | 1.3202 | 1.8083 | 2.5237 | 2.7304 | 0.201
3.819 | | | 26/01/2012
27/01/2012 | 0.8456
0.8919 | 3.1936
3.2007 | 1.3189
1.3832 | 1.7968
1.7997 | 2.4632
2.5357 | 2.7035
2.7541 | 1.407 | | | 28/01/2012 | 0.892 | 3.1902 | 1.2219 | 1.7933 | 2.5957 | 2.7919 | 4.824 | | | 29/01/2012 | 0.8933 | 3.1816 | 1.3859 | 1.7705 | 2.5729 | 2.7567 | 0 | | | 30/01/2012 | 0.9047 | 3.1868 | 1.4532 | 1.7659 | 2.5431 | 2.7411 | 0 | | | 31/01/2012 | 0.924 | 3.1871 | 1.478 | 1.7588 | 2.5357 | 2.7473 | 0 | | | 01/02/2012 | 0.9769 | 3.1971 | 1.5048 | 1.7611 | 2.5989 | 2.7829 | 0 | | | 02/02/2012 | 0.9992 | 3.1989 | 1.5239 | 1.7606 | 2.6134 | 2.7881 | 0 | | | 03/02/2012 | 1.0152 | 3.2081 | 1.5364 | 1.7647 | 2.6173 | 2.7913 | 0 | | | 04/02/2012 | 1.0202 | 3.2094 | 1.5476 | 1.7629 | 2.608 | 2.7691 | 0 | | | 05/02/2012 | 0.9733 | 3.208 | 1.3324 | 1.7698 | 2.5355 | 2.7566 | 6.231 | | | 06/02/2012 | 0.9564 | 3.2098 | 1.3363 | 1.7768 | 2.5945 | 2.786 | 4.824 | | | 07/02/2012 | 0.8903 | 3.2138 | 1.4068 | 1.7714 | 2.619 | 2.8033 | 0.804 | | | 08/02/2012 | 0.8961 | 3.2184 | 1.4776 | 1.7674 | 2.6211 | 2.7919 | 0 | | | 09/02/2012 | 0.8976 | 3.2239 | 1.52 | 1.767 | 2.5882 | 2.7688 | 0.603 | | | 10/02/2012 | 0.7705 | 3.2195 | 1.2481 | 1.7674 | 2.5636 | 2.7648 | 5.628 | | | 11/02/2012 | 0.8476 | 3.2245
3.2342 | 1.4129 | 1.7625 | 2.5574 | 2.7614 | 0
0.201 | | | 12/02/2012
13/02/2012 | 0.9007
0.9168 | 3.2342 | 1.4888
1.4905 | 1.7627
1.762 | 2.564
2.5536 | 2.7611
2.7442 | 0.201 | | | 14/02/2012 | 0.9356 | 3.2483 | 1.4905 | 1.7649 | 2.5507 | 2.7513 | 0.201 | | | 15/02/2012 | 0.955 | 3.2559 | 1.5212 | 1.7673 | 2.5547 | 2.7644 | 0 | | | 16/02/2012 | 0.9827 | 3.262 | 1.5422 | 1.773 | 2.5813 | 2.7686 | 0 | | | 17/02/2012 | 0.9633 | 3.2552 | 1.6445 | 1.7445 | 2.5998 | 2.7569 | 2.412 | | | 18/02/2012 | 0.9023 | 3.2529 | 1.6525 | 1.7407 | 2.5444 | 2.7284 | 1.809 | | | 19/02/2012 | 0.8579 | 3.2593 | 1.6396 | 1.7533 | 2.62 | 2.799 | 3.216 | | | 20/02/2012 | 0.8986 | 3.2595 | 1.6213 | 1.7535 | 2.6672 | 2.7958 | 0.402 | | | 21/02/2012 | 0.9192 | 3.2677 | 1.6533 | 1.7574 | 2.628 | 2.7839 | 0.402 | | | 22/02/2012 | 0.9361 | 3.2738 | 1.6679 | 1.7582 | 2.6171 | 2.7561 | 0.402 | | | 23/02/2012 | 0.9611 | 3.2801 | 1.6769 | 1.7693 | 2.6309 | 2.7941 | 0 | | | 24/02/2012 | 0.9837 | 3.2837 | 1.6886 | 1.7722 | 2.6592 | 2.8123 | 0.603 | | | 25/02/2012 | 0.9927 | 3.2799 | 1.6903 | 1.7717 | 2.6783 | 2.8087 | 0 | | | 26/02/2012 | 1.0092 | 3.287 | 1.6956 | 1.7766 | 2.6705 | 2.8075 | 0 | | | 27/02/2012 | 1.0057 | 3.2902 | 1.7017 | 1.7806 | 2.6494 | 2.79 | 0.201 | | | 28/02/2012 | 1.021
1.0332 | 3.2971
3.3012 | 1.7086
1.7141 | 1.7901 | 2.6584
2.6694 | 2.8007
2.8089 | 0.201 | | | 29/02/2012
01/03/2012 | 1.0409 | 3.2991 | 1.7114 | 1.7948
1.7967 | 2.6751 | 2.8155 | 0 | | | 02/03/2012 | 1.0592 | 3.3015 | 1.7205 | 1.8045 | 2.6977 | 2.8191 | 0 | | | 03/03/2012 | 1.0287 | 3.2996 | 1.7086 | 1.8048 | 2.6328 | 2.7894 | 0.201 | | | 04/03/2012 | 1.0521 | 3.304 | 1.7074 | 1.8136 | 2.6602 | 2.8061 | 4.623 | | | 05/03/2012 | 1.0028 | 3.2979 | 1.6639 | 1.8207 | 2.696 | 2.8313 | 0.201 | | | 06/03/2012 | 1.0226 | 3.3011 | 1.6963 | 1.8256 | 2.6999 | 2.8253 | 0 | | | 07/03/2012 | 0.9922 | 3.2968 | 1.7015 | 1.8239 | 2.6227 | 2.7915 | 2.01 | | | 08/03/2012 | 1.0115 | 3.3026 | 1.7146 | 1.8392 | 2.7112 | 2.846 | 0 | | | 09/03/2012 | 1.035 | 3.3126 | 1.7361 | 1.8501 | 2.7289 | 2.8507 | 0 | | | 10/03/2012 | 1.0555 | 3.3199 | 1.746 | 1.8604 | 2.7406 | 2.8624 | 0 | | | 11/03/2012 | 1.0657 | 3.3214 | 1.7549 | 1.8632 | 2.745 | 2.8544 | 0 | | | 12/03/2012 | 1.0644 | 3.3236 | 1.759 | 1.8663 | 2.7245 | 2.8412 | 0 | | | 13/03/2012 | 1.0698 | 3.3271 | 1.7606 | 1.8713 | 2.7215 | 2.8463 | 0 | | | 14/03/2012 | 1.0711 | 3.3252
3.321 | 1.7564 | 1.873
1.8719 | 2.7093 | 2.8328 | 0 0 402 | | | 15/03/2012
16/03/2012 | 1.0653
1.1947 | 3.3031 | 1.7491
1.7785 | 2.032 | 2.6812
2.655 | 2.8168
2.8705 | 0.402
0 | | | 17/03/2012 | 1.1947 | 3.3052 | 1.7746 | 2.032 | 2.6379 | 2.8675 | 2.211 | | | 18/03/2012 | 1.178 | 3.3125 | 1.7713 | 2.0484 | 2.6656 | 2.9069 | 4.221 | | | 19/03/2012 | 1.1311 | 3.3137 | 1.7306 | 2.0531 | 2.751 | 2.9459 | 0 | | | 20/03/2012 | 1.1631 | 3.3197 | 1.7543 | 2.0598 | 2.7457 | 2.9406 | 0 | | | 21/03/2012 | 1.1804 | 3.3258 | 1.7711 | 2.0694 | 2.7502 | 2.9391 | 0 | | | 22/03/2012 | 1.1719 | 3.3228 | 1.7723 | 2.0659 | 2.7243 | 2.9203 | 0 | | | 23/03/2012 | 1.1773 | 3.3285 | 1.7784 | 2.0757 | 2.701 | 2.9132 | 0 | | | 24/03/2012 | 1.1947 | 3.3304 | 1.7843 | 2.0803 | 2.7167 | 2.9208 | 0 | | | 25/03/2012 | 1.2095 | 3.3362 | 1.7981 | 2.0887 | 2.7482 | 2.9431 | 0 | | | 26/03/2012 | 1.2053 | 3.3375 | 1.8067 | 2.0917 | 2.7642 | 2.9459 | 0 | | | 27/03/2012 | 1.1894 | 3.3396 | 1.813 | 2.0951 | 2.7566 | 2.9412 | 0 | | | 28/03/2012 | | 3.3377 | 1.8165 | 2.0985 | 2.7399 | 2.927 | 0 | | | 29/03/2012 | 1.1758 | 3.3398 | 1.8192 | 2.1021 | 2.723 | 2.9203 | 0 | | | 30/03/2012
31/03/2012 | 1.1858
1.1741 | 3.345
3.3442 | 1.826
1.8255 | 2.1118
2.1135 | 2.7215
2.6883 | 2.9139
2.901 | 0 | | | 31/03/2012 | 1.1/41 | J.J 44 ∠ | 1.0200 | ۷.۱۱۵۵ | ۷.0003 | 2.301 | U I | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 01/04/2012 | 1.2101 | 3.3429 | 1.8259 | 2.1144 | 2.7295 | 2.911 | 0 | | | 02/04/2012 | 1.1997 | 3.346 | 1.829 | 2.1192 | 2.6846 | 2.8827 | 0.402 | | | 03/04/2012 | 1.1845 | 3.347 | 1.8243 | 2.1244 | 2.6581 | 2.8685 | 3.417 | | | 04/04/2012
05/04/2012 | 1.1713
1.195 | 3.348
3.3493 | 1.8119
1.7715 | 2.1303
2.1388 | 2.6876
2.7715 | 2.9143
2.9461 | 2.412
0 | | | 06/04/2012 | 1.195 | 3.3472 | 1.785 | 2.1366 | 2.7715 | 2.9401 | 0 | | | 07/04/2012 | 1.1885 | 3.353 | 1.79 | 2.1448 | 2.6949 | 2.91 | 2.01 | | | 08/04/2012 | 1.1574 | 3.3536 | 1.7945 | 2.1507 | 2.7175 | 2.9156 | 1.407 | | | 09/04/2012 | 1.0581 | 3.3464 | 1.7786 | 2.1479 | 2.6543 | 2.8557 | 7.236 | | | 10/04/2012 | 0.801 | 3.3304 | 1.6412 | 2.1492
| 2.5835 | 2.8574 | 0 | | | 11/04/2012 | 0.9818 | 3.3365 | 1.7045 | 2.1547 | 2.6713 | 2.9082 | 1.608 | | | 12/04/2012 | 1.0294 | 3.3428 | 1.7321 | 2.1615 | 2.7176 | 2.9313 | 3.819 | | | 13/04/2012 | 0.9787 | 3.3344 | 1.6923 | 2.1593 | 2.7194 | 2.9262 | 0 | | | 14/04/2012
15/04/2012 | 0.848
0.98 | 3.3349
3.3398 | 1.6228
1.682 | 2.1648
2.1651 | 2.7206
2.7657 | 2.9388
2.965 | 3.618
0 | | | 16/04/2012 | 1.0484 | 3.3433 | 1.7183 | 2.1643 | 2.7803 | 2.9539 | 0 | | | 17/04/2012 | 0.9846 | 3.3324 | 1.7062 | 2.1506 | 2.6291 | 2.8645 | 3.216 | | | 18/04/2012 | 0.8751 | 3.3253 | 1.683 | 2.1528 | 2.5643 | 2.8273 | 3.015 | | | 19/04/2012 | 0.8307 | 3.3256 | 1.6218 | 2.1626 | 2.6116 | 2.8703 | 6.432 | | | 20/04/2012 | 0.669 | 3.3105 | 1.5525 | 2.1525 | 2.6319 | 2.8853 | 7.437 | | | 21/04/2012 | 0.8471 | 3.3092 | 1.631 | 2.14 | 2.6199 | 2.8815 | 1.608 | | | 22/04/2012 | 0.9272 | 3.3122 | 1.6608 | 2.1344 | 2.6522 | 2.8915 | 0.201 | | | 23/04/2012 | 0.9421 | 3.3107 | 1.6675 | 2.1255 | 2.6309 | 2.8664 | 1.005 | | | 24/04/2012 | 0.9722 | 3.3171 | 1.6796 | 2.1279 | 2.6491 | 2.8822 | 0 | | | 25/04/2012 | 0.9646 | 3.3086 | 1.6815 | 2.1171 | 2.6083 | 2.8315 | 0.804 | | | 26/04/2012 | 0.7243 | 3.3025 | 1.5686 | 2.1201 | 2.5763 | 2.862 | 4.824 | | | 27/04/2012
28/04/2012 | 0.7408
0.76 | 3.2993
3.2915 | 1.5402
1.5359 | 2.1215
2.104 | 2.6732
2.6424 | 2.916
2.8405 | 4.623
1.809 | | | 29/04/2012 | 0.76 | 3.2865 | 1.6107 | 2.104 | 2.5708 | 2.7879 | 10.653 | | | 30/04/2012 | 0.5431 | 3.2436 | 1.4596 | 2.0373 | 2.4753 | 2.7424 | 0.402 | | | 01/05/2012 | 0.7737 | 3.2488 | 1.5978 | 2.0084 | 2.4084 | 2.6499 | 0.402 | | | 02/05/2012 | 0.886 | 3.248 | 1.6426 | 1.9901 | 2.465 | 2.7502 | 0.201 | | | 03/05/2012 | | 3.2464 | 1.6494 | 1.9755 | 2.4658 | 2.7865 | 0 | | | 04/05/2012 | 0.9069 | 3.2469 | 1.6521 | 1.9659 | 2.4593 | 2.8117 | 0 | | | 05/05/2012 | 0.9726 | 3.2517 | 1.6635 | 1.9626 | 2.531 | 2.8539 | 0 | | | 06/05/2012 | 1.0119 | 3.2562 | 1.6728 | 1.9619 | 2.5628 | 2.879 | 0 | | | 07/05/2012 | 1.0364 | 3.2591 | 1.683 | 1.9621 | 2.5832 | 2.8814 | 0.402 | | | 08/05/2012 | 0.846 | 3.2414 | 1.6196 | 1.9634 | 2.54 | 2.8701 | 9.045 | | | 09/05/2012 | 0.9118 | 3.2506 | 1.6385 | 1.971 | 2.5611 | 2.8856 | 0.201 | | | 10/05/2012
11/05/2012 | 0.6391
0.7096 | 3.2217
3.2299 | 1.5609
1.5616 | 1.9707
1.9718 | 2.5183
2.5723 | 2.8703
2.9236 | 8.04
6.231 | | | 12/05/2012 | 0.8367 | 3.2248 | 1.5927 | 1.9606 | 2.6619 | 2.9446 | 0.231 | | | 13/05/2012 | 0.8992 | 3.2252 | 1.619 | 1.949 | 2.6092 | 2.8857 | 0 | | | 14/05/2012 | 0.8868 | 3.2285 | 1.6265 | 1.9465 | 2.5119 | 2.8482 | 0.402 | | | 15/05/2012 | 0.913 | 3.2292 | 1.6393 | 1.9483 | 2.5394 | 2.8759 | 11.859 | | | 16/05/2012 | 0.7639 | 3.2039 | 1.5838 | 1.941 | 2.5889 | 2.8985 | 0 | | | 17/05/2012 | 0.8349 | 3.2079 | 1.6123 | 1.9334 | 2.5568 | 2.8615 | 1.206 | | | 18/05/2012 | 0.8333 | 3.2074 | 1.6188 | 1.9323 | 2.505 | 2.842 | 0 | | | 19/05/2012 | 0.8444 | 3.2082 | 1.6341 | 1.9359 | 2.5472 | 2.8733 | 2.814 | | | 20/05/2012 | 0.7586 | 3.2111 | 1.6047 | 1.9348 | 2.578 | 2.8801 | 0 | | | 21/05/2012
22/05/2012 | 0.8545
0.9316 | 3.2195
3.2298 | 1.6208
1.6398 | 1.9372 | 2.5718
2.6103 | 2.8836
2.9086 | 0 | | | 23/05/2012 | 0.9316 | 3.2298 | 1.669 | 1.9458
1.9583 | 2.6593 | 2.9327 | 0 | | | 24/05/2012 | 1.0237 | 3.2429 | 1.6783 | 1.9654 | 2.6707 | 2.9318 | 0 | | | 25/05/2012 | 1.0237 | 3.2447 | 1.6835 | 1.9729 | 2.6507 | 2.9189 | 0 | | | 26/05/2012 | 0.969 | 3.2413 | 1.6998 | 1.8136 | 2.6272 | 2.8658 | 0 | | | 27/05/2012 | 0.9602 | 3.2445 | 1.6989 | 1.8234 | 2.616 | 2.8603 | 0 | | | 28/05/2012 | 0.9714 | 3.2512 | 1.7027 | 1.836 | 2.617 | 2.8608 | 0 | | | 29/05/2012 | 0.9813 | 3.2562 | 1.7045 | 1.8452 | 2.6311 | 2.8654 | 0 | | | 30/05/2012 | 0.9911 | 3.2593 | 1.7068 | 1.8543 | 2.6273 | 2.8657 | 0 | | | 31/05/2012 | 1.0102 | 3.2646 | 1.7127 | 1.8637 | 2.6431 | 2.8753 | 1.809 | | | 01/06/2012 | 1.0178 | 3.2682 | 1.7162 | 1.8719 | 2.6443 | 2.8783 | 0.201 | | | 02/06/2012
03/06/2012 | 1.029 | 3.2708 | 1.7192
1.6771 | 1.8791 | 2.6368 | 2.8628 | 0.201 | | | 03/06/2012 | 0.8298
0.4413 | 3.2557
3.2237 | 1.6771 | 1.8787
1.8611 | 2.5838
2.5913 | 2.8417
2.8561 | 5.427
1.608 | | | 05/06/2012 | 0.4413 | 3.2302 | 1.5439 | 1.8584 | 2.5913 | 2.8272 | 0 | | | 06/06/2012 | 0.7409 | 3.2302 | 1.5735 | 1.8559 | 2.4882 | 2.7871 | 4.623 | | | | | 3.2312 | 1.5494 | 1.8633 | 2.5267 | 2.7902 | 4.422 | | | 07/06/2012 | 0.7855 | | | | | | | | | | | | 1.3619 | 1.8494 | 2.4369 | 2./041 | 17.688 | | | 07/06/2012
08/06/2012
09/06/2012 | | 3.2091
3.1717 | 1.3619
1.2003 | 1.8494
1.8242 | 2.4369
2.511 | 2.7841
2.8217 | 17.688
6.03 | | | 08/06/2012 | 0.5554 | 3.2091 | | | | | | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-------------------------------------| | 12/06/2012 | 0.8012 | 3.1831 | 1.5485 | 1.7673 | 2.5156 | 2.7991 | 0 | | | 13/06/2012 | 0.8548 | 3.1901 | 1.5818 | 1.7678 | 2.5538 | 2.8148 | 3.819 | | | 14/06/2012 | 0.8273 | 3.1694 | 1.4482 | 1.7558 | 2.5398 | 2.797 | 0.402 | | | 15/06/2012 | 0.5337 | 3.1502 | 1.3078 | 1.7464 | 2.4608 | 2.7569 | 5.025 | | | 16/06/2012 | 0.51 | 3.1487 | 1.3861 | 1.738 | 2.4454 | 2.7559 | 1.407 | | | 17/06/2012 | 0.6467 | 3.1567 | 1.4241 | 1.7353 | 2.5265 | 2.8109 | 0.402 | | | 18/06/2012 | 0.7709
0.7753 | 3.1636
3.1705 | 1.525 | 1.7274
1.7282 | 2.5384 | 2.8071 | 0.402
0.201 | | | 19/06/2012
20/06/2012 | 0.8006 | 3.1755 | 1.558
1.5842 | 1.7296 | 2.5458
2.5571 | 2.808
2.8027 | 0.201 | | | 21/06/2012 | 0.8229 | 3.1779 | 1.5946 | 1.7286 | 2.5138 | 2.7717 | 0.201 | | | 22/06/2012 | 0.7406 | 3.1684 | 1.4956 | 1.7303 | 2.4868 | 2.7855 | 0.402 | | | 23/06/2012 | 0.5161 | 3.1544 | 1.3615 | 1.73 | 2.5519 | 2.8178 | 0.201 | | | 24/06/2012 | 0.4712 | 3.1318 | 1.3313 | 1.7161 | 2.4839 | 2.7865 | 0.402 | | | 25/06/2012 | 0.4757 | 3.1171 | 1.3944 | 1.6842 | 2.4779 | 2.7648 | 0.201 | | | 26/06/2012 | 0.6956 | 3.1309 | 1.5055 | 1.6748 | 2.4833 | 2.7525 | 0 | | | 27/06/2012 | 0.7397 | 3.1346 | 1.5331 | 1.6694 | 2.4842 | 2.7523 | 0.201 | | | 28/06/2012 | 0.7533 | 3.1395 | 1.5501 | 1.666 | 2.4524 | 2.7237 | 0.201 | | | 29/06/2012 | 0.7599 | 3.1471 | 1.5573 | 1.6682 | 2.4418 | 2.745 | 0 | | | 30/06/2012 | 0.7537 | 3.1538 | 1.5715 | 1.6792 | 2.5055 | 2.7828 | 0 | | | 01/07/2012 | 0.7758 | 3.1576 | 1.598 | 1.686 | 2.5454 | 2.8124 | 0 | | | 02/07/2012 | 0.8453 | 3.164 | 1.6158 | 1.6952 | 2.5564 | 2.8092 | 0.201 | | | 03/07/2012 | 0.759 | 3.1625 | 1.494 | 1.703 | 2.558 | 2.808 | 0.804 | | | 04/07/2012 | 0.876
0.535 | 3.171 | 1.2019 | 1.745 | 2.519 | 2.791 | 1.005 | | | 05/07/2012
06/07/2012 | 0.535 | 3.1469
3.1013 | 0.9454
0.9608 | 1.751
1.736 | 2.528
2.491 | 2.802
2.772 | 9.447
37.386 | | | 06/07/2012 | 0.532 | 2.9198 | 0.8833 | 1.736 | 2.303 | 2.772 | 0.402 | | | 08/07/2012 | 0.634 | 2.9464 | 1.0372 | 1.518 | 2.104 | 2.393 | 0.402 | | | 09/07/2012 | 0.600 | 2.9426 | 0.9762 | 1.496 | 2.252 | 2.620 | 4.02 | | | 10/07/2012 | 0.725 | 2.9754 | 1.0471 | 1.491 | 2.331 | 2.717 | 11.658 | | | 11/07/2012 | 0.556 | 2.9167 | 0.9478 | 1.448 | 2.271 | 2.622 | 0.804 | | | 12/07/2012 | 0.676 | 2.9605 | 1.06 | 1.436 | 2.233 | 2.582 | 0 | | | 13/07/2012 | 0.751 | 2.9858 | 1.1235 | 1.441 | 2.262 | 2.665 | 3.216 | | | 14/07/2012 | 0.555 | 2.9555 | 0.9798 | 1.448 | 2.331 | 2.742 | 0.402 | | | 15/07/2012 | 0.732 | 3.0107 | 1.1255 | 1.467 | 2.407 | 2.777 | 0 | | | 16/07/2012 | 0.858 | 3.046 | 1.1874 | 1.487 | 2.442 | 2.783 | 8.241 | | | 17/07/2012 | 0.590 | 2.8569 | 0.8929 | 1.473 | 2.424 | 2.772 | 5.628 | | | 18/07/2012 | 0.700 | 2.9594 | 1.0698 | 1.454 | 2.314 | 2.662 | 0 | | | 19/07/2012 | 0.703 | 2.9265 | 0.9783 | 1.458 | 2.322 | 2.712 | 0.804 | | | 20/07/2012
21/07/2012 | 0.665
0.823 | 2.9637
3.0108 | 1.0249
1.1344 | 1.460
1.476 | 2.399
2.448 | 2.770
2.790 | 0.804
0.201 | | | 22/07/2012 | 0.823 | 3.047 | 1.1744 | 1.476 | 2.440 | 2.790 | 0.201 | | | 23/07/2012 | 0.900 | 3.0706 | 1.2015 | 1.522 | 2.462 | 2.798 | 0.201 | | | 24/07/2012 | 0.940 | 3.0861 | 1.2177 | 1.545 | 2.471 | 2.801 | 0.201 | | | 25/07/2012 | 0.970 | 3.1017 | 1.2399 | 1.570 | 2.493 | 2.820 | 0.201 | | | 26/07/2012 | 1.004 | 3.114 | 1.2583 | 1.592 | 2.521 | 2.827 | 0 | | | 27/07/2012 | 1.013 | 3.1219 | 1.266 | 1.609 | 2.509 | 2.820 | 0 | | | 28/07/2012 | 1.019 | 3.1271 | 1.2678 | 1.627 | 2.506 | 2.812 | 0.201 | | | 29/07/2012 | 1.040 | 3.1376 | 1.275 | 1.646 | 2.513 | 2.826 | 0 | | | 30/07/2012 | 1.029 | 3.1283 | 1.1694 | 1.662 | 2.542 | 2.840 | 0 | | | 31/07/2012 | 1.040 | 3.1398 | 1.2487 | 1.679 | 2.549 | 2.835 | 0 | | | 01/08/2012 | 0.814 | 3.1224 | 1.0698 | 1.688 | 2.521 | 2.810 | 0 | | | 02/08/2012 | 0.880 | 3.1312 | 1.1002 | 1.702 | 2.527 | 2.827 | 0 | | | 03/08/2012 | 0.820 | 3.1336 | 1.1132 | 1.715 | 2.552 | 2.832 | 0.201 | | | 04/08/2012
05/08/2012 | 0.914
0.961 | 3.1474
3.1567 | 1.1731
1.1942 | 1.727
1.736 | 2.542
2.543 | 2.825
2.824 | 0 | | | 06/08/2012 | 1.006 | 3.1567 | 1.1942 | 1.736 | 2.543 | 2.840 | 0 | | | 07/08/2012 | 1.070 | 3.1765 | 1.2636 | 1.746 | 2.611 | 2.871 | 0 | | | 08/08/2012 | 1.083 | 3.1822 | 1.2874 | 1.774 | 2.630 | 2.877 | 0.201 | | | 09/08/2012 | 1.106 | 3.1903 | 1.3043 | 1.787 | 2.638 | 2.880 | 0 | | | 10/08/2012 | 1.114 | 3.1951 | 1.3149 | 1.799 | 2.639 | 2.873 | 0 | | | 11/08/2012 | 1.113 | 3.1996 | 1.3152 | 1.808 | 2.609 | 2.849 | 0 | | | 12/08/2012 | 1.109 | 3.2014 | 1.3132 | 1.817 | 2.566 | 2.831 | 0.201 | | | 13/08/2012 | 1.105 | 3.2059 | 1.3169 | 1.828 | 2.565 | 2.835 | 0 | | | 14/08/2012 | 1.132 | 3.2142 | 1.3246 | 1.839 | 2.590 | 2.855 | 0 | | | 15/08/2012 | 1.154 | 3.2194 | 1.3288 | 1.850 | 2.604 | 2.841 | 0 | | | 16/08/2012 | 1.007 | 3.2081 | 1.2262 | 1.856 | 2.595 | 2.865 | 0.201 | | | 17/08/2012 | 1.048 |
