Microfiche Section
Northamptonshire Archaeology Volume 18, 1983

Excavations at Towcester, Northamptonshire:
 The Alchester road surburb

A E Brown and Charmian Woodfield
Pages 1-135

Excavations of a Saxon site in
 St James' Square, Northampton 1981
 J H Williams and D Farwell

Pages 136-184

LAYER LIST

In this list the run of context numbers established during the excavations of 1974-76 have been retained and fresh context numbers allocated to features identified in 1967 and 1977 , continuing the run fized in the $1974-76$ series. The original designations given by the excavators in 1967 and 1977 have been added in brackets prefired by the year of the excavation.

PHASE 1

1. EiL1e, Alchester road side ditehss
i) Eastern aide
$9($ Area 3$)$
$84(1,3)$ (Trench 4)
91 (Trench 6)
$95(2,3,4,5)$ (Trench 5)
$120(2,3)$ (Irench 1)
ii) Watiorn aide

123 (2) (Trench 1)
124 (1., 2, 3) ('rench 4)
174 (Area 2)
176 (2, 3) (Area 1)
282 (3) (1977, 100X)
2. Additional side ditch, western side Alchester road

117 (2, 3) (Area 2)
355 (rench 1)
3. Land drains and ditches

```
135 (Trench 7)
142, 145, 151, 152, 157 (1p), 159 (2),
    161 (3), 162 (Area 1)
186 (1977, 4)
194 (1977, 12)
287-2(2) (1977, 105-6)
298 (1977, 116)
299 (2) (1.977, 1.17)
357 (Arca 1)
```


4. Structures

165, 204 (Building 1/2; 1977, 22)
191 (Building $1 / 3 ; 1977$, 9)

1. Upper part of fill, Alchester road side ditches
i) Eastern side
```
4, 10 (Area 3)
79 (Area 3)
95 (1, 3)(Trench 5)
99 lower (Trench 19)
120 (1) (Trench 1)
```

ii) Western side

98 (Trench 19)
112 (Area 4)
113 (1) Trench 18)
123 (1) (Trench 1)
176 (1) (Area 1)
282 (2) (1977, 100)
320 (Trench 22; 1967, Trenc'l 6, Cutting 8, Feature 15)
327 (Area 5; 1967, Area 3, Cutting 7, Feature 22)
2. Upper part of fill, additional side ditch, western side Alchester road.

117 (1) (Area 2)
3. Ditches, east of Alchester road.
i) Rearward plot boundary

101 (Trench 6)
301 (Trench 23; 1967 Trench 5, Cutting 2, Feature 2)
ii) Plot side boundary

35, 67 (Area 3)
4. Ditches, west of Alchester road
i) Rearward plot boundaries

```
109 (Trench 3)
173 (Trench 8)
183 (2, 3)(1977, i)
195 (197, 13)
312 (Trench 2; 1967 Trench 7, Cutting 3, Feature 20)
```

ii) Plot side bourdaries

134 (Trench 7, P1ot 2/2)
152 (Area 1, Plot 2/1)
188 (2) (PJ.ot 2/4: 1977, 6c)
193 (Plot 2/5: 1977, 11)
198 (Plot 2/5: 1977, 16)
287-8(1) (Plot 2/6: 1977, 105-6)
297 (1977, 115: same as 134)
302 (Plot 2/7: 1967 Trench 5, Cutting 3, Feature 3)
317 (Plot 2/7: 1967 Trench 7, Feature 4)
321 (Plot 2/7: 1967 Trench 7, Cutting 6, Feature 19)
351 ($\mathrm{Plot} 2 / 3$)

```
    5. Structures and other features
    i) Plot 2/1, 169, 169(2), 181, 182(2, 3) (stone floor, Building 2/1,
        Area 1)
    ii) Plot 2/2, 299(1) (ditch; 1977, 117)
iii) Pici 2/3, 189(1), 291(1) (Building 2/3 and industrial floor:
    1977, 7a and 109a and b)
    186(2), 208(2) (industrial layer, 1977, 4b, 26)
    128, 137, 138, 139 (Area 4: pit)
    211 (postholes: 1977, 29)
    iv) Plot 2/4, 203(1) (Building 2/4: 1977, 21a)
    v) Plot 2/5, 184 (Building 2/5: 1977, 2)
        199 (Building 2/6: 1977, 17)
    vi) Plot 2/7 329 (Building 2/7, Area 5; 1967 Area 3, Cutting 7, Feature 2)
        330, 336, 338 (? Building 2/7, Area 5; 1967 Area 3,
                Cut`ing 7, Feature 3).
        331 (? Building 2/7, Area 5; }1967\mathrm{ Area 3, south of Cutting 7,
                Feature 3, on clay).
        333 (? Building 2/7, Area 5; 1967, Area 3, Cutting 7, Feature 4)
        334 (? Building 2/7, Area 5; 1967, Area 3, Cutting 7, Feature 5)
    vii) Plot 2/8 45, 47, 48, 52 (postholes, Building 2/8, Area 3)
        43 (pit, Area 3)
viii) Building 2/10, (Trench 25), 344 (1967, Area 5, Cutting 8, Feature 2)
        345 (1967, Area 5, Cutting 9, Feature 3)
        348 (1967, Area 5, Cutting 9)
        342 (pit: 1967, Trench 20, Feature 18).
```


PHASE 3

1. Side ditches, Fleet Marston road
i) East side

74 (Trench 14)
115 (Trench 16)
121 (Trench 13)
ii) West side 78/1.16 (Trench 16)

119, 125-6 (Trench 17)
356 (Trench 14)
2. Ditches 1aid off Fleet Marston road, East side.

70, 71 (Trench 16)
72, 73 (Trench 15)
3. New side ditches, and reconstruction, Alchester road.
i) Eastern side

13 (area of reduced Alchester road, Area 3)
49 (area of reduced Alchester road, Area 3)

63 (area of reduced Alchester road, Area 3)
77 (area of reduced Alchester road, Area 3)
82 (area of reduced Alchester road, Area 3)
85 (area of reduced Alchester road, Area 3)
99 upper (Trench 19)
57 (4, 5) (make up Alchester road, Area 3)
127 (area of reduced Alchester road, Area 3)
140 (2) (area of reduced A! chester road, Area 3)
352 (Trench 1)
ii) Western side
$68(2,3)$ (area of reduced Alchester road, Area 3)
87 (Area 4)
89 (Area 3)
113 (2) (Trench 18)
118 (Trench 1)
132 (3) (Area 4)
187 (1977, (5)
282 (1) (1977, 100 Y$)$
4. Other features

183 (1) (1977, 1)
203 (2) (1imestone metalling w. 3t of Alchester road, 1977, 21b)
294 (pit; 1977, 112)

PHASE 4(a) * indicates features extending, in use into Phase 4(b)

1. Recutting, side ditches, Alchester road
i) Eastern side 349 (Area 3)
ii) Western side

68(1) (Area 3)
81 (Area 4)
88 (Area 3)
113(3) (Trench 18)
132(2) (Area 4)
2. Additions to/replacement of surfacing, Alchester road
$57(2,3)$ (Area 3)
60 (Area 3)
206 (1977, 24)
3. Ditches, east of Alchester road.

Rearward plot boundaries
36 (Area 3)
92 (Trench 6)*
93/102 (Trench 5)
94 (Trench 4)
97 (Trench 3)
346/7 (Trench 25: 1967, Area 5, Cutting 9, Feature 4)
16 (Area 3)
53 (Area 3)
4. Ditches,west of Alchester road.
i) Rearward plot boundaries

107*(Trench 9)
167 and 168 (Area 1)
192 (1977, 10)
201 (1977, 19)
319 (Trench 23; 1967, I'rench 7, Cutting 6, Feature 13)
ii) Plot side ditches

90, 1.04^{*} (Area 4, Plot 4/3)
108 (Plot 4/2, Trench 9)
. 85 (Plot 4/4: 1977 (3))
200 (Plot 4/2: 1977, 18)
235 (Plot 4/6: 1977, 23)
283-5 (P1ot 4/6: 1977, 101-3)
(302 (Plot 4/7: 1967, Trench 5, Cutting 3, Feature 3)
(321 (P1ot 4/7: 1967, Trench 5, Cutting 6, Feature 19)
5. Ditch, South of Fleet Marston road

11 (3, 4) (Area 3)
122 (Trench 12)
6. Structures and other features
i) Plot $4 / 1$

160 (Building 4/6a, Area 1)
$143,154(1,2), 155,157(2), 161(1,2)$
163 (2) (Building 4/6b, Area 1)
ii) Plot $4 / 2$

189 (2) (Building 4/1a: 1977, 7e)
iii) P1ot 4/3

Gi, 105 (4) (gully, Building 4/2a, Area 4)
105(2) (material dug out to form circular gully, Building 4/2a, Area 4)
129(2) (causeway across Alchester roadside ditch, Area 3)
iv) Plot $4 / 4$

202 (ditch: 1977,20)
v) Plot 4/8 (a11 in Area 3)

17, 23 (drainage ditch N side of Building 4/5) *
30 (floor, Building 4/5) *
59 (causeway across roadside ditch to Building 4/5) \%
33, 39, 40, 41 (postholes inside Building 4/5)
29 (east entrance, Building 4/5) *
38 (1, 2) (culvert, Building 4/5)*
31 (2, 3), 34, (furnaces/hearths, Building 4/5)
32 (hollow inside Building 4/5) *
$2(1), 3,12,18,22$ (yard outside Building 4/5) \%
$7(1), 7(2,4), 24,27$ (N-S drainage ditch)

* extend in use into phase $4(b)$.

141 (ditch, Building 4/7)

PHASE 4b

1. Recutting, side ditches, Alchester road
i) Eastern side

58 (Area 3)
80, 140(1) (Area 3)
300 (Trench 23: 1967, Trench 5, Cutting 1, Feature 1)
ii) Western side

65 (Area 3)
75/76 (Area 4)
86(Area 4)
111 (Trench 19)
113(4) (Trench 18)
132 (1) Area 4
350 (Area 3)
2. Rearward plot boundaries, west of Alchester road

144, 163 (Area 1)
110, 179, (Trenches 3 and 9)
3. Recutting/alterations, plot boundaries, west of Alciester road

114 (and 177) (plot 4/2: Trench 10 and Trench 8)
131 (Plot 4/1: Trench 7)
188 (Plot 4/5: 1977, 6b)
197 (Plot 4/5: 1977, 15;
4. Structures and other features

Plot $4 / 1$ Building $4 / 6 \mathrm{c}$
169(1), 169(2), 181 (Area 1)
$182,(1,4)$ (Area 1)
172, 175 (internal boundary, Plot 4/1, Area 1)
96 (pit: Trenches 5 and 6)
$146,147,148,149,150,156,158,159$ (pits: Area 1)
$166,170,171,173$ (pits: Area 2)
P1ot $4 / 2$
164, 196 (ditches running from stylobate building, Building 4/1b: 1977, 14)
180 (furnace inside Building 4/1b)
207 (ditch running from Building 4/1b: 1977, 25)
203(1) (industrial layer, 1977, 26)
Plot 4/3

```
55, 56, 62, 66, 83, 105(3), 130, 136 (stone Eloor,
    Building 4/2b, Area 4)
    105(1) (fill of gully around Building 4/2a, Area 4)
    133 (furnace, Bui1ding 4/2b, Area 4)
    64, 295 (pit, Area 4: 1977, 113)
    129(1) resuzfacing of causeway, Area 3)
```

P1ot 4/6
286 (stylobate Building 4/3: 1977, 104)
Plot 4/7
330, 336, 338 (Area 5: 1967, Area 3, Cutting 7, Feature 3)
331 (Area 5: 1967, Area 3, south of Cutting 7, Feature 3, on clay)
333 (Area 5, 1967, Area 3, Cutting 7, Feature 4)
334 (Area 5: 1967, Area 3, Cutting 7, Feature 5)
335 (Building 4/4, Area 5: 1967, Area 3, Cutting ?, Feature 5)
Plot 4/8
1, 28, 14, 106 (drainage ditch south of Building 4/5)
$31(1)$ (latest phase of furnace)
42, 54 (postholes)
37 (furnace/hearth)
25 (pit to north of Building 4/5)
44 (spur ditch east of Building 4/5)
7 (3), 21, 26 (replacement $\mathrm{N}-\mathrm{S}$ ditch)
$5,6,6(2), 1 i(1,2)$ (clayey spreads south of Building 4/5)

Phases 1 and 2
Alchester road side ditches
Eastern side
4/9 (Area 3) (Fig. 5) Shallow, round bottomed. $420 \mathrm{~mm}+$ deep, but very wide: 5m
Fill: light grey clayey earth (4)
Yellowish-brown sand
Black sooty earth (9)
Grey brown clay at bottom
84 (Trench 4) (Fig. 5) 3.5 m wide, 900 nm deep, round bottomed
Fill: 1. Light brown clayey earth
2. Yellow-brown clayey earth
3. Light giey powdery earth, stones
4. Dark brown clayey: charcoal flecks at bottom
5. Medium grey earth, many small gravel pebbles
91 (Trench 6) (Fig. 5) 2.94 m wide, 940 mm deep, round bottomed Fill: dirty brown clay with layers of yellow clay
95 (Trench 5) (Fig. 5) 3.2 n wide, 1 m deep, round bottomed fill: 1. Medium brown sandy loam
2. Clean yellow sand - recut
3. Grey-brown gritty sandy
4. Grey-brown clay

12 n (Trench 1) (Fig. 4) 2.4 m wide (the result of recutting), 800 mm deep, round bottomed

1. Yellow/brown clayey, small pieces of gravel
2. Slightiy darker brown)
3. Light grey-brown clayey) recut
4. Grey sand, inclusions of clean yellow sand
5. Chocolate brown earth

Western side
98 (Trench 19) 3.44 m wide, 820 mm deep, round bottomed
Fill: 1. Dirty chocolate brown clayey, some pebbles, charcoal flecks
2. Bright reddish-brown sandy

112 (Area 4) 2.7 m wide, $800 \mathrm{~mm}+$ deep, irregular V-section
Fill: 1. Medium brown clayey earth
2. Lighter brown-grey clayey earth
3. Blue clay and reddish brown clay
4. Reddish brown clay
5. Grey-brown clay

113(1) (Trench 18) (Fig. 5) $2.14 \mathrm{~m}+$ wide, 1.2 m deep, V-shaped Fill: uniforn light brown sandy earth
123 (Trench 1) (Fig. 4) 1.5 m wide, 1 m deep, round bottomed Fill: 1. Brown clayey
2. Brown clay, white clay inclusions).
3. Grey clayey - recut inclusion
4. Dark brown clayey

124 (Trench 4) (Fig. 5) 2.3m wide, 980 mm deep, V-shaped Fill: 1. Darkish grey-brown clayey earth, some charcoal ilecks
2. Brown-yellow clayey, small pebbles, some charcoal flecks
3. Grey sandy clay

174 (Area 2) $2.2 \mathrm{~m}+$ wide, $750 \mathrm{~mm}+$ deep, flat bottomed
Fill: 1. Ironstone sandy, some charcoal flecks
2. Cleanish medium grey clay, some charcoal flecks
3. 1 and 2 mixed, plus dirty chocolate brown earth
176 (Area 1) 2.7m wide, $620 \mathrm{~mm}+$ deep, irregular double-v bottom
Fill: 1. Light yellowish-brown sandy earth)
2. Reddish brown sandy earth , recut
3. Yellow-grey clay
4. Yellow-brown clay

282 (Fig. 6) 2.5 m wide, $750 \mathrm{~mm}+$ deep, U-shaped
Fill: 1 and 2. Black industrial fill: a shallow recut
3. Yellow gritty clay silt lower part rusty red and yellow clay. Bottom iron stained
Additional side ditch, western side, Alchester road
117 (Area 2) (Fig. 5) 1.24m wide, 780 mm deep, flat bottomed Fill: 1. Grey-brown sandy earth, some charcoal flecks
2. Light browri sandy
3. Grey clay
4. Clean light brown sand

355 (Trench 1) (Fig. 4) 1.5 m wide, 900 mm deep, U-shaped Fill: 1. Grey clayey earth
2. Brown clayey, lens of whitish clay 3. Grey clay

Phase 1. Land drains and ditches
Land drains
142 (Area 1) (Fig. 5) 880mm wide, $280 \mathrm{~mm}+$ deep, double-V section Fill: soft black organic earth (2) with lenses of whitish-light grey sandy clay (1) i.e. replaced subsoil
145 (Area 1) 1.1 m wide, 100 mm + deep, double-v section Fil1: soft black organic earth
1.62 (Area 1) (same feature) (Fig. 5) 1.06 m wide, 520 mm + deep, U-shaped
Fill: 1. Yellow clay and light grey-whitish sandy clay mixed i.e. replaced subsoil
2. Chocolate brown clayey
3. Dirty yellow clay and chocolate brown clay mixed - slippage from sides
4. Light grey sandy - slippage from sides

357 (Area 1) 660 mm wide, $200 \mathrm{~mm}+$ deep, flat bottomed fill: grey-brown clay. Lenses of light grey sandy.