3.2151 | 1.2914 | 1.866 | 2.598 | 2.857 | 0 | | | 18/08/2012 | 1.047 | 3.2211 | 1.3279 | 1.873 | 2.605 | 2.865 | 0.201 | | | 19/08/2012 | 1.095 | 3.2282 | 1.3398 | 1.881 | 2.642 | 2.873 | 0 | | | 20/08/2012
21/08/2012 | 1.107
1.131 | 3.2322
3.2346 | 1.3454
1.3527 | 1.887
1.896 | 2.642
2.644 | 2.880
2.869 | 0.201 | | | 22/08/2012 | 1.131 | 3.2346 | 1.2889 | 1.896 | 2.644 | 2.869 | 0.201 | | | 22/00/2012 | 1.077 | 0.2000 | 1.2003 | 1.500 | 2.017 | 2.000 | U.ZU I | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|----------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 23/08/2012 | 1.108 | 3.24 | 1.3201 | 1.910 | 2.623 | 2.863 | 0 | | | 24/08/2012 | 1.113 | 3.2406 | 1.3268 | 1.913 | 2.585 | 2.834 | 0.201 | | | 25/08/2012 | 1.071 | 3.2393 | 1.2694 | 1.922 | 2.557 | 2.831 | 0 | | | 26/08/2012 | 1.144 | 3.2524 | 1.3031 | 1.935 | 2.669 | 2.896 | 0.201 | | | 27/08/2012 | 1.135 | 3.2479 | 1.322 | 1.936 | 2.662 | 2.868 | 0 | | | 28/08/2012 | 1.047
1.079 | 3.2509 | 1.2709 | 1.944 | 2.622 | 2.872 | 0.201 | | | 29/08/2012
30/08/2012 | 1.079 | 3.2549
3.2539 | 1.3081
1.2059 | 1.952
1.956 | 2.638
2.626 | 2.867
2.894 | 0
0.201 | | | 31/08/2012 | 1.099 | 3.2572 | 1.2798 | 1.963 | 2.718 | 2.920 | 0.201 | | | 01/09/2012 | 1.021 | 3.2807 | 1.654 | 1.906 | 2.739 | 2.788 | 0.201 | | | 02/09/2012 | 1.044 | 3.2854 | 1.6625 | 1.916 | 2.720 | 2.790 | 0 | | | 03/09/2012 | 1.099 | 3.289 | 1.6815 | 1.920 | 2.759 | 2.799 | 0 | | | 04/09/2012 | 1.100 | 3.2928 | 1.6855 | 1.927 | 2.732 | 2.795 | 0 | | | 05/09/2012 | 1.135 | 3.2966 | 1.6958 | 1.933 | 2.766 | 2.814 | 0 | | | 06/09/2012 | 1.153 | 3.2971 | 1.7049 | 1.935 | 2.772 | 2.802 | 0 | | | 07/09/2012 | 1.147 | 3.3012 | 1.7066 | 1.944 | 2.743 | 2.795 | 0 | | | 08/09/2012 | 1.168 | 3.3033 | 1.7155 | 1.951 | 2.749 | 2.790 | 0 | | | 09/09/2012 | 1.149 | 3.2997 | 1.713 | 1.953 | 2.702 | 2.755 | 0 | | | 10/09/2012 | 1.162 | 3.3099 | 1.7173 | 1.963 | 2.701 | 2.770 | 0.201 | | | 11/09/2012 | 1.169 | 3.3057 | 1.564 | 1.968 | 2.738 | 2.803 | 4.221 | | | 12/09/2012 | 1.174 | 3.3035 | 1.6723 | 1.969 | 2.766 | 2.801 | 5.025 | | | 13/09/2012 | 1.098 | 3.3039 | 1.5464 | 1.977 | 2.792 | 2.818 | 0 0 402 | | | 14/09/2012 | 1.079 | 3.3014
3.3105 | 1.6343 | 1.984 | 2.720 | 2.791 | 0.402 | | | 15/09/2012
16/09/2012 | 1.136
1.131 | 3.3105 | 1.6681
1.68 | 1.990
1.994 | 2.781
2.747 | 2.813
2.788 | 0 | | | 17/09/2012 | 1.131 | 3.3064 | 1.6865 | 1.994 | 2.747 | 2.788 | 0.402 | | | 18/09/2012 | 1.160 | 3.3058 | 1.6972 | 2.003 | 2.752 | 2.810 | 1.608 | | | 19/09/2012 | 1.134 | 3.3087 | 1.5885 | 2.007 | 2.810 | 2.836 | 9.045 | | | 20/09/2012 | 0.837 | 3.291 | 1.4812 | 2.008 | 2.763 | 2.800 | 1.608 | | | 21/09/2012 | 0.829 | 3.2863 | 1.5101 | 2.007 | 2.729 | 2.787 | 1.608 | | | 22/09/2012 | 0.826 | 3.2866 | 1.4777 | 2.006 | 2.756 | 2.801 | 0.201 | | | 23/09/2012 | 0.931 | 3.2818 | 1.5522 | 2.005 | 2.726 | 2.761 | 0.201 | | | 24/09/2012 | 0.627 | 3.2532 | 1.2893 | 1.996 | 2.596 | 2.689 | 25.929 | | | 25/09/2012 | 0.450 | 3.1129 | 1.2191 | 1.854 | 2.381 | 2.422 | 6.03 | | | 26/09/2012 | 0.425 | 2.966 | 1.0611 | 1.773 | 1.984 | 2.028 | 8.844 | | | 27/09/2012 | 0.461 | 2.9639 | 1.211 | 1.685 | 1.882 | 1.916 | 1.206 | | | 28/09/2012 | 0.655 | 3.031 | 1.3788 | 1.634 | 2.028 | 2.201 | 1.206 | | | 29/09/2012 | 0.736 | 3.0756 | 1.3859 | 1.605 | 2.227 | 2.491 | 0.402 | | | 30/09/2012
01/10/2012 | 0.787
0.788 | 3.1046
3.0986 | 1.4806
1.3516 | 1.588
1.578 | 2.332
2.380 | 2.596
2.687 | 0
2.01 | | | 02/10/2012 | 0.777 | 3.1299 | 1.4536 | 1.578 | 2.429 | 2.708 | 2.01 | | | 03/10/2012 | 0.777 | 3.1274 | 1.3446 | 1.578 | 2.4256 | 2.719 | 0.603 | | | 04/10/2012 | 0.794 | 3.1443 | 1.4635 | 1.589 | 2.4561 | 2.7352 | 0 | | | 05/10/2012 | 1.078 | 3.1417 | 1.474 | 1.5925 | 2.4611 | 2.9822 | 1.407 | | | 06/10/2012 | 1.058 | 3.1552 | 1.4928 | 1.6077 | 2.5366 | 3.0165 | 0.804 | | | 07/10/2012 | 1.099 | 3.1686 | 1.5369 | 1.621 | 2.5981 | 3.039 | 0 | | | 08/10/2012 | 1.150 | 3.1693 | 1.5631 | 1.6241 | 2.5786 | 3.0107 | 0.201 | | | 09/10/2012 | 1.197 | 3.1788 | 1.5711 | 1.637 | 2.5897 | 3.0265 | 0 | | | 10/10/2012 | 1.236 | 3.1849 | 1.5946 | 1.6453 | 2.6005 | 3.0241 | 0 | | | 11/10/2012 | 1.230 | 3.1909 | 1.6047 | 1.6546 | 2.5702 | 3.002 | 0.603 | | | 12/10/2012 | 0.706 | 3.104 | 1.1769 | 1.6524 | 2.5409 | 3.0097 | 11.457 | | | 13/10/2012 | 0.856 | 3.122 | 1.4075 | 1.6228 | 2.3967 | 2.7945 | 0.201 | | | 14/10/2012 | 1.038
1.121 | 3.1455 | 1.4767 | 1.6127 | 2.3918 | 2.8622 | 0 | | | 15/10/2012
16/10/2012 | 1.121 | 3.1616
3.1512 | 1.5223
1.3367 | 1.6136
1.616 | 2.4678
2.4527 | 2.9489
2.9691 | 2.412 | | | 17/10/2012 | 1.036 | 3.1512 | 1.4754 | 1.6168 | 2.4527 | 2.9835 | 1.407 | | | 18/10/2012 | 0.722 | 3.0955 | 1.2842 | 1.6135 | 2.5137 | 2.9793 | 6.834 | | | 19/10/2012 | 0.925 | 3.1445 | 1.4396 | 1.5955 | 2.5381 | 2.9542 | 0.201 | | | 20/10/2012 | 1.094 | 3.1625 | 1.4993 | 1.586 | 2.5589 | 2.9926 | 0 | | | 21/10/2012 | 1.174 | 3.1764 | 1.5313 | 1.5845 | 2.6062 | 3.013 | 0 | | | 22/10/2012 | 1.213 | 3.1851 | 1.513 | 1.5846 | 2.6158 | 3.0206 | 0.603 | | | 23/10/2012 | 1.214 | 3.1917 | 1.5075 | 1.5951 | 2.6453 | 3.0326 | 0 | | | 24/10/2012 | 1.214 | 3.1962 | 1.5623 | 1.5992 | 2.6288 | 3.0194 | 0 | | | 25/10/2012 | 1.224 | 3.2021 | 1.5886 | 1.6061 | 2.6207 | 3.0203 | 0 | | | 26/10/2012 | 1.247 | 3.204 | 1.6118 | 1.6145 | 2.6268 | 3.0198 | 0 | | | 27/10/2012 | 1.265 | 3.206 | 1.6257 | 1.6214 | 2.6356 | 3.0369 | 0 | | | 28/10/2012 | 1.280 | 3.2101 | 1.6433 | 1.6294 | 2.6331 | 3.0151 | 0.402 | | | 29/10/2012 | 1.256 | 3.2157 | 1.6207 | 1.6429 | 2.5989 | 3.0144 | 1.005 | | | 30/10/2012
31/10/2012 | 1.244
1.206 | 3.2223
3.2189 | 1.6106
1.6569 | 1.6509
1.6522 | 2.6319
2.5567 | 3.0161
2.9622 | 0.402
0.201 | | | 01/11/2012 | 1.022 | 3.2189 | 1.4372 | 1.6549 | 2.5567 | 2.9622 | 3.015 | | | 02/11/2012 | 1.114 | 3.2286 | 1.5586 | 1.6738 | 2.6134 | 3.0225 | 0 | | | | | 3.2200 | | | 0.0+ | 3.0220 | · · · | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|----------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------------------------------| | 03/11/2012 | 1.203 | 3.2346 | 1.6162 | 1.6825 | 2.6706 | 3.0528 | 0 | | | 04/11/2012 | 1.247 | 3.2375 | 1.6026 | 1.6867 | 2.6823 | 3.046 | 0 | | | 05/11/2012 | 1.297 | 3.2501 | 1.5405 | 1.6994 | 2.7227 | 3.0832 | 0 | | | 06/11/2012
07/11/2012 | 1.361
1.373 | 3.2542
3.2658 | 1.6084
1.6639 | 1.7083
1.7232 | 2.7903
2.7951 | 3.1083
3.1068 | 0.201 | | | 08/11/2012 | 1.347 | 3.2657 | 1.6824 | 1.7262 | 2.7365 | 3.0764 | 0 | | | 09/11/2012 | 1.336 | 3.2653 | 1.6867 | 1.7252 | 2.7008 | 3.0402 | 0 | | | 10/11/2012 | 1.269 | 3.2601 | 1.6423 | 1.7286 | 2.6335 | 3.0131 | 1.206 | | | 11/11/2012 | 1.311 | 3.2693 | 1.6762 | 1.7381 | 2.7087 | 3.0741 | 1.809 | | | 12/11/2012 | 1.345 | 3.2743 | 1.6446 | 1.7483 | 2.7815 | 3.0956 | 1.005 | | | 13/11/2012 | 1.297 | 3.2796 | 1.6075 | 1.7577 | 2.7768 | 3.1015 | 0 | | | 14/11/2012 | 1.322 | 3.2844 | 1.6734 | 1.7627 | 2.7857 | 3.1036 | 0 | | | 15/11/2012 | 1.324
1.312 | 3.2845 | 1.6918 | 1.7634 | 2.7619 | 3.0756 | 0 | | | 16/11/2012
17/11/2012 | 1.162 | 3.2827
3.2688 | 1.6529
1.3627 | 1.7608
1.7601 | 2.7135
2.6555 | 3.0451
3.0282 | 6.231 | | | 18/11/2012 | 1.131 | 3.2697 | 1.5238 | 1.7593 | 2.692 | 3.0484 | 0.231 | | | 19/11/2012 | 1.186 | 3.2749 | 1.5738 | 1.7575 | 2.6568 | 3.013 | 0 | | | 20/11/2012 | 1.235 | 3.2866 | 1.603 | 1.766 | 2.6686 | 3.0289 | 0.201 | | | 21/11/2012 | 1.275 | 3.2908 | 1.6157 | 1.7701 | 2.7038 | 3.053 | 12.261 | | | 22/11/2012 | 1.032 | 3.2599 | 1.431 | 1.74 | 2.6264 | 2.9502 | 0 | | | 23/11/2012 | 0.958 | 3.2515 | 1.3271 | 1.7216 | 2.5212 | 2.9061 | 5.427 | | | 24/11/2012 | 1.117 | 3.2515 | 1.4974 | 1.6964 | 2.5211 | 2.8702 | 0 | | | 25/11/2012 | 0.874 | 3.2184 | 1.1751 | 1.6557 | 2.4059 | 2.8723 | 16.482 | | | 26/11/2012 | 0.777 | 3.1683 | 1.2796 | 1.5817 | 2.1189 | 2.4903 | 3.819 | | | 27/11/2012
28/11/2012 | 0.778
0.923 | 3.1492
3.164 | 1.2247
1.3987 | 1.5298
1.4834 | 2.1448
2.2446 | 2.5503
2.6707 | 4.824
0.402 | | | 29/11/2012 | 0.923 | 3.1384 | 1.3987 | 1.4834 | 2.2446 | 2.6707 | 0.402 | | | 30/11/2012 | 0.793 | 3.1393 | 1.3549 | 1.4317 | 2.3201 | 2.7125 | 0 | | | 01/12/2012 | 0.852 | 3.1499 | 1.3701 | 1.438 | 2.4103 | 2.8039 | 2.211 | | | 02/12/2012 | 0.842 | 3.1524 | 1.3586 | 1.4484 | 2.4539 | 2.8271 | 0 | | | 03/12/2012 | 0.786 | 3.1462 | 1.0798 | 1.4497 | 2.4146 | 2.8095 | 6.432 | | | 04/12/2012 | 0.720 | 3.1494 | 1.2877 | 1.4476 | 2.4001 | 2.7718 | 3.015 | | | 05/12/2012 | 0.675 | 3.1387 | 1.0468 | 1.4459 | 2.4213 | 2.7834 | 4.824 | | | 06/12/2012 | 0.751 | 3.142 | 1.265 | 1.4251 | 2.4673 | 2.7579 | 0 | | | 07/12/2012 | 0.657 | 3.1221 | 1.0203 | 1.4093 | 2.3537 | 2.755 | 9.849 | | | 08/12/2012 | 0.717 | 3.1326
3.1373 | 1.2271
1.3236 | 1.3985 | 2.4608
2.4234 | 2.7679
2.74 | 0
0.201 | | | 09/12/2012
10/12/2012 | 0.767
0.805 | 3.1461 | 1.3674 | 1.3836
1.3884 | 2.4234 | 2.74 | 0.201 | | | 11/12/2012 | 0.870 | 3.1504 | 1.423 | 1.3964 | 2.5209 | 2.816 | 0 | | | 12/12/2012 | 0.861 | 3.1491 | 1.4444 | 1.4042 | 2.4828 | 2.7873 | 0 | | | 13/12/2012 | 0.844 | 3.1516 | 1.4168 | 1.4124 | 2.4277 | 2.7614 | 0 | | | 14/12/2012 | 0.843 | 3.1541 | 1.45 | 1.4256 | 2.4007 | 2.703 | 4.623 | | | 15/12/2012 | 0.641 | 3.1398 | 1.1011 | 1.4339 | 2.3855 | 2.7491 | 6.432 | | | 16/12/2012 | 0.684 | 3.1474 | 1.2208 | 1.4327 | 2.3506 | 2.6539 | 0.603 | | | 17/12/2012 | 0.720 | 3.1502 | 1.2529 | 1.4226 | 2.3443 | 2.6869 | 3.417 | | | 18/12/2012 | 0.689 | 3.1436 | 1.1146 | 1.428 | 2.4408 | 2.7523 | 5.025 | | | 19/12/2012 | 0.740 | 3.1399 |
1.2704 | 1.4008 | 2.4111 | 2.7023 | 0.402 | | | 20/12/2012
21/12/2012 | 0.630
0.374 | 3.1199
2.9726 | 1.0586
0.9186 | 1.3794
1.3001 | 2.3475
2.0839 | 2.6708
2.3464 | 14.07
10.854 | | | 22/12/2012 | 0.557 | 2.9859 | 1.1536 | 1.2092 | 1.9073 | 2.3464 | 12.06 | | | 23/12/2012 | 0.392 | 2.8391 | 0.9497 | 1.1009 | 1.8075 | 2.1034 | 6.03 | | | 24/12/2012 | 0.579 | 2.9078 | 1.1789 | 1.0375 | 1.8951 | 2.2029 | 4.02 | | | 25/12/2012 | 0.455 | 2.8806 | 1.1522 | 1.0295 | 2.0054 | 2.4227 | 3.216 | | | 26/12/2012 | 0.607 | 2.9337 | 1.2243 | 1.0699 | 2.1484 | 2.5333 | 3.618 | | | 27/12/2012 | 0.560 | 2.9313 | 1.2051 | 1.0985 | 2.1835 | 2.6046 | 1.608 | | | 28/12/2012 | 0.686 | 2.9744 | 1.2989 | 1.1441 | 2.3175 | 2.6548 | 2.814 | | | 29/12/2012 | 0.619 | 2.9601 | 1.2841 | 1.1562 | 2.2291 | 2.619 | 4.422 | | | 30/12/2012
31/12/2012 | 0.589
0.690 | 2.9311
2.9629 | 1.2071 | 1.1701 | 2.2481
2.2307 | 2.6469 | 0
2.412 | | | 01/01/2013 | 0.582 | 2.9629 | 1.3022
1.1638 | 1.1856
1.2048 | 2.2307 | 2.6029
2.6747 | 3.618 | | | 02/01/2013 | 0.562 | 2.9214 | 1.3338 | 1.2311 | 2.2764 | 2.6908 | 3.618 | | | 03/01/2013 | 0.693 | 2.9795 | 1.2685 | 1.2424 | 2.3917 | 2.7325 | 0 | | | 04/01/2013 | 0.771 | 3.0232 | 1.4073 | 1.2595 | 2.4323 | 2.7453 | 0 | | | 05/01/2013 | 0.791 | 3.0422 | 1.4537 | 1.2736 | 2.428 | 2.746 | 0 | | | 06/01/2013 | 0.823 | 3.0605 | 1.4762 | 1.2917 | 2.4388 | 2.7476 | 0 | | | 07/01/2013 | 0.827 | 3.0695 | 1.4808 | 1.3069 | 2.4256 | 2.7427 | 0 | | | 08/01/2013 | 0.838 | 3.0831 | 1.4851 | 1.3313 | 2.4388 | 2.7581 | 3.015 | | | 09/01/2013 | 0.685 | 3.0502 | 1.2562 | 1.3401 | 2.4584 | 2.7641 | 3.216 | | | 10/01/2013 | | 3.0738 | 1.3704 | 1.3436 | 2.4023 | 2.7217 | 0 | | | 11/01/2013
12/01/2013 | 0.809
0.756 | 3.0918
3.0904 | 1.4001
1.3415 | 1.3663
1.3745 | 2.4386
2.4211 | 2.7513
2.749 | 2.814
0.402 | | | 13/01/2013 | 0.756 | 3.0904 | 1.4162 | 1.3745 | 2.4211 | 2.749 | 0.402 | | | 13/01/2013 | 0.007 | J. 100Z | 1.4102 | 1.0811 | 2.4010 | 4.1131 | U | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------------------------------| | 14/01/2013 | 0.822 | 3.1112 | 1.2884 | 1.4005 | 2.4613 | 2.7446 | 8.643 | | | 15/01/2013 | 0.572 | 3.0708 | 1.1529 | 1.3906 | 2.4101 | 2.739 | 0.804 | | | 16/01/2013 | 0.720 | 3.0927 | 1.2976 | 1.383 | 2.3674 | 2.7051 | 0 | | | 17/01/2013
18/01/2013 | 0.807
0.814 | 3.1133
3.1128 | 1.3519
1.2896 | 1.3993
1.4003 | 2.429
2.4029 | 2.7369
2.7145 | 0 | | | 19/01/2013 | 0.816 | 3.1126 | 1.2086 | 1.4136 | 2.4029 | 2.738 | 0 | | | 20/01/2013 | 0.714 | 3.1228 | 1.2489 | 1.4271 | 2.451 | 2.753 | 0.201 | | | 21/01/2013 | 0.692 | 3.1276 | 1.2492 | 1.4376 | 2.4322 | 2.7544 | 0.804 | | | 22/01/2013 | 0.657 | 3.1365 | 1.2083 | 1.4574 | 2.4953 | 2.7986 | 0.402 | | | 23/01/2013 | 0.768 | 3.1472 | 1.2719 | 1.4723 | 2.5556 | 2.8183 | 2.211 | | | 24/01/2013 | 0.724 | 3.151 | 1.2823 | 1.482 | 2.5633 | 2.8321 | 1.407 | | | 25/01/2013 | 0.799 | 3.15 | 1.362 | 1.485 | 2.5646 | 2.7967 | 0.201 | | | 26/01/2013 | 0.736 | 3.1457 | 1.1389 | 1.4902 | 2.4627 | 2.7732 | 11.658 | | | 27/01/2013
28/01/2013 | 0.389
0.557 | 3.0272
3.0079 | 1.0142
1.1771 | 1.4272
1.3295 | 2.3435
1.9051 | 2.7096
2.0895 | 10.452
0.201 | | | 29/01/2013 | 0.643 | 3.0529 | 1.2002 | 1.3151 | 1.9996 | 2.3356 | 0.402 | | | 30/01/2013 | 0.705 | 3.0827 | 1.2336 | 1.3174 | 2.1604 | 2.5802 | 0.201 | | | 31/01/2013 | 0.785 | 3.1002 | 1.2777 | 1.3241 | 2.3082 | 2.6826 | 3.216 | | | 01/02/2013 | 0.760 | 3.0896 | 1.2794 | 1.325 | 2.3237 | 2.6921 | 0 | | | 02/02/2013 | 0.819 | 3.1151 | 1.2904 | 1.354 | 2.4171 | 2.7863 | 0.603 | | | 03/02/2013 | 0.850 | 3.1169 | 1.3492 | 1.3619 | 2.463 | 2.772 | 0 | | | 04/02/2013 | 0.830 | 3.1266 | 1.3515 | 1.3797 | 2.4119 | 2.7634 | 0 | | | 05/02/2013 | 0.824 | 3.1223 | 1.3527 | 1.3823 | 2.3915 | 2.7321 | 0.402 | | | 06/02/2013 | 0.753 | 3.1309 | 1.2344 | 1.4138 | 2.4409 | 2.8056 | 2.211 | | | 07/02/2013 | 0.851 | 3.1459 | 1.3707 | 1.4343 | 2.5518 | 2.8205 | 1.005 | | | 08/02/2013 | 0.791 | 3.1474 | 1.2914 | 1.4455 | 2.5257 | 2.8208 | 0.402 | | | 09/02/2013
10/02/2013 | 0.813
0.626 | 3.1502
3.1152 | 1.3291
1.1319 | 1.455
1.4297 | 2.5226
2.3932 | 2.8044
2.7108 | 3.417
3.618 | | | 11/02/2013 | 0.826 | 3.0555 | 1.0522 | 1.4297 | 2.2898 | 2.7108 | 1.608 | | | 12/02/2013 | 0.717 | 3.0839 | 1.2664 | 1.362 | 2.1862 | 2.5167 | 0 | | | 13/02/2013 | 0.798 | 3.1005 | 1.3484 | 1.3512 | 2.313 | 2.6511 | 0 | | | 14/02/2013 | 0.570 | 3.0631 | 1.1163 | 1.3399 | 2.2924 | 2.6779 | 7.437 | | | 15/02/2013 | 0.608 | 3.0457 | 1.2794 | 1.3043 | 2.1974 | 2.5141 | 0 | | | 16/02/2013 | 0.749 | 3.0694 | 1.3638 | 1.29 | 2.2622 | 2.6315 | 0 | | | 17/02/2013 | 0.790 | 3.0864 | 1.4048 | 1.2966 | 2.3327 | 2.6859 | 0 | | | 18/02/2013 | 0.823 | 3.097 | 1.4099 | 1.3107 | 2.3773 | 2.7232 | 0 | | | 19/02/2013 | 0.849 | 3.1059 | 1.4316 | 1.3318 | 2.4197 | 2.744 | 0 | | | 20/02/2013 | 0.884 | 3.1204 | 1.4291 | 1.3593 | 2.4616 | 2.777 | 0 | | | 21/02/2013 | 0.911 | 3.1276 | 1.4461 | 1.3808 | 2.4963 | 2.7852 | 0 | | | 22/02/2013
23/02/2013 | 0.918
0.932 | 3.1342
3.1419 | 1.4663
1.4428 | 1.4017
1.4225 | 2.4952
2.5054 | 2.7891
2.799 | 0 | | | 24/02/2013 | 0.960 | 3.1534 | 1.4195 | 1.4471 | 2.5422 | 2.8196 | 0 | | | 25/02/2013 | 0.973 | 3.1593 | 1.4231 | 1.465 | 2.5624 | 2.8301 | 0 | | | 26/02/2013 | 0.9412 | 3.1805 | 1.48 | 1.4896 | 2.6029 | 2.8438 | 0 | | | 27/02/2013 | 1.0075 | 3.1747 | 1.3676 | 1.472 | 2.5632 | 2.772 | 0 | | | 28/02/2013 | 1.0228 | 3.1788 | 1.3655 | 1.487 | 2.5421 | 2.7382 | 0 | | | 01/03/2013 | 1.0531 | 3.1847 | 1.3735 | 1.498 | 2.5596 | 2.7398 | 0 | | | 02/03/2013 | 1.0504 | 3.1879 | 1.3629 | 1.5101 | 2.5402 | 2.7431 | 0 | | | 03/03/2013 | 1.0578 | 3.1918 | 1.3534 | 1.5217 | 2.5398 | 2.7294 | 0 | | | 04/03/2013 | 1.03 | 3.1868 | 1.3461 | 1.5262 | 2.4942 | 2.7257 | 0 | | | 05/03/2013