151 (Area 1) (Fig. 5) 1.15m wide, $460 \mathrm{~mm}+$ deep, double-V section
Fill: 1. Light brown clayey, pieces of limestone
2. Yellow clay and light grey-white sandy,
i.e. replaced subsoil.
3. Soft dark grey organic

186 (Fig. 16) $700 \mathrm{~mm}+$ wide, $370 \mathrm{~mm}+$ deep, W - profile with stakes, separated by a spit of natural 250 mm wide, set at intervals of $150-200 \mathrm{~mm}$, with perhaps larger ones at intervals of 800 mm . Very straight Fill: black silt. Sterile except for the odd oyster shell
$1941 \mathrm{~m}+$ wide, depth u / k. Sides sloping, flat bottom. One of a group of features with narrow drainage channels at bottom c. 250 mm wide, but sometimes only 100 mm , A maze of these features, some with straight, cut-off ends
Fill: red sand
287-8 (Fig. 6) 700 mm wide, 700 mm deep, U-shaped
Fill: 1. Black industrial fill 300 mm thick. A recut, making the original still wider and shallower
2. Clean reddish yellow clayey iron stained silt 400 min thick
Structures and other features
165 (ditch around Building $1 / 2$, Tronch 8) 550 mm wide, $160 \mathrm{~mm}+$ deep, U-shaped
Fill: 1. Grey clayey, charcoal flecks, reddish brown ironstone
2. Grey clayey, charccal flecks

BHASE 2
Ditches, east of Alchester road
i) Rearward plot boundary. 101 (Trench 6) (Fig.15) 1.08m wide, 620 mm deep, V-shaped
Fill: 1. Dark brown clayey
2. Chocolate clayey and yellow clay
ii) Plot side boundary. 35 (Area 3) 900 mm wide, $220 \mathrm{~mm}+$ deep, V-section
Fill: r didsh brown clayey
67 (Area 3) (same feature) (Fig. 15) 1.18 m wide, $300 \mathrm{~mm}+$ deep, U-section
Fill: reddish brown clayey, blotches of grey sandy clay towards bottom
Ditches, west of Alchester road
i.) Reaiward plot boundaries. 109 (Trench 9) 1.2 m wide, 500 mm deep, U-shaped
Fill: medium brown loam
178 (Trench 8) (Fig. 15) 540 mm wide, $140 \mathrm{~mm}+$ deep, shallow, flat bottomed
Fill: grey brown clayey, some lenses of yellow clay
$183 \quad 700-800 \mathrm{~mm}+$ wide, $430 \mathrm{~mm}+$ deep, flat
bottomed
Fill: 1. Dark grey clay - recut once

PHASE 4a
Recuttinge side ditches, Alchester road
i) Eastern side. 349 (Area 3) (Fig. l_{t}) $650 \mathrm{~mm}+$ wide, $100 \mathrm{~mm}+$ deep. Flat bottomed Fill: dirty grey clay
ii) Western side. $68 / 1 / 88$ (Area 3) (Fig. $l_{\text {t }}$) 2.7 m wide, $600 \mathrm{~mm}+$ deep
Fill: 68/1 Dark grey-brown clayey
83 U-shaped bottom, dark grey mud
81 (Area 4) (Fig. 15) 1.54 m wide, 400 mm deep, U-shaped Fill: light brown/yellowish earth, stones
113(3) (Trench 18) (Fig. 5) 640 mm wide, 560 mm deep, U-shaped Fill: medium brown loamy, stones at bottom

Ditchese east of $\lambda 1$ chester road
Kearward plot boundaries. 92 (Trench 6) 2.4 m wide, 420 mm deep, irregular bottom
Fill: stiff hard grey and yellow clay, flecks of charsoal

93/102 (Trench 5) (same feature) (Eig. 15) 2 m wide, 500 mm deep, U-shaped
Fill: 1. Dirty greymgreen clay, hard, charcoal flerks: areas of yellow clay
2. Dirty grey-greer clay, charcoal flecks

94 (Trench 4) (same feature) 1.74 m wide Fill: green-groy blay and stones
97 (Trench 3) (same featu a) l. 8 m wide Fill: dircy grey -ldy

16 (Area 3) (Fig. 15) 1.74m wide, 600 mm + deep, U-shaped Fill: 1. Grey-brown clayey + charcoal
2. Dark grey clayey

53 (Area 3) (same feature) 1.1 m wide, $140 \mathrm{~mm}+$ deep, U-shaped Fill: light brown sandy earth, grey clay
Ditches, west of Alchester road
i) Rearward plot boundarjes. 107 (Trench 9) 900 mm wide, 600 mm deep, U-shaped
Fi11: 1. Dirty brown earth
2. Groy clayey

167 (Fig. 15) 600 mm wide, $200 \mathrm{~mm}+$ deep, flat bottomed fil1: 1ightish grey sandy clay, some lenses of yellowish clay
168 (Area 1) 600 mm wide, $210 \mathrm{~mm}+$ deep, U-shaped
Fill: uniform lightish grey clayey, some yellow clay
192 2m wide, depth u / k Fill: dirty dark grey clay
201

1. 1 m wide, $350 \mathrm{~mm}+$ deep, U-shaped Eill: I. Dark grey clay: ditch edged with stones, aligned along face of ditch (stones 150~

250 mm long）：？recut 2．Blue clay lining

319 （Fic．15）940mm wide， 305 mm deep，U－shaped
Fill：dark loam with charcoal：dirty clay below
ii）Plot side ditches． 90 （Area 4） 1.44 m wide， $400 \mathrm{~mm}+$ deep， U－shuped
Eili：1．Brown sandy earth，many flecks charcoai
2．Slightly darker sanay earth，charcoal flecks

104 （same feature）（Area 4）（Fig．16） 1.3 m wide， $300 \mathrm{~mm}+$ deep， U－shaped
Pill：brown sandy e九the，much charcoal，stones at boteom

F08（French 9） 2.10 m wide， 640 mm deep，U－shaped
Eili： 1. Nedium beown hoam 2．Stife groy clay
168（1）60cmm＋wide， 300 mm deep
Fill；dark grey elay
$200700 \mathrm{~mm}+\mathrm{wide}, 400 \mathrm{~mm}+\mathrm{deep}$
Fill：bleat industrial mate ial．overtain by bl．el marehy area
205 g00mm wide， 350 m doep，U－shaper
E゙idi：direy dark grey alay
283－5 100 mm wide， 300 mm derp，J－shaped
Fili：daris grey clay
302 1．04n wide， 304 mum deep，flat bottomed
Fili：darle loam with dirby clay below
Ditch， 3 of Pleet Mareton road
1i（Hxea 3）（Fig．16） 1.10 m vide（cipands to 3．7m at ite junction with 16）， 1.2 m deep，ftat bottomed
Fi11：1．Stiee raddish brom glay and charcoal， longes of orangy sand
2．Grey glay（docs not appoar on bection）
3．Light yellow sandy，soft yellow sand inclusions（i．e giippage from sides）
4．birty yeljow green eandy elay
12\％（rronck 12）（Game foature） 1.08 m wide， $300 \mathrm{~mm}+$ doop， if－chaped
Fi11：1ight brown eorth，with below 1i，ght grey earth with patches of yollow cilay at the botcom
structiereg ind otiner freturars
i）plot $1 / 1$ ． 160 （Building 4／6a，Frea 1）（Eig．1，6）140mm wide， $150 \mathrm{~mm}+\mathrm{dec} \mathrm{b}, \mathrm{f} 1 \mathrm{at}$ boteomed
Fi11：medium groy－brown glay，some elecke enarcoad． Light grey－yellow glay at bottom
143 （Building 4／6b，Area 1）（Fig．1f）730mm wide，200mm 中 deep， U－shaped
Filis：medium grey clayey，a few flecke charcoai． Jent of white／light giey sandy elay

154 (same feature) 1.2 m wide, $560 \mathrm{~mm}+$ deep, U-shaped Fill: grey-brown clayey, occasional flecks of charcoal
This a recut of $154 / 2$ - this was $600 \mathrm{~mm}+$ wide, $270 \mathrm{~mm}+$ deep, U-shaped Fill: light grey clayey, chocolate brown clayey below
153 (same feature) (Fig. 16) 700 mm wide, $230 \mathrm{~mm}+$ deep, U-shaped Fill: a uniform medium grey clayey, some lenses of dirty yellow clay, a few charcoal flecks
$157 / 2$ (same feature) 1.48 m wide, $280 \mathrm{~mm}+$ deep, U-shaped Fill: mixture of reddish brown clayey and grey clay, some lenses of yellow clay
161 (same Eeature) 1.73 m wide, $500 \mathrm{~mm}+$ deep, U-shaped fill: l. Medium grey clay, a few flecks of charcoal and yellow clay
2. As 1 but more yellow clay especially on E side. Some lumps of whitish sand
ii) アlot 4/3. 61, 105(4) (circular gully, Building 4/2a, Area 1) 500 mm wide, 200 mm deep, fiat bottomed fidi: grey clayey earth
i.i.) blot $4 / 4.20 \%$ G. 2 m wide but oblique cut makes certainty imposejbic; 500 mm deep
Fill: dark clay silty. Revetted on SW downhill side with stakes at 450 mm centres. Stakes c . 120 mm diameter
iv) plot 4/9. 17/23 (drainage ditch N side of Building $4 / 5$, Area 3) (Eig. 16) 900 mm wide, 300 mm deep, V-shaped Fili: 17. Slimy black clayey, charcoal
23. Brown, yellow, green clay mixed

7 (N-S drainage di'ch, Area 3) 1.76 m wide, $460 \mathrm{~mm}+$ deep, U-shaped [i11: 1. Fark brown-grey earth with charcoal
2. Reddiek brown clay
3. (on is face only) Red sandy
4. Dark grey Glay, patches of yellow clay, stones
24 (same feature) (Fig. 15) $1 \mathrm{~m}+$ wide, $510 \mathrm{~mm}+$ deep, U-shaped fill: 1. Brom clay
2. Orange clay
3. Grey grave1.ly
4. Hedium grey clayey sitt and charcoal
141. (diteh around building 4/7, Area 3). 1.tim wide, $340 \mathrm{~mm}+$ deep, Jmbhaprod. Fill: chocolate brown earth, patches of grey clay.
PHASL: 4(b)

1. Recu tinct side ditchos, Alchester road
i) Eastern side. 80 (Area 3) (Eig. 1) 720mm wide, $240 \mathrm{~mm}+$ deep, U-shaped
Eill: dark grey sticky elay, flecks of charcoaj.
ii) Western side. $75 / 76$ (Area 4) (ficg. 15) 1.54m wide, 260 mm deep, U-shaped
Fild: 75. Hard, compact pink and white gravel
2. Grey earth

111 (Trench 19) 840 mm wide, 520 mm dsep, flat bottomed Fill: light brown clayey fill, gravel pebbles
113(4) (Trench 18) (Fig. 5) 1.14, wide, 500mm deep, U-shaped Fill: dark brown loamy, small gravel and some larger stones at bottom
$132 / 1$ (Area 4) 940 mm wide, $360 \mathrm{~mm}+$ deep, V-shaped Fill: darkish chocolate brown earth
350 (Area 3) (Fig. 4) lm wide, 180 mm + deep, flat bottomed Fill: dark grey clayey
2. Rearward plot boundaries, west of Alchester road

144 (Area 1) (Fig. 16) 1.34 m wide, $360 \mathrm{~mm}+$ deep, U-shaped
Fill: 1. Medium grey clayey
2. Dirty yellow clayey

110 (Trench 9) 780 mm wide, 370 mm deep
Fili: medium brown loam
179 (Trench 8) I. 23 m wide, 430 mm deep, U-shaped Fill: stiff dark grey clay
3. Recutting/alterations, plot boundaries, west of Alchester road
114 (Trench 10) 760 mm wide
Fill: dark grey clay, much charcoal
177 (Trench 8) (Eig. 15) 1.55 m wide, 380 mm + deep, irregular U-snape
kild: dark grey clay with some patches of yellow clay
131 (Trench 7) 1.32 m wide, 920 mm deep, U-shaped
Fill: 1. Brown clayey
2. Black organic silt

185 ? 1.5 m wide, 400 mm deep, U-shaped. Cut through stony level of Phase 2
Fill: dark g'ey clay, tiles
197950 mm wide, 350 mm deep, U-shaped
Fill: dark grey clay
Structures and other features
Plot 4/1. 172 (internal boundary, Area 1) 1.4 m wide, $650 \mathrm{~mm}+$ deep, irregular bottom
Fill: 1. Grey clayey, some reddish brown specks of ironstone
2. As 1 but more reddish brown
3. Dark grey clayey, flecks of charcoal
4. Yellowish sandy, charcoal flecks

175 (same feature) (Fig. 16) 1.95 m wide, $670 \mathrm{~mm}+$ deep, U-shaped
Fill: 1. Light grey clayey - some reddish brown sandy slippage on N side
2. Dirty brown clayey, flecks charcoal, patches of yellow clay
Plot 4/2. 164 (ditch running from stylobatc building Building $4 / 1 \mathrm{~b}$, Trench 8) 902 mm wjde, $270 \mathrm{~mm}+$ deep, U-shaped Fill: 1. Grey clayey and reddish brown ironstone flecks
2. Grey clayey, charcoal flecks, stones

196 (ditto) ?1m wide, 500 mm deep, U-shaped
Fill: black industrial material. Black marshy area on top
207 (ditto) ?1m wide, depth u / k; wide, U-shaped profile. Had butt-end on NW with stakes round it; this 2 piosented a contraction of the original ditch length Fill: black industrial material. Substantial stakes on S side of ditch, at $400-600 \mathrm{~mm}$ centres. Stakes were up to 350 mm high, $150-200 \mathrm{~mm}$ in diameter

Plot 4/8. 1 (drainage ditch S of Building 4/5) (Fig. 16.) 1.4m wide, $600 \mathrm{~mm}+$ deep, flat bottomed Fill: 1. Grey clayey, flecks of charcoal
2. Light grey sandy
3. Dirty grey clayey

14 (same feature) (Fig. 16) 1.6 m wide, $600 \mathrm{~mm}+$ deep, flat bottomed
Fill: 1. Darkish grey-brown clayey, charcoai
2. Light sandy yellow-brown

21 (replacement $\mathrm{N}-\mathrm{S}$ ditch, Area 3) (Fig. 15) 1.66 m wide, $280 \mathrm{~mm}+$ deep, U-shaped Fill: 1. Brown clay
2. Grey gravelly
3. Orange clay
4. Grey clay
by C.T.P. Woodfield

Context	Location	Coin No.	Date	Description Mint	Ref.
		$\begin{aligned} & \text { DM } 37 \\ & \text { DM } 32 \\ & \text { DM } 28 \\ & \text { DM } 24 \\ & \text { DM } 77 \\ & \text { DM } \end{aligned}$	$\begin{aligned} & \text { C. } 4 \\ & 330-35 \\ & 335+ \\ & 270-73 \\ & 335+ \\ & C .4 \end{aligned}$	Minim CONSTANTJ.NOPOLIS Irregular Gloria Exercitus Ant TETRICUS I Irregular Gloria Exercitus Minim	
333	Plot $2 / 7$, area of Building 2/7	DM 29 DM 30 DM 31 DM 34 DM 35 DM 36 DM 41 DM 43 DM 46 DM 52 DM 53 DM 54 DM 58	$\begin{aligned} & 69-79 \\ & 319 \\ & 293-96 \\ & \text { C.4 } \\ & 286-91 \\ & 341-48 \\ & 335-37 \\ & 287-93 \\ & 330-37 \\ & \text { C. } 4 \\ & \text { Late C4 } \\ & \text { C. } 4 \\ & \text { C. } 4 \end{aligned}$	VESPASIAN VICTORIA AVG Ant ALLECTUS House of Constantine Ant CARAUSIUS VICT AVG GLORIA 1 Standard Ant CARAUSIUS VRBS ROMA Irregular H of Theodosius Minim Minim	
334	Plot $2 / 7$, area of Building 2/7	DM 45 DM 55 DM 56 DM 57 DM 59 DM 62 DM 63 DM 67 DM 73 DM 74 DM 75 DM 65	$\begin{aligned} & 353+ \\ & 353+ \\ & 341+ \\ & 330-35 \\ & 330+ \\ & \mathrm{C} .4 \\ & 341-48 \\ & 287+ \\ & 3>0-35 \\ & 353+ \\ & \mathrm{C} 1-\mathrm{C} 2 \\ & 324-30 \end{aligned}$	Minim. Fel Temp type. Minim. Fel Temp type Irregular Vict DD Aug type VRBS ROMA Irregular Urbs Roma type Minim VICT DD AVG Trregular Carausius GLORIA EXERCITVS Minim. Fel Temp type Den Irregular issue CONSTANTIUS I commemorative Comment: The evidence of the coins suggests that these levels (prefix DM) were not differentiated from the topsoil which contained an abundance of $C .4$ coins.	
$\frac{\text { PHASE } 3}{183}$	C. $270-330$ AD Plot $4 / 3$, Ditch wes of Alchester road, rearward plot boundaries	CW 31	c. 270	Ant 0: Rad hd. R: Sig figure	
294	Pit in Plot 2/3 Northamptonshire Archae	CW 1 CW 2 CW 3	$\begin{aligned} & 268-70 \\ & 268-70 \\ & 268-70 \end{aligned}$	Ant R: Illeg Ant R: CTVS AVG Figure stg. Ant R: Emperor (?) stg facing with caduceus and patera	

Northamptonshire Archaeplogy. 18 met: $83_{\text {This }}$ group, found cemented together in a

Context	Location	Coin No.	Date	Description Mint Ref.
31 (3)	Building 4/5, first phase of furnace	AB 305 AB 306 AB 307 AB 309 AB 316 AB 317 AB 350 AB 352 AB 353 AB 355a AB 355b AB 356 AB 357 AB 424 AB 425 AB 426 AB 428 AB 429	$\begin{aligned} & 337-41 \\ & \\ & \\ & 341+ \\ & 341-46 \\ & 346-50 \\ & 346+ \\ & C .4 \\ & c .4 \\ & 351-53 \\ & 348+ \\ & C .4 \\ & C .4 \\ & 352-4 \\ & 337+ \\ & 337-41 \\ & 350-51 \\ & 346-50 \\ & 350-51 \\ & \\ & 346-50 \end{aligned}$	
32	Hollow inside Building 4/5	AB 318	c. 4	Minim (7.5)
34	Hearth inside Building 4/5	AB 312 AB 313 AB 317 AB 370 AB 371 AB 372 AB 373 AB 374 AB 375 AB 376 AB 377	C. 4 346-50 C. 4 350+ 350+ 341-46 C. 4 341-46 351-61	Minim (8) (14) CONSTANS. R:Galley TRP LRBC 2.41 Minim (11) Irreg (13) FH type D Irreg (12.5) FH type H of Constantine Victoriae DD LRBC I 145-7 Minim (7) H of Constantine M Victoriae JD TRP Irreg (20) large and thick flan H of Constantine FSIS FH3/4
2(1)	Plot 4/8, yard outside Building 4/5 Northamptonshire Archaeolo	AB 62 AB 63 AB 64 AB 65 AB 66 AB 67 AB 75 AB 75 bis ${ }^{4}{ }^{A} 88,89983$	$\begin{aligned} & 317-324 \\ & ? 335-41 \\ & \text { C.4 } \\ & \text { ?340+ } \\ & 335-41 \\ & 330+ \\ & 287-89 \\ & \\ & 265-70 \\ & \\ & \text { mid/ } \\ & \text { lateC4 } \end{aligned}$	CONSTANTINE II (14) Minim (8) (15) H of Constantine 1 standard ? Helena Ant CARAUSIUS R: Pax MIXXI (Residual) Ant VICTORINUS R: Pietas (Residual) (14.5) ? irreg.