06/03/2013 | 1.0244
1.047 | 3.194
3.1957 | 1.3364
1.3484 | 1.5412
1.5558 | 2.4932
2.5228 | 2.7007
2.7162 | 0 | | | 06/03/2013 | 1.047 | 3.1957 | 1.2601 | 1.5558 | 2.5228 | 2.7162 | 1.206 | | | 08/03/2013 | 0.602 | 3.156 | 1.0918 | 1.566 | 2.5323 | 2.7211 | 5.628 | | | 09/03/2013 | 0.4945 | 3.1251 | 1.0587 | 1.5587 | 2.5149 | 2.736 | 3.417 | | | 10/03/2013 | 0.5088 | 3.1095 | 1.0842 | 1.5416 | 2.5033 | 2.7188 | 1.206 | | | 11/03/2013 | 0.8139 | 3.1362 | 1.2412 | 1.5268 | 2.5097 | 2.7154 | 0 | | | 12/03/2013 | 0.8794 | 3.1468 | 1.242 | 1.5267 | 2.5162 | 2.7204 | 0 | | | 13/03/2013 | 0.9194 | 3.1638 | 1.2848 | 1.5346 | 2.5297 | 2.7209 | 0 | | | 14/03/2013 | 0.9421 | 3.1701 | 1.2661 | 1.5376 | 2.5475 | 2.7395 | 0 | | | 15/03/2013 | 0.8875 | 3.1651 | 1.278 | 1.5356 | 2.4712 | 2.7226 | 1.206 | | | 16/03/2013 | 0.5701 | 3.1543 | 1.2004 | 1.5446 | 2.4577 | 2.6932 | 2.814 | | | 17/03/2013
18/03/2013 | 0.4806
0.7736 | 3.0968
3.1335 | 1.1401
1.2343 | 1.5152
1.501 | 2.4
2.3923 | 2.6835
2.6254 | 6.633 | | | 19/03/2013 | 0.7736 | 3.1335 | 1.2343 | 1.4904 | 2.3923 | 2.6254 | 0
0.201 | | | 20/03/2013 | 0.045 | 3.1476 | 1.2988 | 1.4904 | 2.5346 | 2.6886 | 0.201 | | | 21/03/2013 | 0.9246 | 3.163 | 1.3259 | 1.4919 | 2.5556 | 2.7324 | 0 | | | 22/03/2013 | 0.8994 | 3.1609 | 1.3108 | 1.4869 | 2.5113 | 2.7115 | 4.422 | | | 23/03/2013 | | 3.0879 | 1.0736 | 1.461 | 2.4843 | 2.6954 | 1.206 | | | 24/03/2013 | 0.6208 | 3.1174 | 1.2447 | 1.4376 | 2.4804 | 2.6827 | 0 | | | | | - 1 | 4.0000 | 4 4045 | 0.4000 | 0.6005 | 0 | | | 25/03/2013
26/03/2013 | 0.7917
0.8375 | 3.132
3.1392 | 1.2906
1.3226 | 1.4315
1.4316 | 2.4863
2.4857 | 2.6825
2.6933 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 27/03/2013 | 0.8613 | 3.1424 | 1.3631 | 1.4378 | 2.4773 | 2.6905 | 0 | | | 28/03/2013 | 0.8946 | 3.1519 | 1.387 | 1.4497 | 2.4947 | 2.6935 | 0 | | | 29/03/2013 | 0.9137 | 3.1609 | 1.3924 | 1.4638 | 2.5052 | 2.7041 | 0 | | | 30/03/2013 | 0.9268 | 3.1645 | 1.3919 | 1.4789 | 2.509 | 2.7003 | 0 | | | 31/03/2013 | 0.9645 | 3.1738 | 1.406 | 1.4956 | 2.5491 | 2.7265 | 0 | | | 01/04/2013 | 0.9606 | 3.1801 | 1.3813 | 1.5091 | 2.5368 | 2.7175 | 0 | | | 02/04/2013 | 0.9828 | 3.1875 | 1.3879 | 1.526 | 2.5673 | 2.732 | 0 | | | 03/04/2013 | 1.0111
1.0074 | 3.1939
3.1972 | 1.4047
1.4306 | 1.543
1.5542 | 2.6006
2.584 | 2.7483 | 0 | | | 04/04/2013
05/04/2013 | 0.9987 | 3.1972 | 1.443 | 1.5638 | 2.5807 | 2.7436
2.7379 | 0 | | | 06/04/2013 | 1.0292 | 3.2074 | 1.4618 | 1.5755 | 2.6197 | 2.7554 | 0 | | | 07/04/2013 | 1.0232 | 3.2075 | 1.4423 | 1.5813 | 2.5999 | 2.7499 | 0 | | | 08/04/2013 | 0.9997 | 3.2094 | 1.3925 | 1.5872 | 2.5378 | 2.7193 | 0 | | | 09/04/2013 | 0.9918 | 3.208 | 1.4151 | 1.5943 | 2.5214 | 2.7076 | 0 | | | 10/04/2013 | 1.0345 | 3.2169 | 1.4372 | 1.6106 | 2.5874 | 2.7383 | 0 | | | 11/04/2013 | 1.0143 | 3.2182 | 1.4413 | 1.6174 | 2.5601 | 2.7279 | 0.402 | | | 12/04/2013 | 0.9784 | 3.2127 | 1.3554 | 1.623 | 2.5514 | 2.7227 | 4.221 | | | 13/04/2013 | 1.0016 | 3.2175 | 1.3308 | 1.6387 | 2.6493 | 2.7748 | 0.402 | | | 14/04/2013 | 1.0119 | 3.2298 | 1.4081 | 1.6523 | 2.6265 | 2.7684 | 0.201 | | | 15/04/2013 | 1.0314 | 3.236 | 1.4515 | 1.6579 | 2.6465 | 2.7719 | 0 | | | 16/04/2013 | 1.0096 | 3.2332 | 1.4731 | 1.6609 | 2.6147 | 2.7565 | 0.201 | | | 17/04/2013 | 1.0423 | 3.2384 | 1.49 | 1.6699 | 2.6667 | 2.7965 | 0 | | | 18/04/2013 | 1.0025 | 3.2408 | 1.4407 | 1.676 | 2.5853 | 2.7338 | 0 | | | 19/04/2013 | 1.078 | 3.249 | 1.5124 | 1.6887 | 2.7103 | 2.8021 | 0.201 | | | 20/04/2013 | 1.0953 | 3.2442 | 1.5272 | 1.6897 | 2.7412 | 2.8282 |
0 | | | 21/04/2013 | 1.0544 | 3.24 | 1.5111 | 1.6912 | 2.6542 | 2.7797 | 0.201 | | | 22/04/2013 | 1.0385 | 3.2443 | 1.4439 | 1.6983 | 2.6176 | 2.7538 | 0.201 | | | 23/04/2013 | 1.0653 | 3.2504 | 1.4721 | 1.7098 | 2.643 | 2.7624 | 0 | | | 24/04/2013 | 1.0951 | 3.2576 | 1.5038 | 1.7253 | 2.684 | 2.7917 | 0 | | | 25/04/2013 | 1.0213 | 3.274 | 1.5809 | 1.796 | 2.6772 | 2.882 | 0 | | | 26/04/2013
27/04/2013 | 1.0189
1.0406 | 3.2723
3.2789 | 1.5604
1.565 | 1.8043
1.8096 | 2.6593
2.6926 | 2.8635
2.8436 | 0
0.201 | | | 28/04/2013 | 1.0209 | 3.2784 | 1.5556 | 1.8158 | 2.6453 | 2.8655 | 0.201 | | | 29/04/2013 | 1.0209 | 3.2854 | 1.5321 | 1.8283 | 2.7032 | 2.8432 | 1.809 | | | 30/04/2013 | 1.0642 | 3.2883 | 1.5463 | 1.8342 | 2.7372 | 2.8879 | 0 | | | 01/05/2013 | 1.0513 | 3.2891 | 1.5594 | 1.8404 | 2.7069 | 2.8855 | 0 | | | 02/05/2013 | 1.0546 | 3.2918 | 1.5861 | 1.8454 | 2.7035 | 2.8724 | 0 | | | 03/05/2013 | 1.0472 | 3.2935 | 1.5955 | 1.8515 | 2.6714 | 2.8628 | 0 | | | 04/05/2013 | 1.0531 | 3.2952 | 1.5984 | 1.8556 | 2.6795 | 2.8427 | 0.402 | | | 05/05/2013 | 1.0724 | 3.3019 | 1.5953 | 1.8664 | 2.7193 | 2.8723 | 0 | | | 06/05/2013 | 1.0675 | 3.3027 | 1.5737 | 1.8725 | 2.6994 | 2.8754 | 0 | | | 07/05/2013 | 1.0596 | 3.3036 | 1.5802 | 1.8785 | 2.6839 | 2.8683 | 0 | | | 08/05/2013 | 1.0406 | 3.3057 | 1.5962 | 1.8808 | 2.6365 | 2.8392 | 0 | | | 09/05/2013 | 1.0338 | 3.2987 | 1.5503 | 1.8802 | 2.6225 | 2.8539 | 1.005 | | | 10/05/2013 | 1.0406 | 3.3074 | 1.5467 | 1.8955 | 2.7165 | 2.8385 | 1.206 | | | 11/05/2013 | 0.9915 | 3.2966 | 1.5644 | 1.8941 | 2.6887 | 2.8691 | 2.814 | | | 12/05/2013 | 0.9057 | 3.292 | 1.4787 | 1.8992 | 2.6885 | 2.8761 | 2.613 | | | 13/05/2013 | 0.8928 | 3.2993 | 1.4407 | 1.9092 | 2.6734 | 2.8582 | 2.01 | | | 14/05/2013 | 0.8729 | 3.2908 | 1.48 | 1.9069 | 2.6207 | 2.8404 | 1.206 | | | 15/05/2013 | 0.3964 | 3.1686 | 1.1886 | 1.8323 | 2.5379 | 2.7786 | 34.17 | | | 16/05/2013 | 0.6621 | 3.1908 | 1.4022 | 1.8126 | 2.4822 | 2.7277 | 0 | | | 17/05/2013
18/05/2013 | 0.7774
0.7628 | 3.212
3.2136 | 1.4483
1.46 | 1.8028
1.7939 | 2.5516
2.5416 | 2.7311
2.7712 | 0.603
0.603 | | | 19/05/2013 | 0.7628 | 3.2136 | 1.4842 | 1.7939 | 2.5416 | 2.7712 | 0.603 | | | 20/05/2013 | 0.8365 | 3.2203 | 1.4859 | 1.7883 | 2.6027 | 2.7679 | 0.201 | | | 21/05/2013 | 0.8842 | 3.237 | 1.4823 | 1.7845 | 2.6273 | 2.8318 | 0.201 | | | 22/05/2013 | 0.8842 | 3.2407 | 1.4907 | 1.7851 | 2.6357 | 2.8365 | 0 | | | 23/05/2013 | 0.8048 | 3.2354 | 1.4371 | 1.7852 | 2.5939 | 2.8218 | 1.809 | | | 24/05/2013 | 0.8564 | 3.2454 | 1.4738 | 1.7908 | 2.6147 | 2.8153 | 0.804 | | | 25/05/2013 | 0.8928 | 3.2527 | 1.4853 | 1.8024 | 2.6588 | 2.8551 | 0 | | | 26/05/2013 | 0.887 | 3.2544 | 1.5018 | 1.8068 | 2.6255 | 2.8477 | 0 | | | 27/05/2013 | 0.8679 | 3.2548 | 1.4951 | 1.8079 | 2.5614 | 2.8213 | 1.005 | | | 28/05/2013 | 0.5159 | 3.229 | 1.2528 | 1.81 | 2.5661 | 2.8087 | 8.241 | | | 29/05/2013 | 0.4259 | 3.2042 | 1.2899 | 1.7879 | 2.5753 | 2.8112 | 8.04 | | | 30/05/2013 | 0.5887 | 3.2053 | 1.3298 | 1.7712 | 2.5786 | 2.8165 | 2.814 | | | 31/05/2013 | 0.7974 | 3.2128 | 1.3685 | 1.7649 | 2.6074 | 2.8291 | 0.201 | | | 01/06/2013 | 0.829 | 3.2183 | 1.4781 | 1.7569 | 2.6282 | 2.8546 | 0 | | | 02/06/2013 | 0.8806 | 3.2265 | 1.5111 | 1.7581 | 2.65 | 2.8677 | 0 | | | 03/06/2013 | 0.9041 | 3.2322 | 1.5137 | 1.7619 | 2.6495 | 2.8766 | 0 | | | 04/06/2013 | 0.9017 | 3.236 | 1.5257 | 1.7666 | 2.6263 | 2.8732 | 0 | | | 05/06/2013 | 0.9079 | 3.2384 | 1.534 | 1.7694 | 2.6064 | 2.8584 | 0 | | | 06/06/2013 | 0.948 | 3.2451 | 1.5075 | 1.78 | 2.6337 | 2.8572 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|----------------------------|------------------|-----------------|-------------------------------------| | 07/06/2013 | 0.9689 | 3.2529 | 1.5628 | 1.792 | 2.6505 | 2.8739 | 0 | | | 08/06/2013 | 0.9649 | 3.2539 | 1.577 | 1.7996 | 2.6345 | 2.8711 | 0 | | | 09/06/2013 | 0.9682 | 3.2571 | 1.5674 | 1.8086 | 2.6196 | 2.8547 | 0 | | | 10/06/2013
11/06/2013 | 0.9859
0.9986 | 3.2607
3.2622 | 1.5671
1.4684 | 1.8168
1.8258 | 2.6249
2.6143 | 2.8462
2.8407 | 0 | | | 12/06/2013 | 1.0214 | 3.2622 | 1.4841 | 1.838 | 2.6218 | 2.834 | 0 | | | 13/06/2013 | 1.0859 | 3.2497 | 1.3462 | 1.8052 | 2.6476 | 2.7919 | 4.02 | | | 14/06/2013 | 1.0307 | 3.2378 | 1.2989 | 1.8136 | 2.6349 | 2.8389 | 3.015 | | | 15/06/2013 | 0.9528 | 3.2417 | 1.3817 | 1.8215 | 2.6077 | 2.7887 | 1.206 | | | 16/06/2013 | 1.0355 | 3.2551 | 1.4171 | 1.8359 | 2.6648 | 2.8168 | 0.201 | | | 17/06/2013 | 1.0631 | 3.2605 | 1.421 | 1.844 | 2.678 | 2.8459 | 0 | | | 18/06/2013 | 1.073 | 3.2652 | 1.4305 | 1.8521 | 2.6628 | 2.8495 | 0 | | | 19/06/2013 | 1.0938 | 3.2688 | 1.4442 | 1.8616 | 2.6827 | 2.8496 | 0.201 | | | 20/06/2013
21/06/2013 | 1.0731
1.0962 | 3.2666
3.2739 | 1.3789
1.5125 | 1.8643
1.8723 | 2.6375
2.6571 | 2.8485
2.8288 | 0.603
0.201 | | | 22/06/2013 | 1.0026 | 3.2668 | 1.5354 | 1.8764 | 2.6081 | 2.8324 | 2.211 | | | 23/06/2013 | 1.0124 | 3.2739 | 1.5955 | 1.8845 | 2.6921 | 2.8238 | 1.608 | | | 24/06/2013 | 1.1091 | 3.2819 | 1.6426 | 1.894 | 2.7493 | 2.878 | 0 | | | 25/06/2013 | 1.1349 | 3.2862 | 1.6589 | 1.9023 | 2.7508 | 2.8961 | 0 | | | 26/06/2013 | 1.1482 | 3.2874 | 1.6649 | 1.9077 | 2.7422 | 2.8941 | 0 | | | 27/06/2013 | 1.1333 | 3.2818 | 1.7092 | 1.9071 | 2.6979 | 2.8839 | 3.216 | | | 28/06/2013 | 0.796 | 3.2621 | 1.5283 | 1.9113 | 2.6397 | 2.8474 | 3.618 | | | 29/06/2013 | 0.8772 | 3.2713 | 1.6143 | 1.917 | 2.6783 | 2.8461 | 0.603 | | | 30/06/2013 | 0.9523 | 3.2749 | 1.6444 | 1.919 | 2.6497 | 2.8515 | 0 | | | 01/07/2013 | 1.0236 | 3.2773 | 1.6419 | 1.9223 | 2.6544 | 2.8303 | 0.603 | | | 02/07/2013 | 1.0273 | 3.2761 | 1.6459 | 1.9213 | 2.6041 | 2.8387 | 2.613 | | | 03/07/2013
04/07/2013 | 0.9287
1.0143 | 3.2749
3.2835 | 1.5882
1.6465 | 1.93
1.9372 | 2.6658
2.7037 | 2.7962
2.8545 | 2.814 | | | 05/07/2013 | 1.0787 | 3.2873 | 1.6696 | 1.9429 | 2.7455 | 2.8888 | 0 | | | 06/07/2013 | 1.0999 | 3.2907 | 1.6766 | 1.9492 | 2.7223 | 2.8865 | 0 | | | 07/07/2013 | 1.1331 | 3.2949 | 1.6877 | 1.9539 | 2.7447 | 2.8958 | 0 | | | 08/07/2013 | 1.1397 | 3.296 | 1.6923 | 1.9568 | 2.7333 | 2.8978 | 0 | | | 09/07/2013 | | 3.295 | 1.6908 | 1.9593 | 2.7043 | 2.8853 | 0 | | | 10/07/2013 | 1.1539 | 3.2972 | 1.696 | 1.9644 | 2.7116 | 2.8725 | 0 | | | 11/07/2013 | 1.1668 | 3.2984 | 1.701 | 1.9676 | 2.7156 | 2.8851 | 0 | | | 12/07/2013 | 1.1814 | 3.3002 | 1.7054 | 1.9733 | 2.7181 | 2.8818 | 0 | | | 13/07/2013 | 1.199 | 3.3054 | 1.7117 | 1.9792 | 2.7287 | 2.8823 | 0 | | | 14/07/2013 | 1.2061 | 3.3053 | 1.7147 | 1.9817 | 2.727 | 2.8927 | 0 | | | 15/07/2013 | 1.2138
1.2262 | 3.3093 | 1.7168 | 1.9883 | 2.7258 | 2.8896 | 0 | | | 16/07/2013
17/07/2013 | 1.2341 | 3.3097
3.3121 | 1.7187
1.7219 | 1.9933
1.9998 | 2.7343
2.7507 | 2.8929
2.8974 | 0 | | | 18/07/2013 | 1.247 | 3.3121 | 1.7242 | 2.0067 | 2.7563 | 2.9063 | 0 | | | 19/07/2013 | 1.2618 | 3.3158 | 1.725 | 2.0111 | 2.7488 | 2.9074 | 0 | | | 20/07/2013 | 1.2612 | 3.3175 | 1.725 | 2.0159 | 2.748 | 2.9073 | 0 | | | 21/07/2013 | 1.2661 | 3.3162 | 1.7263 | 2.0183 | 2.7303 | 2.9005 | 0 | | | 22/07/2013 | 1.2803 | 3.3178 | 1.7292 | 2.0238 | 2.7178 | 2.8911 | 0 | | | 23/07/2013 | 1.2096 | 3.3247 | 1.7273 | 2.0302 | 2.719 | 2.8848 | 2.613 | | | 24/07/2013 | 1.2719 | 3.378 | 1.7312 | 2.0396 | 2.737 | 2.8788 | 0 | | | 25/07/2013 | 1.2808 | 3.3789 | 1.7289 | 2.0425 | 2.7313 | 2.8826 | 0.402 | | | 26/07/2013 | 1.2992 | 3.3821 | 1.7358 | 2.0475 | 2.7515 | 2.8867 | 0 | | | 27/07/2013
28/07/2013 | 1.2932
0.5474 | 3.3812
3.3147 | 1.7384
1.4704 | 2.0504
2.0378 | 2.7237
2.6533 | 2.8872
2.8529 | 0
33.768 | | | 29/07/2013 | 0.5474 | 3.3147 | 1.6103 | 2.0378 | 2.6674 | 2.8529 | 0.402 | | | 30/07/2013 | 1.047 | 3.3195 | 1.6368 | 2.0372 | 2.6778 | 2.8608 | 0.201 | | | 31/07/2013 | 0.955 | 3.3147 | 1.4651 | 2.0308 | 2.6888 | 2.86 | 6.231 | | | 01/08/2013 | 0.9586 | 3.3103 | 1.6037 | 2.0298 | 2.6329 | 2.8478 | 0.201 | | | 02/08/2013 | 1.0369 | 3.3192 | 1.6249 | 2.0322 | 2.6576 | 2.8315 | 0 | | | 03/08/2013 | 1.1292 | 3.326 | 1.6523 | 2.0373 | 2.7183 | 2.8425 | 0 | | | 04/08/2013 | 1.1565 | 3.3246 | 1.6639 | 2.0367 | 2.706 | 2.8739 | 0 | | | 05/08/2013 | 0.8156 | 3.3058 | 1.4429 | 2.0298 | 2.6382 | 2.855 | 9.045 | | | 06/08/2013 | 0.9546 | 3.3048 | 1.579 | 2.0276 | 2.6697 | 2.8499 | 0.402 | | | 07/08/2013 | 1.051 | 3.3115 | 1.6109 | 2.0279 | 2.673 | 2.8344 | 0 | | | 08/08/2013 | 1.1023 | 3.3179 | 1.633 | 2.0307 | 2.6901 | 2.8541 | 0 | | | 09/08/2013
10/08/2013 | 1.1537
1.1848 | 3.3222
3.3257 | 1.6437
1.6611 | 2.0317
2.0346 | 2.7157
2.713 | 2.8458
2.8719 | 0.201 | | | 11/08/2013 | 1.1848 | 3.3257 | 1.6666 | 2.0346 | 2.6902 | 2.8719 | 0 | | | 12/08/2013 | 1.2291 | 3.3318 | 1.6752 | 2.0403 | 2.7019 | 2.8569 | 0 | | | 13/08/2013 | | 3.3366 | 1.6792 | 2.0452 | 2.7326 | 2.8703 | 0 | | | | | 3.3396 | 1.6813 | 2.0495 | 2.7202 | 2.8796 | 0 | | | 14/08/20131 | 1.2700 | | | | | | | | | 14/08/2013
15/08/2013 | 1.2355 | 3.3442 | 1.6822 | 2.054 | 2.6984 | 2.8607 | 0.402 | | | | | | 1.6822
1.4798 | 2.054
2.0524 | 2.6984
2.6627
2.5928 | 2.8607
2.8469 | 0.402
19.899 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 18/08/2013 | 0.9951 | 3.3021 | 1.5647 | 2.0441 | 2.6437 | 2.8118 | 2.613 | | | 19/08/2013 | 1.0879 | 3.3125 | 1.6208 | 2.0458 | 2.722 | 2.8446 | 0 | | | 20/08/2013 | 1.1386 | 3.3144 | 1.658 | 2.0436 | 2.7247 | 2.8821 | 0 | | | 21/08/2013
22/08/2013 | 1.2991
1.3198 | 3.2723
3.278 | 1.6759
1.686 | 2.0606
2.0646 | 2.5859
2.5772
 2.8976
2.882 | 0 | | | 23/08/2013 | 1.3357 | 3.2804 | 1.6868 | 2.0646 | 2.5684 | 2.8801 | 0 | | | 24/08/2013 | 1.2816 | 3.2774 | 1.6266 | 2.0683 | 2.5811 | 2.8744 | 4.02 | | | 25/08/2013 | 1.3282 | 3.2851 | 1.6789 | 2.0754 | 2.6063 | 2.8785 | 0.201 | | | 26/08/2013 | 1.3545 | 3.2903 | 1.7046 | 2.0794 | 2.6177 | 2.9042 | 0 | | | 27/08/2013 | 1.3726 | 3.2941 | 1.7123 | 2.0798 | 2.6146 | 2.8966 | 0 | | | 28/08/2013 | 1.3941 | 3.2993 | 1.7238 | 2.084 | 2.634 | 2.9084 | 0 | | | 29/08/2013 | 1.4037 | 3.3019 | 1.7249 | 2.0887 | 2.6085 | 2.902 | 0 | | | 30/08/2013 | 1.4279 | 3.3062 | 1.7289 | 2.0934 | 2.5961 | 2.8978 | 0 | | | 31/08/2013
01/09/2013 | 1.4575
1.4705 | 3.312
3.3157 | 1.7382
1.7421 | 2.0961
2.1002 | 2.6667
2.659 | 2.9153
2.929 | 0 | | | 02/09/2013 | 1.4703 | 3.3194 | 1.7387 | 2.1002 | 2.6444 | 2.912 | 0 | | | 03/09/2013 | 1.4888 | 3.3209 | 1.7325 | 2.1077 | 2.6462 | 2.9179 | 0 | | | 04/09/2013 | 1.4838 | 3.3212 | 1.7286 | 2.1095 | 2.6088 | 2.91 | 0 | | | 05/09/2013 | 1.4937 | 3.3238 | 1.7292 | 2.113 | 2.6011 | 2.8869 | 0 | | | 06/09/2013 | 1.2639 | 3.3127 | 1.6002 | 2.1131 | 2.5893 | 2.8906 | 5.829 | | | 07/09/2013 | 1.3795 | 3.3133 | 1.6464 | 2.1177 | 2.6282 | 2.8838 | 1.407 | | | 08/09/2013 | 1.4052 | 3.3165 | 1.6798 | 2.1189 | 2.6396 | 2.9173 | 0 | | | 09/09/2013 | 1.425 | 3.3192 | 1.6974 | 2.1221 | 2.6446 | 2.912 | 0.603 | | | 10/09/2013 | 1.4504 | 3.3239 | 1.7165 | 2.1272 | 2.6771 | 2.9308 | 0.603 | | | 11/09/2013 | 1.4617 | 3.3235 | 1.7239 | 2.1288 | 2.6587 | 2.9341 | 1.005 | | | 12/09/2013
13/09/2013 | 1.3719
1.3436 | 3.3162
3.3165 | 1.6377
1.6486 | 2.133
2.1345 | 2.631
2.6409 | 2.9128
2.9062 | 2.211
1.005 | | | 14/09/2013 | 1.2862 | 3.3128 | 1.6019 | 2.1345 | 2.6331 | 2.8973 | 2.01 | | | 15/09/2013 | 1.2798 | 3.303 | 1.6178 | 2.1307 | 2.5155 | 2.9059 | 2.01 | | | 16/09/2013 | 1.2945 | 3.3095 | 1.5696 | 2.1369 | 2.5716 | 2.8633 | 1.206 | | | 17/09/2013 | 1.3304 | 3.3046 | 1.6038 | 2.1327 | 2.5574 | 2.8817 | 0.603 | | | 18/09/2013 | 1.4626 | 3.3135 | 1.5546 | 2.1382 | 2.6436 | 2.8791 | 1.407 | | | 19/09/2013 | 1.4964 | 3.3091 | 1.4384 | 2.1403 | 2.618 | 2.9298 | 2.613 | | | 20/09/2013 | 1.5923 | 3.3168 | 1.6148 | 2.145 | 2.6919 | 2.9286 | 0 | | | 21/09/2013 | 1.6544 | 3.3214 | 1.6432 | 2.1473 | 2.6851 | 2.9419 | 0 | | | 22/09/2013 | 1.7157 | 3.327 | 1.6693 | 2.1503 | 2.7035 | 2.9465 | 0 | | | 23/09/2013 | 1.7265 | 3.3238
3.3269 | 1.6753 | 2.1467 | 2.6621
2.6286 | 2.9386 | 0 | | | 24/09/2013
25/09/2013 | 1.7376
1.7403 | 3.3269 | 1.6727
1.6725 | 2.1502
2.1487 | 2.6267 | 2.9153
2.9021 | 0
1.608 | | | 26/09/2013 | 1.7586 | 3.3248 | 1.6862 | 2.1492 | 2.6715 | 2.9191 | 0 | | | 27/09/2013 | 1.7687 | 3.3323 | 1.6909 | 2.1529 | 2.6554 | 2.9259 | 0 | | | 28/09/2013 | 1.7735 | 3.3333 | 1.6887 | 2.155 | 2.6336 | 2.9137 | 0 | | | 29/09/2013 | 1.791 | 3.3344 | 1.6949 | 2.1564 | 2.6432 | 2.9064 | 0 | | | 30/09/2013 | | 3.3384 | 1.7008 | 2.1583 | 2.652 | 2.9113 | 0 | | | 01/10/2013 | | 3.3404 | 1.7066 | 2.1597 | 2.6698 | 2.9238 | 0 | | | 02/10/2013 | 1.7237 | 3.3291 | 1.5658 | 2.1606 | 2.6633 | 2.9206 | 4.02 | | | 03/10/2013 | 1.6564 | 3.3181 | 1.5551 | 2.1587 | 2.6171 | 2.9207 | 3.618 | | | 04/10/2013 | 1.5184 | 3.3125 | 1.3291 | 2.1564 | 2.6367 | 2.8991 | 4.02 | | | 05/10/2013
06/10/2013 | 1.5741
1.6542 | 3.3072
3.3071 | 1.5335
1.6064 | 2.1517
2.1439 | 2.6826
2.6707 | 2.9194
2.9377 | 0 | | | 07/10/2013 | 1.7054 | 3.3113 | 1.6266 | 2.1439 | 2.6595 | 2.9256 | 0 | | | 08/10/2013 | 1.7381 | 3.3142 | 1.6469 | 2.1386 | 2.6653 | 2.9156 | 0 | | | 09/10/2013 | 1.7438 | 3.309 | 1.6476 | 2.1284 | 2.6227 | 2.9223 | 1.005 | | | 10/10/2013 | 1.7655 | 3.3125 | 1.6677 | 2.1348 | 2.6701 | 2.9038 | 0 | | | 11/10/2013 | 1.7787 | 3.3164 | 1.6711 | 2.1363 | 2.6743 | 2.917 | 0 | | | 12/10/2013 | 1.785 | 3.318 | 1.6573 | 2.1384 | 2.6496 | 2.9231 | 0 | | | 13/10/2013 | 1.7745 | 3.3137 | 1.6654 | 2.1336 | 2.6051 | 2.9042 | 1.206 | | | 14/10/2013 | 1.7218 | 3.3034 | 1.4094 | 2.1359 | 2.5961 | 2.8763 | 4.02 | | | 15/10/2013 | 1.7044
1.7093 | 3.3087
3.2977 | 1.5857
1.3283 | 2.1374
2.1291 | 2.6249 | 2.8824
2.9035 | 0.201
1.608 | | | 16/10/2013
17/10/2013 | 1.7093 | 3.2977 | 1.5261 | 2.1291 | 2.5501
2.6356 | 2.9035 | 1.608 | | | 18/10/2013 | 1.7229 | 3.3009 | 1.5809 | 2.1302 | 2.6142 | 2.9092 | 0.201 | | | 19/10/2013 | 1.6504 | 3.2928 | 1.4654 | 2.1274 | 2.559 | 2.8675 | 3.015 | | | 20/10/2013 | 1.6347 | 3.2876 | 1.503 | 2.1203 | 2.5651 | 2.8684 | 4.824 | | | 21/10/2013 | 0.624 | 3.2501 | 1.2015 | 2.0982 | 2.5187 | 2.876 | 8.844 | | | 22/10/2013 | 1.2735 | 3.2319 | 1.3079 | 2.075 | 2.4477 | 2.8321 | 1.809 | | | 23/10/2013 | | 3.2127 | 1.2467 | 2.0467 | 2.5034 | 2.7847 | 6.03 | | | 24/10/2013 | | 3.2124 | 1.4553 | 2.0218 | 2.5391 | 2.853 | 0 | | | 25/10/2013 | | 3.2012 | 1.3676 | 1.9975 | 2.4515 | 2.8227 | 1.608 | | | 26/10/2013 | 1.4732 | 3.2038 | 1.4885 | 1.9803 | 2.4726 | 2.8156 | 0 | | | 27/10/2013
28/10/2013 | 1.4579 | 3.2036 | 1.4731 | 1.9649 | 2.4418 | 2.798 | 1.407 | | | 28/10/2013 | 1.2362 | 3.1837 | 1.231 | 1.9515 | 2.4783 | 2.7924 | 5.025 | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 29/10/2013 | 1.2961 | 3.175 | 1.3045 | 1.935 | 2.5203 | 2.8118 | 3.216 | | | 30/10/2013 | 1.4211 | 3.1731 | 1.4454 | 1.9135 | 2.4839 | 2.8172 | 0.201 | | | 31/10/2013 | 1.4903 | 3.172 | 1.4218 | 1.9025 | 2.4843 | 2.8051 | 1.005 | | | 01/11/2013 | 1.3731 | 3.2082 | 1.4883 | 1.9297 | 2.5587 | 2.8118 | 4.221 | | | 02/11/2013 | 1.2477 | 3.1853 | 1.2134 | 1.9153 | 2.5013 | 2.8109 | 2.613 | | | 03/11/2013 | 1.2139
1.2717 | 3.1876
3.1837 | 1.386
1.4311 | 1.8999 | 2.4551
2.4152 | 2.6971 | 1.407 | | | 04/11/2013
05/11/2013 | 1.4001 | 3.1837 | 1.4843 | 1.8843
1.8786 | 2.4152 | 2.6763
2.7605 | 0
3.216 | | | 06/11/2013 | 1.359 | 3.1881 | 1.4213 | 1.8717 | 2.4764 | 2.7615 | 0.402 | | | 07/11/2013 | 1.076 | 3.1759 | 1.2448 | 1.8662 | 2.5098 | 2.738 | 2.613 | | | 08/11/2013 | 1.2753 | 3.1779 | 1.4285 | 1.8507 | 2.4706 | 2.7145 | 0 | | | 09/11/2013 | 1.407 | 3.1842 | 1.4728 | 1.8417 | 2.4845 | 2.7367 | 0.201 | | | 10/11/2013 | 1.4912 | 3.1901 | 1.4463 | 1.8391 | 2.5216 | 2.7116 | 1.005 | | | 11/11/2013 | 1.5516 | 3.1986 | 1.5426 | 1.8399 | 2.586 | 2.8143 | 1.608 | | | 12/11/2013 | 1.4909 | 3.1976 | 1.4114 | 1.8429 | 2.5896 | 2.7952 | 0.603 | | | 13/11/2013 | 1.4991 | 3.2002 | 1.5255 | 1.8369 | 2.6159 | 2.8271 | 0 | | | 14/11/2013 | 1.4943 | 3.2005 | 1.3952 | 1.8356 | 2.5167 | 2.7441 | 3.618 | | | 15/11/2013 | 1.4352 | 3.1976 | 1.4485 | 1.8351 | 2.6019 | 2.8126 | 0 | | | 16/11/2013 | 1.4879 | 3.2079 | 1.519 | 1.8369 | 2.57 | 2.8049 | 0 | | | 17/11/2013 | 1.5268 | 3.2107 | 1.5607 | 1.8339 | 2.5482 | 2.7971 | 0.201 | | | 18/11/2013 | 1.5456 | 3.215 | 1.574 | 1.8327 | 2.4918 | 2.7778 | 0.603 | | | 19/11/2013 | 1.5384 | 3.2091 | 1.3723 | 1.8313 | 2.5137 | 2.7471 | 2.814 | | | 20/11/2013 | 1.4755 | 3.1985 | 1.4779 | 1.8288 | 2.5038 | 2.8177 | 4.221 | | | 21/11/2013
22/11/2013 | 1.3374
1.4145 | 3.1822
3.1952 | 1.3527
1.4713 | 1.822
1.8191 | 2.4532
2.5245 | 2.6946
2.7256 | 1.005
0.201 | | | 23/11/2013 | 1.4918 | 3.1952 | 1.5317 | 1.8083 | 2.5245 | 2.7489 | 0.201 | | | 24/11/2013 | 1.5461 | 3.2067 | 1.5713 | 1.806 | 2.5703 | 2.7751 | 0 | | | 25/11/2013 | 1.5833 | 3.2161 | 1.6153 | 1.8071 | 2.6102 | 2.8077 | 0 | | | 26/11/2013 | 1.6 | 3.219 | 1.6305 | 1.806 | 2.6102 | 2.8218 | 0 | | | 27/11/2013 | 1.6305 | 3.2226 | 1.4648 | 1.7967 | 2.634 | 2.906 | 0 | | | 28/11/2013 | 1.6412 | 3.2301 | 1.4816 | 1.8023 | 2.6512 | 2.9252 | 0 | | | 29/11/2013 | 1.6344 | 3.2266 | 1.4804 | 1.7998 | 2.6295 | 2.9334 | 0.201 | | | 30/11/2013 | 1.642 | 3.2318 | 1.4776 | 1.8063 | 2.6261 | 2.8832 | 0 | | | 01/12/2013 | 1.6525 | 3.2396 | 1.4918 | 1.8152 | 2.6725 | 2.9261 | 0 | | | 02/12/2013 | 1.6658 | 3.2476 | 1.5039 | 1.822 | 2.696 | 2.9515 | 0 | | | 03/12/2013 | 1.6601 | 3.2491 | 1.4983 | 1.8265 | 2.6634 | 2.9401 | 0 | | | 04/12/2013 | 1.6591 | 3.2526 | 1.4892 | 1.8298 | 2.6419 | 2.8923 | 0.201 | | | 05/12/2013 | 1.6688 | 3.253 | 1.4955 | 1.8356 | 2.6688 | 2.9715 | 0.402 | | | 06/12/2013 | 1.6643
1.6368 | 3.2572 | 1.4869
1.4194 | 1.842 | 2.6827 | 2.9233 | 1.407 | | | 07/12/2013
08/12/2013 | 1.6514 | 3.2578
3.2643 | 1.4624 | 1.8524
1.8572 | 2.6829
2.664 | 2.9445
2.9311 | 1.809
0 | | | 09/12/2013 | 1.6728 | 3.2729 | 1.4946 | 1.8678 | 2.6948 | 2.9344 | 0 | | | 10/12/2013 | 1.6757 | 3.2751 | 1.5014 | 1.8714 | 2.7065 | 2.942 | 0 | | | 11/12/2013 | 1.6815 | 3.2802 | 1.5017 | 1.8768 | 2.7143 | 2.9571 | 0 | | | 12/12/2013 | 1.6719 | 3.2799 | 1.4867 | 1.8781 | 2.6746 | 2.9325 | 0 | | | 13/12/2013 | 1.6721 | 3.2847 | 1.4832 | 1.8873 | 2.6717 | 2.9425 | 1.206 | | | 14/12/2013 | 1.6735 | 3.2864 | 1.4656 | 1.8918 | 2.7035 | 2.959 | 0.201 | | | 15/12/2013 | 1.6705 | 3.2956 | 1.4704 | 1.8984 | 2.6855 | 2.9309 | 0 | | | 16/12/2013 | 1.6407 | 3.2891 | 1.4554 | 1.9002 | 2.6446 | 2.8948 | 10.854 | | | 17/12/2013 | 1.5073 | 3.2701 | 1.3974 | 1.8904 | 2.6718 | 2.924 | 0.201 | | | 18/12/2013 | 1.5419 | 3.2635 | 1.4358 | 1.8722 | 2.5777 | 2.9047 | 0 | | | 19/12/2013 | 1.5012 | 3.2495 | 1.2337 | 1.8586 | 2.5004 | 2.7889 | 2.814 | | | 20/12/2013 | 1.5287 | 3.2533 | 1.3965 | 1.8469 | 2.5754 | 2.7916 | 0.804 | | | 21/12/2013
22/12/2013 | 1.5503
1.4792 | 3.2515
3.241 | 1.1793
1.2779 | 1.8415
1.8258 | 2.5411
2.4987 | 2.8313
2.7831 | 2.613
3.216 | | | 23/12/2013 | 1.4792 | 3.2371 | 1.3708 | 1.8258 | 2.4987 | 2.7831 | 3.216 | | | 24/12/2013 | 1.361 | 3.2371 | 1.0767 | 1.785 | 2.4969 | 2.6769 | 2.412 | | | 25/12/2013 | 1.4186 | 3.2173 | 1.3275 | 1.7657 | 2.3895 | 2.6642 | 0.603 | | | 26/12/2013 | 1.5081 | 3.2244 | 1.3991 | 1.7543 | 2.4818 | 2.7485 | 0.003 | | | 27/12/2013 |
1.5314 | 3.2142 | 1.3529 | 1.736 | 2.3894 | 2.7449 | 2.01 | | | 28/12/2013 | 1.4669 | 3.2148 | 1.319 | 1.7356 | 2.5051 | 2.7646 | 0.603 | | | 29/12/2013 | 1.5334 | 3.2218 | 1.4185 | 1.7243 | 2.5972 | 2.8196 | 0.402 | | | 30/12/2013 | 1.5698 | 3.2244 | 1.4535 | 1.7202 | 2.5552 | 2.8593 | 0 | | | 31/12/2013 | 1.5345 | 3.2241 | 1.4409 | 1.7132 | 2.5696 | 2.8823 | 0.201 | | | 01/01/2014 | 1.508 | 3.2223 | 1.3349 | 1.7098 | 2.5441 | 2.8861 | 0.603 | | | 02/01/2014 | 1.3725 | 3.205 | 1.1194 | 1.7058 | 2.4841 | 2.7685 | 4.221 | | | 03/01/2014 | 1.3787 | 3.2066 | 1.3252 | 1.6891 | 2.4401 | 2.7205 | 0.201 | | | 04/01/2014 | 1.4596 | 3.206 | 1.3333 | 1.6834 | 2.5176 | 2.8108 | 0.201 | | | 05/01/2014 | 1.4658 | 3.2091 | 1.4008 | 1.6713 | 2.5234 | 2.7813 | 0.201 | | | 06/01/2014 | 1.4828 | 3.1995 | 1.1439 | 1.6691 | 2.4642 | 2.7793 | 2.613 | | | 07/01/2014
08/01/2014 | 1.4032
1.4184 | 3.195
3.1901 | 1.2129
1.267 | 1.6646
1.6489 | 2.4859
2.499 | 2.726
2.7096 | 2.613
2.211 | | | i 00/01/20141 | 1.4104 | J. 190 l | 1.20/ | 1.0409 | 2.499 | 2.7090 | ۷.۷۱۱ | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|----------------------------|------------------|----------------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 09/01/2014 | 1.3217 | 3.1482 | 1.0031 | 1.6215 | 2.3903 | 2.6631 | 9.447 | | | 10/01/2014 | 1.3225 | 3.1601 | 1.2809 | 1.5942 | 2.3824 | 2.608 | 0 | | | 11/01/2014 | 1.4108 | 3.1689 | 1.3499 | 1.579 | 2.3761 | 2.6164 | 1.608 | | | 12/01/2014
13/01/2014 | 1.4453
1.3993 | 3.1648
3.1627 | 1.3548
1.2074 | 1.5656
1.56 | 2.4619
2.4072 | 2.7849
2.7535 | 0.201
1.809 | | | 14/01/2014 | 1.3945 | 3.1649 | 1.2864 | 1.5551 | 2.4174 | 2.7201 | 1.809 | | | 15/01/2014 | 1.3834 | 3.1549 | 1.1909 | 1.551 | 2.3856 | 2.7165 | 3.015 | | | 16/01/2014 | 1.3184 | 3.1583 | 1.2258 | 1.5443 | 2.349 | 2.6908 | 0.804 | | | 17/01/2014 | 1.3493 | 3.164 | 1.3126 | 1.5378 | 2.3392 | 2.6628 | 0 | | | 18/01/2014 | 1.4459 | 3.1712 | 1.3822 | 1.5414 | 2.4321 | 2.7769 | 1.809 | | | 19/01/2014 | 1.4381 | 3.1492 | 1.08 | 1.5416 | 2.4335 | 2.7486 | 7.437 | | | 20/01/2014 | 1.3648 | 3.1489 | 1.2815 | 1.5276 | 2.4219 | 2.6478 | 0 | | | 21/01/2014 | 1.4432 | 3.1569 | 1.3668 | 1.5218 | 2.4334 | 2.7355 | 0 | | | 22/01/2014
23/01/2014 | 1.456
1.4618 | 3.1448
3.1619 | 1.1568
1.3698 | 1.5192
1.5178 | 2.4067
2.4618 | 2.7404
2.7485 | 3.015
0.201 | | | 24/01/2014 | 1.4926 | 3.1636 | 1.4123 | 1.5176 | 2.4766 | 2.7973 | 0.201 | | | 25/01/2014 | 1.4204 | 3.1362 | 1.1283 | 1.5142 | 2.4593 | 2.791 | 9.045 | | | 26/01/2014 | 1.3563 | 3.1335 | 1.2486 | 1.4955 | 2.3589 | 2.6901 | 2.814 | | | 27/01/2014 | 1.2817 | 3.1164 | 1.2096 | 1.4741 | 2.1878 | 2.5251 | 0.402 | | | 28/01/2014 | 1.3406 | 3.1312 | 1.2937 | 1.4671 | 2.2092 | 2.553 | 3.618 | | | 29/01/2014 | 1.2508 | 3.0956 | 1.0149 | 1.472 | 2.305 | 2.461 | 3.417 | | | 30/01/2014 | 1.263 | 3.1137 | 1.2591 | 1.4491 | 2.2487 | 2.3831 | 0 | | | 31/01/2014 | 1.3516 | 3.1232 | 1.3343 | 1.4359 | 2.2773 | 2.5203 | 3.819 | | | 01/02/2014 | 1.1061 | 3.0864 | 1.1537 | 1.4154 | 2.1856 | 2.4194 | 0.402 | | | 02/02/2014 | 1.201 | 3.102 | 1.1975 | 1.4218 | 2.1726 | 2.3033 | 2.01 | | | 03/02/2014 | 1.2824 | 3.1176 | 1.3312 | 1.4125 | 2.2647 | 2.4858 | 0 | | | 04/02/2014
05/02/2014 | 1.3435
1.3672 | 3.1233
3.1116 | 1.3646
1.3382 | 1.4111
1.409 | 2.2749
2.2578 | 2.5319
2.5919 | 0
2.211 | | | 06/02/2014 | 1.0905 | 3.1110 | 1.1794 | 1.4472 | 2.2376 | 2.5919 | 1.407 | | | 07/02/2014 | 1.0019 | 3.0818 | 1.0385 | 1.4232 | 2.2158 | 2.3719 | 5.628 | | | 08/02/2014 | 1.0704 | 3.0799 | 1.1567 | 1.3937 | 2.0731 | 2.3055 | 1.005 | | | 09/02/2014 | 1.0127 | 3.0567 | 1.0564 | 1.387 | 2.1242 | 2.3113 | 3.216 | | | 10/02/2014 | | 3.0816 | 1.2637 | 1.373 | 2.1743 | 2.3372 | 3.216 | | | 11/02/2014 | 1.1246 | 3.0749 | 1.2351 | 1.3642 | 2.2547 | 2.4901 | 6.231 | | | 12/02/2014 | 1.106 | 3.0589 | 1.196 | 1.3456 | 2.1924 | 2.3935 | 1.206 | | | 13/02/2014 | 1.0893 | 3.0549 | 1.1995 | 1.3259 | 2.084 | 2.2659 | 0 | | | 14/02/2014 | 1.2351 | 3.0827 | 1.3008 | 1.3328 | 2.1869 | 2.4419 | 0.804 | | | 15/02/2014 | 1.09 | 3.044 | 1.0745 | 1.3213 | 2.1262 | 2.3894 | 6.03 | | | 16/02/2014 | 1.1428 | 3.0532 | 1.2118 | 1.3331 | 2.2726 | 2.4114 | 0
0.201 | | | 17/02/2014
18/02/2014 | 1.2298
1.3439 | 3.0672
3.0697 | 1.3195
1.191 | 1.3131
1.3313 | 2.2208
2.3147 | 2.4393
2.5675 | 1.407 | | | 19/02/2014 | 1.3279 | 3.0097 | 1.3542 | 1.3486 | 2.3648 | 2.6111 | 0 | | | 20/02/2014 | 1.3612 | 3.0906 | 1.3875 | 1.3579 | 2.3365 | 2.636 | 0.804 | | | 21/02/2014 | 1.3499 | 3.1086 | 1.3981 | 1.3814 | 2.393 | 2.6605 | 0 | | | 22/02/2014 | 1.4114 | 3.1218 | 1.4267 | 1.4072 | 2.4366 | 2.6756 | 0.402 | | | 23/02/2014 | 1.4626 | 3.1327 | 1.4392 | 1.4258 | 2.4582 | 2.727 | 0 | | | 24/02/2014 | 1.4962 | 3.1404 | 1.4586 | 1.4478 | 2.4736 | 2.7319 | 0.402 | | | 25/02/2014 | 1.499 | 3.1457 | 1.458 | 1.4609 | 2.4475 | 2.7116 | 0.402 | | | 26/02/2014 | 1.5097 | 3.1584 | 1.6406 | 1.4896 | 2.5443 | 2.7413 | 1.005 | | | 27/02/2014 | 1.4899 | 3.2752 | 1.6726 | 1.4801 | 2.4832 | 2.7556 | 3.417 | | | 28/02/2014
01/03/2014 | 1.1353
1.3169 | 3.2711
3.2665 | 1.5794
1.6378 | 1.4897
1.5123 | 2.442 | 2.7199 | 0 | | | 02/03/2014 | 1.4071 | 3.2664 | 1.6378 | 1.5123 | 2.4985
2.4711 | 2.7644
2.7731 | 1.608 | | | 03/03/2014 | 1.1204 | 3.263 | 1.3964 | 1.5232 | 2.3969 | 2.6832 | 4.623 | | | 04/03/2014 | 1.2189 | 3.2606 | 1.5948 | 1.5286 | 2.5131 | 2.7431 | 0.201 | | | 05/03/2014 | 1.3834 | 3.2611 | 1.6474 | 1.5399 | 2.587 | 2.7754 | 0 | | | 06/03/2014 | 1.4693 | 3.2673 | 1.6694 | 1.5451 | 2.5895 | 2.8038 | 2.01 | | | 07/03/2014 | 1.3822 | 3.2703 | 1.659 | 1.548 | 2.5309 | 2.7505 | 1.608 | | | 08/03/2014 | 1.3306 | 3.2673 | 1.6477 | 1.5541 | 2.579 | 2.8216 | 0 | | | 09/03/2014 | 1.384 | 3.2671 | 1.6696 | 1.5615 | 2.5315 | 2.7623 | 0 | | | 10/03/2014 | 1.4663 | 3.2675 | 1.6887 | 1.5732 | 2.5822 | 2.766 | 0 | | | 11/03/2014 | 1.5252 | 3.2638 | 1.7047 | 1.5773 | 2.6267 | 2.8157 | 0 | | | 12/03/2014 | 1.5396 | 3.2647 | 1.7097 | 1.5837 | 2.6059 | 2.8171 | 0.201 | | | 13/03/2014 | 1.5441
1.5573 | 3.2621 | 1.7096
1.7174 | 1.5903 | 2.5823 | 2.7932 | 0 | | | 14/03/2014
15/03/2014 | 1.5653 | 3.2653
3.2692 | 1.7174 | 1.6005
1.6172 | 2.5901
2.5891 | 2.8117
2.8032 | 0 | | | 16/03/2014 | 1.573 | 3.2683 | 1.7307 | 1.6253 | 2.5854 | 2.805 | 0 | | | 17/03/2014 | 1.5742 | 3.2686 | 1.7354 | 1.6356 | 2.5852 | 2.8097 | 0 | | | 18/03/2014 | | 3.2669 | 1.7327 | 1.6412 | 2.5655 | 2.8069 | 0.804 | | | | | | | | | 2.816 | 0 | | | 19/03/2014 | 1.5815 | 3.2658 | 1.7401 | 1.6522 | 2.6136 | 2.010 | U 1 | | | | 1.5815
1.5828
1.5623 | 3.2658
3.2681 | 1.7401
1.7373
1.7271 | 1.6522 | 2.5636
2.562 | 2.8271 | 0.201 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 22/03/2014 | 1.5609 | 3.2613 | 1.7205 | 1.6708 | 2.5278 | 2.7697 | 1.005 | | | 23/03/2014 | 1.5773 | 3.2586 | 1.7325 | 1.6842 | 2.593 | 2.7824 | 1.206 | | | 24/03/2014 | 1.5972 | 3.2573 | 1.7454 | 1.6934 | 2.6604 | 2.8558 | 0 | | | 25/03/2014
26/03/2014 | 1.5876
1.1876 | 3.261
3.2619 | 1.7422
1.6297 | 1.701
1.7142 | 2.5936
2.6824 | 2.7918
2.8571 | 3.015
1.206 | | | 27/03/2014 | 1.3478 | 3.2621 | 1.6825 | 1.7142 | 2.5976 | 2.8029 | 0.402 | | | 28/03/2014 | 1.3713 | 3.2592 | 1.5814 | 1.7192 | 2.616 | 2.811 | 2.01 | | | 29/03/2014 | 1.3767 | 3.2631 | 1.6142 | 1.7288 | 2.6008 | 2.8154 | 0.804 | | | 30/03/2014 | 1.3968 | 3.2665 | 1.6752 | 1.737 | 2.583 | 2.7971 | 0 | | | 31/03/2014 | 1.4825 | 3.267 | 1.6925 | 1.7425 | 2.5963 | 2.8021 | 0 | | | 01/04/2014 | 1.5011 | 3.2645 | 1.3643 | 1.7461 | 2.593 | 2.8035 | 5.628 | | | 02/04/2014 | 1.302 | 3.2661 | 1.6415 | 1.7427 | 2.559 | 2.796 | 0.603 | | | 03/04/2014 | 1.3408 | 3.265 | 1.6481 | 1.7464 | 2.5433 | 2.7712 | 0 | | | 04/04/2014
05/04/2014 | 1.3946
1.3135 | 3.2624