Context	Location	Coin No.	Date	Description	Mint Ref
$\begin{aligned} & 2(1) \\ & \text { Contin. } \end{aligned}$		AB 89 AB 95 AB 111 AB 112 AB 113 AB 123 AB 155 AB 236	$341+$ Mid C4 337-41 330-41 330-341 350-51 C. 4 322-23	VICTORIAE DD Irreg (19) 1 standard Constantinopolis/Wolf CONS'TANTINOPOLIS MAGNENTIUS/Felicitas Minim R: CAESARVMNOSTRORVM	?Trier ?Thessalonica
3	Plot 4/8, yard outside Building $4 / 5$	AB 74 AB 79 AB 85 AB 91 AB 94 AB 106 $A B 107$ AB 108 AB 109 AB 110 AB 136 AB 137 AB 138 AB 159 AB 160 AB 161 AB 162 AB 163 AB 164 AB 169 AB 168 AB 190 AB 216 AB 217 AB 176 AK 181 AB 1.84 AB 185 AB 185 bis AB 186 AB 187 AB 188 AB 177 AB 178 AB 179 AB 180 AB 182 AB 183 AB 218 18, 13383	$351-54$ $287-93$ $308-37$ $335-41$ $330-35$ $346-50$ $330-41$ ear1y- mid C.4 $335-41$ $330-35$ $337-40$ $335-41$ 341 $335+$ $335-41$ $341-46$ $348+$ $341-46$ $253-68$ $335-41$ mid $C 4$ $C .4$ $C .4$ $341-46$	Constans/Gratian May not be a coin Ant: ?Carausius CONSTANTINE I R:Genio 1 standard 2 standards CONSTANS R:Hut (2) CONSTANTINOPOLIS (16) 1 standard URBS ROMA (16) CONSTANTINUS Minim (7) 1 standard Irreg R: Victoriae DD ty Irreg 1 standard type 1 standard ?Victoriae type Irreg? ?FH type CONSTANS R:VICTORIAEDD Ant R:)PVD(1 standard (20) Irreg (13) H of Constantine (12) CONSTANTIUS II R: Victoriae DD (12) CONSTANTIUS II 1 std Magnentius/Decentius R: VICTORIAEDDNN 0:Brockage Constantinian R: ?Fe1 Temp FH3 type (14) Victoriae DD 1 standard 1 standard Irreg radiate 1 standard Minim (9.5) CONSTANTIUS II 1 std	R: FH3 (Residual) TRP. LRBC I 59 type $\frac{E}{\operatorname{TRP}}$ LRBC I 157 (Residual) RP。 an portrait TRS TRS TR (?)

Context	Location	Coin No.	Date	Description Mint Ref.
18	Plot 4/8, yard outside Building 4/5	AB 165 AB 165 bis AB 166 AB 191 AB 193	C. 4 C. 4 330-35 mid C4 mid C4	Minim (12) Minim (9) CONSTANTINUS II 2 std Irreg? FH type Irreg? FH type
7	Plot 4/8 north-south ditch	$\begin{array}{ll} \mathrm{AB} & 77 \\ \mathrm{AB} & 78 \end{array}$	$\begin{aligned} & 341-46 \\ & 341-46 \end{aligned}$	Constantius/Constans CONSTANS
$\frac{\text { PHASE } 40}{58}$	of side ditch eastern side	$\begin{array}{ll} \mathrm{AB} & 457 \\ \mathrm{AB} & 462 \end{array}$ $A B 463$	$\begin{aligned} & 352-54 \\ & \text { C. } 4 \\ & \text { C. } 4 \end{aligned}$	```H of Constantine FH?4 Minim ()): Grid of lines (Fig.44) (14)```
65	Alchester road, recut of side ditch western side	AB 543 AB 544	$\begin{aligned} & 317-37 \\ & 335+ \end{aligned}$	CONSTANTINE II as Caesar R: BEATTRANQUILLITAS PLON C. 10 Minim (11) 1std type
132	Alchester road, recut of side ditch, western side	AB 678	?253-68	Ant ?Gallienus. R: Dianae?
114	Plot boundary west of Alchester road	AB 651	351-53	DECENTIUS R:Victoriae(1) TRP LRBC 2.57
188	Plot 4/5, side ditch	CW 33	337-341	Constantine I or Constans *PLG(?)
172	Plot 4/1, internal boundary	AB 788	337-41	1 standard \quad.TRP监 $\begin{gathered}\text { LRBC I.? } \\ \text { (not recorded) }\end{gathered}$
172(3)	Piot 4/1, internal boundary	AB 755 AB 757	$330-35$ C. 4	$\begin{aligned} & \text { ?Constantius I } 1 \text { std } \quad \begin{array}{l} \text { TR.S } \\ \text { LRBC } \\ \text { (18) } 60-62 \end{array} \\ & \end{aligned}$
169	Plot $4 / 1$, Building $4 / 6 c^{2}$	AB 743 AB 744 AB 746 AB 747 AB 748 AB 749 AB 750 AB 751 AB 784 AB 785 AB 838 AB 838a	$\begin{aligned} & 306-24 \\ & 335-41 \\ & \\ & 337-41 \\ & 341-46 \\ & \\ & 341-46 \\ & 346-54 \\ & \\ & 335+ \\ & 335 \cdot 41 \\ & 330+ \\ & c .4 \\ & 350+ \end{aligned}$	CONSTANTINE I Victories. VOT X $\overline{\text { PLN }}$ Constantius/Constans 1 standard HELENA/R:PAX P.JBLICA CONSTANS. R:Victoriae DD $\frac{\mathrm{D}}{\mathrm{T} R \mathrm{RP}}$ LRBC I 147 CONSTANS. r:Victoriae TRS LRBC I 147 ?Constantius II R: Fel Temp FH(2) Irreg 1 std type CONS'CANS. 1 std Irreg Wolf and twins type (15) Irreg Gloria Rom (1) type fragments
96	$\text { Pit, Plot } 4 / 1$	$\begin{array}{ll} A B & 658 \\ A B & 654 \\ C W & 7 \\ A B & 7 \end{array}$	$\begin{aligned} & 351-3 \\ & 330-35 \\ & 341-46 \\ & 341-46 \end{aligned}$	MAGNENTIUS Victoriae DDNN ?AMB CONSTANTINOPOLIS CONS H of Constantine H of Constantine
181	Plot 4/1 Building $4 / 6 \mathrm{c}$	$\begin{array}{ll} \text { AB } 766 \\ \text { AB } 832 \end{array}$	$\begin{aligned} & 330-35 \\ & 335-41 \end{aligned}$	CONSTANINOPOLIS TRS(H of Constantine 1 std.

Context	Location	Coin No.	Date	Description Mint Ref.
146(1)	Pit, Plot 4/1	$\begin{aligned} & A B 725 \\ & A B 720 \end{aligned}$	$\begin{aligned} & 330-41 \\ & \text { C. } 4 \end{aligned}$	CONSTANTINOPOLIS (15)
148	Pit, Plot 4/1	AB 722	346+	Irreg (17) FH type
158	Pit, Plot 4/1	AB 729	341-46	CONSTANS vICTORIAE DD $\underset{\text { TRS }}{\stackrel{?}{\text { S }}}$
159 (2)	Pit, Plot 4/1	$\begin{array}{ll} A B & 731 \\ A B & 730 \end{array}$	$\begin{aligned} & 335-37 \\ & 337-41 \end{aligned}$	CONSTANTINE II. I Std THEODORA. PIETAS ROMANA
166 (2)	Pit, Plot 4/1	AB 763	330-41	H of Constantine. 2 std ? Trier
173	Pit, Plot 4/1	AB 782	346+	Minim (10.5) FH type
164	Plot 4/2, surface	AB 732	306-24	CONSTANTINE I victoriae laetae $\overline{\text { STR }}$
164	P1ot 4/2, ditch	AB 721	295-305	FOIlis DIOCLETIAN GENIO POPULI ROMANI $\overline{\mathrm{TR}}$ C .128
207	P1ot 4/2, ditch	CW 37 CW 38 CW 39 CW 28	$\begin{aligned} & 305-09 \\ & 346-50 \\ & 320-24 \\ & 320-24 \end{aligned}$	```Follis Mixtminus it as Caesar RIC 123b R: SAC MON VRB AVGG etc. constantius il FEL TEMP Galley CONSTANTINE I BEATTRANQUILLITAS CONSTANTINE I PLON C.17-30 BEATTRANQUILITAS Altar```
208(1)	$\begin{aligned} & \text { Industrial deposit } \\ & \text { Plot } 4 / 2 \end{aligned}$	CW 32	306-24	CONSTANTINE I VICTORIAE shield \quad PTR \quad RIC 173
62	Plot 4/3, Building 4/2b	$\begin{array}{ll} & A B \\ \hline & 533 \\ A B & 513 \\ A B & 524 \end{array}$	mid C_{4}	$\begin{array}{ll} \text { Irreg } & (14) \\ & (16.5) \\ \text { Minim }(10) \end{array}$
66	Plot $4 / 3$, Building 4/2b	AB 530 AB 531 AB 553 AB 554 AB 555 AB 556 AB 557 AB 558 AB 561 AB 579 AB 583 AB 584 AB 585 18: 5883	$\begin{aligned} & 341-46 \\ & 341-46 \\ & 341-46 \\ & 314-17 \\ & 360+ \\ & C .4 \\ & 330-35 \\ & 330-41 \\ & \mathrm{C.4} \\ & 330-35 \\ & \\ & 351-53 \\ & 335-41 \\ & 330-35 \end{aligned}$ C. 4	

Context	Location	Coin No.	Date	Description Mint Ref.
66 contin.	Plot 4/3, Building 4/2b	AB 587 AB 607 AB 625 AB 431 AB 432 AB 433 AB 434 AB 435 AB 436 AB 437 AB 438 AB 469 AB 476 AB 523 AB 288 AB 294 AB 297	C. 4 $330-35$ $324-350$ $330-41$ c. 4 $? 383+$ $330-41$ $346-50$ $324-30$ $341+$ c. 4 $317-326$ $260-268$ c. 4 $330-37$ $330-37$	Minim (6) Little worn CONSTANTIUS II 2 stds TRS (15) vRbS ROMA Wolf Minim (9) ? Irreg Valentinian/Theodosius ? Gloria Rom vRBS ROMA Wolf Constantius II/Constans FH 34 PROVIDENTLAAVGG Gate PTRE NEPTVNACONSAVG Hippocamp VRBS ROMA Wolf VRES ROMA Wolf
83	P1ot 4/3, Building $4 / 2 \mathrm{~b}$	AB 623 AB 624 AB 626 AB 627 AB 628 AB 629 AB 630 AB 631 AB 632 AB 633 AB 640 AB 641 AB 680	$\begin{aligned} & c .4 \\ & \text { c. } 4 \\ & 346+ \\ & 268-70 \\ & 330+ \\ & 309-13 \\ & \\ & \text { C. } 4 \\ & 330+ \\ & 330+ \\ & 350-51 \\ & \\ & \text { c. } 4 \\ & 330-35 \end{aligned}$	irreg (10) R: buckle shape Minim (7) Minim (7) 2Irreg (14) FH type Ant Claudius il virtusavg c.318 Irreg (13) Standard type $/ * \mathbf{c} 429$ Follis CONSTANTINE I PRINCII:IIVVENTVTIS FLN Minim (10) Minim (9) Standard type ?Irreg 2 standards type ?Irreg CONSTANTIUS II/MAGNENTIUS 5H2 (12) VRBS ROMA Wolf TR.P LRBC I 65
136	$\text { Plot } 4 / 3 \text {, Building }$ $4 / 2 b$	AB 679	$330+$	Irreg (1.0) 2 standard type
64	Pit, Plot 4/3	AB 521 AB 608 AB 606	$\begin{aligned} & 337-41 \\ & 330-35 \\ & 330-35 \end{aligned}$	H of Constantine. 1 std . is Constantius.' Constans 2 standards $\underset{\mathrm{PCO}}{\mathrm{PC}}$ CONSTLNTLMOPOLIS
14(1)	Plot 4/8, Building 4/5, recut drainage ditch south of building. rthamptonshire Archaeology	AB 125 AB 153 AB 100 AB 101 	$\begin{aligned} & 330-35 \\ & \\ & \text { C. } 4 \\ & 337-41 \\ & \text { C. } 4 \\ & 337-41 \end{aligned}$	CONSTANTINE II/CONSTANS TR.P 2 standards LRBC I 60-4 (10-11) Irreg. (13) CONSTANS 1 standard $(8-10)$ 1 standard

Context	Location	Coin No.	No. Date	Description	Mint	Ref.
3111 Contin.		$\begin{array}{lll} \hline A B & 4 \\ A B & 41 \\ A B & 1 \\ A B & 41 \\ A B & 42 \\ A B & 10 \\ A B & 10 \\ & & \\ A B & 22 \\ A B & 2 \\ A B & 1 \\ C o m m e \\ \text { of sn } \\ \text { that } \\ \text { of } 1 \\ \text { livec } \\ \text { hint } \\ \text { the } \end{array}$	 nt: This de it was in o coins su ng that is llicit prod		ictoriae thins type Phoenix dwins ty , suggest the absen latively stinctive een used for .	20 NN er $\stackrel{9}{9}$ rt- tyle,
15	Prothote fuillime $4 / 7$, Ho. 4/8	А 315	3;0-1,1	virbs roma wolf		
31	fif flacement, N-E diteh Prot $4 / 3$	AB3 18	307-24	ltcintius gento pop rom	London	
25	Bit to N of Fuilding 1/5		$\begin{aligned} & c .4 \\ & c .4 \\ & 330-37 \\ & 324-31 \\ & c .4 \\ & c .4 \end{aligned}$	Minim (8) (11) Minim (10) Quarter of coin only II of Constantine Minim (11) Minim (5) metal 2.5-3mm ?coin		
!		AB 69	c. 4	Minim (9)		
6	" "	AB 71 AB 71bis AB 72 AB 76 ан 233 AB 257	$\begin{aligned} & 3354 \\ & 335-41 \\ & 330-35 \\ & c .4 \end{aligned}$	Trreg (1/í) Fill type fragment of coin constantine it 1 standard II of Constantins: 2 standards Minim ($6-7$) Minim (6)	? Lyon TR.S	
11(1) No	Notthamptonshire Archaed	$\left\{\begin{array}{lll} \hline 0 q & 18, & 19 \\ A B & 245 \\ A B & 1.54 \end{array}\right.$	$\sqrt{83}$	$\begin{aligned} & \text { (22) thick fil } \\ & \text { Minim (12) } \end{aligned}$		

Area 3, surface of 1 ichester road

AB	439	C .4
AB	440	$351-53$
AB	441	$330-37$
AB	442	$?$
AB	443	$330-35$
AB	453	$346-50$
AB	454	1 ate C 4
AB	455	$?$
AB	461	$330-35$
AB	466	$306-37$
AB	467	C .4
AB	481	$330+$

Minim (10)
Magnentius/Decentius
Victoriae type 2
VRBS ROMA
CONSTANTINOPOLIS
Constantius II/Constans Phoenix 2
Irreg ?H of Valentinian
CONSTANTINE II 1 std)P(
Follis Constantine/Licinius SOLI INVICTO COMITI
(14)

H of Constantine

Topsoil, 1974-76 excavations

Context Location	Coin No.	Date	Description	Mint Ref.
Topsoil, 1974-76 contin	$\begin{array}{ll} \text { AB } & 737 \\ & \\ \text { AB } & 738 \\ \text { AB } & 734 \end{array}$	$\begin{aligned} & 341-46 \\ & \text { c. } 4 \\ & \mathrm{c.} .4 \end{aligned}$	CONSTANTIUS/CONSTANS Victoriae Minim (6.5) Minim (8)	$\frac{\mathrm{D}}{\mathrm{TRP}}$
Ditch 159(2)	AB 731 AB 730 Note: th clearly point)	$\begin{aligned} & 337-41 \\ & 337-41 \\ & \text { s ditch } \\ & \text { ntrusive } \end{aligned}$	CONSTANTINE II THEODORA PIETAS ROMANA Phase 1 so these coins are (cut by Phase 4b pit at this	
1977/8 watching brief: topsoil over Building 4/lb	CW 5 CW 6 CW 7 CW 3 CW 9 CW 10 CW 11 CW 13 CW 14 CW 15 CW 16 CW 17 CW 18 CW 19	$337-41$ $341-46$ $350-75$ $330-35$ $350+$ $352-60$ $320-24$ C. 4 C. 4 C .4 $330-35$ $350+$ $320-24$ $330-35$	1 standard CONSTANS Il1eg. CONSTANTIUS II ? Victoriae DDAVGGQN H of Valentinian VRBS ROMA Wolf Irreg FH 3 type FEL TEMP FH3 CONSTANTINE I VIRTUS EXERCIT VOT XX CONSTANTINOPOLIS Irreg FH type CONSTANTINE I beattra nqlitas constantine il 2 standards	$\frac{I}{\text { PLG }}$ LRBC I 253 $\frac{\text { ? } \mathrm{G}}{\text { PARL }}$ LRBC I 444? * PLG LRBC I 205 N/S C. 252 $\frac{\psi}{T R P}$ LRBC I 86 $\frac{\mathrm{F} / \mathrm{B}}{\mathrm{PLN}} \mathrm{C} .10 \mathrm{var}$ TR.S LRBC I 64
Topsoil over ditch 185	CW 20	330-35	CONSTANTIUS II TR(2 standards	$\begin{aligned} & \text { P or .S) } \\ & \text { LRBC I } 64 \end{aligned}$
Land drain, Area 3	$\begin{array}{r} \mathrm{AB} 74 \\ \mathrm{bis} \\ \mathrm{AB} 90 \end{array}$	$\begin{aligned} & \text { C. } 4 \\ & \text { 1ate C4 } \end{aligned}$	Minim Victoria type.	rusive

Note+ The coin numbers are those allocated by the excavators.
DM: 1966 excavations;
AE: 1974-76 excavations;
CW: 1977-8 watching brief.

[^0]
ANALYSIS OF COIN

by G C Morgan

A metallographic examination was carried out on a polished section of one coin, $197 \mathrm{I}_{\mathrm{L}} \mathrm{SF} 413$ (from the upper layer (1) of Furnace 31, Building 4/5, Phase $4_{\mathrm{f}} \mathrm{b}$). The crystal structure was revealed by etching in alcoholic ferric chloride and picric acid solutions in succession. This showed a distorted dendritic structure of a copper/lead alloy. This appeared as a copper matrix with interdendritic lead.

The elements were determined by an x-ray analysis of the same section on the electron microscope. This showed the dendrites to be copper and the interdendritic material to be lead in the approximate proportions $\mathrm{Cu} 85, \mathrm{~Pb} 15$. Tin and zinc. were not detected. Silver was not determined.
SAMIAN WARE FROM DEPOSITS OF PHASES 3 AND 4amalgamated reports by Joanna Bird and Hedley Pengelly;with notes on the stamps by Brenda Dickinson and B R HartleyPHASE 31. Western side ditch, Fleet Marston road
126 (2) Walters 81, CG, Ant.
2. New side ditches, shester road
i) Eastern side
13 Dr 37, CG, mid-late Ant.63Dr 18/31, CG, Ant.Dr 36, CG, 2nd cent.Walters 79, CG, later 2nd cerit.CG sherd, 2nd cent.
127 CG sherd, 2nd cent.
ii) Western side
87
Walters 79, CG, later 2nd cent.
3. Other features
294 (pit)
Scrap, CG, 2nd cent.
PHASE 4a

1. Alterations to Alchester road surface206Dr 79 - Tg range. Flat dish with groovesinstead of the more normal roulettedcircle found on the floor of 79R's, TgR's,etc. E.G., probably Rheinzabern. Iate 2ndor early 3rd cent.
2. Ditches, east of Alchester road
Rearward plot boundary 102. Dr 27, SG, Flav.
3. Ditches west of Alchester road
i) Rearward plot boundaries
167
Dr 31, CG, Ant.319Dr 38, slightly burnt, Ant.
ii) Plot side ditches
90 (P1ot 4/3) Dr 31, CG, Ant.
```
104 (Plot 4/3) Dr 37, CG. Broken ovolo, beaded tongue.
    Had.-Ant.
```

4. Structures and other features
i) Plot $4 / 1$
154 (Building 4/6b) Dr 31, CG, Ant.
ii) Plot $4 / 3$
61 (circular gully, Building 4/2a) CG sherd, 2nd cent.
iii) Plot $4 / 4$
202 (enclosure ditch) Dish fragment. CG. Slightly burnt.
Probably mid to late Ant.
iv) Plot $4 / 8$
3 (yard outside Building 4/5) Bowl sherd, CG, mid-later 2nd
cent.
7 (2) (N-S drainage ditch) Dr 31, CG, Ant.
24 (N-S drainage ditch) Dr 42 dish, barbotine leaves, SG,
mid-late 1 st cent.
27 (" " ") Dr 33, CG, 2nd cent.
PHASE 4b
5. Recutting, side ditches, Alchester road
i) Eastern side
58
Dr 37, CG. Panel design with medallion or
festoon. Had.-Ant.
Dr 37, C/EG, later 2nd cent.; worn
CG sherd, 2nd cent.
300 Fragment of an enclosed jar (Déch 72 etc)
with 'cut-glass' facets (cf 0 \& $P, P 1$.
LXVII). Probably late Ant.
Curle 15. CG, Ant.
ii) Western side
76 Two CG sherds, 2nd cent.
86 Dr 33, CG, Ant.
Dr 37, CG, Ant.
132 (1) CG sherd, 2nd cent.
6. Rearward plot boundaries west of Alchester road
179
Dr 18/31, CG, Ant.
Dr 18/31, CG, early 2nd cent.
7. Recutting, plot boundaries west of Alchester road
131 (Plot 4/1) Dr 33, CG, Had.-Ant.
185 (Plot 4/5) Dr 31, CG, Ant.
Dr 38, flange, EG, Ant.
Tiny scrap, 2nd cent.
197 : D1ot 4/5) Dr 31R, CG, mid to late Ant.
```
4. Structures and other features
Plot 4/1
j.) Internal boundary
175 (2) Lud Tg probably, EG, later 2nd-early 3rd
cent.
CG sherd, possibly Walters 79; later 2nd cent.
ii) Pits
Dr 31R, CG,1ater 2nd cent.
    Dr 37, CG. Probable panel design with
    double medallion or festoon. Early-mid
    2nd cent.
    Dr 37, CG. Broken small ovolo, with rosette
    tip. Had.
    CG sherd, 2nd cent.
    CG sherd, 2nd cent.
    Dr 46, CG, mid 2nd cent.
    CG sherd, 2nd cent.
    Dr 33, CG, Ant.
    Dr 37, CG, Had.
    Dr 33, EG, later 2nd-early 3rd cent.
    Dr 37. The ovolo is blurred, but is
    probably R. B38, used by X-9 ('Medetus-
    Ranto') of Martres. For the same festoon
    and astragalus, with the panther 0.1566,
    see S & S P1. 31, no. 368. \subseteq AD 100-125
    TwO CG sherds, 2nd cent.
    CG sherd, later 2nd cent.
    Lud Tg, CG, later 2n.d cent.
Plot 4/2
196 (drainage ditch) Dr 31, CG, Ant.
    Dr 31, CG, burnt. Ant.
P1ot 4/3, Building 4/2b
```

Dr 18/31, CG, early-mid 2nd cent. Walters 80 probably, CG, later 2nd cent. Dr 31, CG, Ant.

Dr 18/31 or 31, CG, mid-later 2nd cent. ATILIANIO on Dr 33. Die 2 b , Atilianus of Lezoux. Atilianus' output is mainly midlate Ant., but he may have ocsasionally made 27. He made $31 \mathrm{R}, 79$ and 80 , and occurs at Pudding Pan Rock. © AD 160-190 Dr 37 in the style of Caratilius of Lezoux. His ovolo, with beads and astragalus, as S \& S P1. 96, no. 3; the deer may be that on ibid, no. 1. The dolphin is probably 0.2394 A . c AD 140-170

Dr 18/31, CG, mid 2nd cent. Dr 18/31, CG, mid 2nd cent. Dr 18/31, CG, Ant. Dr 33, CG, 2nd cent.

Dr 33, CG, mid 2nd cent.
Dr 33, CG, Ant.
Dr 33, CG, Ant.
Dr 36, CG, 2nd cent., very worn
Dr 45, CG, later 2nd cent.
CG sherd, 2nd cent.
Dr 31, CG, late 2nd cent.
Dr 33, CG, Ant.
Dr 36, CG, Ant.
CG sherd, 2nd cent.
Dr $18 / 31$ or $31, \mathrm{CG}$, Ant.
Dr 33, CG, Ant.
130 SG sherd, lst cent
Two CG sherds, 2nd cent.
136
Dr 33, CG, Ant.
Dr 33, CG, Ant.
CG sherd, 2nd cent.
64 (pit) Two SG sherds, 1st cent. Two CG sherds, 2nd cent. CG shord, mid-later 2nd cent. Dr 33, CG, Ant.
Dr 18/31 or 31, CG, mid-later 2nd cent.
Dr 37, CG, a fragment from below the decoration. Ant. Walters 79 probably, later 2nd cent.

Dr 37, a fragment from below the decoration. Ant.
p1ot $4 / 8$

1 (drainage ditch, Building 4/5)

Dr 31R, CG, later 2nd cent.
Dr 45, CG, later 2nd cent.
D:. 45, CG, later 2nd cent.

7 (3) (replacement $\mathrm{N}-\mathrm{S}$ ditch)

Dr 29, SG. Scroll in lower frieze; the arcades contain a pair of bell-shaped flowers on tendrils (as H Pl. 55, no. 43) at the base of a formal arrangement. C AD 50-70
6 (clayey spread) Walters 79, CG, later 2nd cent. Dr 33, CG, Ant.
11 ")

Dr 18, SG, Flav. Dr $30, \mathrm{SG}, \mathrm{pre-Flav}$. Dr 36, CG, early 2nd cent. Dr 37, CG, early 2nd cent. CG sherd, 2nd cent.

From a drain trench dug at the eastern end of the site excavated in 1967 (in the Link Way/Sandyholme Road area, around SP 69054825).

Tr 33, CG, two, one slightly burnt, Ant.
Dr 36, CG, broken across a large rivet hole, late Ant. Fragment of a large, flat platter or stand (cf. 0 \& P, Pl.
LXVI, 4, from Silchester). These unusual vessels are common to South, Central and East Gaul, though relatively few are known; some are stamped. This particular example appears to be in EG fabric, and dates from the end of the 2nd century.

Form 37. Many pieces, some adjoining, from an eroded bowl pierced for rivets. The simple scheme of panels is complete and gives saltires with corded bifid leaves (basically Rogers 1974, G390) and circles alternating with: (ia) medallion with 'cushion' (ibid. U2); (ib) bird (O. 2n67A); (iia) festoon with crane (L. 991 and 1006, 0.2202); (iib) erotic group (close to 0 M). This bowl is by an anonymous Hadrianic - to early - Antonine potter of Lezoux, and has various points of contact with, primarily, X-5 who used the ovolo (Rogers 197!, B31), circles, medallion with 'cushion' and festoon with crane, together with Docilis who used both the 'cushion' and the leaf and some work of an anonymous mould-maker ($\mathrm{X}-9$) producing for the 'Medetus-Ranto Group'. It is perh:ps best to assign this bowl tentatively to $\mathrm{X}-5$, but with caution, since its relatively spaccous design is quite unlike the majority of his work which he tends to clutter up with small decola+ive details to utilize as much space as possible on the bowl (compare S and $b, P 1.67$ with P1 31,373 in the style of $\mathrm{X}-9$) (fig 17, 1).

Form 37 picrced for at least one rivet. The ovolo, bhoseh worn, is undoubtedly the one with beaded tongue (Cinnamus 3B) used at Lewoux by Cinnamus ii, Cerialis ii, Sacer i, Anunus ii, Paullus iv and others (cf. Simpson and Rogers 1969, Fig 1). c. AD 140-170.

Form 37. The use of a straight line in conjunction with the ovolo (Rogers 1974, B223) is common to both Pugnus and Secundus v, but the placing of partial, often blurred, impressions of a small dolphin (close to D. 1057, 0. 2401) in the corners of pancls is diagnostic of the latter. can 140-175.

Unstratified illustrated samian (Fig 17)
2. Form 37. CG in the early style of Sacer of Lezoux. The upper zone has a continuous festoon with birds 0.2252 and 0.2298 , the lower one bundles of leaves (Rogers L 9) in two overlapping impressions; acanthus tips (ibid, K23); lion ($0.1 / \mathrm{l}_{4} \mathrm{t}_{4}$) and bear (0.1627). Cf S and S Pl. 82,6 except that the pendants in the festoon are beaded like the Saalburg bowl (ibid, P1. 84, 1/t) and end in tri-1obed buds (Rogers G71). © AD 120-145. Unstratified from the area of features 297-399.
5. Form 30. CG. The ovolo is Rogers B2e3. Used in conjunction with a straight line (here it overlaps), this ovolo occurs in the work of Pugnus or Secundus (cf S and S P1 154, 16, which also gives the Neptune and the bead-row). c. AD 145-170.

Unstratified from the area of features 282 and 287.
7. Form 37. CG. Both the fabric and the poor light orange-brown slip are slightly burnt. No precise parallel has been found for the ovolo replacement of poorly moulded, damaged and abraded cross-like ornaments with straightish upper arms and more strongly bowed lower ones. Ricken 1934, Taf. XIT, 6/t is similar but larger. Antonine or early 3rd century. Unstratified from the area of feature 297.

POTTERY FABRIC TYPE SERIES, TOWCESTER.

Taken from Brown and Alexander 1982, 356. NB. some of the fabrics and forms do not occur in the Alchester road suburb.

1. Medium reddish/orange buff surfaces and break (5YR 7/4-5YR 7/6), hard smooth, uniform, sandy. Decoration consists of rough casting, burnishing, rouletting; sometimes the external surface is a darker, greyish brown (5YR 4/2). Pale cream slip occasionally. Mostly bag shaped beakers but occasional bowls, jars and lids.
2. Pinkish (2-5YR 7/2), uniform, hard, slightly uneven surface with sand grains plainly visible. Lids, beaker.
3. Light buff surfaces (5YR 7/4), grey core and sometimes grey interior; soft, smooth, mica dusted.
4. Dull orange/buff surfaces (2-5YR 6/4) and break, soft, smooth. Lids.
5. Rather coarse, rough, sandy, reddish brown surfaces (2-5YR 6/2), thickish grey core, mica dusted.
6. Medium orange/buff surfaces (EYR 7/6), grey core, soft, smooth, fine sandy inclusions. Lids, but mainly imitation samian shapes.
7. Softish orange (7-5YR 8/3) surfaces, sandy, thickish grey core. Beakers.
8. Hard orangy reddish buff fabric (5YR $7 / 3-6 / 8$), finer than 8 , sornetimes reduced surfaces. Beakers.

12a. Lower Nene Valley colour coated ware.

12b. A lower Nene valley fabric, reddish orange (10R 6/1), black lustrous slip. Beakers.

Northamptonshire Archaeology 18, 1983
13. Oxfordshire colour coated ware.
14. Other colour coated wares: (c) Cologne; (f) North Gaul fabric 1; (g) North Gaul fabric 2; (h) Eastern Gaulish.
15. Black burnished ware, category 1 .
15. Lignt bluish grey surfaces (N 7); margins and often inside surface a lighter grey. Thin core can be buff. Fine, hard, smooth.
17. Very hard, sandy, light grey boaj; slate grey shiny surfaces (5PB 5/1-3/1). Necked jars, bowls.
18. Dark to medium grey surfaces (7-5 YR ó/1-7-5 YR 6/2), sometimes with buffish tinge or buff margins. Burnished generally hard, fine glistening sandy temper. Jars, bowls with reeded rims, beakers.
19. Medium grey surfaces (10 YF 5/1-10 YR 6/1). Hard, rough fee1, coarse sand inclusions plainly visible. Channel rim jars, necked jar.
20. Medium to dark grey surfaces (10 YR 4/1-10 YR 6/1), most1y uniform but sometimes with dark core. Very hard, smooth. A variety of jars, bow1s, lids. The common rather featureless grey ware of the Nene Valley and elsewhere.
21. Hard, dense grey sandy fabric with plentiful inclusions of haematite. Uand burnished on outside to give a smooth, dark grey (N4) finish. Mainly copies of BBl forms.
22. Medium to dark grey surfaces (N $5-\mathrm{N} 6$), sometimes with a blotchy steel blue tinge (5 PB, 5/1), hard, rough sandy feel. Sometimes burnished, Upper Nene valley including Ecton. A variety of jars and bow1s.
Northamptonshire Archaeology 18, 1983
23. Exterior surface medium greyish/buff (10 YR 5/1); light buff core and interior (10 YR 8/2). Hard, fairly smooth but sandy. Reeded rim bowls, channel rim jars, necked jars, lids.
24. Black, dark grey surfaces (2-5 YR 3/1 - 2-5 YR 4/1), lighter grey core, can be softish, sandy. Wide mouthed and necked jars.
26. Very dark grey surfaces (5 YR 2/1), buff/reddish brown core, sandy. Necked and channel rim jars. ? Caldecotte, Bucks.
27. Highgate Wood Eabric type C.
28. Softish bluish grey (N7) rather coarse sandy fabric sometimes with black slip.
30. Coarse grey ware (7-5 YR 4/1), often with a brownish tinge or margin, softish, sandy with large grains frequently visible.
33. Light buff/brown granular surfaces (7-5 YR 7/3), hard, gritty, sandy, roughish feel. Sometimes a grey core. Reeded rim bow1s, jars.
34. Brownish grey surfaces (7-5 YR 5/2), buff core, hard, sandy, finer than 33. Channel rimmed jars.

35a. Medium reddish buff surfaces (5 YR 6/4-5 YR 7/4), grey in patches, sometimes grey core. Mostly hard, lumpy with roughish uneven feel, sparse shell inclusions. Generally thick, scoring and rilling, Large storage jars, channel rim jars, wide mouthed bowis.

35b. Orange/buff surfaces (5 Yk 6/4-5 YR 7/4), generally a thick grey core, smooth but sometimes irregular surface owing to large quartz, limestone and grog inclusions. Softish, friable.

Sometimes burnished. Large jars, necked jars.
Northamptonshire Archaeology 18, 1983
36. Orange/light buff (5 YR. $7 / 4-5 \mathrm{YR} 7 / 6$), sometimes grey core. Softish rough and sandy. Flagons, reeded rim bowls, channel rim and necked jars, lids, cheese press, face urns, imitating Samian forms. Verulamium and Upper Nene areas.
40. Reddish brown/orange surfaces (5 YR 6/4), sometimes grey core, very hard, smooth, sandy; cream or pinkish cream slip (10 YR 8/2). Oxfordshire white colour coated ware.
41. Yellowish cream fabric (7-5 YR' $9 / 4$), uniform, hard, smooth, sandy. Channel rim and necked jars, bowls, flagons.