3.2623 | 1.5585
1.6507 | 1.7489
1.7519 | 2.5773
2.6012 | 2.7782
2.8067 | 2.211
1.005 | | | 06/04/2014 | 1.3626 | 3.2666 | 1.6662 | 1.7565 | 2.5845 | 2.8007 | 1.206 | | | 07/04/2014 | 1.3547 | 3.2636 | 1.6646 | 1.7548 | 2.6003 | 2.8228 | 8.442 | | | 08/04/2014 | 1.2053 | 3.2561 | 1.5262 | 1.7409 | 2.5718 | 2.7605 | 0.402 | | | 09/04/2014 | 1.3303 | 3.2579 | 1.6141 | 1.7372 | 2.6289 | 2.8197 | 0 | | | 10/04/2014 | 1.4237 | 3.2601 | 1.644 | 1.7268 | 2.5992 | 2.8021 | 0 | | | 11/04/2014 | 1.4867 | 3.257 | 1.659 | 1.7232 | 2.5988 | 2.7887 | 0 | | | 12/04/2014 | 1.5291 | 3.2598 | 1.6716 | 1.7228 | 2.5841 | 2.7984 | 0 | | | 13/04/2014 | 1.5485 | 3.2569 | 1.6796 | 1.7301 | 2.6154 | 2.7935 | 0 | | | 14/04/2014 | 1.5671 | 3.258 | 1.6918 | 1.7389 | 2.6204 | 2.7928 | 0 | | | 15/04/2014 | 1.5632 | 3.2355 | 1.681 | 1.7476 | 2.6382 | 2.8311 | 0.201 | | | 16/04/2014
17/04/2014 | 1.4614
1.458 | 3.2362
3.2357 | 1.558
1.556 | 1.7536
1.7606 | 2.6093
2.573 | 2.8166
2.8024 | 0 | | | 18/04/2014 | 1.4654 | 3.2377 | 1.5561 | 1.7651 | 2.5937 | 2.796 | 0 | | | 19/04/2014 | 1.4698 | 3.2394 | 1.5607 | 1.771 | 2.5987 | 2.8116 | 0 | | | 20/04/2014 | 1.469 | 3.2393 | 1.5496 | 1.7748 | 2.5821 | 2.8263 | 0.201 | | | 21/04/2014 | 1.4597 | 3.2441 | 1.5521 | 1.7822 | 2.5552 | 2.7797 | 0.201 | | | 22/04/2014 | 1.4727 | 3.25 | 1.5652 | 1.7914 | 2.5766 | 2.7971 | 1.407 | | | 23/04/2014 | 1.4763 | 3.2564 | 1.5717 | 1.7998 | 2.6244 | 2.8141 | 0 | | | 24/04/2014 | 1.4894 | 3.2573 | 1.5786 | 1.8046 | 2.6435 | 2.833 | 0.201 | | | 25/04/2014 | 1.4926 | 3.2601 | 1.5783 | 1.8133 | 2.6186 | 2.8391 | 3.819 | | | 26/04/2014 | 1.1827 | 3.2151 | 1.3235 | 1.7984 | 2.5011 | 2.7865 | 7.638 | | |
27/04/2014
28/04/2014 | 1.1699
1.3204 | 3.2254
3.2357 | 1.4769
1.5139 | 1.8065
1.812 | 2.5155
2.5783 | 2.7537
2.791 | 0 | | | 29/04/2014 | 1.401 | 3.2431 | 1.5306 | 1.8186 | 2.5891 | 2.8063 | 0 | | | 30/04/2014 | 1.4361 | 3.2501 | 1.5436 | 1.8235 | 2.5859 | 2.8104 | 0 | | | 01/05/2014 | 1.4531 | 3.251 | 1.5474 | 1.8246 | 2.5736 | 2.7991 | 0.804 | | | 02/05/2014 | 1.4728 | 3.2588 | 1.5624 | 1.8299 | 2.6485 | 2.82 | 0 | | | 03/05/2014 | 1.4884 | 3.2607 | 1.5782 | 1.8339 | 2.6664 | 2.8621 | 0 | | | 04/05/2014 | | 3.2618 | 1.5878 | 1.841 | 2.6185 | 2.842 | 0 | | | 05/05/2014 | 1.4737 | 3.262 | 1.5815 | 1.8411 | 2.5741 | 2.825 | 0 | | | 06/05/2014 | 1.4634 | 3.2602 | 1.5753 | 1.845 | 2.5333 | 2.7737 | 2.211 | | | 07/05/2014 | 1.4621 | 3.2632 | 1.5734 | 1.85 | 2.5676 | 2.787 | 0.201 | | | 08/05/2014
09/05/2014 | 1.4852
1.3878 | 3.2699
3.2513 | 1.5851
1.5062 | 1.8602
1.8584 | 2.6143
2.5882 | 2.8458
2.8038 | 2.412
6.432 | | | 10/05/2014 | 1.3203 | 3.2444 | 1.5247 | 1.8601 | 2.5778 | 2.8535 | 3.618 | | | 11/05/2014 | 1.1455 | 3.2391 | 1.4807 | 1.8602 | 2.5355 | 2.7663 | 5.628 | | | 12/05/2014 | 0.962 | 3.228 | 1.3622 | 1.8577 | 2.5835 | 2.8031 | 4.623 | | | 13/05/2014 | 0.907 | 3.1999 | 1.1194 | 1.8403 | 2.5711 | 2.7858 | 9.648 | | | 14/05/2014 | 0.9632 | 3.1778 | 1.2749 | 1.7947 | 2.5305 | 2.7375 | 0 | | | 15/05/2014 | 1.2033 | 3.1884 | 1.4179 | 1.7724 | 2.5436 | 2.7605 | 0 | | | 16/05/2014 | 1.3107 | 3.188 | 1.4591 | 1.7588 | 2.5379 | 2.7794 | 0 | | | 17/05/2014 | 1.3606 | 3.1914 | 1.4758 | 1.7497 | 2.5106 | 2.7709 | 0 | | | 18/05/2014 | 1.381
1.3999 | 3.1915
3.1973 | 1.4824 | 1.7451 | 2.4777
2.4735 | 2.7658 | 0 | | | 19/05/2014
20/05/2014 | 1.4261 | 3.1973 | 1.4828
1.4917 | 1.7466
1.757 | 2.4735 | 2.7536
2.7588 | 0.603 | | | 21/05/2014 | 1.4508 | 3.2041 | 1.5057 | 1.765 | 2.5688 | 2.7927 | 0.603 | | | 22/05/2014 | 1.4456 | 3.2087 | 1.5014 | 1.769 | 2.5219 | 2.774 | 2.01 | | | 23/05/2014 | 1.4221 | 3.2056 | 1.4721 | 1.7791 | 2.5562 | 2.7943 | 2.412 | | | 24/05/2014 | 1.3582 | 3.2338 | 1.4708 | 1.7724 | 2.5378 | 2.7881 | 2.211 | | | 25/05/2014 | 1.3047 | 3.2233 | 1.3835 | 1.7718 | 2.5201 | 2.776 | 2.613 | | | 26/05/2014 | 1.3397 | 3.2169 | 1.4076 | 1.7703 | 2.5191 | 2.787 | 3.216 | | | 27/05/2014 | 1.4674 | 3.2212 | 1.5239 | 1.7691 | 2.4942 | 2.7779 | 0 | | | 28/05/2014 | 1.5662 | 3.2266 | 1.543 | 1.7698 | 2.4904 | 2.777 | 3.015 | | | 29/05/2014 | | 3.2209 | 1.4855 | 1.7677 | 2.4875 | 2.7623 | 1.809 | | | 30/05/2014
31/05/2014 | 1.3448
1.5138 | 3.2214
3.2269 | 1.4958
1.5426 | 1.7682
1.7679 | 2.5128
2.5124 | 2.7713
2.7855 | 0 | | | 01/06/2014 | 1.6037 | 3.2269 | 1.5426 | 1.7679 | 2.5124 | 2.7855 | 0 | | | 0 1/00/2014 | 1.0001 | 0.2000 | 1.0018 | 1.7070 | 2.0020 | 2.700 | U | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 02/06/2014 | 1.6334 | 3.2359 | 1.5703 | 1.7748 | 2.4845 | 2.7745 | 1.608 | | | 03/06/2014 | 1.5736 | 3.2344 | 1.5601 | 1.7765 | 2.4677 | 2.7652 | 1.206 | | | 04/06/2014 | 1.6315 | 3.2369 | 1.5695 | 1.7789 | 2.4403 | 2.757 | 0.201 | | | 05/06/2014
06/06/2014 | 1.6213
1.671 | 3.2416
3.2492 | 1.573
1.5928 | 1.784
1.7959 | 2.4739
2.5033 | 2.743
2.7678 | 0.804
0 | | | 07/06/2014 | 1.6837 | 3.2568 | 1.6017 | 1.8082 | 2.4929 | 2.7633 | 6.633 | | | 08/06/2014 | 1.4697 | 3.238 | 1.4467 | 1.8104 | 2.5073 | 2.7674 | 1.407 | | | 09/06/2014 | 1.459 | 3.2378 | 1.488 | 1.8155 | 2.5007 | 2.7796 | 7.236 | | | 10/06/2014 | 1.1967 | 3.2147 | 1.408 | 1.7942 | 2.4322 | 2.6873 | 1.005 | | | 11/06/2014 | 1.369 | 3.2181 | 1.4585 | 1.7822 | 2.4746 | 2.7137 | 0.804 | | | 12/06/2014 | 1.5263 | 3.221 | 1.5169 | 1.7749 | 2.5248 | 2.7767 | 0 | | | 13/06/2014 | 1.6084 | 3.2256 | 1.5472 | 1.7705 | 2.5173 | 2.7794 | 0 | | | 14/06/2014 | 1.6424 | 3.2319 | 1.5635 | 1.7716 | 2.5259 | 2.7767 | 0 | | | 15/06/2014
16/06/2014 | 1.672
1.6295 | 3.2383
3.2373 | 1.5803
1.5838 | 1.7801
1.7818 | 2.5553
2.5603 | 2.7941
2.8012 | 2.01 | | | 17/06/2014 | 1.6665 | 3.2419 | 1.5959 | 1.7907 | 2.5695 | 2.8074 | 0 | | | 18/06/2014 | 1.6829 | 3.248 | 1.6049 | 1.8024 | 2.5685 | 2.8127 | 0 | | | 19/06/2014 | 1.6836 | 3.2513 | 1.6077 | 1.8114 | 2.5578 | 2.8054 | 0 | | | 20/06/2014 | 1.6907 | 3.2548 | 1.6126 | 1.8191 | 2.5691 | 2.8139 | 0 | | | 21/06/2014 | 1.696 | 3.2581 | 1.6099 | 1.8275 | 2.5662 | 2.811 | 0 | | | 22/06/2014 | 1.7051 | 3.2657 | 1.6194 | 1.8376 | 2.5865 | 2.8224 | 0 | | | 23/06/2014 | 1.717 | 3.2711 | 1.6286 | 1.8485 | 2.6056 | 2.8368 | 0 | | | 24/06/2014 | 1.7182 | 3.2755 | 1.6355 | 1.8582 | 2.6093 | 2.847 | 0 | | | 25/06/2014 | 1.7206 | 3.2798 | 1.6395 | 1.864 | 2.607 | 2.8448 | 0 | | | 26/06/2014 | 1.7267 | 3.2848 | 1.6411 | 1.8716 | 2.5977 | 2.8412 | 0 | | | 27/06/2014 | 1.7262 | 3.286 | 1.6436 | 1.8781 | 2.594 | 2.8402 | 0.402 | | | 28/06/2014
29/06/2014 | 1.6563
1.7071 | 3.2854
3.2893 | 1.6126
1.6076 | 1.8831
1.8881 | 2.5974
2.6162 | 2.8354
2.8392 | 3.015
0.402 | | | 30/06/2014 | 1.7071 | 3.2956 | 1.6344 | 1.895 | 2.6421 | 2.86 | 0.402 | | | 01/07/2014 | 1.7394 | 3.3005 | 1.6503 | 1.9057 | 2.6548 | 2.8595 | 0 | | | 02/07/2014 | 1.7488 | 3.3026 | 1.6593 | 1.913 | 2.6713 | 2.8854 | 0 | | | 03/07/2014 | 1.7491 | 3.3072 | 1.6597 | 1.9211 | 2.6517 | 2.8787 | 0.201 | | | 04/07/2014 | | 3.3061 | 1.6491 | 1.926 | 2.6151 | 2.877 | 0.201 | | | 05/07/2014 | 1.6151 | 3.3004 | 1.6113 | 1.9281 | 2.571 | 2.8092 | 7.035 | | | 06/07/2014 | 1.6078 | 3.2938 | 1.5773 | 1.9337 | 2.6191 | 2.8493 | 2.01 | | | 07/07/2014 | 1.4749 | 3.2826 | 1.4388 | 1.9347 | 2.6423 | 2.8513 | 9.849 | | | 08/07/2014 | 1.5707 | 3.2857 | 1.5599 | 1.9405 | 2.6592 | 2.8747 | 0.201 | | | 09/07/2014 | 1.6151 | 3.292 | 1.5926 | 1.9472 | 2.6808 | 2.8772 | 0.201 | | | 10/07/2014 | 1.6836
1.7064 | 3.2955 | 1.6078 | 1.9516 | 2.6701 | 2.8802 | 0 | | | 11/07/2014
12/07/2014 | 1.7064 | 3.3014
3.3047 | 1.617
1.6212 | 1.9577
1.9626 | 2.6695
2.6579 | 2.8807
2.8859 | 0.201 | | | 13/07/2014 | 1.7243 | 3.3032 | 1.6213 | 1.9673 | 2.6164 | 2.8434 | 0.201 | | | 14/07/2014 | 1.7353 | 3.3086 | 1.6302 | 1.9717 | 2.6683 | 2.8768 | 0 | | | 15/07/2014 | 1.682 | 3.3168 | 1.639 | 1.9779 | 2.691 | 2.8758 | 0.402 | | | 16/07/2014 | 1.7489 | 3.3139 | 1.6402 | 1.9814 | 2.7071 | 2.9066 | 0 | | | 17/07/2014 | 1.754 | 3.3182 | 1.6247 | 1.9878 | 2.7129 | 2.9044 | 0 | | | 18/07/2014 | 1.7551 | 3.3207 | 1.6402 | 1.9922 | 2.6848 | 2.9113 | 0 | | | 19/07/2014 | 1.7253 | 3.3218 | 1.6468 | 1.9973 | 2.671 | 2.8888 | 13.668 | | | 20/07/2014 | 0.889 | 3.2753 | 1.4517 | 1.9775 | 2.611 | 2.8431 | 0.402 | | | 21/07/2014 | 1.4514 | 3.28 | 1.5473 | 1.9727 | 2.6583 | 2.863 | 0 | | | 22/07/2014 | 1.6143 | 3.2858 | 1.5716 | 1.9729 | 2.6875 | 2.8869 | 0 | | | 23/07/2014
24/07/2014 | 1.6759
1.7013 | 3.2896
3.2935 | 1.5843
1.5952 | 1.9753
1.9784 | 2.6848
2.6666 | 2.8983
2.8799 | 0 | | | 25/07/2014 | 1.7119 | 3.2935 | 1.6085 | 1.9846 | 2.6749 | 2.8857 | 0 | | | 26/07/2014 | 1.7257 | 3.3017 | 1.6154 | 1.9894 | 2.6744 | 2.8817 | 0 | | | 27/07/2014 | 1.7416 | 3.3054 | 1.6246 | 1.9945 | 2.6798 | 2.8815 | 0.201 | | | 28/07/2014 | 1.7449 | 3.3069 | 1.6338 | 1.9981 | 2.6739 | 2.8728 | 0 | | | 29/07/2014 | 1.7551 | 3.3126 | 1.6438 | 2.0034 | 2.6987 | 2.8954 | 0 | | | 30/07/2014 | 1.7562 | 3.3157 | 1.6487 | 2.0072 | 2.6916 | 2.8943 | 0 | | | 31/07/2014 | 1.7597 | 3.3173 | 1.6532 | 2.0109 | 2.6862 | 2.8947 | 0.201 | | | 01/08/2014 | 1.7605 | 3.3145 | 1.7369 | 2.0071 | 2.6763 | 2.8995 | 1.608 | | | 02/08/2014 | 1.6938 | 3.3079 | 1.61 | 2.0119 | 2.6551 | 2.8897 | 14.472 | | | 03/08/2014 | 1.3214 | 3.2904 | 1.5467 | 2.0073 | 2.645 | 2.86 | 1.407 | | | 04/08/2014 | 1.6703 | 3.2982 | 1.648 | 2.013 | 2.6993 | 2.8861 | 0 | | | 05/08/2014 | 1.7192 | 3.3016
3.2963 | 1.6798 | 2.0157 | 2.7188 | 2.9158
2.8843 | 0
3.417 | | | 06/08/2014
07/08/2014 | 1.6788
1.6227 | 3.2963 | 1.6916
1.69 | 2.0171
2.0232 | 2.6666
2.6954 | 2.8843 | 0 | | | 08/08/2014 | 1.7013 | 3.3027 | 1.7034 | 2.0252 | 2.692 | 2.9165 | 0 | | | 09/08/2014 | | 3.3068 | 1.7018 | 2.0276 | 2.65 | 2.8625 | 0 | | | | | | | 2.0316 | 2.6636 | 2.9165 | 7.638 | | | 10/08/2014 | 1.7484 | 3.3072 | 1.7093 | 2.0310 | 2.0000 | 2.0100 | 7.000 | | | | 1.7484
1.3961 | 3.3072 | 1.6025 | 2.0266 | 2.6527 | 2.8689 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 13/08/2014 | 1.6672 | 3.2905 | 1.6664 | 2.0273 | 2.6571 | 2.8692 | 0.402 | | | 14/08/2014 | 1.7203 | 3.2952 | 1.6867 | 2.0305 | 2.7001 | 2.9004 | 1.206 | | | 15/08/2014
16/08/2014 | 1.7388
1.758 | 3.3004
3.3031 | 1.7029
1.7171 | 2.0354
2.038 | 2.7278
2.7495 | 2.9034
2.9398 | 0 | | | 17/08/2014 | 1.7551 | 3.3007 | 1.7153 | 2.036 | 2.7495 | 2.8995 | 2.613 | | | 18/08/2014 | 1.7365 | 3.3007 | 1.7145 | 2.0394 | 2.6714 | 2.8652 | 3.618 | | | 19/08/2014 | 1.6549 | 3.2976 | 1.6622 | 2.0436 | 2.7039 | 2.8954 | 10.452 | | | 20/08/2014 | 1.2806 | 3.2752 | 1.5353 | 2.032 | 2.6851 | 2.8943 | 0.402 | | | 21/08/2014 | 1.5502 | 3.2725 | 1.6039 | 2.0216 | 2.6656 | 2.895 | 0 | | | 22/08/2014 | 1.515 | 3.2804 | 1.6341 | 2.0038 | 2.6351 | 2.8107 | 3.216 | | | 23/08/2014 | 1.4581 | 3.2492 | 1.6426 | 2.0011 | 2.6716 | 2.8344 | 5.025 | | | 24/08/2014 | 1.3121 | 3.241 | 1.549 | 2.0004 | 2.6828 | 2.8522 | 0 | | | 25/08/2014
26/08/2014 | 1.4488
0.9819 | 3.2403
3.2103 | 1.6124
1.0745 | 1.9964
1.9796 | 2.6417
2.5943 | 2.8539
2.7723 | 3.015
4.824 | | | 27/08/2014 | 1.1423 | 3.2103 | 1.4441 | 1.9592 | 2.651 | 2.8395 | 0 | | |
28/08/2014 | 1.3853 | 3.206 | 1.5099 | 1.9443 | 2.589 | 2.7941 | 0.603 | | | 29/08/2014 | 1.4796 | 3.2065 | 1.5531 | 1.937 | 2.6078 | 2.8007 | 0 | | | 30/08/2014 | 1.5458 | 3.2118 | 1.5787 | 1.9335 | 2.6377 | 2.8019 | 1.608 | | | 31/08/2014 | 1.5576 | 3.2144 | 1.5315 | 1.9344 | 2.6689 | 2.8272 | 3.216 | | | 01/09/2014 | 1.5305 | 3.2172 | 1.5896 | 1.9352 | 2.6662 | 2.8278 | 0.804 | | | 02/09/2014 | 1.5349 | 3.2224 | 1.6181 | 1.9337 | 2.6897 | 2.8426 | 0 | | | 03/09/2014 | 1.5756 | 3.2281 | 1.642 | 1.9395 | 2.6832 | 2.8441 | 0 | | | 04/09/2014 | 1.5985 | 3.2344 | 1.6544 | 1.9431 | 2.6728 | 2.8432 | 0 | | | 05/09/2014 | 1.6049 | 3.2358 | 1.6571 | 1.9461 | 2.6594 | 2.8335 | 0 | | | 06/09/2014
07/09/2014 | 1.6125
1.6175 | 3.2408
3.2435 | 1.6654
1.6723 | 1.9515
1.9523 | 2.6525
2.6542 | 2.829
2.8263 | 0.201 | | | 08/09/2014 | 1.6242 | 3.2492 | 1.686 | 1.9586 | 2.68 | 2.8392 | 0 | | | 09/09/2014 | 1.633 | 3.2543 | 1.6954 | 1.9692 | 2.6987 | 2.8596 | 0 | | | 10/09/2014 | 1.6365 | 3.2606 | 1.7035 | 1.978 | 2.6977 | 2.8591 | 0 | | | 11/09/2014 | 1.6434 | 3.2687 | 1.7085 | 1.9883 | 2.7041 | 2.856 | 0 | | | 12/09/2014 | 1.648 | 3.271 | 1.7131 | 1.9946 | 2.7185 | 2.8622 | 0 | | | 13/09/2014 | 1.6531 | 3.2794 | 1.7208 | 2.0047 | 2.7331 | 2.8752 | 0 | | | 14/09/2014 | | 3.2818 | 1.7304 | 2.0121 | 2.7273 | 2.8854 | 0 | | | 15/09/2014 | 1.6497 | 3.2834 | 1.7289 | 2.0141 | 2.6995 | 2.8719 | 0 | | | 16/09/2014 | 1.6521 | 3.2887 | 1.7285 | 2.0221 | 2.6915 | 2.8583 | 0.402 | | | 17/09/2014 | 1.6588 | 3.2907
3.2951 | 1.7322
1.7326 | 2.0282 | 2.7033 | 2.8665 | 0 | | | 18/09/2014
19/09/2014 | 1.6602
1.663 | 3.2998 | 1.7326 | 2.0322 | 2.6995
2.7189 | 2.8631
2.8736 | 0 | | | 20/09/2014 | 1.6689 | 3.3041 | 1.7421 | 2.0413 | 2.7415 | 2.8772 | 0.603 | | | 21/09/2014 | 1.6694 | 3.3042 | 1.7525 | 2.0434 | 2.7835 | 2.9012 | 0.201 | | | 22/09/2014 | 1.6707 | 3.3018 | 1.7594 | 2.0427 | 2.7792 | 2.9156 | 0 | | | 23/09/2014 | 1.6686 | 3.3033 | 1.7615 | 2.0476 | 2.7459 | 2.9002 | 0 | | | 24/09/2014 | 1.6475 | 3.3001 | 1.7474 | 2.0505 | 2.7062 | 2.8578 | 4.02 | | | 25/09/2014 | | 3.304 | 1.716 | 2.0537 | 2.751 | 2.8927 | 0 | | | 26/09/2014 | 1.6611 | 3.3124 | 1.7416 | 2.0618 | 2.7591 | 2.8796 | 0 | | | 27/09/2014 | 1.6725 | 3.3106 | 1.7515 | 2.0619 | 2.7931 | 2.9195 | 0 | | | 28/09/2014 | 1.6754 | 3.3155 | 1.7595 | 2.0683 | 2.7661 | 2.9164 | 0 | | | 29/09/2014
30/09/2014 | 1.6784
1.6796 | 3.32
3.3241 | 1.7639
1.7681 | 2.0713
2.0758 | 2.7676
2.7764 | 2.9087
2.9075 | 0 | | | 01/10/2014 | 1.6837 | 3.3264 | 1.7717 | 2.0738 | 2.7764 | 2.9075 | 0 | | | 02/10/2014 | 1.6921 | 3.3245 | 1.778 | 2.0798 | 2.8254 | 2.9457 | 0.201 | | | 03/10/2014 | 1.6836 | 3.3257 | 1.7829 | 2.0847 | 2.7664 | 2.9149 | 0 | | | 04/10/2014 | 1.6755 | 3.3256 | 1.7827 | 2.0897 | 2.7135 | 2.8643 | 5.628 | | | 05/10/2014 | 1.6194 | 3.317 | 1.704 | 2.0884 | 2.7903 | 2.9182 | 0 | | | 06/10/2014 | 1.6359 | | 1.7277 | 2.0915 | 2.6996 | 2.8914 | 8.643 | | | 07/10/2014 | 1.1652 | | 1.5612 | 2.0793 | 2.6505 | 2.831 | 2.01 | | | 08/10/2014 | 1.3717 | 0.0770 | 1.5568 | 2.08 | 2.689 | 2.8762 | 2.01 | | | 09/10/2014 | 1.4407 | 3.2772 | 1.3898 | 2.0767 | 2.66 | 2.8251 | 7.638 | | | 10/10/2014
11/10/2014 | 1.2619
1.4122 | 3.265 | 1.4449
1.5078 | 2.074
2.0613 | 2.7183
2.714 | 2.8551
2.8675 | 1.608
0 | | | 12/10/2014 | 1.4122 | 3.2637 | 1.5883 | 2.0513 | 2.714 | 2.8738 | 0 | | | 13/10/2014 | 1.5686 | 3.268 | 1.6192 | 2.0468 | 2.6878 | 2.862 | 0 | | | 14/10/2014 | 1.4771 | 3.2547 | 1.2899 | 2.0411 | 2.6877 | 2.8449 | 6.03 | | | 15/10/2014 | 1.356 | | 1.5372 | 2.0337 | 2.6703 | 2.8606 | 0 | | | 16/10/2014 | 1.3466 | 3.2394 | 1.3562 | 2.0213 | 2.617 | 2.8051 | 2.814 | | | 17/10/2014 | 1.3215 | 3.2395 | 1.4015 | 2.0134 | 2.638 | 2.8049 | 2.01 | | | 18/10/2014 | 1.3709 | 3.2386 | 1.4559 | 2.0042 | 2.6226 | 2.8047 | 1.206 | | | 19/10/2014 | 1.3957 | 3.24 | 1.5554 | 1.994 | 2.6487 | 2.8272 | 0 | | | 20/10/2014 | | 3.2454 | 1.6034 | 1.9834 | 2.6859 | 2.8528 | 1.206 | | | 21/10/2014 | 1.535 | 3.2359 | 1.6026 | 1.9705 | 2.5876 | 2.7887 | 2.412 | | | 22/10/2014
23/10/2014 | 1.396
1.4053 | 3.2336 | 1.358
1.5387 | 1.9667
1.9593 | 2.7286
2.664 | 2.8701
2.8538 | 2.412