4?. Cream (7-5 YF 8/2), hard, smooth, sandy. Flagons.
43. Parchment ware.
44. Shell tempered ware:
(a) Salmon (YR '6/6), soft, frequent large whice shell fragments, often scored. Large storage jars, necked jars.
(b) Reddish brown (10 YR 5/4), dense: spiky shell fragments on surface, give a rough feel.
(c) Hard, she 11 visible but surfaces smoothed down, dark redés: brown, often rilled (2-5 YR 6/3 - 2-5 YR 6/4). Surfac:s san be greyish (2-5 YR 5/1). Cooking pots, plain bowls, Elanged bowls. Of the type made at Harrold, Beds.
45. Amphorae. Mostly a light yellowish buff (7-5 YR 8/3), rough feel, sandy inclusions plainly visible. Some fragnents are a light brown/orange ($5 \mathrm{YR}, 6 / 4$) however and a few have a thick grey core. Most are of Dresse 120 form and come from the Guadalquivir region of Spain, where they were used principally for the carriage of olive oil.
by R P symonils
Three small non-joining rim sherds, probably of on vessel. Cornice rim, similar to that of a Dech. 74^{\prime} 'hunt-cup' (cf. Lambrick 1\%, J, Fig 18, no 12), except for the presence of a single branch of scroll-like sarbotine (under the colour-coating) which appears just below the rim. These two el mente probably date the sherds to between 120 and 180 AD , and they are most likely to le from Central Gaul, probably Lezou: (Fig 20, 29). 189, Building 2/3, Phase 2.

Small rim skerd of a beaker which belongs in the 'Rhenish' ware tradition, but is not really otherwise identifiable. 189, Building $2 / 3$, Phase 2.

A boly-alerd from a folded beaker, probably from Trier. Date: c. 200-275 AD. 202, Plot 4/4, Phase 4a.

A bodyacherd of a beaker, probably from Trier. Date: c. 200-275 ND. 208, inductrial layor, Plot 2/3, Phase 2.

Two bedy=chords of two beakers. The one with a redder fabric is probably from Trier (ef. Lambeick tobo, Fig 22, no 7). Date: c. 200-275 AD. The one with a whiter fabrie is virtunlly unidentifiable, and could eithor be contimental, in which cace it might he Contral Gaulioh, or it could possibly be from ahg None Valley: given the level of vagueness, it is not very dateablegaga, Alebester road GAde ditch, west gide, Phase 2.

Sherds of two beakerg. Onc of these, accounting for all but one of the sherds, is probably a Central Gaulish beaker with rouletting and just it trace oi barbotinc decoration (under the colour-coating). Date: 120 - end of and C_{n} The other sherd is probably British in origin, but the source is not obvious. and the sherd is therefore not dateable. 287-8, ditches. Phase 1.

Onc sherd of a beaker, probably Britioh in origin and therefore not dateable. 288, ditrh, Phace 1.

Rim of Dr 40, Central Gaulish, probably fron Lezoux, but almost as likely to be from one of Geveral other workchope including Lea Martros; de Veyre, clermont Ferrand, Vichy = Terre Frameho, Toulon gur M11ier and Yoeure - St Bonnet. Date: 120 AD to cind of gad C. 189, Hinilding 2/3, Hhacse 2.

A ROMAN MIRROR FROM ST LAWRENCE ROAD, TOWCESTER, NORTHAMPTONSHIRE

by G.C. Morgan
Department of Archaeology
University oí Leicester

During the cyeavation of the above site in 1974, a wood backed Roman mirror was foumd. Although broken and mineralised, it retains its original polish and apface detail.

The barial conditions vere very wet with clay and much waterlogged wood. The wirror itself had a two-ply wooden backing,oak about 3 mm thick and an madenticiable diffuce porous wood about 1 mm thick. The chemieal analysis of the mirror was as follows:-

$$
\begin{array}{ll}
\mathrm{Cu} & 59.234 \% \\
\mathrm{Sn} & 22.9 \% 3 \% \\
\mathrm{~Pb} & 15.04 \%
\end{array}
$$

97.199 Leaving 2.801% as oxiafls and
trace elements.

The hardness was $38 s^{\prime}$ Vickers', which is about twice as hard as a cast 10% Sh bronze.

Xepay probe analysis showed the presence of various other elements such as : and Fe which are duite common trace elements in ancient bronzes. The actal wap chow clearly the hoterogencity problems of analysis. A small bample was ranoved from the centre of the mirror, about $2 \mathrm{~mm} \times 1 \mathrm{~mm}$ and about 0.8 mm thick. Netallographic cramination chows that the mirror was originally cast and cubsequently polished on one side. The numerous surface casting imperfections, such as blow holec, are etill visible on the poliched face. The metal is gencrally homogenceus, although surface depletions and local concentrations of impurities are quite obvious. X -ray diffraction analysis of the corrosion products was not successful, the cample apparently being rather amorphous. Northamptonshire Archaeology 18, 1983

Only a few very blurred lines were obtained. The corrosion products/patina appeared to be identical on both sides of the mirror, despite one side being polished and the other as cast. The depth of corrosion does vary with the original porosity of the metal, the cast surface being more corroded than the polished surface.

The conditions of huriol must have been more or less continuously waterlogged, in view of the preservation of large amounts of timber. Although not recorded, a slightly acid; anaerobic environment with a high tannin content might be expected. The inhibiting effect of poly-phenols (tannins) may have contributed to the 'amorphous' patina on the mirror.

The true colour of the mirror is a darls grey/green.

The following optical and electron micro-grapls show the metallurgical and elemental nature of the mirror section (1.8 mm thick).

1) Polished section of the mirror, cast surface upwards.

2.) Enlargement of the above section, etched in FeCl_{3} soln.

2) Further enlargement of the section, showing the fine dendritic structure and a ligA

3) Electron micro-graph of the mirror section as in 1. The porous cast surface is not as clear as the optical micro-graph.

4) Metal map showing the copper distribution. Note the porous cast surface and the non copper voids.

Fig. M2 Towcester, Alchester road suburbs: the mirror.

7) Entargement of 4 with an $F e$ concentration graph across a feature.

8) Metal map of 7 showing the Cu distribution.

9) Metal map of 7 showing the As ? distribution.

FLINT (Fig M4)

The flints found during the excavations of $1974-6$ have been reported on by Mrs Elizabeth Healey as follows:

The seven flints recovered during the excavation of the site were from residual or surface contexts. They include a fragment of a leaf-shaped arrowhead, a core-rejuvenation flake, a piercer, and four flakes.

The flakes all have some areas of cortex and two are patinated; one may have been mechanically struck. Three are unretouched and the fourth has edge damage in a concave area, which may have been occasioned in use.

The piercer (1) has a short point with 1 ight retouch and is not unlike the piercers from the primary levels at Windmill Hill (Smith 1965, 93).

The core-rejuvenation flake (2), is of Mesolithic character and has been struck along the face of the core at 900 to the existing platform.

The leaf-shaped arrowhead (3) is represented by a basal fragment. It has been bifacially worked with flat flaking on both sides, although one is more regularly worked. It is probably of Neolithic date, although chance finds of leaf-shaped arrowheads may be Bronze Age in date (Green 1974, 106, fn 36).

The flints then have elements of both Mesolithic and Neolithic traditions.

LIST OF FLINTS FOUND IN THE
 SERIES OF EXCAVATIONS

$\frac{\text { Illustration }}{\text { No }}$	Description	Context	SF Number
1	Piercer	Topsoil	1975673
2	Core rejuvenation flake	97, Phase 4a	1975685
3	Leaf shaped arrowhead	25, Phase 4b	1974264
	Flake	Topsoil	1975605
	Flake	75, Phase 4b	1975595
	Flake	170, Phase 4b	1976834
	Flake	67, Phase 2	1975562
	Thin flake	Surface find, area of SP6 885480?	1977 watching brief
	Flake	Unstratified over Building $4 / 1 \mathrm{~b}$	1977 watching brief

Fig. M4 Towcester, Alchester road suburbs: flints.
13. Knife, common type*. Topsoil, Area 1. 1976 Sf 733.
14. Knife. 96, pit, Phase 40. 1975 SF 682.
15. Knife. 330, Building 2/7, Phase 2 or Phase 4b. 1957 IW 10.
16. Top of spatulate-headed linch pin?* 282 (1), Alchester road side ditch, Phase 2.
17. Another? 330, Building 2/7, Phase 2, or Phase 4b. 1967 IW 10.
18. Ring headed pin, or possibly a bucket handle. 336 , Building 2/7, Phase 2, or Phase 4b. 1967 IW 19.
19. Ring headed pin probably*. Topsoil, Area 3. 1974 SF 23.
20. Possibly a wall hook with plate for attachment* ${ }^{*}$. 71 , pit, Phase 4b. 1976 SF 799.
21. Key? 83, Building 4/2b, Phase 4b. 1975 SF 663.
22. Key from barb spring padlock. 330 , Building $2 / 7$, Phase 2 , or Phase 4b. 1967 IW 10.
23. Loop headed pin. 61, Building 4/2a, Phase 4a. 1975 SF 671.
24. As 23. 1975 SF 705.
25. Loop headed pin?* 330, Building $2 / 7$, Phase 2 orPhase 4 b. 1967 IW 10.
26. Hook?* 63, side ditch, Alchester road, Phase 3. 1975 SF 548.
27. Hook. Base of topsoil, Trench 25. 1967 IW 17.
28. Chain fragment*. 330 , Building $2 / 7$, Phase 2 or Phase 4 . 1967 IW 10.
29. Strip, or possibly a bucket binding*. 327, side ditch, Alchester road. Phase 2. 1967 IW 26.
30. Probably fragment of binding, but could also be part of a lock hasp. As above.
31. Binding fragment? 336, Building $2 / 7$, Phase 2 , or Phase 4b. 1967 IW 19.
32. Binding fragment?* 282 (1), side ditch, Alchester road, Phase 2.
33. Socket for attachment of a tool to handle? Topsoil, Area 3. 1974 SF 11 .
34. Buckle. 169, Building $2 / 1$, Phase 2, or Building $4 / 6 \mathrm{c}$, Phase 4b. 1976 SF 739.
35. Dog*. 338, Building 2/7, Phase 2, or Phase 4b. 1967 IW 23.
36. Part of a dog? 282 (1), side dit ch, Alchester road, Phase 2.
37. Part of a dog?* 330, Building $2 / 7$, Fhase 2 , or Phase 4 . 1967 IW 10.
38. Heel of hippo sanda1* (see Verulamium I, Fig. 63, 29 (Frere 1972)). 330, Building $2 / 7$, Phase 2 , or Phase $4 b$.
1967 IW 12.
39. Part of hippo sandal. 336, Building 2/7, Phase 2, or Phase 4b. 1967 IW 19.
40. Part of loop headed pin. 169, Building $2 / 1$, Phase 2 , or Building 4/6c, Phase 4b. 1976 SF 764.
41. Might be part of a Type 1 hippo sandal*. 287 (1), ditch, Phase 2.
42. Nail of Type 1 (Manning 1974, 173). 330, Building 2/7, Phase 2, or Phase 4b. 1967 IW 10. Most of the 130 or so nails found in these excavations were of this type and size.

43-45. Eent nails of Type 1. 44 comes from Ditch 287 (1): 45 from Ditch 195. These belong to Phase 2 but the majority of the nails come from deposits which belong or could belong to Phase 4 b , Building $4 / 2 \mathrm{~b}$ (52), or from the area of Building 4/6c (10) and 4/4 (16) (these could however be 2nd century because of the mixed stratigraphy at those points). Several are bent like these. There is therefore a suggestion that the stylobate buildings of Phase 4b were weatherboarded, but the possibility that some of the 2nd century timber buildings were so covered should also be borne in mind.
46-47. Nails of Type 2, lost head variety. 46 comes from the surface of the Alchester road in T:Einch 22, 1967 IW 14, and 47 from 331, Bui2ding $2 / 7$, Phase 2 , or Phase 4 b (1967 IW 24).
48. Binding with nail through it*. 294, pit, Phase 3.
49. What was probably a decorative iron boss, 500 mm in diameter, with a raised centre portion 250 mm in diameter and 9 mm high. Like Shakanoak IV, Fig. 63, 481, where late 4th century (Brodribb et al 1973). Base of ploughsoil over Building $4 / 1 \mathrm{~b}$, Phase 4 b .

[^1]

Fig. M5 Towcester, Alchester road suburbs: ironwork.

Fig. M6 Towcester, Alchester road suburbs: ironwork.

Fig. M7 Towcester, Alchester road suburbs: ironwork.

JET AND SHALE (Fig M 8)

1. Jet bead. 104, ditch, Phase 4a. 1r is SF 672
2. Similar bead. 185. ditch, Phase 4b. For a similar bead dated to ca $280-90$, Verulamium I, Fig 57, 226 (Frere 1972).
3. Jet bracelet. 101, ditch, Phase 2. 1974 SF 37.
(Unill) Fragment of turned shale bowl, from near base. 185, ditch, Phase lab.
(Unill) Fragment, shale bracelet, 196, ditch, Phase 4 b .

Fig. M8 Rowecseca, Alchocter road suburbs: objects of jet.

IEATHER (Fig. M 9)

(a) Erom the excavations of 1974-76 (all unill.). The followifg notes were supplied by the late $J H$ Thornton.

1. Part of a shoe bottom unit - either an insole or more probably one of the intermediate sections between sole and insole. Numerous nail holes, and thongs. 44, ditch, Phase 4 b.
2. Possibly a small Eragment of the waist of a shoe bottom unft consisting of three layers of leather. 26, ditch, Phase 4 b.
3. A heel stifeener Erom the back of a shoe and possibly part of the shoe quarter itself. The stiffener, as usual, has the grain side invards and the lasting margin is moulded fraricts, 38, Guvert, Building $4 / 5$, Phase $4 a / b$
4. Very fragmentary multi-hayered shoe botrom unit consisting of pafts of the insole, intermediate sections and stifecner. Very litele, if any, of the sole remains. The fintemediate sections or fillers are smaller and show some thonging. There are also some nail holes but it is not bocatble to difacen the paterm.
This Gpecimot appeass Eo EOLDOW the normal Pomano-british method of thating a miti-iayered shoe bottom unit by thongine together finsole mind middie sections and then Whinith on fire oote at the same time enclosing the Hating matain of the upper. (See Thornton 1973). 170/1, Fib, Phege 4b=
5. Thece Ehotef fragrients. 3, yadd, Building 4/5. Phase 4a/b.
G. Thing Epernche 16 (2), diteh, Phase 4a.

WiGG J Gwanh, Feever, Shoc Collcetiong, Northampton wuseum, RGporge:
 of ifeht Eoot, typical Roman oaliga (army boot). There appeap to be two iayeres sole and insole, with impressions of Fob mails Eound the outside of the sole, with a centre Fow in EOFQFer maige and under heel, with an intermediate for ribher wide in forepert and under heel. only part of the beet of bre redi survivoe (in the waist). 248 ma long
 EGfige Efont bhe ict-4th genturice 207, ditch running from Builaing $4 / 1$. Pherse 4 .

Fig. M9 Towcester, Alehester road suburbs: shoe from Ditch 207, Phase 4b.

QUERNS (Figs M 10-1 1)

The following table lists the quern fragments found during the excavations. All were of Millstone Grit (thcie found in the $1974-76$ excavations were identified by Dr T Ford, Department of Geology, University of Leicester; those found in 1977 by Mr Gordon Osborne, and Dr D T Moore, Department of Mineralogy, British Museum (Natural History)). Most of the fragments seem to have been used as hardcore for floors or yards.

Radius mm	Max thickness	Description	Context	Phase	SF No	I11ustration
	mm					No
210	44_{4}	Top	Pit 39	2	707	
110	47	Bottom	Pit 29t	3		3
230	45	Bottom	Pit 29/4	3		7
$=$	36	Top	Ditch 92	4 ta	645	
295	47	Bot tom	Yard 3 Building $1 / 5$	4	240	2
$=$	33	Top, small frag	" "	4	412	
-	17	Top, tiny frag	" "	4	240	
210	22	Top, two frage:	" "	14	66	
-	18					
$=$	29	Small frag	" "	4	413	
-	29	Top	" "	4	415	
810	22	Top	Yard 22	4	349	
			Building $4 / 5$			
250	30	Top, two	F1oor 30			
-		joining frags	$\begin{aligned} & \text { Building } \\ & 4 / 5 \end{aligned}$	14	31.	
-	80	Bottom	Furnace 34 Building $4 / 5$	4 La	421	
180	32, 28	Tcp two frags,	Furnace 34	$4 a$	1420	8
-		(one scored)	Building $4 / 5$			

Radius mm	Max thickness	Description	Context	Phase	SF No	Illustrati
-	-	Small battered fragment	Posthole 33 Building $4 / 5$	4 a	387	
-	35	Top, scored	Furnace 31 Building 4/5	4 b	322	
210	29	Top	$\begin{aligned} & \text { 66, Building } \\ & 4 / 2 b \end{aligned}$	4b		5
230	29	Top	"	"		6
$=$	39,40	Two bottom frags	"	"	643	
250	17	Top	$\begin{aligned} & 130, \text { Building } \\ & 4_{4} / 2 \mathrm{~b} \end{aligned}$		848	1
260	26	Bottom	"	"	850	4
-	38	Lump	"	"	845	
180	35	Top	"	"	846	
-	30	Top	"	"	8449	
-	33	Lump	"	"	844	
210	30	Top	"	"	847	
230	$2{ }^{4}$	Top	Ditch 16	4 b	196	
-	$3{ }^{4}$	$\begin{aligned} & \text { Top, small } \\ & \text { frag } \end{aligned}$	Layer 208	$\begin{aligned} & 2 \text { or } \\ & 4 \mathrm{~b} \end{aligned}$		
-	45	Top	"	"		
-	30	$\begin{aligned} & \text { Top, small } \\ & \text { frag } \end{aligned}$	Ditch 172	$4 b$	715	
230	29	Two bottom frags	Topsoil	-	348	

Fig. M1O Towcester, Alchester road suburbs: querns.

Fig. M11 Towcester, Alchester road suburbs: querns and stone object.

SPINDLE WHORLS (Fig. M12)

All in pottery fabric 12a, Nene valley colour coated ware.
7. Baff fabric, dark brown colour coat, 104 , ditch, Phase 4 .
8. Cream fabric, brown colour coat. 181, Building 4/6c, Plot 4/1, Phase 4b.
9. Cream fabric, brown colour coat. 12,yard outside Building 4/5, Phase 4a/b.
 spindle whorls.

Several discs of stone, tile or pottery were found, ranging in diameter from 40 to 105 mm ; they were too small and inaccurately cut to have been lids, and in any case none of them had smoke-blackened edges. They are perhaps best thought of as counters, or more probably for use in some such game as quoits (Woodfield 1981, 105).

1. Pottery fabric 35b. 104, ditch, Phase 4a.
2. Pottery fabric 35b. Surface, Alchester road.
3. Eroded: pottery fabric 13. 129 (2), causeway, Area 3, Phase 4a.
4. Limestone. 34, hearth/furnace, Building 4/5, Phases 4a/b.
5. Limestone. TopsoiJ., 1974 excavations.
6. Tile: fabric relates to pottery fabric 25. 183, ditch, Phase 3.

BUILDING MATERIALS (Fig.M. 13)

1. Ceramic tiles

The fabric types described in Brown and Alexander 1982 (47-8) have been used in the analysis of the tile fragments from these excavations. Table 1 provides a breakdown of the fragments by fabric, type and phase. This shows that the bulk of the tiles found come from Phases 2 and 4 b , when the buildings on the site were rectangular. The possibility must therefore be entertained that some were tiled, although the problem of residuality in the later levels should not be forgotten, as well as the strong possibility that tile fragments, possibly old ones, wer - brought in from elsewhere as hardcore for yard surfaces, e.g. the flue ti. os from Phase 4b.

The assistance of Mrs J. Hastings in processing the tiles is gratefully acknowledged.

Fabric 1 (shell tempered) makes a poor showing; a contrast with the later Roman levels on the Grammar School site. The following tile types were noted:
(a) Imbrex tiles mostly 13-15mn thick.
(b) Tegulae ranging in thickness from 14 to 21 mm but mostly $17-19 \mathrm{~mm}$, with flenges of external height from $33-44 \mathrm{~mm}$. The flange tops are rounded.

Yabric 2 (reccmbles Pottery Fabric 35b). The commonest tile fabric. The evidence fron this site sugegests but does not conclusively prove that it was being made in the 4, th century as well as in the late 2nd/3rd
centuries.
(a) Imbrex tiles ranging in thickness from 11-18mm but mostly 12-15mm. Illustrated pieces:
2. Has reddish brown paint and wavy line decoration at end similar to that employed on tiles of Fabric 3. 38, culvert, Building 4/5, Phases $4 a$ and b.
3. Unusual oval ? tally mark as well as wavy decoration. 96, pit, Phase 4b.
(b) Tegulae ranging in thickness from 15-24mm but mostly 17-20nm with Elanges of external height from $39-50 \mathrm{~mm}$ but usually within the range 42-48man . The flanges can have rounded or squared off teps.
(c) Flue tiles. Illustrated pieces:

4/6 Boz tiles with straight combing. Locations: 4: 38, culvert, Building 4/5, Phases 4a and b; 6: 64, pit, Phase 4b. A few smaller EEagments with similar straight combing from thase 4.
9. Boztile with wavy combing. Topsoil over 208.
10. Box tile with wavy combing: scratched lines on underside might be Letter W.and cass the break. Topsoil over 184.
(d) Building tiles. The fragments from Phases 2 and 4 a are $39-44 \mathrm{~mm}$ thick; Erom 4b, thinner 29-32mm.
(e) Other Etagments.
14. Tile fragment with smooched bevelled edges and upper surfaces; undergide rough. 6, ditch, Phase 4b.
15. Fragment of flat tile with hole. Tncerside rough. 3, yard, Building 4/5. Phases $4 a$ and b.
17. Curved fragment, possibly from an antefix. Topsoil, 1974 excavations.

Fabric 3 (reddish sandy) Almost as plentiful in Phase 4b as Fabric 2, bit probably residual from Phase 2.
(a) Imbrex tiles ranging in thickness from $11-18 \mathrm{~mm}$ but mostly $12-15 \mathrm{~mm}$. The one complete example (1: from 99, Alchester road side ditch, Phase 2) is 430 mm long. Thirty fragments have wavy line decoration at the end.
(b) Tegulae 17-24man thick, with flanges $40-46 \mathrm{~mm}$ length. The tops of the flanges are generally squared off.
(c) Flue tiles. Illustrated pieces:

5, 8, 11. With straight combing. 5: 130 , Building 4/2b, Phase 4b; 8, 11, Eopsoil over Building 4/1b. Other fragments with similar straight combing from Phase 4 contexts.
7. Straight scoring with single lines. 344, Building 2/10, Phase 2. (d) Building tile Eragments 36-42mm thick.

Fabric 4 (hard, dense reddish brown)
(a) Imbrex tiles mostly 12-14men thick.
(b) Tegulae 18-22mm thick, with flanges, usually squared off on top, with an external height of 40.46 mm .
(c) Flue tiles: Illustrated pieces:

12, 13. With straight combing. 12 from 183, ditch, Phase 3;
13 frog 329, Building 2/7, Phase 2.
(d) Building tiles, Fragments 32-44mm thick.

Fabric 5 (very coarse)
Building tiles 33 mm thick, Eragments only.
2. Stone tiles
16. Of limestone, not Stonesfield; from 203, Building 2/4, Phase 2. A fragment from a similar tile from 181 (Building 2/1, Phase 2, or Building 4/6c, Phase 4b).

3. Tessera

Grey limestone tessera, no mortar traces, $32 \times 20 \times 20 \mathrm{~mm}$, topsoil over Building \quad / $/ 1 \mathrm{~b}$.

FAEBIC	PEASE 1	PHASE 2	PHASE 3	PHASE 4a	PHASE 4 b
Inbece					
Ezuric 1	-	1	-	2	6
Eabric 2	-	18	-	6	79
Eabric 3	8	20	4	18	125
Erbric 4	\square	2	-	3	26
Totci	8	41	4	29	236
Tcruta					
Pabri ${ }^{\text {a }}$	-	4	1	1	12
mbric 2	\square	73	-	12	93
Funde 3	1	10	-	3	19
Watete	$=$	2	-	1	6
$\because \mathrm{OECL}$	1	89	1	17	130
Bluc Eilo					
Pzisfigl	$=$	"	\cdots	$=$	$=$
Pobete \%	"	!	$=$	$!$	10
Patiele	\cdots	,	-	3	17
Watrecta	$=$	4	*	$=$	j
Tobel	$=$	6	$=$	4	32
Builditug Eitc					
Erbeice I	\square	-	\cdots	$=$	-
Wabre 2	-	2	$=$	1	7
Pabite 5	$=$	\cdots	$=$	-	10
Falseic 4_{4}	$=$	2	-	1	11
Eabec	$=$	$=$	\square	-	3
Tomet	\square	4	$=$	2	31.
Othoe frarments					
Vatele 1	$=$	\cdots	1	\cdots	14
Fabric 2	$1 /$	52	2	11	168
Pabide 3	10	19	4	5	19
Fabeice 4	1	2	-	10	16
ToEal	15	75	7	26	247
Pual Fenmoutg cremeabrich					
Qutic 1	\cdots	5	2	3	3%
Pobeic 2	/	146	2	31	357
Fabeie 3	19	50	;	29	200
Foimie 4	1.	12	$=$	15	64
Vabtic 5	-	-	\cdots	-	3
total each	24	213	12	78	6,76

by C.T.P. Woodfield.

The excavations produced four significant pieces of architectural worked stone. These appear to have been selected and brought to the site for secondary use, as there was little other evidence for quality freestone. One piece, the frieze, bore the imprint of a circular post on its rear face, the upper ide as it lay in building 4/2b, and the others (except the colum drum) nay well have served similarly as pads for timber supports. The stone of all four pieces is of a better quality limestone than obtainable locally, the column shaft being a dense buff uneven grained shelly limestone, and the other three being in a well formed oolite from the Lincolnchire Limestone series. Comparison of chips with known gpecinong in the Institute of Geological Sciences suggested the shaft origicsed in the Bath area, and the remainder from the no:th Northamptonchire area, poseibly from the Ketton district.

Thece of the stones have already been described in the context of the finds of architectural masonry from Northamptonshire (Woodfield 1978); they arc cumarised below:-
(a) Section of lathe eutned column chaft with distinct entasis, $248-260 \mathrm{~m}$ diamgeer, 360 m broken length, with one dowel hole with the impression of done headed dowe1 in the mortar (p1.6). Estimated original height of the full colum 1,430mm (4ft. $8 \frac{1}{2}$ ine.) (Building 4/2b).
(b) Moulded section of plinth or cornice corona, conprising an abacus, Northamptonshire Archand two 1ower fillegy 18, 1983 ets. Dejch 440 mn , broken length 440 mm.

Top surface worn smooth in its original setting (Building 4/2b).
(c) Section of large scale frieze bearing in relief a reversing acanthus tendril scroll (p1.8). Length of scroll 646 mm , depth 300 mm . Face is weathered (Building 4/2b).
(d) Square building block of quoin stone, $325 \times 360 \mathrm{~mm} \times 135 \mathrm{~mm}$ thick, with two adjacent faces finished, and possible slight chamfer. Top and bottom faces have rough radial cuts, perhaps as mortar key (Building 4/6c: this is the westernmost of the two stylobates here; pl.7).

By their varying scales the stones are unlikely to have come from one building, but as they are all of imported material, the implication is that there was more than one building of civic scale and classical appearance in Towcester. The frieze would be appropriate to a Corinthian order of the scale of surviving Gaulish temples, and the plinth block is not in scale inconsistent with this. The column shaft however belongs to a smaller scaled structure such as a verandah colonnade or a funerary monument. Capitals of small scale columns have been found elsewhere in Towcester, and the well known terminal mask now in the Britich Museum, from Towcester or Wood Burcote nearby, reinforces the evidence for substantial funerary monuments.

The reuse of the four stones in the fourth century industrial suburb suggests that the major monuments were by then in a state of decay and that the authorities charged with their care were no longer functioning. It may be that the buildings were obsolete in a nominally Chrigtian world, or equally likely, there had been an effectual breakdown in civic identity.

GLASS FROM THE 1967 EXCAVATIONS

Phase 2

1. Three pale green and one colourless body fragments. 329, Building 2/7. 1967 G3.
2. Two blue-green, one pale green, two green and one colourless body fragments. 330, Euilding $2 / 7$ (alternatively some or all might belong to Phase 4b). 1967 G4.
3. Pale green body fragment. 333, as 2 above. 1967 G6́.
4. Two pale green body fragments. $34_{4} 4_{4}$, Building 2/10. 1967 G7.
5. Two pale green body fragments. 342 , pit, 1967 G10.

Phace lat
6. Spout from jug, bluish green glass. 319, ditch. 1967 G9.

Phace ${ }^{4}$ b

7. Gne colourless, one green, one dark green body fragment and piece of indented base with footring, bluish green. 335, Building $t_{1} / l_{4} .1967$ G8.
8. Fragment of bluish green ribbed handle. 300 , Alchester road side ditch. 1967 01.

GLASS FROM THE 1977 EXCAVATIONS

by Denise Allen,

PHASE 2

1. Rim fragment of a bottle of blue-green glass. Rim folded outward, upward and inward and flattened, diam. c. $470 \mathrm{~mm} .282(2)$, Alchester road side ditch.
2. Tndeterminate fragments of blue-green glass from 195 (rearward plot boundary, W of Alchester road), 287 (side ditch, Plot $2 / 6$), 291 (industrial layer, Plot $2 / 3$).
3. Two indeterminate fragments of colourless glass from 188 (side ditch, Plot 2/4).

PHASE 3

4. Body fragment of a frismatic bottle of blue-green glass. Bottles with cylindrical and prismatic hodies were extremely common during the later 1 st and earlier 2nd centuries, and continuct to be used at least until the end of the and century (Charlerworth 1966). 183,ditch.

PHASE ta
5. Fragment of greenish glass, with many pinhead bubbles: characteristic of the later Roman period. 200 , gide ditch, Plot $4 / 2$.

6. Body fragment of a prismatic bottle of blue-green glass. Also neek fragment, with elongated bubbles, of an unguent bottle, flask or bottle, of bluc-green glass. 196, ditch, Plot $4_{4} / 2$.

Unstratified over Building $4 / 1 \mathrm{~b}$

7. Two small rim fragments of greenish-colourless glass, with many pinhead bubbles within the metal. Rims outflared and fire-rounded and thickened. One small rim fragment of a similar metal to above, outflared, broken off flat and unworked. These thece rim fragments are probably from bowls or beakers, the commonest shape for the latter during the later 3 rd and l_{t} th centuries being a truncated cone, as exemplified by a piece from a grave at Wint Hill, Somerset (Harden 1960, 51-2, figs 8-9). The unworked rim type was the most comion at this time. Fire-rounded rims were employed during much of the rest of Roman period, and replaced unworked rims toward: the end of the f_{4} th century. Greenish metal with many pinhead bubbles is alco effaracteristic of the later Roman period; two more indetenminate frafments from this level.
8. iwo fragments, blue-green glass.

Unstratified over 186, Phase 1 ditch
9. Snall flat pale green fragment with one fire-rounded edge extant, probably a pisce of a double-glossy, cylinder-blown window pane. lath century.
by G.C. Morgan

The wood is generally representative of open woodland. The variety of sizes suggests both mature trees and undergrowth, although structural timbers ($80+\mathrm{mm}$ diam) were probably selected. The use of small diameter wood or twigs in field drains has a long history.

The diameters given are estimated minimum diameters of the groving wood. The identification of poplar is tentative as poplar and willow are very similar.

Fin M14 indicates the location of the larger pieces.

PHASE 1

Eastern side Alchester road, Area 3 Hazel, pointed, shaped, 75 mm diam, 50 mm long (3269)
Land drains
157. Twig, 40 mm diar., oak (Quercus spec)

Tvig, 20 mm diam., oá: (S295)
Hazel (Corylus avellana), 10-20mm diam.
Peat-like material (5325)
BGASE 3
Eastern Bide, reduced Alchester road, Area 3
Maple (Acer campestre), circular stake, 200 mm long, 90mm diam. (S225)
Wosech side, roduced Alchester road, Area 3
Oak, circular stake, 400 mm long, 100 mm diam. (S226)
PHASE 4(a)
Recutting, side ditches, Alchester road, western side 68(1). Oak branch, 460 mm long, 40 mm diam. (S213)
Rearbara plot boundarye east of azchester road
16(1). Roots, unidentifiable wood (S176) ROW of posts along E side of ditcin. Oak, wedge shaped section, 500 mm long, 100 mm diam. (34, W5)
Maple, 240 mm long, 140 mm diam. ($\mathrm{B} 4, \mathrm{W8}$) Field maple, stake end, 310 mm long, 80 mm diam. (34, $\operatorname{in} 6$) (Eig. i4 1\%, 2) Poplar type (Populus spee), peg cut to Ghisel enci, with bark, 270 mm long, 50 mm diam. (E4, W3)
Poplar type, branch with shaped end, 260 mm long, 45 mm diam. (B 4, W7)
poplar type, broken peg based on quartered branch, 360 mm long, 100 mm diatn. (B4, W9) (Fig. if 15, 1) Oak, slow grown, split branch with bark, bossibly oblique cuts on end, 320 omm long, 60mm diam. (B4, W2)
Oak, axe cut flakes 200mm long (B4, W4) Hawthorn type (Crataegus spec), fragment, 370 mm long, 165 mm wide ($\mathrm{B} 4, \mathrm{Wl}$) Poplar, branch, 75 mm diam. (B4 W1) Oak, two pieces of plank?, 180 mm diam ($34, \mathrm{~W}$)
16(2) Oak, split, 50mm diam.
Hazel, 60mm diam., split
Hazel, 10 mm diam., twig
Hazel, 15 mm diam., twig
Poplar, 40 mm diam., fragment
Poplar, 20 mm diam., twig
Poplar, 15 mm diam., twig
Iaple, 10 mm diam., cut twig (S42)
Oak, wedge shaped piece, 137 x 20 mm
Hazel, 20 mm diam., twig
Hazel, 15 mm diam., twig
Hazel, 10 mm diam., twig
Hazel, 30 mm diam., twig
Oak, ?shaped, 80 mm diam.
Poplar branch, 100 mm diam., with bark (S105)

Ditch, S of Fleet varston road

11(3) Maple branch 80mm diam S59
i1(4) llazel, Eragments, compressed, $10,15,30 \mathrm{~mm}$ diam. (S39)
Structures and other features
Plot $4 / 3$ (xaa 3) $129(2)$ (Causeway across roadside ditch)
Oak plank, 150 x 120 mm (S261)
Oak, wedge shaped, 500 mm diam., 140 mm wide (S270)
elot 4/8 (Area 3)
17 (circular ditch, Building 4/5) Oak twig, 30mm diam.
iazel twig, 15 mm diam. (S40)
33 (culvert, Building 4/5) (i) Wood Erom which the culvert was constructed:
(a) Stakec. Oak, 390mm long, 150 mm diam (W44/2) Oak, 330 mm long, 70 mm diam., three cuts to missing point visible (W44/12)
Poplar type, with bark, branch shaped at one end, 370 mm long, 50 mm diam. (W44/8) Soplar, worked branch with cuts at both ends, 310 mm long, 55 mm diam (W44/4) (Fig. M 15, 3) oak stake end, very eroded, cut to point all round, 50 mm long, 80 mm diam. (W44/6)
Poplar, cut branch, with bark, 320 mm long, 65 mm diam. (W44/9)
Oak, branch, 460 mm long, 80 mm diam. (W44/5) Poplar type, with bark, 50 mm diam (W44/4) Oak, with bark, 50 mm diam ($W 44 / 11$) Oak, stake with cut end, 50 mm diam (W44/10) (Fig. M 15, 4)
Hazel, stake with cut end, 50 mm diam. (W44/3) Ash, end of stake, 90 mm diam. (W44/7) Poplar, branch, 410 mrn long, 60 mm diam. (W44/1)
Northamptonshire (kóhaçodqus18,othe3 squased plank, 950 mm long, 270 mm wide, 40 mm thick (W44/15) (section, Fig. M 15, 6)

Oak, slow grown, two planks with cut ends, 310 and 200 mm long, 130 and 110 mm wide, 30 mm thick (W44/17-18) (Fig. in 15, 11., 12)
(ii) Pieces of wood lying within the culvert: Hazel, 25 mm diam., charcoal Oak fragment, flat section, 120 mm diam. Oak strip, $22 \times 14 \times 95 \mathrm{~mm}$ long Maple, 20 mm diam., twig Maple, quartered, 30 mm diam. Maple, cut twig, 30 mm diam. Maple, cut twig, 20 mm diam. Poplar fragment, 40 mm diam. Blackthorn (Prunus spinosa) twig, 7 mm diam. (S148)
Ash (Fraxinus excelsior) twig, 30 mm diam. Ash twig, 10 mm diam. Oak twig, 60 mm diam., partly burnt Hazel twig, 20 mm diam. Hazel twig, 15 mm diam. Hazel twig, 30 mm diam. Poplar twig, 5mm diam. (S147) Oak fragment, 120 mm diam. Oak, cut twig, 20 mm diam. Hazel twig, 30 mm diam. Hazel twig, 25 mm diam. Hazel twig, 15 mm diam. Ash fragment, 80 mm diam. Ash, shaped twig, 20 mm diam. Poplar, cut twig, 100 mm diam. Poplar twig, 40mm diam. (S138) Oak twig, 20 mm diam. Oak fragment, 60 mm diam. Blackthorn twig, 40 mm diam. Hazel twig, 20 mm diam. Hazel twig, 10 mm diam. Maple twig, 15 mm diam.
7(4) (iv-S drainage ditch)
Hazel, stick with cut ends, 20 mm long, 8 mm diam. (S41)
Poplar type, branch, flattened, $26,0 \mathrm{~mm}$ long, 40 mm diam. (Fil)
Hazel, branch fragments, 35mm diam. (W12)
Simple plank foot bridge over Ditch 7
Oak, very decayed fragments of quartered branch, 60 mm diam. (W15)
Ash, branch, no bark, 380 mm long, 45 mm diam. (w16)
Oak branch, 700 mm long, 200 mm diam. (W31)
Oak, split branch, 300 mm long, 80 mm diam. (W14)
Oak, split branch, 930 mm long, 180 mm diam. (wi6) Ficid maple, branch, 550 mm long, 60mm diam. (W17)
Oak, half branch, very decayed, 80 mm diam. (w14)
Oak, end of plank, roughly cut paralled to rays, 150 mm long, $30-60 \mathrm{~mm}$ wide (w13)
3, 18 (yard outside Building 4/5)
Oak, split branch, 80 mm diam.