0 | | | 23/10/2014 | 1.4000 | <u> </u> | 1.0307 | 1.8080 | 2.004 | 2.0000 | U | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|-----------------|------------------|------------------|---------------|-------------------------------------| | 24/10/2014 | 1.4911 | 3.2374 | 1.5826 | 1.9538 | 2.6387 | 2.8255 | 0.603 | | | 25/10/2014 | 1.5443 | 3.238 | 1.5921 | 1.9455 | 2.6551 | 2.8244 | 0.201 | | | 26/10/2014 | 1.5793 | 3.2458 | 1.6154 | 1.9453 | 2.6743 | 2.8426 | 0 | | | 27/10/2014 | 1.5952 | 3.248 | 1.6363 | 1.9455 | 2.6738 | 2.843 | 0.201 | | | 28/10/2014 | 1.6336 | 3.2525 | 1.6428 | 1.9432 | 2.6144 | 2.9142 | 0.603 | | | 29/10/2014 | 1.316 | 3.2615 | 1.4841 | 1.9774 | 2.643 | 2.9082 | 2.211 | | | 30/10/2014 | 1.3759 | 3.2657 | 1.5061 | 1.9788 | 2.6358 | 2.9177 | 0.603 | | | 31/10/2014
01/11/2014 | 1.4631
1.4839 | 3.273
3.2762 | 1.5145
1.5199 | 1.983
1.9837 | 2.6375
2.6272 | 2.9298
2.9122 | 0
0.201 | | | 02/11/2014 | 1.4624 | 3.2736 | 1.5139 | 1.9803 | 2.5813 | 2.8877 | 0.804 | | | 03/11/2014 | 1.4721 | 3.2709 | 1.51 | 1.9793 | 2.5481 | 2.8875 | 1.407 | | | 04/11/2014 | 1.4249 | 3.2669 | 1.4833 | 1.9772 | 2.5675 | 2.8468 | 0.201 | | | 05/11/2014 | 1.4872 | 3.2784 | 1.5205 | 1.9867 | 2.6625 | 2.9095 | 0 | | | | 1.5144 | 3.2766 | 1.5334 | 1.9869 | 2.679 | 2.9681 | 0 | | | 07/11/2014 | 1.5027 | 3.282 | 1.5118 | 1.9896 | 2.5668 | 2.8798 | 6.633 | | | 08/11/2014 | 1.3566 | 3.2638 | 1.3173 | 1.9848 | 2.631 | 2.9249 | 3.216 | | | 09/11/2014 | 1.2713 | 3.2604 | 1.3689 | 1.9767 | 2.5856 | 2.8644 | 0 | | | 10/11/2014 | 1.3588 | 3.2599 | 1.4513 | 1.9684 | 2.5791 | 2.8794 | 0.402 | | | 11/11/2014 | 1.406 | 3.2617 | 1.2987 | 1.9642 | 2.5526 | 2.8627 | 1.608 | | | 12/11/2014 | 1.3678 | 3.2602 | 1.3678 | 1.9592 | 2.5411 | 2.8407 | 1.407 | | | 13/11/2014 | 1.3336 | 3.2651 | 1.4018 | 1.9614 | 2.6152 | 2.9097 | 0 | | | 14/11/2014 | 1.4027 | 3.2636 | 1.4365 | 1.9578 | 2.569 | 2.8697 | 4.824 | | | 15/11/2014 | 1.3224 | 3.2508 | 1.3364 | 1.944 | 2.5666 | 2.859 | 0.201 | | | 16/11/2014 | 1.3683 | 3.2539 | 1.4236 | 1.9374 | 2.5543 | 2.8404 | 0 | | | | 1.4279 | 3.2555 | 1.467 | 1.931 | 2.5572 | 2.849 | 3.015 | | | 18/11/2014 | 1.3922 | 3.2523 | 1.3911 | 1.9234 | 2.5992 | 2.8613 | 0 | | | 19/11/2014 | 1.4371 | 3.252 | 1.46 | 1.9182 | 2.6095 | 2.862 | 0 | | | 20/11/2014 | 1.4778 | 3.2617 | 1.4974 | 1.917 | 2.6436 | 2.894 | 0 | | | 21/11/2014 | 1.4907 | 3.258 | 1.5065 | 1.9115 | 2.6188 | 2.9157 | 0.402 | | | 22/11/2014 | 1.3408 | 3.2311 | 1.0567 | 1.9005 | 2.5325 | 2.8348 | 8.04 | | | 23/11/2014
24/11/2014 | 1.1858
1.2759 | 3.2381
3.2334 | 1.3852
1.4397 | 1.891
1.876 | 2.5079
2.5101 | 2.7655
2.78 | 0.603 | | | 25/11/2014 | 1.3791 | 3.2341 | 1.4764 | 1.8682 | 2.5266 | 2.76 | 0 | | | | 1.4202 | 3.2341 | 1.376 | 1.8632 | 2.4885 | 2.8328 | 4.02 | | | | 1.3913 | 3.2205 | 1.3892 | 1.8031 | 2.4614 | 2.7171 | 0.804 | | | | 1.4092 | 3.2236 | 1.42 | 1.7977 | 2.4713 | 2.6916 | 0 | | | | 1.4888 | 3.2277 | 1.4838 | 1.7932 | 2.5167 | 2.7147 | 0.201 | | | | 1.5552 | 3.2358 | 1.5127 | 1.7938 | 2.5525 | 2.7436 | 0 | | | | 1.5931 | 3.2349 | 1.5368 | 1.7884 | 2.5628 | 2.7588 | 0 | | | | 1.6102 | 3.2418 | 1.5499 | 1.7878 | 2.571 | 2.7314 | 0.201 | | | 03/12/2014 | 1.6274 | 3.2411 | 1.5636 | 1.784 | 2.6306 | 2.7996 | 0 | | | 04/12/2014 | 1.6204 | 3.2401 | 1.5632 | 1.7837 | 2.5774 | 2.7888 | 0 | | | 05/12/2014 | 1.6235 | 3.2501 | 1.5694 | 1.7893 | 2.5853 | 2.7679 | 0.201 | | | 06/12/2014 | 1.6371 | 3.2515 | 1.567 | 1.7911 | 2.6473 | 2.813 | 0.201 | | | 07/12/2014 | 1.6381 | 3.2554 | 1.5677 | 1.7989 | 2.5771 | 2.7893 | 0.402 | | | 08/12/2014 | 1.639 | 3.2591 | 1.5784 | 1.8018 | 2.5963 | 2.781 | 1.005 | | | | 1.6444 | 3.2638 | 1.5771 | 1.8107 | 2.6709 | 2.861 | 0 | | | | 1.6202 | 3.2597 | 1.3962 | 1.8113 | 2.5676 | 2.7592 | 3.618 | | | | 1.6001 | 3.255 | 1.4652 | 1.8114 | 2.547 | 2.7608 | 1.407 | | | | 1.5696 | 3.2397 | 1.1965 | 1.8036 | 2.4658 | 2.7076 | 9.447 | | | | 1.3769 | 3.2348 | 1.3857 | 1.7801 | 2.5024 | 2.6563 | 0.402 | | | 14/12/2014
15/12/2014 | 1.4483
1.482 | 3.2342
3.2334 | 1.4657
1.3376 | 1.767
1.7586 | 2.4487
2.4628 | 2.6749
2.6754 | 0.201
4.02 | | | | 1.4639 | 3.2334 | 1.4247 | 1.7566 | 2.4628 | 2.7005 | 0.603 | | | 17/12/2014 | 1.4639 | 3.205 | 0.9895 | 1.7311 | 2.4135 | 2.7005 | 5.829 | | | 18/12/2014 | 1.2892 | 3.2105 | 1.3494 | 1.7076 | 2.4135 | 2.6333 | 0.201 | | | 19/12/2014 | 1.3627 | 3.2081 | 1.2134 | 1.6839 | 2.416 | 2.6103 | 2.211 | | | 20/12/2014 | 1.41 | 3.2018 | 1.4317 | 1.6693 | 2.4851 | 2.6747 | 0.201 | | | 21/12/2014 | 1.4908 | 3.2082 | 1.4904 | 1.6622 | 2.5147 | 2.7475 | 0 | | | | 1.5244 | 3.2106 | 1.5106 | 1.6538 | 2.4593 | 2.7124 | 0 | | | | 1.5526 | 3.2156 | 1.5149 | 1.653 | 2.4921 | 2.7272 | 0 | | | 24/12/2014 | 1.569 | 3.2168 | 1.5255 | 1.648 | 2.4996 | 2.6913 | 0.804 | | | | 1.5899 | 3.2206 | 1.5401 | 1.6528 | 2.5789 | 2.7449 | 1.407 | | | 26/12/2014 | 1.5912 | 3.2171 | 1.4548 | 1.6547 | 2.5979 | 2.8084 | 1.206 | | | 27/12/2014 | 1.1744 | 3.1794 | 1.0807 | 1.6308 | 2.4502 | 2.694 | 4.02 | | | | 1.1992 | 3.1849 | 1.3525 | 1.6123 | 2.476 | 2.6024 | 0 | | | | 1.3954 | 3.188 | 1.4758 | 1.6045 | 2.4877 | 2.6401 | 0 | | | | 1.4973 | 3.1904 | 1.5129 | 1.597 | 2.4776 | 2.6816 | 0 | | | 31/12/2014 | 1.537 | 3.1936 | 1.5288 | 1.595 | 2.4546 | 2.6861 | 0 | | | 01/01/2015 | 1.56 | 3.2062 | 1.5189 | 1.6049 | 2.4692 | 2.7233 | 0.201 | | | 02/01/2015
03/01/2015 | 1.5632
1.5482 | 3.2138
3.2072 | 1.4723 | 1.6125 | 2.4727 | 2.6535 | 0.804 | | | | 1 7487 | 3.70/2 | 1.5446 | 1.6144 | 2.5068 | 2.7465 | 4.824 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool
John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 04/01/2015 | 1.3776 | 3.2006 | 1.416 | 1.6136 | 2.536 | 2.7194 | 0 | | | 05/01/2015 | 1.4294 | 3.2065 | 1.5136 | 1.6089 | 2.489 | 2.7176 | 0 | | | 06/01/2015 | 1.4908 | 3.2074 | 1.526 | 1.6047 | 2.4328 | 2.6708 | 1.005 | | | 07/01/2015
08/01/2015 | 1.521
1.4946 | 3.2104
3.2162 | 1.5031
1.3643 | 1.6106
1.6145 | 2.4953
2.4713 | 2.726
2.6779 | 1.005
2.412 | | | 09/01/2015 | 1.3736 | 3.2092 | 1.3843 | 1.6127 | 2.4713 | 2.6957 | 0.804 | | | 10/01/2015 | 1.3719 | 3.207 | 1.4423 | 1.6051 | 2.4377 | 2.6729 | 0.603 | | | 11/01/2015 | 1.4129 | 3.2097 | 1.5011 | 1.6028 | 2.5073 | 2.6994 | 0 | | | 12/01/2015 | 1.4885 | 3.2096 | 1.5267 | 1.6014 | 2.4669 | 2.7266 | 0.402 | | | 13/01/2015 | 1.5194 | 3.2117 | 1.5233 | 1.5998 | 2.4446 | 2.6882 | 0.402 | | | 14/01/2015 | 1.5183 | 3.2097 | 1.5238 | 1.6005 | 2.4815 | 2.6974 | 0 | | | 15/01/2015 | 1.5184 | 3.2104 | 1.2827 | 1.6032 | 2.3818 | 2.6431 | 2.211 | | | 16/01/2015 | 1.4499 | 3.2178 | 1.4792 | 1.618 | 2.5143 | 2.6783 | 1.407 | | | 17/01/2015
18/01/2015 | 1.3986
1.4508 | 3.2092
3.2138 | 1.4207
1.4888 | 1.6184
1.6148 | 2.5539
2.528 | 2.7366
2.707 | 0.201
0.603 | | | 19/01/2015 | 1.5374 | 3.218 | 1.5208 | 1.6218 | 2.5657 | 2.7539 | 0.003 | | | 20/01/2015 | 1.5445 | 3.2188 | 1.535 | 1.6194 | 2.5201 | 2.7267 | 0.201 | | | 21/01/2015 | 1.5607 | 3.2202 | 1.5335 | 1.6226 | 2.4866 | 2.6878 | 0.201 | | | 22/01/2015 | 1.5913 | 3.2303 | 1.5111 | 1.6371 | 2.5924 | 2.7371 | 0.402 | | | 23/01/2015 | 1.5991 | 3.2336 | 1.553 | 1.6454 | 2.6052 | 2.7895 | 0.201 | | | 24/01/2015 | 1.3533 | 3.234 | 1.513 | 1.6603 | 2.5987 | 2.8194 | 1.809 | | | 25/01/2015 | 1.3127 | 3.2335 | 1.6632 | 1.6675 | 2.6382 | 2.886 | 0 | | | 26/01/2015 | 1.3295 | 3.2394 | 1.6884 | 1.6707 | 2.5709 | 2.8261 | 0.402 | | | 27/01/2015 | 1.3468 | 3.2438 | 1.6916 | 1.6793 | 2.6244 | 2.8679 | 0 | | | 28/01/2015 | 1.3433 | 3.233 | 1.6776 | 1.6712 | 2.5118 | 2.8499 | 1.206 | | | 29/01/2015 | 1.3202 | 3.2293 | 1.6462 | 1.6681 | 2.4581 | 2.8129 | 0.804 | | | 30/01/2015
31/01/2015 | 1.2657
1.1721 | 3.2252
3.2192 | 1.4264
1.2161 | 1.6633
1.6659 | 2.4114
2.4611 | 2.7043
2.7318 | 1.809
3.417 | | | 01/02/2015 | 1.0901 | 3.2192 | 1.497 | 1.6531 | 2.5018 | 2.7296 | 0 | | | 02/02/2015 | 1.1984 | 3.2176 | 1.5929 | 1.6334 | 2.5009 | 2.7542 | 0 | | | 03/02/2015 | 1.2871 | 3.2187 | 1.6275 | 1.6224 | 2.4914 | 2.743 | 0 | | | 04/02/2015 | 1.3472 | 3.2287 | 1.665 | 1.6289 | 2.5661 | 2.7901 | 0 | | | 05/02/2015 | | 3.2335 | 1.6865 | 1.6385 | 2.5854 | 2.8272 | 0 | | | 06/02/2015 | 1.3798 | 3.2366 | 1.7004 | 1.6369 | 2.6013 | 2.8338 | 0 | | | 07/02/2015 | 1.3832 | 3.2388 | 1.7133 | 1.6434 | 2.6005 | 2.8369 | 0 | | | 08/02/2015 | 1.3941 | 3.2456 | 1.7316 | 1.6552 | 2.6142 | 2.8548 | 0 | | | 09/02/2015 | 1.3913 | 3.2487 | 1.7411 | 1.6629 | 2.5849 | 2.8463 | 0 | | | 10/02/2015 | 1.3936 | 3.2543 | 1.7469 | 1.6727 | 2.5791 | 2.8457 | 0 | | | 11/02/2015 | 1.3902 | 3.2518 | 1.7456 | 1.6767 | 2.5495 | 2.8366 | 0 | | | 12/02/2015
13/02/2015 | 1.39
1.388 | 3.2585
3.2548 | 1.7474
1.7398 | 1.6851
1.6896 | 2.5466
2.4992 | 2.8326
2.8483 | 0.201 | | | 14/02/2015 | 1.3745 | 3.2647 | 1.7342 | 1.6982 | 2.5078 | 2.7683 | 1.206 | | | 15/02/2015 | | 3.2727 | 1.7598 | 1.7145 | 2.6016 | 2.8393 | 0 | | | 16/02/2015 | 1.4064 | 3.2715 | 1.7688 | 1.7183 | 2.5909 | 2.8475 | 1.407 | | | 17/02/2015 | 1.396 | 3.2788 | 1.7731 | 1.7293 | 2.6809 | 2.8618 | 0 | | | 18/02/2015 | 1.4167 | 3.2807 | 1.7896 | 1.7354 | 2.6775 | 2.9215 | 0 | | | 19/02/2015 | 1.3994 | 3.2801 | 1.7748 | 1.7373 | 2.5831 | 2.8858 | 1.407 | | | 20/02/2015 | 1.3727 | 3.2765 | 1.753 | 1.74 | 2.5392 | 2.8406 | 0 | | | 21/02/2015 | 1.3723 | 3.2761 | 1.7271 | 1.741 | 2.515 | 2.8055 | 1.206 | | | 22/02/2015 | 1.3811 | 3.281 | 1.6722 | 1.7518 | 2.5873 | 2.8842 | 1.005 | | | 23/02/2015
24/02/2015 | 1.272
1.2722 | 3.2751
3.2854 | 1.557
1.4829 | 1.7511
1.7798 | 2.5002
2.5663 | 2.8096
2.7389 | 0.603
2.412 | | | 25/02/2015 | 1.2722 | 3.2854 | 1.4829 | 1.7798 | 2.6496 | 2.7389 | 0.402 | | | 26/02/2015 | 1.3072 | 3.2882 | 1.683 | 1.7942 | 2.6204 | 2.8377 | 2.412 | | | 27/02/2015 | 1.4471 | 3.2799 | 1.6212 | 1.7894 | 2.6355 | 2.8221 | 0 | | | 28/02/2015 | 1.5199 | 3.2834 | 1.6712 | 1.7926 | 2.5774 | 2.834 | 0 | | | 01/03/2015 | 1.5336 | 3.2865 | 1.6632 | 1.7865 | 2.5191 | 2.7565 | 1.005 | | | 02/03/2015 | 1.5005 | 3.2825 | 1.61 | 1.7874 | 2.5695 | 2.7656 | 2.01 | | | 03/03/2015 | 1.5515 | 3.2865 | 1.6849 | 1.7906 | 2.621 | 2.8098 | 0.201 | | | 04/03/2015 | 1.5989 | 3.2964 | 1.7154 | 1.7981 | 2.6671 | 2.8059 | 0 | | | 05/03/2015 | 1.6402 | 3.2974 | 1.7442 | 1.8017 | 2.7216 | 2.8799 | 0 | | | 06/03/2015 | 1.6433 | 3.3016 | 1.7538 | 1.8038 | 2.6749 | 2.8708 | 0 | | | 07/03/2015 | 1.6318 | 3.2995 | 1.7425 | 1.799 | 2.6043 | 2.8236 | 0 | | | 08/03/2015
09/03/2015 | 1.634
1.5606 | 3.3038
3.2958 | 1.7398
1.6783 | 1.8048
1.8041 | 2.6118
2.6606 | 2.8015
2.8694 | 3.618
0 | | | 10/03/2015 | 1.5891 | 3.2958 | 1.6803 | 1.8091 | 2.6556 | 2.8129 | 0.201 | | | 11/03/2015 | 1.6215 | 3.3021 | 1.6818 | 1.8091 | 2.6532 | 2.8556 | 0.201 | | | 12/03/2015 | 1.6255 | 3.3023 | 1.6803 | 1.8121 | 2.6484 | 2.8491 | 0 | | | 13/03/2015 | | 3.3045 | 1.5838 | 1.8163 | 2.6423 | 2.8151 | 7.638 | | | 14/03/2015 | 1.2088 | 3.2873 | 1.562 | 1.808 | 2.6268 | 2.8048 | 0 | | | | 1.4015 | 3.2852 | 1.6424 | 1.7957 | 2.5639 | 2.7601 | 0 | | | 15/03/2015
16/03/2015 | 1.5053 | 3.287 | 1.6629 | 1.7872 | 2.5444 | 2.766 | 0 | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 17/03/2015 | 1.5611 | 3.29 | 1.6737 | 1.7826 | 2.5526 | 2.7482 | 0.603 | | | 18/03/2015 | 1.5931 | 3.291 | 1.6916 | 1.782 | 2.6069 | 2.7716 | 0 | | | 19/03/2015 | 1.612 | 3.2954 | 1.706 | 1.7838 | 2.6249 | 2.8021 | 0 | | | 20/03/2015
21/03/2015 | 1.6188
1.6165 | 3.297
3.3018 | 1.7093
1.7032 | 1.7856
1.7867 | 2.6089
2.5954 | 2.8186
2.7851 | 0 | | | 22/03/2015 | 1.6243 | 3.2943 | 1.7092 | 1.7886 | 2.6304 | 2.8246 | 0 | | | 23/03/2015 | 1.6179 | 3.2924 | 1.687 | 1.791 | 2.569 | 2.7886 | 0.201 | | | 24/03/2015 | 1.6182 | 3.2955 | 1.6821 | 1.7936 | 2.572 | 2.7825 | 1.005 | | | 25/03/2015 | 1.6202 | 3.3014 | 1.6872 | 1.8032 | 2.6031 | 2.7903 | 0.402 | | | 26/03/2015 | 1.6232 | 3.2939 | 1.6645 | 1.8026 | 2.5505 | 2.775 | 3.618 | | | 27/03/2015 | 1.4575 | 3.3032 | 1.6646 | 1.8195 | 2.6623 | 2.8226 | 0 | | | 28/03/2015 | 1.5426 | 3.3016 | 1.6784 | 1.8216 | 2.6233 | 2.8682 | 1.407 | | | 29/03/2015
30/03/2015 | 1.5332
1.3397 | 3.3026
3.2906 | 1.6498
1.5555 | 1.8226
1.818 | 2.5816
2.5962 | 2.8283
2.7795 | 4.623
1.206 | | | 31/03/2015 | 1.1824 | 3.2906 | 1.3454 | 1.8001 | 2.5962 | 2.7795 | 6.633 | | | 01/04/2015 | 1.2333 | 3.2716 | 1.533 | 1.7794 | 2.5945 | 2.7546 | 0.804 | | | 02/04/2015 | 1.3224 | 3.2556 | 1.2963 | 1.7497 | 2.5358 | 2.7295 | 3.216 | | | 03/04/2015 | 1.2287 | 3.2469 | 1.5194 | 1.722 | 2.4855 | 2.7183 | 1.608 | | | 04/04/2015 | 1.1956 | 3.2436 | 1.5063 | 1.7047 | 2.5274 | 2.7227 | 0.201 | | | 05/04/2015 | 1.3262 | 3.2433 | 1.5624 | 1.6892 | 2.5422 | 2.738 | 0 | | | 06/04/2015 | 1.4472 | 3.2449 | 1.605 | 1.6778 | 2.5681 | 2.7469 | 0 | | | 07/04/2015 | 1.532 | 3.2474 | 1.6286 | 1.6727 | 2.5953 | 2.7769 | 0 | | | 08/04/2015 | 1.5603 | 3.2478 | 1.628 | 1.6714 | 2.5819 | 2.7816 | 0.201 | | | 09/04/2015 | 1.5694
1.5748 | 3.2495 | 1.5995 | 1.6741 | 2.5599 | 2.7826 | 0 | | | 10/04/2015
11/04/2015 | 1.5748 | 3.2482
3.2519 | 1.5654
1.6305 | 1.6763
1.681 | 2.543
2.5163 | 2.7847
2.7263 | 0.603 | | | 12/04/2015 | 1.5731 | 3.2519 | 1.6651 | 1.6968 | 2.6235 | 2.7263 | 0.603 | | | 13/04/2015 | 1.5956 | 3.2556 | 1.6879 | 1.7027 | 2.6492 | 2.8179 | 0.402 | | | 14/04/2015 | 1.6031 | 3.2581 | 1.6802 | 1.7164 | 2.6144 | 2.8191 | 0 | | | 15/04/2015 | 1.601 | 3.2611 | 1.6741 | 1.7243 | 2.59 | 2.8077 | 0 | | | 16/04/2015 | 1.6098 | 3.2654 | 1.6728 | 1.7358 | 2.6146 | 2.8268 | 0 | | | 17/04/2015 | 1.6175 | 3.2711 | 1.6654 | 1.7483 | 2.6258 | 2.809 | 0 | | | 18/04/2015 | | 3.2757 | 1.6723 | 1.7622 | 2.6924 | 2.8635 | 0 | | | 19/04/2015 | | 3.2752 | 1.6675 | 1.7678 | 2.6694 | 2.8692 | 0 | | | 20/04/2015 | 1.629 | 3.2783 | 1.6757 | 1.7767 | 2.6698 | 2.8386 | 0 | | | 21/04/2015 | 1.6425 | 3.2857 | 1.6648 | 1.7916 | 2.704 | 2.8739 | 0 | | | 22/04/2015
23/04/2015 | 1.6456
1.6338 | 3.289
3.2876 | 1.6591
1.6395 | 1.8004
1.8051 | 2.6955
2.6368 | 2.8859
2.8608 | 0 | | | 24/04/2015 | 1.6279 | 3.2885 | 1.6405 | 1.8125 | 2.6025 | 2.8338 | 0 | | | 25/04/2015 | 1.6267 | 3.2907 | 1.6369 | 1.8213 | 2.5864 | 2.8098 | 2.412 | | | 26/04/2015 | 1.6277 | 3.2902 | 1.6509 | 1.8271 | 2.6452 | 2.8335 | 0 | | | 27/04/2015 | 1.6328 | 3.2919 | 1.6776 | 1.8313 | 2.6598 | 2.8502 | 0 | | | 28/04/2015 | 1.6378 | 3.2962 | 1.683 | 1.8387 | 2.664 | 2.8384 | 0 | | | 29/04/2015 | 1.6487 | 3.2964 | 1.6749 | 1.8492 | 2.6536 | 2.8595 | 1.608 | | | 30/04/2015 | 1.632 | 3.2974 | 1.6641 | 1.8562 | 2.654 | 2.841 | 1.005 | | | 01/05/2015 | 1.6306 | 3.3044 | 1.6528 | 1.8517 | 2.6941 | 2.8437 | 0 | | | 02/05/2015
03/05/2015 | | 3.3034
3.281 | 1.6646
1.5966 | 1.8384
1.8412 | 2.5791
2.5345 | 2.821
2.8082 | 0.603
4.623 | | | 04/05/2015 | | 3.2955 | 1.6781 | 1.8541 | 2.569 | 2.8207 | 0.402 | | | 05/05/2015 | 1.3947 | 3.2538 | 1.542 | 1.8421 | 2.5185 | 2.7998 | 4.824 | | | 06/05/2015 | 1.5689 | 3.2627 | 1.6217 | 1.8449 | 2.6003 | 2.849 | 0.402 | | | 07/05/2015 | 1.6467 | 3.2562 | 1.5003 | 1.8493 | 2.6323 | 2.862 | 3.618 | | | 08/05/2015 | 1.5763 | 3.2123 |
1.2553 | 1.8396 | 2.5384 | 2.807 | 2.814 | | | 09/05/2015 | 1.3338 | 3.2274 | 1.525 | 1.8284 | 2.5861 | 2.8453 | 5.226 | | | 10/05/2015 | 1.4834 | 3.2371 | 1.6021 | 1.8162 | 2.5446 | 2.8157 | 0 | | | 11/05/2015 | 1.5911 | 3.2402 | 1.6271 | 1.8106 | 2.5458 | 2.812 | 0 | | | 12/05/2015
13/05/2015 | 1.6645
1.6978 | 3.2437
3.2485 | 1.6474
1.6558 | 1.8097
1.8108 | 2.5839
2.5633 | 2.8314