Oak twig, 15 mm diam.
Poplar, split branch, 60 mm diam.
Poplar, split branch, 50mm diam. (S127)
Oak, branch fragment, 120 mm diam.
Oak twig, $厶$ Gmm diam.
Oak twig, 20 mm diam.
Hazel twig, 15 mm diam.
Poplar fragment, partly burnt, 15 mm diam. (S63)
Oak fragment, dehydrated (S6)
Oak, branch fragment, 120 mm diam. (S33)
Ash fragment (w2s)
Oak, fast grown, plank, very decayed, 250 mm long,
150 mm wide, 40 mm thick (W27)
Oak, split length, 960 mm long, 120 mm diam. (W25)
(section, Fig. iM 15, 10)
Oak, slow grown, plank, 610 mm long, 150 mm wide, 28 mm thick, cut paralle1 to radius (W24) (section, Fig. M15, 5)
Oak, quarter of branch, 550 mm long, 100 mm diam. (w29)
Oak, split branch, 1.9 m long, 110 mm diam. (W29)
Oak branch, 60 mm diam.
Oak branch, 40 mm diam.
Poplar branch, shrunken, dried in antiquity, 100 mm diam.
Oal peg, 90 mm long, $20 \times 30 \mathrm{~mm}$ section
Oa, branch, 35 mm diam.
Oak branch, 25 mm diam.
Oak twig, fast grown, 60 mm diam.
Ash fragment, slow grown, 100 mm diam.
Ash twig, 20 mm diam.
Hazel twig, 15 mm diam.
poplar type Eragment, 100 mm diam.
Poplar twig, 20 mm diam.
Field maple fragment, 15 mm diam.
Poplar fragment, 30 mm diam. (and charcoal)
Blackthorn fragment, 15 mm diam.
Hazel fragment, 10 mm diam. (and charcoal) (S89)
PHASE $4(b)$
Recuttinc, side ditches, Alchester road
Western side. 65. Oak, plank, 200mm diam., 170mm wide (S191)
Structures and other features
plot 4/2
207 (drainage ditch running from Building 4/1b),
Oak stake, 140 mm diam.
Plot 4/3 (Area 4)
64 (pit). Oak Eragment, 20-40ram diam.
Poplar fragments, 30mm diam.
the whole sample appears to have dried out and been
ro-soaked in antiquity.
129(1) (resurfacing of causeway, Area 3). Oak
fragment, dried.
plot $4 / 8$ (nuilaing 4/5)
1 (arainage ditch) Oak fragment (s129)
14 (drainage ditch). Oak, split branch, 60mm diam.

Oak twig, 20mm diam.
Elder (Sambucus nigra) twig, 15 mm diam. (S52)
Poplar, lomm diam. (S77)
Blackthorn, 10 mm diam. (S57)
Oak branch, llonm long (S64)
Small retaining stakes:
Maple, 14 mm long, 40 mm diam. (S177)
Hazel, 14 mm long, 40 mm diam. (S178)
Ash, 14 mm long, 40 mm diam. (Sl79)
Hazel, stake, compressed wood, 14 mm 1ong, $20-30 \mathrm{~mm}$
diam. (S180)
14 (2). Oak, cut branch, 120 mm diam. Oak, split twigs, partly burnt, 40mm diam.
Oak twig, 20 mm diam.
Naple twig, 40mm diam. (S49)
Waple twig, cut, 40 mm diam.
Ash plank, 80 mm diam.
Ash, cut/split twig, 30mm diam. (S34)
Ash, squared, 80 mm diam.
Oak, two split branches, 60mm diam.
OKk twig, 40 mm diam.
Hezel twig, 15 mm diam.
Eoplar twig, 15 mm diam. (S60)
31 (1) (Iatost phase of Eurnace), Oak fragments, 10 and 80 mm ifam.
Blackthorn fragment, $10 m m$ diam. (S126)
21 (replacemant $N-S$ ditch). Oak fragment, 210 mm long, 100 mm diam.
Oak fragment, 210 rm long, 50 mm diam.
Oak eragment, 160 mm long, 100 mm diam. Oak fragment, 8 ram long, 10 mm diam. Maple Eragment, 8 mm long, 15 mm diam. (583)
Simple plank bridge over Ditch $21.0 \mathrm{~F}, \mathrm{split}$ branch, 80 mm diam. (w18) (section, Eig. in 15, 8)
Oak plank, 125 mm long, cut from wood 500 mm diam. (i119)
Oak Exagment, 440 mm long, 110 mm wide (w22)
Oak plank, 1.14 m long, 170 mm wide, 50 mm thick (W20) (section, Fig. M 15, 9)

44 (spur ditch running from circular ditch around Building 4/5)
Oak stake, no bark, 59 mm long, 55 mm diam. (w2)
Porlar, split, 200mm diam. (w5)
Oak post, 950 mm long, 240 mm djam. (w3)
Oak, 580 mm long, split log, 100 mm diam.
Oak, 760 mar $10 n g, 160 \mathrm{~mm}$ diam. (W7)
Oak, fast grown, part of branch, 320mm long, 200 mm diam. (W6)
Oak, split, 1.47 m long, 190 mm wide, 240 mm diam. (W23)
Poplar, forked piece, 50 mm long, 150 mm diam. (W30)
Poplar fragment, 210 mm long, 160 mm diam. (iv30)
Oak, 500 mm long, 200 mm djam. (W28)
Oak, shaped pile fragments, 400 mm long, 220 mm diam. (W8)
Oak lump showing cuts, 110 mm djam. (w9)
Oak Eragment, 200mm diam. (W1)

Oak, two plank fragments, 105 mm long, 28 mm thick (WI)
Oak, tapering fragment, 25 mm diam. (W1)
Poplar, fragment of branch, oblique cut at one end, 470 mm long, 35 mm diam. (W21)

UNPHASED

100 (Marshy area, Trench 25) Oak branch, lm long, 120mm diam. (S219)
103 (Marshy area, Trench 26) Oak, split branch, 900 mm long, 120 mm diam. (S229)
Oak, squared timber, 850 mm long, $280 \mathrm{~mm} \mathrm{sq} .(\mathrm{s} 228)$ (section, Fig. M 15, 7) Oak Eragment, 370 min long, 120 mm across (S230)

Fig. M1/s Towcester, Alchester road suburbs: sketch plan to show location of wood.

Fig. 115 Towcester, Alchester road suburbs: wood.

ANIMAL. BONES FROM THE 1967 EXCAVATIONS

by R T Jones,
Ancient Monuments Laboratory, Department of the Environment
PHASE 2
Alchester road side ditch, western side

```
327 Horse first molar left, one calcancum right, splint bone left; sheep jaw left; fig Ecapulat right (1967 an 9).
```

Plat dide houmary, west of Alchester road (or Phase 4i)
321 florgf ict phatatw; on pelvis frac (1967 AR 4)

Building $2 / 7$

329 Sheep femur right; red deet second premolar vight, red dece first molar rinht, secomt nolar right (1967 AR 2). This level contained intrusive post metifeval materal.
331 doter baw right, two brenotarf, one firet phalank, one horse metatarfal; pit ulna, left part of patate; fheep titia Fighte (1967 Af 8 ; could belong to Fhase tit).

Milaning/ 10
3ft On metacapral right (1967 An 1)
1t2, fit ox akull, ox Fight and left jews, ow horn core, left; zome fragments, ow fadius right; horse mental sympinysis, with canines, rged about 10 years; tecth wete the molaro of two individuals (1967, An 10)

BHMSE Ita
Diteh, Eagt of Mleheriter road
346 Ox agtragalua left; pig ceapule left, sheep metrearpal left (1967 All 6)

Towcester St. Lawrence Road: The Animal Bones.

by
Sebastian Payne.
(MS completed April 1979)

1. Introdfetion

In Table 1 , the identified bones from the St Lawrence Road site are listed by phase. Sust aver hatif tife identified bones are of cattle, around a quarter are of sheep/goat, and the remainder are mostly of pia and horse. Mont of the phased and dated bones 370 +
are fron Phares tia and b, both dated between $c 330$ and / AD; as the bones from both there fitages fecm very similar, and some of the remaining samples secm rather more feteragergenf, the fample from Phaseg tat and b wil be tescribrd and discugsed in Gathee mefe detall that the remainder of the bones.

Lf Table g (whole Gample) and Table 3 (Pharecs ta and b), counts are given for the afferent mate of the sheleton for each species (species groun in the case of Ghece/goatl . Ag itm most bone samples from archacological sites, there are conatiorable differencen in the relative frequenciec of the different parts of the gkeleton iff cach ruceies, even when allowance is made (in the n / f counts) for the areater number or some kitids of bone (eg phalanges) in the skeleton. Some of these differenceg, eathe geareity of proximal tibiac and humeri relative to difital tithar and fumeri, can be simply accounted for by differential preservation; Gthers, ef the geateley of incisors and premolar; relative to molarg, or the gearelty of carnale, tarcala emil phahangea relative to metapodia, can most reatily ky exhlained by reenvery biac, and reflect the lack of aicving during Gheavatioti, Thequ sourees of bias are mentioncd here, at the ontzet, ass they gon affect data ant conclugiong iñ so many ways. Differential destruction not only affecte some parta of the skeleton more than others, but also affects juvenibe bones mory than adult ones, and some species, notably pig, more than otherg. Recovery bias affects smaller bones and animals more that larger ones, and again juvenileg more than adutes (Payne 1975). Thus the percontages given in Table 1 Northamptonshire Archaeology 18, 1983
for horse and cattle are probably too high, and those for sheep/goat, and even more for pig, are probably tos low.

Eutchery marks will be described in the individual sections for each species. But one general observation is that there was no burnt bone, and not even any bones with burnt ends, suggesting that meat was either cooked off the bone or boiled, rather than being roasted.

2. Species and descriptions

2.1 Ovis and Camra

Both sheep and goat are present; but as Table 4 shows, sheep is much commoner than goat. More than 50 posteranial bones can be identified with more or less confidence as sheep, while only one, a distat humerus ${ }^{1}$, is probably goat. Two of the five horncores, on the other hand, were goat; a reasonable explanation for this apparent discrepancy could be that most of the sheep may have been hornless: no hornlegs frontals were foud at this site, but there are two in the slightly earlier Roman sample from the Park St site, only a mile awiy (Payne in Lambrick 1980).

Posteranial measurements (Table 5) show that the sheep were of small to medium size.

Data on age at death, based on the mandibular dentition, are given in Tables 6 and 7. While the mandibles are few, and rather broken, the total sample of mandibular tecth, including loose teeth, is reasonably large (Table 7). Analysis of such frementary material pregents difficulties, but it is clear enough that the Phese latb sheep were killed fairly young, ie mostly in the second to fourth years. Thus the ratio of third milk molars (m) to fourth premolars (P / s), excluding unworn/unerupted premslars, suggests © 50% kill-off before the end of the second year, and the abundance of second molars in early wear (ie before the infundibula

1 From phase la; unusual in having a well-developed supratrochlear foramen, but otherwise clearly cf. Capra. Northamptonshire Archaeology 18, 1983
are isolated) as compared with the relative scarcity of first molars in early wear (I was unable to distinguish the loose first and second molars reliably) suggests that most of these younger animals were killed in the second year. The high proportion of third molars in early wear (Table 7.3) suggests that most of the remaining animals were killed during the third and fourth years; a conclusion supported by the absence of molars with erased infundibula (with the single exception of the third molar of the probably intrusive animal in phase 4 b : see notes on Table 5): the anterjor infundibulum in the first molar is of en erased in the fifth year. A kill-off pattern of this kind, peaking in the second to fourth years, indicates that meat production played an important role in the chece hu:bandry; and the relatively small number of first year animals suggests that the provision of winter feed did not present teo greit a problem, and that lamb meat did not command so great a premium as it does today.

The presence of some older mandibles and molars with erased infundibula in the samples from surface and other contexts may indicate a different pattern; but alternatively may simply indicate that these samples are much more heterogencous; including some boncs from older animals that died on the site after it was abandoncd, lay around on the surface, and were incorporated into the upper levels.

A few of the sheep/goat bones have butchery marks; these include fairly light cut-marks in typical places for disarticulation (eg across an astragalus, and across the proximal end of a metacarpus), and heavy chop-marks (eg diagonally across a sapula near the alenoid, and through long-bone shafts).

The relative frequencies of the different parts of the skeleton (Tables 2,3). geem simply to reflect preservation bias (eg low counts for maxillac, proximal humeri and tibiae, and distal femora) and recovery bias (eg low counts for premolars, incisors, carpals, tarsals and phalanges); explanations involving off-site disposal of the most valuable joints of meat have been invoked for
similar results at other sites (eg Chaplin 1969), but seem unnecessary in this case.

Two mandibles of older animals, one from Phase $4 a$ and one from Phase $4 b$, show minor pathology, with uneven wear, periodontal porosity of the al.veolar bone, and loosening of the teeth in their sockets; and the old and probably intrusive animal in Phase $4^{2} b$ has shed M_{1} and M_{2} some time before death, and their alveoli have sealed over.

2.2 Bos

Cattle bones were abundant; their size, as shown by the postcranial measurements listed in Table 8 , was rather variable, and measurements may fall into two groups. Thus nine distal metacarpi are between 48.7 and 55.0 , while the remaining four are botween 64.7 and 75.9 (Bd); similarly nine distal tibiae fall between 55.7 and 62.3, with the last two at 68.5 and 69.3 (Bd). One obvious possibility is that the smaller animals were cows, and the larger ones bulls or bullocks, but samples are too small to make further analysis useful. Several horncores were found, some relativety small and slender, probably from cows, and some rather larger and stouter, presumably from bulls or bullocks.

Data on age af death, based on the mandibular dentition, are given in Tables 9 and $10 ;$ as in shecp/goat, the mandibles are rather fragmentary. As with the sheep, most of the cattle mandibles and teeth in the phase la-b sample are of fairiy young animalis, probably up to $\underline{e} 5$ years: thus while many of the first molars have joified bovine pillarg, in only half of the second molars is the bovine pillar even in wear, and nearly all the third molars have unworn bovine pillars. Again as with the sheep, meat production $j s$ obviously important, the emphasis being on killing subadults or young adults, ic for a good return of meat for fecd rather than for veal. Once again there are more older animals in the sample from surface and other contexts.

Butchery marks are frequent, and mainly rather heavy, produced by a cleaver or by a heavy knife used with a chopping action. Some of the marks are for disarticulation (eg across astragali and calcanea, across distal metapodia, and across the anterior face of the distal condyle of the humerus), others were presumably made during defleshing (eg along scapulae, often slicing off parts of the edge of the glenoid). The relative frequencies of the different parts of the skeleton (Tables 2,3) again show considerable variation, but again nothing that cannot readily be explained either by differential preservation or by recovery bias: the overall pattern is similar to that for the sheep/goat konef, reflecting the close similarity of their skeletons, but higher counts for some gmaller bones such as incisors and phalanges are to be expected in view of their larger size. The virtual absence of sesamoids is to be noted in this context: it is difficult to explain except by recovery bias, as the proximal sesamoids articulate closely with distal metapodia and with proximal first phalanges, both of which are abundant. The very high count recorded for pelves is caused by the way in which they have broken, giving large numbers of acetabular fragments, each with only a quarter or a third of the circumference; the inflated count this gives should be discounted.

Three phalanges have exostoses; and a fragmentary proximal metatarsus from a surface context has ankylosed with the lower tarsals. One third molar from Phase ta has a reduced third cusp.