2.8168 | 0 | | | 14/05/2015 | 1.7063 | 3.2465 | 1.6579 | 1.8087 | 2.5633 | 2.8175 | 0 | | | 15/05/2015 | 1.7355 | 3.2608 | 1.6812 | 1.8228 | 2.5963 | 2.8381 | 0 | | | 16/05/2015 | 1.7441 | 3.2617 | 1.6897 | 1.8262 | 2.6283 | 2.8558 | 0.201 | | | 17/05/2015 | 1.7457 | 3.271 | 1.6999 | 1.8335 | 2.5802 | 2.8248 | 0 | | | 18/05/2015 | 1.4182 | 3.2536 | 1.5553 | 1.8244 | 2.4932 | 2.7759 | 6.03 | | | 19/05/2015 | 1.4582 | 3.2513 | 1.5767 | 1.8289 | 2.5491 | 2.809 | 3.015 | | | 20/05/2015 | 1.569 | 3.2573 | 1.6332 | 1.8384 | 2.6214 | 2.8516 | 1.206 | | | 21/05/2015 | 1.6451 | 3.262 | 1.6646 | 1.8399 | 2.6224 | 2.8519 | 0 | | | 22/05/2015 | 1.6946 | 3.2629 | 1.6722 | 1.8413 | 2.6037 | 2.8391 | 0 | | | 23/05/2015 | 1.7226 | 3.2687
3.2678 | 1.6825 | 1.8485 | 2.5921 | 2.8302 | 0 0 603 | | | 24/05/2015
25/05/2015 | 1.7313
1.7415 | 3.2678 | 1.6829
1.6931 | 1.8497
1.8562 | 2.5876
2.597 | 2.8287
2.8351 | 0.603
0.201 | | | 26/05/2015 | 1.7559 | 3.2723 | 1.7033 | 1.8604 | 2.6285 | 2.8551 | 0.201 | | | 27/05/2015 | 1.7472 | 3.2756 | 1.6963 | 1.8612 | 2.5504 | 2.8041 | 0 | | | | | | | | | | | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--|----------------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 28/05/2015 | 1.7535 | 3.2827 | 1.6987 | 1.8715 | 2.5734 | 2.8187 | 0 | | | 29/05/2015 | 1.5984 | 3.2666 | 1.6426 | 1.8681 | 2.5589 | 2.8027 | 4.623 | | | 30/05/2015 | 1.6957 | 3.2797 | 1.709 | 1.8803 | 2.5809 | 2.8127 | 0.804 | | | 31/05/2015
01/06/2015 | 1.588
1.6355 | 3.2696
3.273 | 1.6957
1.7153 | 1.8758
1.8796 | 2.5754
2.5217 | 2.8092
2.77 | 2.01
1.206 | | | 02/06/2015 | 1.3924 | 3.2505 | 1.7153 | 1.8796 | 2.5435 | 2.8019 | 6.231 | | | 03/06/2015 | 1.5449 | 3.2614 | 1.6651 | 1.8733 | 2.6374 | 2.853 | 0.603 | | | 04/06/2015 | 1.6228 | 3.2636 | 1.6818 | 1.8671 | 2.5759 | 2.8114 | 0 | | | 05/06/2015 | 1.6637 | 3.2601 | 1.6861 | 1.8664 | 2.5716 | 2.8096 | 0 | | | 06/06/2015 | 1.7181 | 3.2658 | 1.7081 | 1.8715 | 2.6278 | 2.8422 | 0 | | | 07/06/2015 | 1.7464 | 3.2718 | 1.7267 | 1.8775 | 2.6597 | 2.8653 | 0 | | | 08/06/2015 | 1.7523 | 3.276 | 1.7352 | 1.8806 | 2.643 | 2.8578 | 0 | | | 09/06/2015 | 1.7531 | 3.278 | 1.7105 | 1.8839 | 2.6243 | 2.8469 | 0.201 | | | 10/06/2015
11/06/2015 | 1.7595
1.7538 | 3.2826
3.2843 | 1.7214
1.7227 | 1.8908
1.8951 | 2.5958
2.5544 | 2.8281
2.8045 | 0 | | | 12/06/2015 | 1.7529 | 3.2859 | 1.7247 | 1.8995 | 2.5485 | 2.7978 | 0 | | | 13/06/2015 | 1.558 | 3.2673 | 1.552 | 1.8972 | 2.5615 | 2.8127 | 8.844 | | | 14/06/2015 | 1.6627 | 3.2699 | 1.6494 | 1.8982 | 2.5919 | 2.8273 | 0.402 | | | 15/06/2015 | 1.7139 | 3.2792 | 1.6885 | 1.9055 | 2.6178 | 2.8359 | 0 | | | 16/06/2015 | 1.7386 | 3.2842 | 1.711 | 1.9117 | 2.6166 | 2.8341 | 0 | | | 17/06/2015 | 1.7456 | 3.2872 | 1.7176 | 1.9144 | 2.5992 | 2.8246 | 0.201 | | | 18/06/2015 | 1.7537 | 3.2885 | 1.7254 | 1.918 | 2.6147 | 2.8305 | 0 | | | 19/06/2015 | 1.7584 | 3.2918 | 1.737 | 1.924 | 2.6231 | 2.8374 | 0 | | | 20/06/2015 | 1.7599 | 3.2932 | 1.7347 | 1.9281 | 2.6011 | 2.8278 | 0.201 | | | 21/06/2015 | 1.7635 | 3.2962 | 1.7439 | 1.9331 | 2.5943 | 2.8244 | 0 | | | 22/06/2015 | 1.733 | 3.2891 | 1.7401 | 1.9348 | 2.6047 | 2.8328 | 1.809 | | | 23/06/2015
24/06/2015 | 1.7599
1.772 | 3.2996
3.3031 | 1.7576
1.7634 | 1.9448
1.9494 | 2.6415
2.6466 | 2.8572
2.8581 | 0 | | | 25/06/2015 | 1.7763 | 3.3079 | 1.7707 | 1.9494 | 2.6421 | 2.8557 | 0 | | | 26/06/2015 | 1.7734 | 3.3062 | 1.768 | 1.9592 | 2.6189 | 2.8441 | 0.201 | | | 27/06/2015 | 1.786 | 3.3132 | 1.7806 | 1.9703 | 2.6597 | 2.8698 | 0.201 | | | 28/06/2015 | 1.7199 | 3.3089 | 1.7714 | 1.9717 | 2.6492 | 2.8634 | 2.613 | | | | | 3.3149 | 1.7841 | 1.9792 | 2.6618 | 2.8699 | 0 | | | 30/06/2015 | 1.775 | 3.319 | 1.7933 | 1.987 | 2.6342 | 2.8531 | 0 | | | 01/07/2015 | 1.7709 | 3.3188 | 1.7976 | 1.9893 | 2.626 | 2.8486 | 0 | | | 02/07/2015 | 1.7703 | 3.3095 | 1.6104 | 1.9936 | 2.6885 | 2.8833 | 7.437 | | | 03/07/2015 | 1.738 | 3.3128 | 1.7125 | 2.0033 | 2.6548 | 2.8604 | 1.005 | | | 04/07/2015 | 1.7451 | 3.3126 | 1.7322 | 2.0054 | 2.6562 | 2.8635 | 0.201 | | | 05/07/2015
06/07/2015 | 1.7337
1.7058 | 3.3066
3.3046 | 1.6824
1.6352 | 2.006
2.0106 | 2.625
2.6123 | 2.8417
2.8285 | 3.618
2.211 | | | 07/07/2015 | 1.6772 | 3.3048 | 1.6878 | 2.0136 | 2.5909 | 2.8179 | 0 | | | 08/07/2015 | 1.7163 | 3.304 | 1.7113 | 2.0148 | 2.6692 | 2.8683 | 1.407 | | | 09/07/2015 | 1.7416 | 3.3125 | 1.7384 | 2.0225 | 2.6859 | 2.8775 | 0 | | | 10/07/2015 | 1.7007 | 3.3119 | 1.7362 | 2.0265 | 2.6243 | 2.8428 | 0 | | | 11/07/2015 | 1.7123 | 3.3186 | 1.7416 | 2.0309 | 2.6572 | 2.8628 | 0 | | | 12/07/2015 | 1.7015 | 3.3186 | 1.7514 | 2.0334 | 2.6359 | 2.8617 | 0.402 | | | 13/07/2015 | 1.6668 | 3.3133 | 1.7342 | 2.0348 | 2.6096 | 2.8445 | 2.613 | | | 14/07/2015 | 1.6882 | 3.3148 | 1.7408 | 2.0373 | 2.6415 | 2.8601 | 0.402 | | | 15/07/2015 | 1.6924 | 3.3232 | 1.6285 | 2.0532 | 2.6871 | 2.862 | 0 | | | 16/07/2015
17/07/2015 | 1.7044
1.7027 | 3.3258
3.3299 | 1.6324
1.6385 | 2.0557
2.0641 | 2.6961
2.6356 | 2.8651
2.8298 | 0 | | | 18/07/2015 | 1.7027 | 3.3299 | 1.642 | 2.0641 | 2.6823 | 2.8298 | 0 | | | 19/07/2015 | 1.7209 | 3.3332 | 1.6541 | 2.0034 | 2.6715 | 2.8494 | 2.211 | | | 20/07/2015 | 1.6889 | 3.3318 | 1.6594 | 2.0736 | 2.6869 | 2.8589 | 1.206 | | | 21/07/2015 | 1.7043 | 3.3309 | 1.6614 | 2.0778 | 2.6797 | 2.8561 | 0 | | | 22/07/2015 | 1.7224 | 3.3348 | 1.6717 | 2.0822 | 2.7147 | 2.88 | 0.804 | | | 23/07/2015 | 1.7248 | 3.3354 | 1.6728 | 2.0855 | 2.7286 | 2.8874 | 0.201 | | | 24/07/2015 | 1.7288 | 3.3374 | 1.6427 | 2.0906 | 2.7121 | 2.8774 | 0.402 | | | 25/07/2015 | 1.7251 | 3.3336 | 1.6188 | 2.0925 | 2.6903 | 2.8652 | 0.603 | | | 26/07/2015 | 1.7349 | 3.3413 | 1.6434 | 2.0999 | 2.7188 | 2.8778 | 2.211 | | | 27/07/2015 | 1.6588 | 3.3259 | 1.5925 | 2.0988 | 2.6122 | 2.8118 | 1.206 | | | 28/07/2015
29/07/2015 | 1.6916
1.6783 | 3.3315
3.3324 | 1.5917
1.5769 | 2.1026
2.1066 | 2.6784
2.72 | 2.8537
2.8784 | 1.407
0.201 | | | 30/07/2015 | 1.7164 | 3.3324 | 1.613 | 2.1000 | 2.7577 | 2.8784 | 0.201 | | | 31/07/2015 | 1.7303 | 3.3383 | 1.638 | 2.1158 | 2.7606 | 2.9063 | 0 | | | 01/08/2015 | 1.7324 | 3.3415 | 1.6461 | 2.1203 | 2.7197 | 2.8794 | 0.402 | | | 02/08/2015 | 1.7348 | 3.3431 | 1.6562 | 2.1234 | 2.7435 | 2.893 | 0.201 | | | 03/08/2015 | 1.734 | 3.3444 | 1.6689 | 2.1291 | 2.6909 | 2.8576 | 0 | | | 04/08/2015 | 1.7396 | 3.3495 | 1.6805 | 2.1346 | 2.7181 | 2.8738 | 0 | | | | | 3.3484 | 1.6909 | 2.1379 | 2.7502 | 2.8929 | 0 | | | 05/08/2015 | 1.7454 | | | | | | | | | 05/08/2015
06/08/2015
07/08/2015 | 1.7454
1.7283
1.7396 | 3.3469
3.3491 | 1.6905
1.6967 | 2.1397
2.1433 | 2.7249
2.7798 | 2.8763
2.914 | 2.412
0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 08/08/2015 | 1.7523 | 3.351 | 1.7002 | 2.1481 | 2.7912 | 2.9219 | 0 | | | 09/08/2015 | 1.7498 | 3.3575 | 1.7055 | 2.1549 | 2.7737 | 2.9092 | 0 | | | 10/08/2015 | 1.7543 | 3.3599 | 1.7191 | 2.1606 | 2.7552 | 2.897 | 1.407 | | | 11/08/2015
12/08/2015 | 1.7547
1.7657 | 3.3557
3.3585 | 1.7167
1.7216 | 2.1611
2.1616 | 2.7733
2.8038 | 2.9076
2.9292 | 0.201 | | | 13/08/2015 | 1.7592 | 3.3644 | 1.7210 | 2.1010 | 2.7851 | 2.9292 | 0 | | | 14/08/2015 | 1.7536 | 3.365 | 1.7324 | 2.1752 | 2.73 | 2.8776 | 14.271 | | | 15/08/2015 | 1.1587 | 3.3138 | 1.5123 | 2.1648 | 2.6934 | 2.8681 | 0 | | | 16/08/2015 | 1.5373 | 3.3176 | 1.5646 | 2.1624 | 2.7202 | 2.8754 | 0 | | | 17/08/2015 | 1.6547 | 3.3219 | 1.5821 | 2.1669 | 2.7364 | 2.8842 | 0 | | | 18/08/2015 | 1.7004 | 3.3257 | 1.5937 | 2.1686 | 2.7208 | 2.8704 | 0 | | | 19/08/2015 | 1.7102 | 3.3291 | 1.5995 | 2.1717 | 2.7166 | 2.867 | 1.005 | | | 20/08/2015 | 1.706 | 3.3273 | 1.59 | 2.1729 | 2.7321 | 2.8794 | 1.608 | | | 21/08/2015
22/08/2015 | 1.718
1.7275 | 3.332
3.3351 | 1.6092
1.6232 | 2.1791
2.1816 | 2.7366
2.7388 | 2.8821
2.8848 | 0
1.005 | | | 23/08/2015 | 1.6816 | 3.3186 | 1.3679 | 2.184 | 2.6908 | 2.8514 | 13.266 | | | 24/08/2015 | 1.4377 | 3.2921 | 1.4186 | 2.1729 | 2.646 | 2.8347 | 2.814 | | | 25/08/2015 | 1.5476 | 3.2908 | 1.5127 | 2.1657 | 2.6789 | 2.8532 | 0.201 | | | 26/08/2015 | 1.6311 | 3.2993 | 1.5438 | 2.1641 | 2.6729 | 2.8876 | 2.814 | | | 27/08/2015 | 1.6779 | 3.3094 | 1.6643 | 2.1541 | 2.7462 | 2.8832 | 0.201 | | | 28/08/2015 | 1.7179 | 3.3133 | 1.7109 | 2.1535 | 2.7967 | 2.9157 | 0 | | | 29/08/2015 | 1.7664 | 3.3202 | 1.734 | 2.1558 | 2.8308 | 2.9396 | 0 | | | 30/08/2015 | 1.7786 | 3.3228 | 1.7527 | 2.1547 | 2.829 | 2.9393 | 0 | | | 31/08/2015 | 1.7834 | 3.3265 | 1.7659 | 2.1567 | 2.8134 | 2.9285 | 2.814 | | | 01/09/2015 | 1.5952 | 3.3091 | 1.6246 | 2.1507 | 2.8046 | 2.9248 | 6.633 | | | 02/09/2015 | 1.3567 | 3.2917 | 1.6291 | 2.1431 | 2.7705 | 2.9073 | 0.804 | | | 03/09/2015
04/09/2015 | 1.5029
1.5095 | 3.2897
3.2829 | 1.6549
1.6363 | 2.133
2.1242 | 2.7477
2.7498 | 2.8882
2.8885 | 2.211
1.005 | | | 05/09/2015 | 1.5887 | 3.2829 | 1.6521 | 2.1242 | 2.7515 | 2.8863 | 0.201 | | | 06/09/2015 | 1.6856 | 3.2839 | 1.6756 | 2.1096 | 2.7918 | 2.9137 | 0.201 | | |
07/09/2015 | 1.7397 | 3.292 | 1.7141 | 2.1103 | 2.8038 | 2.9217 | 0 | | | 08/09/2015 | 1.765 | 3.2959 | 1.7309 | 2.1094 | 2.7992 | 2.9193 | 0 | | | 09/09/2015 | | 3.2964 | 1.7327 | 2.1064 | 2.77 | 2.901 | 0 | | | 10/09/2015 | 1.7753 | 3.3028 | 1.7324 | 2.1111 | 2.7732 | 2.9065 | 0 | | | 11/09/2015 | 1.7804 | 3.3085 | 1.7445 | 2.1136 | 2.7645 | 2.901 | 0 | | | 12/09/2015 | 1.7776 | 3.3096 | 1.7375 | 2.1178 | 2.7299 | 2.8764 | 5.226 | | | 13/09/2015 | 1.5732 | 3.2867 | 1.6205 | 2.1106 | 2.7386 | 2.8853 | 0 | | | 14/09/2015 | 1.6434 | 3.295 | 1.6755 | 2.1168 | 2.7028 | 2.8571 | 0 | | | 15/09/2015
16/09/2015 | 1.6347
1.5379 | 3.2714
3.2707 | 1.3607
1.5842 | 2.1079
2.1045 | 2.6782
2.7112 | 2.8482
2.8682 | 7.437
0 | | | 17/09/2015 | 1.6196 | 3.2688 | 1.6403 | 2.1045 | 2.7172 | 2.8778 | 0 | | | 18/09/2015 | 1.7175 | 3.276 | 1.686 | 2.0932 | 2.7873 | 2.9281 | 0 | | | 19/09/2015 | 1.7653 | 3.2851 | 1.724 | 2.0956 | 2.8585 | 2.9789 | 0 | | | 20/09/2015 | 1.7758 | 3.2911 | 1.6961 | 2.0973 | 2.854 | 2.9783 | 0 | | | 21/09/2015 | 1.7711 | 3.2952 | 1.6592 | 2.0992 | 2.7921 | 2.9351 | 3.618 | | | 22/09/2015 | 1.6582 | 3.2698 | 1.476 | 2.0914 | 2.7121 | 2.8801 | 5.226 | | | 23/09/2015 | 1.434 | 3.2527 | 1.5431 | 2.0769 | 2.7474 | 2.9084 | 1.407 | | | 24/09/2015 | 1.5861 | 3.2562 | 1.6159 | 2.069 | 2.734 | 2.8983 | 0 | | | 25/09/2015 | 1.69 | 3.2609 | 1.6592 | 2.0631 | 2.7894 | 2.9352 | 0 | | | 26/09/2015
27/09/2015 | 1.7456
1.7628 | 3.2648
3.2693 | 1.6813
1.6963 | 2.0586
2.0546 | 2.8266
2.8297 | 2.9603
2.9636 | 0 | | | 28/09/2015 | 1.7628 | 3.2753 | 1.7309 | 2.0546 | 2.8462 | 2.9636 | 0 | | | 29/09/2015 | 1.7818 | 3.2814 | 1.7431 | 2.0601 | 2.8375 | 2.9742 | 0 | | | 30/09/2015 | 1.7859 | 3.2859 | 1.7401 | 2.0625 | 2.836 | 2.9702 | 0 | | | 01/10/2015 | 1.7883 | 3.2897 | 1.7554 | 2.0664 | 2.8304 | 2.9692 | 0 | | | 02/10/2015 | 1.7873 | 3.2935 | 1.7614 | 2.0679 | 2.8097 | 2.9527 | 0 | | | 03/10/2015 | 1.7812 | 3.2953 | 1.7567 | 2.0715 | 2.7701 | 2.9231 | 0 | | | 04/10/2015 | 1.7781 | 3.2925 | 1.7442 | 2.0687 | 2.7638 | 2.9193 | 0 | | | 05/10/2015 | 1.7873 | 3.3082 | 1.7632 | 2.0842 | 2.7416 | 2.9079 | 0 | | | 06/10/2015 | 1.7849 | 3.3108 | 1.7384 | 2.0911 | 2.7183 | 2.9027 | 2.412 | | | 07/10/2015 | 1.7809 | 3.3031 | 1.6456 | 2.0911 | 2.7528 | 2.9328 | 1.206 | | | 08/10/2015
09/10/2015 | 1.7746
1.7958 | 3.3014
3.3109 | 1.6781
1.7338 | 2.0948
2.1044 | 2.8124
2.813 | 2.9722
2.9739 | 0.402 | | | 10/10/2015 | 1.8034 | 3.3154 | 1.7256 | 2.1044 | 2.7872 | 2.9739 | 0 | | | 11/10/2015 | 1.8032 | 3.3209 | 1.7247 | 2.1079 | 2.746 | 2.9354 | 0 | | | 12/10/2015 | 1.8 | 3.3224 | 1.7568 | 2.1162 | 2.7561 | 2.9393 | 0 | | | 13/10/2015 | 1.8058 | 3.3243 | 1.7617 | 2.1195 | 2.7733 | 2.9482 | 0 | | | 14/10/2015 | 1.8194 | 3.3323 | 1.7478 | 2.1272 | 2.7947 | 2.9599 | 0 | | | 15/10/2015 | 1.8124 | 3.3339 | 1.7424 | 2.1311 | 2.7712 | 2.9428 | 0 | | | 16/10/2015 | 1.8247 | 3.3401 | 1.7521 | 2.1378 | 2.7869 | 2.9531 | 0 | | | | | | | | | | | | | 17/10/2015
18/10/2015 | 1.8205
1.8221 | 3.3434
3.3462 | 1.745
1.7515 | 2.1408
2.144 | 2.7879
2.7766 | 2.9493
2.9412 | 0 | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------------------------------| | 19/10/2015 | 1.8276 | 3.3512 | 1.7818 | 2.1489 | 2.8049 | 2.9595 | 0 | | | 20/10/2015 | 1.8361 | 3.3565 | 1.7954 | 2.1549 | 2.8154 | 2.9659 | 0 | | | 21/10/2015 | 1.8311 | 3.3611 | 1.7882 | 2.1573 | 2.7795 | 2.9386 | 2.814 | | | 22/10/2015 | 1.6566 | 3.337 | 1.6618 | 2.1556 | 2.7336 | 2.8632 | 2.412 | | | 23/10/2015 | 1.75 | 3.3329 | 1.6397 | 2.1869 | 2.7767 | 2.9029 | 0 | | | 24/10/2015
25/10/2015 | 1.7714
1.7051 | 3.3415
3.3267 | 1.6628
1.5522 | 2.1937
2.1856 | 2.7333
2.7871 | 2.875
2.9128 | 0.201
0.603 | | | 26/10/2015 | 1.7614 | 3.3365 | 1.6383 | 2.1923 | 2.7553 | 2.8881 | 0.003 | | | 27/10/2015 | 1.7733 | 3.338 | 1.6445 | 2.1909 | 2.7323 | 2.8751 | 0 | | | 28/10/2015 | 1.7827 | 3.3455 | 1.655 | 2.1938 | 2.7386 | 2.8784 | 0.201 | | | 29/10/2015 | 1.7672 | 3.3412 | 1.6509 | 2.193 | 2.7422 | 2.8792 | 0 | | | 30/10/2015 | 1.7746 | 3.35 | 1.6722 | 2.1951 | 2.7954 | 2.9173 | 0 | | | 31/10/2015 | 1.6699 | 3.3352 | 1.5693 | 2.1946 | 2.8002 | 2.9234 | 0 | | | 01/11/2015 | 1.675 | 3.3349 | 1.6194 | 2.1922 | 2.8227 | 2.9363 | 0.201 | | | 02/11/2015 | 1.7264 | 3.3362 | 1.6421 | 2.1857 | 2.803 | 2.921 | 0 | | | 03/11/2015 | 1.7557 | 3.3368 | 1.6496 | 2.1834 | 2.7559 | 2.8887 | 0 | | | 04/11/2015 | 1.7557 | 3.3356 | 1.48 | 2.1819 | 2.742 | 2.8788 | 0 | | | 05/11/2015 | 1.646 | 3.3346 | 1.6052 | 2.1773 | 2.7532 | 2.8855 | 0 | | | 06/11/2015 | 1.633 | 3.3289 | 1.498 | 2.1724 | 2.746 | 2.8849 | 0.201 | | | 07/11/2015 | 1.6425 | 3.3373 | 1.5635 | 2.1776 | 2.7874 | 2.91 | 8.241 | | | 08/11/2015 | 1.4138 | 3.3061 | 1.4958 | 2.1594 | 2.7778 | 2.9152 | 14.271 | | | 09/11/2015
10/11/2015 | 1.5058
1.537 | 3.2831
3.2833 | 1.3431
1.508 | 2.1378
2.1285 | 2.7031
2.6902 | 2.8678
2.8559 | 2.412
1.206 | | | 11/11/2015 | 1.5993 | 3.2859 | 1.5686 | 2.1265 | 2.6902 | 2.8543 | 0 | | | 12/11/2015 | 1.667 | 3.2845 | 1.5905 | 2.0956 | 2.7166 | 2.8628 | 0 | | | 13/11/2015 | 1.692 | 3.2776 | 1.5249 | 2.0844 | 2.6765 | 2.8333 | 1.407 | | | 14/11/2015 | 1.6011 | 3.2737 | 1.5515 | 2.0757 | 2.741 | 2.8761 | 1.206 | | | 15/11/2015 | 1.5592 | 3.2604 | 1.2324 | 2.0711 | 2.6481 | 2.8315 | 0.804 | | | 16/11/2015 | 1.4799 | 3.2583 | 1.5063 | 2.0628 | 2.6279 | 2.8173 | 0.201 | | | 17/11/2015 | 1.553 | 3.2555 | 1.5518 | 2.0495 | 2.6456 | 2.8174 | 0.603 | | | 18/11/2015 | 1.5717 | 3.2605 | 1.48 | 2.0457 | 2.7118 | 2.8641 | 0.603 | | | 19/11/2015 | 1.6037 | 3.2567 | 1.5726 | 2.032 | 2.6961 | 2.8503 | 0.603 | | | 20/11/2015 | 1.6644 | 3.2673 | 1.6091 | 2.0313 | 2.7209 | 2.8623 | 0 | | | 21/11/2015 | | 3.2435 | 1.3915 | 2.0109 | 2.6571 | 2.8206 | 0 | | | 22/11/2015 | 1.6652 | 3.2537 | 1.5553 | 2.0126 | 2.705 | 2.8477 | 0.201 | | | 23/11/2015 | 1.7018 | 3.2608 | 1.6111 | 2.0104 | 2.7642 | 2.8853 | 0 | | | 24/11/2015
25/11/2015 | 1.7138
1.6881 | 3.2603
3.2612 | 1.5031
1.5141 | 2.0114 | 2.6784
2.6821 | 2.8311
2.8335 | 0.201
11.859 | | | 26/11/2015 | 1.5918 | 3.2507 | 1.4121 | 2.0067 | 2.715 | 2.8563 | 4.221 | | | 27/11/2015 | 1.5368 | 3.256 | 1.4712 | 2.0067 | 2.6789 | 2.8255 | 0 | | | 28/11/2015 | 1.5242 | 3.2327 | 1.2489 | 1.9884 | 2.642 | 2.8038 | 4.824 | | | 29/11/2015 | 1.5149 | 3.2274 | 1.3435 | 1.9799 | 2.5785 | 2.7628 | 3.216 | | | 30/11/2015 | 1.5571 | 3.2315 | 1.4641 | 1.9715 | 2.6578 | 2.8012 | 3.618 | | | 01/12/2015 | 1.4682 | 3.2108 | 1.2554 | 1.9549 | 2.639 | 2.7898 | 3.618 | | | 02/12/2015 | 1.4428 | 3.2154 | 1.4097 | 1.9417 | 2.5971 | 2.743 | 0 | | | 03/12/2015 | 1.5095 | 3.2222 | 1.4942 | 1.9226 | 2.59 | 2.7482 | 3.618 | | | 04/12/2015 | 1.4066 | 3.1839 | 1.1504 | 1.8979 | 2.5428 | 2.7261 | 6.834 | | | 05/12/2015 | | 3.1944 | 1.4145 | 1.8852 | 2.4937 | 2.6729 | 0.603 | | | 06/12/2015 | | 3.199 | 1.4812 | 1.8742 | 2.4774 | 2.6962 | 0.201 | | | 07/12/2015 | 1.5138 | 3.1928 | 1.4963 | 1.865 | 2.5896 | 2.7907 | 2.814 | | | 08/12/2015 | 1.5523 | 3.1974 | 1.5316 | 1.8584 | 2.5561 | 2.7856 | 0 | | | 09/12/2015
10/12/2015 | 1.6225
1.6671 | 3.2024
3.2089 | 1.5662
1.5781 | 1.8502
1.849 | 2.6522
2.6014 | 2.8439
2.8136 | 0.201
1.809 | | | 11/12/2015 | 1.3062 | 3.2089 | 1.4245 | 1.8366 | 2.558 | 2.7875 | 5.226 | | | 12/12/2015 | 1.4735 | 3.1901 | 1.5254 | 1.8297 | 2.571 | 2.7769 | 1.206 | | | 13/12/2015 | 1.2084 | 3.1627 | 1.1684 | 1.8167 | 2.5337 | 2.7588 | 2.814 | | | 14/12/2015 | 1.332 | 3.1691 | 1.3977 | 1.8016 | 2.4731 | 2.6709 | 2.814 | | | 15/12/2015 | 1.4657 | 3.1725 | 1.4672 | 1.7952 | 2.4876 | 2.6972 | 2.412 | | | 16/12/2015 | 1.5194 | 3.1764 | 1.4505 | 1.7919 | 2.4794 | 2.7125 | 0.804 | | | 17/12/2015 | 1.5387 | 3.185 | 1.5261 | 1.7909 | 2.5324 | 2.7503 | 0.201 | | | 18/12/2015 | 1.5768 | 3.1828 | 1.4799 | 1.7852 | 2.5419 | 2.762 | 0.402 | | | 19/12/2015 | 1.6252 | 3.1899 | 1.549 | 1.7853 | 2.5324 | 2.7561 | 0 | | | 20/12/2015 | 1.6193 | 3.1846 | 1.4378 | 1.7811 | 2.4986 | 2.7378 | 0.201 | | | 21/12/2015 | 1.6242 | 3.1903 | 1.5406 | 1.7816 | 2.5786 | 2.7887 | 0.402 | | | 22/12/2015 | 1.6568 | 3.2071 | 1.5393 | 1.7932 | 2.6049 | 2.8009 | 2.814 | | | 23/12/2015 | 1.6099 | 3.1902 | 1.4669 | 1.7817 | 2.5693 | 2.7851 | 0.603 | | | 24/12/2015
25/12/2015 | 1.6447
1.6314 | 3.2054
3.1947 | 1.527
1.4554 | 1.7883
1.7891 | 2.5671
2.6271 | 2.7804
2.8221 | 0.603
3.216 | | | 26/12/2015 | | 3.1947 | 1.4554 | 1.7891 | 2.5749 | 2.7841 | 2.211 | | | 27/12/2015 | 1.4273 | 3.1891 | 1.3326 | 1.7866 | 2.5749 | 2.7473 | 1.407 | | | 28/12/2015 | 1.4448 | 3.1947 | 1.4615 | 1.785 | 2.5493 | 2.736 | 1.608 | | | 29/12/2015 | 1.5195 | 3.1888 | 1.5032 | 1.771 | 2.4732 | 2.7065 | 0 | | | | | | | - | | | | | | Date | F1 | Р | N1 | AB | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|-------------------------------------| | 30/12/2015 | 1.6315 | 3.2047 | 1.557 | 1.7758 | 2.5149 | 2.7419 | 0.402 | | | 31/12/2015 | 1.4671 | 3.1804 | 1.2328 | 1.7654 | 2.5009 | 2.7424 | 2.211 | | | 01/01/2016 | 1.2608 | 3.1662 | 1.2405 | 1.7554 | 2.5566 | 2.7512 | 1.206 | | | 02/01/2016
03/01/2016 | 1.3712
1.2214 | 3.1617
3.1531 | 1.2678
1.0635 | 1.7406
1.7362 | 2.3549
2.3853 | 2.587
2.6043 | 1.608
1.407 | | | 04/01/2016 | 0.8951 | 3.1121 | 1.1363 | 1.6947 | 2.3653 | 2.4548 | 1.608 | | | 05/01/2016 | 1.2898 | 3.1172 | 1.2719 | 1.6664 | 2.0761 | 2.2805 | 2.01 | | | 06/01/2016 | 1.3671 | 3.1169 | 1.3152 | 1.6447 | 2.2269 | 2.4527 | 2.814 | | | 07/01/2016 | 1.4331 | 3.1335 | 1.3999 | 1.6325 | 2.2542
| 2.5348 | 2.412 | | | 08/01/2016 | 1.3606 | 3.1005 | 1.2938 | 1.601 | 2.3021 | 2.5315 | 2.01 | | | 09/01/2016 | 1.4517 | 3.1156 | 1.3927 | 1.591 | 2.2009 | 2.4452 | 2.211 | | | 10/01/2016 | 1.31 | 3.0618 | 1.0496 | 1.558 | 2.186 | 2.5191 | 2.211 | | | 11/01/2016 | 1.2946 | 3.0846 | 1.3226 | 1.5344 | 2.1349 | 2.3563 | 1.809 | | | 12/01/2016
13/01/2016 | 1.4458
1.3956 | 3.0907
3.0504 | 1.2977
1.0076 | 1.5233
1.5087 | 2.2569
2.3908 | 2.5369
2.6523 | 1.608
1.809 | | | 14/01/2016 | 1.2862 | 3.0484 | 1.1692 | 1.4735 | 2.1414 | 2.3573 | 1.206 | | | 15/01/2016 | 1.3058 | 3.0327 | 1.2438 | 1.4482 | 2.1468 | 2.3555 | 1.005 | | | 16/01/2016 | 1.3267 | 3.0274 | 1.1603 | 1.4308 | 2.1957 | 2.4277 | 6.432 | | | 17/01/2016 | 1.3562 | 3.0399 | 1.1471 | 1.4149 | 2.1956 | 2.456 | 22.512 | | | 18/01/2016 | 1.1855 | 3.0352 | 1.2583 | 1.4007 | 2.1808 | 2.4795 | 0 | | | 19/01/2016 | 1.3547 | 3.0569 | 1.337 | 1.3971 | 2.2369 | 2.5326 | 0 | | | 20/01/2016 | 1.4774 | 3.0764 | 1.3902 | 1.4076 | 2.3076 | 2.5919 | 0 | | | 21/01/2016 | 1.5525 | 3.0863 | 1.427 | 1.4164 | 2.349 | 2.626 | 0.201 | | | 22/01/2016 | 1.5972 | 3.1046 | 1.4534 | 1.4407 | 2.3689 | 2.6555 | 2.01 | | | 23/01/2016 | 1.6156 | 3.1068 | 1.4399 | 1.4658 | 2.4505 | 2.7184 | 0 0 402 | | | 24/01/2016
25/01/2016 | 1.6313
1.6458 | 3.1144
3.1365 | 1.4714
1.5332 | 1.4796
1.5073 | 2.4373
2.4589 | 2.7099
2.7246 | 0.402
0 | | | 26/01/2016 | 1.6461 | 3.1303 | 1.4957 | 1.5217 | 2.4829 | 2.7240 | 0.402 | | | 27/01/2016 | 1.6435 | 3.1439 | 1.4771 | 1.5328 | 2.4267 | 2.7123 | 0.402 | | | 28/01/2016 | 1.6557 | 3.1469 | 1.4961 | 1.5546 | 2.5461 | 2.7848 | 0.201 | | | 29/01/2016 | 1.6673 | 3.1546 | 1.5307 | 1.564 | 2.5008 | 2.7561 | 0.201 | | | 30/01/2016 | 1.6658 | 3.1525 | 1.5158 | 1.5731 | 2.4776 | 2.7439 | 0.603 | | | 31/01/2016 | 1.658 | 3.1577 | 1.5285 | 1.5892 | 2.5189 | 2.7726 | 0.603 | | | 01/02/2016 | 1.663 | 3.1739 | 1.5276 | 1.613 | 2.5589 | 2.8024 | 1.809 | | | 02/02/2016 | 1.6554 | 3.1738 | 1.5191 | 1.6177 | 2.5604 | 2.8006 | 0 | | | 03/02/2016 | 1.6713 | 3.1799 | 1.526 | 1.6275 | 2.5914 | 2.8153 | 0.402 | | | 04/02/2016
05/02/2016 | 1.6125
1.5579 | 3.1762
3.1816 | 1.5366
1.5619 | 1.64
1.6447 | 2.6105
2.5742 | 2.8265
2.8046 | 1.005
0.804 | | | 06/02/2016 | 1.5641 | 3.1723 | 1.5144 | 1.6417 | 2.4891 | 2.7528 | 0.603 | | | 07/02/2016 | 1.2975 | 3.1383 | 1.2771 | 1.6348 | 2.4003 | 2.7064 | 0.603 | | | 08/02/2016 | 1.2795 | 3.1163 | 1.1533 | 1.6186 | 2.3082 | 2.6187 | 0.402 | | | 09/02/2016 | 1.2464 | 3.1165 | 1.248 | 1.6039 | 2.3682 | 2.6235 | 0.603 | | | 10/02/2016 | 1.3776 | 3.1176 | 1.3805 | 1.5712 | 2.2887 | 2.5459 | 0.402 | | | 11/02/2016 | 1.4467 | 3.1225 | 1.3979 | 1.5627 | 2.3772 | 2.6467 | 0.402 | | | 12/02/2016 | 1.5306 | 3.1326 | 1.4756 | 1.5498 | 2.3352 | 2.6288 | 0.402 | | | 13/02/2016 | 1.6 | 3.1444 | 1.4977 | 1.5517 | 2.3554 | 2.6628 | 0.201 | | | 14/02/2016 | 1.6288 | 3.1442 | 1.5102 | 1.5529 | 2.3642 | 2.6867 | 0.402 | | | 15/02/2016
16/02/2016 | 1.6746
1.7032 | 3.1593
3.1732 | 1.5652
1.6027 | 1.5793
1.5939 | 2.5052
2.5351 | 2.7834
2.8078 | 0.201
0.402 | | | 17/02/2016 | 1.7032 | 3.1732 | 1.6027 | 1.5939 | 2.5351 | 2.7495 | 20.502 | | | 18/02/2016 | 1.5087 | 3.1479 | 1.3731 | 1.6046 | 2.3721 | 2.7346 | 1.206 | | | 19/02/2016 | 1.5642 | 3.1627 | 1.5258 | 1.6111 | 2.3458 | 2.6742 | 0 | | | 20/02/2016 | 1.6037 | 3.1709 | 1.5434 | 1.6146 | 2.3102 | 2.6679 | 1.809 | | | 21/02/2016 | 1.5356 | 3.1373 | 1.1926 | 1.6218 | 2.3353 | 2.6934 | 6.432 | | | 22/02/2016 | 1.4154 | 3.1362 | 1.3703 | 1.5922 | 2.1946 | 2.4807 | 1.206 | | | 23/02/2016 | 1.4752 | 3.1464 | 1.4869 | 1.5728 | 2.2787 | 2.5933 | 0.402 | | | 24/02/2016 | 1.5522 | 3.157 | 1.5337 | 1.5674 | 2.3637 | 2.6647 | 0 | | | 25/02/2016 | 1.6097 | 3.1603 | 1.5569 | 1.5625 | 2.3665 | 2.6804 | 0 | | | 26/02/2016
27/02/2016 | 1.6502
1.66 | 3.1683
3.1686 | 1.5682
1.5406 | 1.5672
1.5755 | 2.385
2.3994 | 2.6935
2.7094 | 0 | | | 28/02/2016 | 1.6872 | 3.1786 | 1.5406 | 1.5755 | 2.3994 | 2.763 | 0 | | | 29/02/2016 | 1.7011 | 3.1835 | 1.6198 | 1.6103 | 2.5235 | 2.7863 | 0 | | | 01/03/2016 | 1.6992 | 3.1927 | 1.6214 | 1.618 | 2.4564 | 2.7486 | 5.628 | | | 02/03/2016 | 1.634 | 3.1781 | 1.521 | 1.6272 | 2.4087 | 2.731 | 3.216 | | | 03/03/2016 | 1.5091 | 3.1488 | 1.2902 | 1.6321 | 2.4356 | 2.7528 | 3.216 | | | 04/03/2016 | 1.4285 | 3.1435 | 1.3037 | 1.6082 | 2.3482 | 2.6759 | 4.02 | | | 05/03/2016 | 1.4026 | 3.1213 | 1.2053 | 1.5982 | 2.3792 | 2.6834 | 3.216 | | | 06/03/2016 | 1.418 | 3.1256 | 1.2546 | 1.5741 | 2.3934 | 2.6681 | 2.412 | | | 07/03/2016 | | 3.131 | 1.4292 | 1.5427 | 2.3767 | 2.6544 | 0 | | | 08/03/2016 | 1.5738 | 3.1457 | 1.4986 | 1.5391 | 2.4396 | 2.7018 | 0 | | | 09/03/2016
10/03/2016 | 1.6147
1.3027 | 3.1488
3.113 | 1.5271
1.2606 | 1.5313
1.5301 | 2.367
2.4387 | 2.6647
2.7188 | 6.834
0.201 | | | 10/03/2010 | 1.3027 | ა.11ა | 1.2000 | 1.0301 | 2.430/ | 2.1100 | 0.201 | | | Date | F1 | Р | N1 | АВ | AE | AF | Rainfall (mm) | Liverpool John Moores
University | |------------|--------|--------|--------|--------|--------|--------|---------------|-------------------------------------| | 11/03/2016 | 1.4524 | 3.1346 | 1.4542 | 1.513 | 2.4146 | 2.6526 | 0 | | | 12/03/2016 | 1.5603 | 3.1468 | 1.519 | 1.5114 | 2.4349 | 2.6927 | 0 | | | 13/03/2016 | 1.6293 | 3.1526 | 1.5486 | 1.5176 | 2.4747 | 2.7316 | 0 | | | 14/03/2016 | 1.6595 | 3.1628 | 1.5835 | 1.5283 | 2.5055 | 2.757 | 0 | | | 15/03/2016 | 1.6693 | 3.168 | 1.597 | 1.5396 | 2.4995 | 2.7592 | 0 | | | 16/03/2016 | 1.6794 | 3.173 | 1.5828 | 1.5557 | 2.5147 | 2.7775 | 0 | | | 17/03/2016 | 1.6857 | 3.1803 | 1.6055 | 1.5719 | 2.5375 | 2.7939 | 0 | | | 18/03/2016 | 1.689 | 3.1825 | 1.5663 | 1.5819 | 2.522 | 2.7795 | 0 | | | 19/03/2016 | 1.6982 | 3.1917 | 1.6159 | 1.6026 | 2.5434 | 2.793 | 0 | | | 20/03/2016 | 1.7046 | 3.1973 | 1.6291 | 1.6194 | 2.5484 | 2.7956 | 0 | | | 21/03/2016 | 1.7068 | 3.201 | 1.6349 | 1.6303 | 2.5512 | 2.794 | 0 | | | 22/03/2016 | 1.7096 | 3.2027 | 1.6328 | 1.6411 | 2.5373 | 2.7844 | 0 | | | 23/03/2016 | 1.7105 | 3.2087 | 1.6367 | 1.6556 | 2.5463 | 2.7965 | 0 | | | 24/03/2016 | 1.7133 | 3.2122 | 1.6401 | 1.6646 | 2.5435 | 2.793 | 0.603 | | | 25/03/2016 | 1.7097 | 3.2113 | 1.6302 | 1.6734 | 2.545 | 2.794 | 0.603 | | | 26/03/2016 | 1.7223 | 3.2237 | 1.653 | 1.6858 | 2.549 | 2.7902 | 0 | | | 27/03/2016 | 1.6925 | 3.2131 | 1.6172 | 1.6887 | 2.5111 | 2.7746 | 3.216 | | | 28/03/2016 | 1.6872 | 3.2174 | 1.5742 | 1.6954 | 2.4781 | 2.7436 | 14.472 | | | 29/03/2016 | 1.1419 | 3.1709 | 1.4469 | 1.6727 | 2.4215 | 2.6506 | 1.005 | | | 30/03/2016 | 1.32 | 3.1623 | 1.3664 | 1.6554 | 2.3097 | 2.5331 | 4.422 | | | 31/03/2016 | 1.449 | 3.1775 | 1.5083 | 1.6488 | 2.4183 | 2.6554 | 0.402 | | | 01/04/2016 | 1.5735 | 3.1857 | 1.5556 | 1.6405 | 2.4591 | 2.7032 | 0 | | | 02/04/2016 | 1.6308 | 3.1919 | 1.5777 | 1.6373 | 2.4428 | 2.7109 | 2.01 | | | 03/04/2016 | 1.4858 | 3.1882 | 1.4912 | 1.6354 | 2.4386 | 2.7225 | 2.01 | | | 04/04/2016 | 1.5106 | 3.1896 | 1.565 | 1.6377 | 2.4381 | 2.7216 | 1.005 | | | 05/04/2016 | 1.5 | 3.1948 | 1.5564 | 1.6409 | 2.4859 | 2.7541 | | | #### **ABERDEEN** 214 Union Street. Aberdeen AB10 1TL, UK T: +44 (0)1224 517405 ### **AYLESBURY** 7 Wornal Park, Menmarsh Road, Worminghall, Aylesbury, Buckinghamshire HP18 9PH, UK T: +44 (0)1844 337380 #### BELFAST Suite 1 Potters Quay, 5 Ravenhill Road, Belfast BT6 8DN, UK, Northern Ireland T: +44 (0)28 9073 2493 # **BRADFORD-ON-AVON** Treenwood House, Rowden Lane, Bradford-on-Avon, Wiltshire BA15 2AU, T: +44 (0)1225 309400 # **BRISTOL** Langford Lodge, 109 Pembroke Road, Clifton, Bristol BS8 3EU, UK T: +44 (0)117 9064280 # CAMBRIDGE 8 Stow Court, Stow-cum-Quy, Cambridge CB25 9AS, UK T: + 44 (0)1223 813805 # **CARDIFF** Fulmar House, Beignon Close, Ocean Way, Cardiff CF24 5PB, UK # CHELMSFORD Unit 77, Waterhouse Business Centre, 2 Cromar Way, Chelmsford, Essex CM1 2QE, UK #### **DUBLIN** 7 Dundrum Business Park, Windy Arbour, Dundrum, Dublin 14 Ireland T: + 353 (0)1 2964667 ### **EDINBURGH** 4/5 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK T: +44 (0)131 3356830 #### **EXETER** 69 Polsloe Road, Exeter EX1 2NF, UK T: + 44 (0)1392 490152 ### **GLASGOW** 4 Woodside Place, Charing Cross, Glasgow G3 7QF, UK T: +44 (0)141 3535037 # **GRENOBLE** BuroClub, 157/155 Cours Berriat, 38028 Grenoble Cedex 1, France T: +33 (0)4 76 70 93 41 # GUILDFORD 65 Woodbridge Road, Guildford Surrey GU1 4RD, UK T: +44 (0)1483 889 800 # **LEEDS** Suite 1, Jason House, Kerry Hill, Horsforth, Leeds LS18 4JR, UK T: +44 (0)113 2580650 # LONDON 83 Victoria Street, London, SW1H 0HW, UK T: +44 (0)203 691 5810 # MAIDSTONE Mill Barn, 28 Hollingworth Court, Turkey Mill, Maidstone, Kent ME14 5PP, UK +44 (0)1622 609242 MANCHESTER 8th Floor, Quay West, MediaCityUK, Trafford Wharf Road, Manchester M17 1HH, UK T: +44 (0)161 872 7564 # **NEWCASTLE UPON TYNE** Sailors Bethel, Horatio Street, Newcastle-upon-Tyne NE1 2PE, UK T: +44 (0)191 2611966 #### **NOTTINGHAM** Aspect House, Aspect Business Park, Bennerley Road, Nottingham NG6 8WR, T: +44 (0)115 9647280 # **SHEFFIELD** Unit 2 Newton Business Centre, Thorncliffe Park Estate, Newton Chambers Road, Chapeltown, Sheffield S35 2PW, UK T: +44 (0)114 2455153 # **SHREWSBURY** 2nd Floor, Hermes House, Oxon Business Park, Shrewsbury SY3 5HJ, UK T: +44 (0)1743 239250 # **STAFFORD** 8 Parker Court, Staffordshire Technology Park, Beaconside, Stafford ST18 0WP, T: +44 (0)1785 241755 No. 68 Stirling Business Centre, Wellgreen, Stirling FK8 2DZ, UK T: +44 (0)1786 239900 # WORCESTER Suite 5, Brindley Court, Gresley Road, Shire Business Park, Worcester WR4 T: +44 (0)1905 751310 #### **ABERDEEN** 214 Union Street, Aberdeen AB10 1TL, UK T: +44 (0)1224 517405 ### **AYLESBURY** 7 Wornal Park, Menmarsh Road, Worminghall, Aylesbury, Buckinghamshire HP18 9PH, UK T: +44 (0)1844 337380 #### **BELFAST** Suite 1 Potters Quay, 5 Ravenhill Road, Belfast BT6 8DN, UK, Northern Ireland
T: +44 (0)28 9073 2493 # BRADFORD-ON-AVON Treenwood House, Rowden Lane, Bradford-on-Avon, Wiltshire BA15 2AU, UK T: +44 (0)1225 309400 # **BRISTOL** Langford Lodge, 109 Pembroke Road, Clifton, Bristol BS8 3EU, UK T: +44 (0)117 9064280 # CAMBRIDGE 8 Stow Court, Stow-cum-Quy, Cambridge CB25 9AS, UK T: + 44 (0)1223 813805 # CARDIFF Fulmar House, Beignon Close, Ocean Way, Cardiff CF24 5PB, UK T: +44 (0)29 20491010 # CHELMSFORD Unit 77, Waterhouse Business Centre, 2 Cromar Way, Chelmsford, Essex CM1 2QE, UK #### **DUBLIN** 7 Dundrum Business Park, Windy Arbour, Dundrum, Dublin 14 Ireland T: + 353 (0)1 2964667 # **EDINBURGH** 4/5 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK T: +44 (0)131 3356830 #### **EXETER** 69 Polsloe Road, Exeter EX1 2NF, UK T: + 44 (0)1392 490152 ### **GLASGOW** 4 Woodside Place, Charing Cross, Glasgow G3 7QF, UK T: +44 (0)141 3535037 # **GRENOBLE** BuroClub, 157/155 Cours Berriat, 38028 Grenoble Cedex 1, France T: +33 (0)4 76 70 93 41 # GUILDFORD 65 Woodbridge Road, Guildford Surrey GU1 4RD, UK T: +44 (0)1483 889 800 # LEEDS Suite 1, Jason House, Kerry Hill, Horsforth, Leeds LS18 4JR, UK T: +44 (0)113 2580650 # LONDON 83 Victoria Street, London, SW1H 0HW, UK T: +44 (0)203 691 5810 # MAIDSTONE Mill Barn, 28 Hollingworth Court, Turkey Mill, Maidstone, Kent ME14 5PP, UK T: +44 (0)1622 609242 ### MANCHESTER 8th Floor, Quay West, MediaCityUK, Trafford Wharf Road, Manchester M17 1HH, UK T: +44 (0)161 872 7564 # **NEWCASTLE UPON TYNE** Sailors Bethel, Horatio Street, Newcastle-upon-Tyne NE1 2PE, UK T: +44 (0)191 2611966 #### NOTTINGHAM Aspect House, Aspect Business Park, Bennerley Road, Nottingham NG6 8WR, UK T: +44 (0)115 9647280 # **SHEFFIELD** Unit 2 Newton Business Centre, Thorncliffe Park Estate, Newton Chambers Road, Chapeltown, Sheffield S35 2PW, UK T: +44 (0)114 2455153 # SHREWSBURY 2nd Floor, Hermes House, Oxon Business Park, Shrewsbury SY3 5HJ, UK T: +44 (0)1743 239250 # STAFFORD 8 Parker Court, Staffordshire Technology Park, Beaconside, Stafford ST18 0WP, UK T: +44 (0)1785 241755 # STIRI ING No. 68 Stirling Business Centre, Wellgreen, Stirling FK8 2DZ, UK T: +44 (0)1786 239900 # WORCESTER Suite 5, Brindley Court, Gresley Road, Shire Business Park, Worcester WR4 9FD, UK T: +44 (0)1905 751310