2. 3 Sus

Pig bones are rather less abundant; the few postcranial measurements are given in Table 11, and dental measurements are listed in Table 12. These show considerable variation even after allowance has been made for reduction in cooth length in older animals as a result of wear; the three largest teeth may be from wild boars, but reliable data for British wild boars are rather scanty.

Virtually all the mandibles and teeth are from juveniles or subadults (Tables 13 and 14); kill-off peaks between the first molar coming into wear and the third molar coming into wear, ie between $c 6$ months and 2 years using modern figures for dental eruption, or between $c 1$ year and 3 years using eighteenth-century data (Silver 1969); either way this covers the best time yet for meat yield. Butchery marks include heavy chop-marks and lighter cut marks as in the cattle. Figures for the relative frequencies of the different parts of the skeleton stand as a marked contrast to those for the sheep/goats and the cattle: mandibles and maxillae are far commoncr than any postcranial bone. This has been observed at other siten as well, and is probably to be accounted for by the softness of sub-adult pig bone and the case with which it can be destroyed, rather than by any particular oddity of butchery or carcass disposal.

No pathological or abnormal pig bones were found.

2.4 Equus

The large number of equid teeth showed typical horse morphology: in the upper cheekteeth protocones tend to be long and asymmetric, and premolars show a strong 'pli caballin'; in the lower cheekteeth the valley between the metaconid and the metastylid is broadly U-shaped. Nothing was encountered to suggest the presonce of either donkey or mule.

Tho few complete long-bones (postcranial measurements are given in Table 15) suggests fairly light animals, of around 13 to 14 hands. The fact that the long-bones are often more complete than those of the cattle, coupled with the general absence of butchery marks (the only exception being three transverse cuts near the distal end of a metapodial, which could have been caused during skinning), suggests that the horses may not normally have been eaten.

Two second premolars show what may be wear from poorly-fitted bits f_{1} one. an upper tooth from Phase $4 b$, has a medio-lateral groove across the anterior part of the occlusal surface; the other, a lower tooth from a surface context, has the ante:ior corner of the tooth bevelled off diagonally.

2.5 Canis

Dog bones ware rather scarce; the small number of measurements (Table 16)
indicate dogs of medium to large size. None of the dog bones show any butchery marks. Two of the sheep/goat bones had been chewed, presumably by dogs; but this is rather a low proportion compared with most sites.

2.6 Lepus

A distal humerus (Ed 13.6) was found in Phose 4 b, and a rather small synarthrosed proximal radius (Bp 7.8) and ulna also in Phase lib.

2.7 Capreolus

A mandible and a metacarpus (GL 149.9 , SD 12.3 , $\operatorname{Bd} 20.8$) were found in Phase $l_{\text {ta }}$, and a distal tibia in a surface context.

2.8 Cervis

A rather battered third phalanx from Phase lb is provisionally identified as red deer; there were also a couple of pieces of antler.
3. Discussion, and comparison with Park St site

Most of the bone in the Phase ta-b sample from the St Lawrence Road site secms to be normal domestic rubbish, including both the more edible and the less edible parts of the animals consumed, which were mainly sheep, cattle and pigs. While the figures given in Table 1 would indicate that cattle were about twice as frequent as sheep; and four times as common as pigs, the very clear indications of bias suggest that these figures may be misleading. Any attempt at a correction can only be a guess: tentatively it may be suggested that sheep were at least as abundant as cattle, and may well have been rather more frequent (eg note counts Northamptonshire Archaeology 18, 1983

1. I am indebted to Dr Juliet Jewell for this suggestion.
for molars in Table 3), and zigs, on the basis of the counts for mandibles and maxillae, may have been as f-aquent as cattle.

All three species show essentially similar age distribution data: nearly all animals were killed as later juveniles or young adults, suggesting that the inhabitants may have been buying-in animals from surrounding villages or farms rather than raising them for their own consumption.

The scarcity of wild animal bones suggests that hunting was either uncommon, or singularly unproductive. The dog and horse bones show no butchery mark or other indication that they were eaten, and may be from animals that died naturally. Only about a mile away, the Park St site, excavated by George Lambrick of the Oxford Arehacological Unit (Lambrick, 1980), produced samples of bones from first/gecond century and Medieval and later contexts (ibid,). As Table 17 indicates, sheep were apparently rather commoner in the earlier Roman levels at Park St, and cattle commoner in the later samples. While the actual figures have to be treated with caution, as they are affected by recovery bias, the indication of relative change away from sheep to more cattle is probably reliable, and may perhaps be related to more intensive land use, with a shift from sheep grazing to more arable cultivation, with the consequent need for more plough animals: in cach case what we are secing in these samples are the surplus animals, fattened for meat and sold to the local town.

Tht while both sites seem, at least in the Roman period, to be 'urban' in this sense, the St Lawrence fload samples are normal mixed domestic rubbish, while the early Roman sample from the Park St site seems to be mainly buther's shop debris, With rather low counts for most of the bones from the more meaty parts of the carcass, and very high countis for mandibles, metapodia and scapulae with defleshing marks. This suggests that the park St site had a buther's shop, while the St Lawrence Road site may not have had a specialist butcher.

Some differences can also be seen in the animals. The later Roman sheep are clearly larger than the earlier Roman sheep, presumably reflecting stock improvement over the Roman period (Table 18). By contrast, the later Roman pigs may be a little smaller (Table 19); data for cattle are inconclusive, partly because samples are small at Park St, and partly because the cattle at both sites are rather variable. Some genetic change could be suggested by the fact that third molars with reduced posterior cusps are frequent in the early Roman sample (5 out of 24), but scarce in the St Lawrence Road sample (1 out of 36) and in the Medieval sample - but samples are small, and this is quite likely to be an oddity in a single family of cattle. Very small dogs were found in the early Roman sample, but not at St lawrence Road; and no goats were found at Park St. Wild animals were scarce at both sites.

Finally the earlier and later samples from the st Lawronce Road site seem to be rather more heterogeneous; the Phase 2 gample has more horse bones than usual, and the surface sample seems to be a mixture of more Phase lanb material and the remaing of animals that died naturally on the abandoned site.

PHASE	$\begin{aligned} & \text { Ovis/Capra } \\ & \text { and } \\ & \text { cf Ovis/Capra } \end{aligned}$		$\begin{aligned} & \frac{\text { Bos }}{\text { and }} \\ & \text { cf Bos } \end{aligned}$		$\begin{aligned} & \frac{\text { Sus }}{\text { and }} \\ & \text { cf Sus } \end{aligned}$		$\frac{\text { Equus }}{\text { and }}$		$\frac{\text { Canis }}{\text { and }}$		$\begin{aligned} & \frac{\text { Lepus }}{\text { and }} \\ & \text { cf Lepus } \end{aligned}$	$\frac{\text { Capreolus }}{\text { and }}$		cf Cervus	TOTAL
1	3		- 8		I		6		-		-	-		-	18
2	6		13		2		21		-		-	-		-	42
3	13		37		3		7		-		-	-		-	60
4 a	199	(26\%)	401	(53\%)		(15\%)	36	(5\%)	8	(1\%)	-	2		-	759
4 b	105+(10)	(25\%)	250	(55\%)	47	(10\%)	37	(8\%)	5	(1\%)	2	-		1+	457
Surface \& unphased	60		132		18		27		1		.	1		+	239
TOTAL	396		841		184		134		14		2	3		1	1575

TABLE 1 - Towcester St Lawrence Road, counts of identified bones, by phase.
The following are counted: single teeth (when at least half the tooth is present - fragments are ignored); jaws and jaw Eragments which contain one or more teeth (of which at least half is present, as above); and all appendicular bones which have preserved at least part of an articular or fusion surface (acetabulum only for the pelvis, glenoid only for the scapula). All other bones, including ribs, vertebrae, horncores, skull fragmento, edentate jaws and long-bone shaft fragments without fusion or articular surface are excluded; the presence of a species is indicated by $a+$ in the absence of a countable specimen. The bracketed Ovis/Capra specimens in phace $4 b$ may be intrusive; see footnote to Table 5.

Phase | 1 | late Flav | - | c | 170 |
| ---: | :---: | :---: | :---: | :---: |
| 2 | c | 170 | - | c | 270

	范				$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{2}{2} \end{aligned}$					$$				$\begin{aligned} & 7 \\ & \frac{H}{4} \\ & \frac{2}{2} \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \frac{3}{0} \\ & \overrightarrow{3} \\ & 3 \end{aligned}$		8		3 3 d 4 4 4	噪	菏			最 \＃	3						E	$\begin{aligned} & \text { N } \\ & \text { a } \\ & \text { a } \\ & \text { an } \end{aligned}$		
aveat catan and	5	3	；	42	18	5	4	73		3	1	－	20	7	5	1	1	13	5	－	－	1	15	6	－		－	23	B	－	14	1	－	－
＊batata tif dau＊		z	4	9		10	19	25																										
n / t	2.5		（ting	（2．0）	2.0		（6，3）	（16，3）		（0．4）	3.5	0.0	10，0	2.5	2.5	3.5	0.1	6.5	2.5	0,0	0.0	0.5	1.5	2.0	4.0	0.0	0.0	5，8	2.0	0，0	128	0.1	20	0， 0
	4	4	4	$3{ }^{3}$	23	6	40	25		20	24	1	10	24	9	17	14	45	11	4	－	6	19	${ }^{2}$	24	11	－	40	35	1	80	66	．	22
－tueth in saut		－	3	1		9	23	4		1																								
n / t	2.4		（5x．5）	（2．5）			（EE2）	（12， 2 ）		（2．6）	12.	0.5	2.8	12.0	4.5	8.5	1，2	$\underline{22.5}$	5.5	2.0	0，0	3.	2.5	11，0	12.0	2.5	0，0	10，0	Q， 8	0，1	10，0	8． 3	0.0	$\underline{2.8}$
	15	1	＊	4	27	－	1	$?$	14	16	6	1	5	；	4	9	－	3	2	－	，	－	4	5	4	$\underset{10}{\mathbf{1 N}}$	－	${ }_{5 L}^{101}$	${ }_{7}^{81}$	－	${ }_{12}^{44}$	34	－	$\stackrel{14}{4}$
＊testin ta day		3	5	7		6	9	31	11	2																								
n / t	A． 0		（6）	（3，5）	13.5		（2，5）	（5．5）	（2， 1	）（4．5）	20	6.5	2.5	1.5	2.2	4.5		1.5	120	0.0	0.0	20	2.0	2.5	2.0	0.5	0.0	$\frac{1,3}{0.6}$	$\frac{1,0}{0,2}$	0,0	$\frac{0.5}{0.1}$	$\frac{0.4}{0.0}$	0.0	$\frac{0.1}{0.1}$
	，	＊		5	－	－		14	12	$?$	1	－	1	3	5	－	－	3	－	2	2	2	1	1	－	－	－	$\underset{i k}{4 \lambda}$	4	－	1	5	－	3
Ganls emp Cf emith	1	－	1	＊	1	－	＊	1	－	3	－	＊	－	2	－	2	－	2	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
＊treth to dave			1	－			1	1																										
	－	＊	，	－	＊	＊	－	＊	－	－	－	－	1	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Craganting ant 	－	－	－	－	1	＊	＊	＊	－	，	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	1	1	－	－	－	－	－
etueth tin javas		－	－	－			5	\％																										
If crmit	－	－	＊	＊	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\cdot	－	－	－	－	－	1

TABLE 4: Towcester St Lawrence Road, ratio of Ovis to Capra

Identification	Postcranial		Horncores	
	Phases 4a-b	0ther	Phases 4a-b	Other
Ovis	9	3	2	
probably Ovis	10	2	1	
? Gpis Capra	19	10		
Probably Capra	1			1
Caprat				

'IIASE	Scapula GLP	humerus BT	$\begin{aligned} & \text { Radius } \\ & \text { Bp } \end{aligned}$	Radius Bd	Metacarpus GL	Metaca-pus SD	Metacarpus Bd	Tibia Bd	Astragalus GL1	Calcaneum GL	Metatarsus GL	Metatarsus SD	Metatarsus Bd
1								24.2x					
4 a	$\begin{aligned} & 28.8+? 0 \\ & 30.430 \end{aligned}$	$\begin{aligned} & 25.4+? 0 \\ & 26.4+\frac{? 0}{? 0} \\ & 26.6 \mathrm{pro} \\ & 26.9+ \\ & 27.2+\mathrm{pro} \\ & 27.5+ \\ & 27.8+? 0 \end{aligned}$	33.9?0		131.7 ----	14.2 ----	24.80vis	$\begin{aligned} & 24.2 ? 0 \\ & (24.4) \\ & 24.8 \mathrm{p}=0 \\ & 26.4 \mathrm{x} \\ & 26.4 ? 0 \\ & 26.7 \frac{? 0}{? 0} \\ & 26.8+\mathrm{x} ? 0 \\ & 26.9 \\ & (30.2) \mathrm{x} \end{aligned}$	$\begin{aligned} & 25.5 ? 0 \\ & 25.9 \mathrm{pro} \\ & 26 . \overline{\mathrm{pro}} \mathrm{vis} \\ & 28.0+? \mathrm{O} \end{aligned}$	$\begin{aligned} & 57.5 \mathrm{pro} \\ & (58.8) \text { Ovis } \end{aligned}$	130/5+ ----	11.9 -	$23.6+x 0 v i s$
46	$\begin{aligned} & 42.0 * 0 \mathrm{Ov} \\ & 42.0 * 0 \mathrm{O} \end{aligned}$	$\begin{aligned} & \underline{g} 26.0+ \\ & 26.2 ? 0 \\ & 26.2+? 0 \\ & 26.3+? 0 \\ & 27.9 ? 0 \end{aligned}$	28.6?0	27.5+	126.7 =000	13.1 =-00	24.20vis	$\begin{aligned} & 23.2 \\ & 24.0 ? 0 \\ & 24.9 \\ & 27.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 24.7+\mathrm{pro} \\ & 27.3 ? 0 \end{aligned}$	$\begin{aligned} & 51.5 \mathrm{pro} \\ & 57.6 \\ & 57.1+ \end{aligned}$			1

TABLE 5 - Towcester St Lawrence Road, Dvis/Capra, postcranial measurements
Definitions fellow von den Driesch 1976; note that radius Bp has been taken at right angles to the sagittal ridge and groove, and that tibia Bd has been taken with the graduated beam of the callipers in contact antero-medially and antero-laterally: in each case a strict maximum would be taken diagonally, which seems less useful. Damaged specimens are only measured if the resulting measurement is thought to be within $\pm 2 \%$ of the true value: () $=$ within $\pm 2 \% ;+=$ chipped/eroded, up to 2% to be added; - = concreted or with open split, up to 2% to be deducted. Unfused specimens not measured; $x=$ epiphysis still fusing (i e fusion line still open at some point); $\mathrm{j}=$ another epiphysis on same bone known to be unfused (eg qualifying bd humerus when bone has unfused proximal end). Surface and unphased contexts not included.

* A pair of unusually large scapulae from a phase 4b context were part of a group of bones which were noticeably paler and lighter than
 two loose maxillary teeth; the mandible was fron a very old animal, unlike any other tooth or mandible from Phases $4 a-b$. It seems likely that this group may be intrusive; it has been included in the Phase 4 b counts, but attention is drawn to is when necessary.

Table 6: Towcester St Lawrence Road, Ovis/Capra mandibles, eruption/wear data. Mandibles without a countable m_{3} or P_{t} are excluded (after Payne 1973) to prevent double-counting of the same mandible (but see also Table7 below, in which all teeth are included); a tooth is classed as being 'in wear' once dentine bas been exposed. Suggested ages follow Payne 1973.

Stage	Suggested age	Brief description	Phuses 4 a -b	Other
\wedge	0-2 mths.	$\pi 3$ unworn	-	-
B	$3=6 \mathrm{mths}$.	m_{3} in wear; M1 unworn	-	-
C	6-12 mths.	M_{1} in wear, M_{2} unworn	cf 1	cf 1
I)	18-8/4 mithe	M_{3} in wear, M_{3} unworn	$1+$ cf 3	-
E	3-3 yras	M3 in wear, post. cusp unworn	1	cf 2
F	3-4 yrg.	M3 post. cusp in wear, infundibula not yot isolated	cf 1	1
G	4-6 yrs.	M3 infundibula isolated; M_{2} infundibula not yet starting to be erased	1+ cf 1	cf 1
H	6-8 yrs.	M3 infundibula starting to be erased	-	-
I	8-10 yrs.	M3 infindibula starting to be araticd	-	1

Table 7: Towcester St Lawrence Road, Ovis/Capra, mandibular tcoth-wear data, including loose teeth; letter references to stages as in Grant 1975, Fig 221.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\text { 1. } \begin{array}{r}
\mathrm{m}_{3} / \mathrm{P}_{4} \\
\text { Stage }
\end{array}
\]} \& \multicolumn{2}{|l|}{Phases 4a-b} \& \multicolumn{3}{|l|}{Other} \\
\hline \& in md. \& 10ose \& in md. \& loose \& \\
\hline ```
m3 unworn (a or earlier)
early wear (b-f)
infundibula isolated (g-h)
ant. inf. erased (j and later;
P/{
early wear ((b)-f)
infundibula isolated (g)
post. inf. crased (h-j)
both inf, erased (1)
``` \& \begin{tabular}{l}
\[
1+? 2
\] \\
2 \\
2 \\
2
\end{tabular} \& \begin{tabular}{l}
4 \\
1 \\
1 \\
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{tabular} \& 1
1

1 \& <br>
\hline
\end{tabular}

| $\text { 2. } \begin{aligned} & M_{1} / M_{2} \\ & \text { Stage } \end{aligned}$ | Phases lamb |  |  | Other |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{1}$ <br> in md. | $\begin{aligned} & \mathrm{M}_{2} \\ & \text { in } \mathrm{md} . \end{aligned}$ | $\begin{aligned} & M_{1} / 2 \\ & \text { loose } \end{aligned}$ | $\begin{aligned} & M_{1} \\ & \text { in md. } \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{2} \\ & \text { in } \mathrm{md} . \end{aligned}$ | $\begin{aligned} & M_{1} / 2 \\ & \text { loose } \end{aligned}$ |
| ```unworn (a or earlier) first cusp in wear (b) second cusp in wear (c-f) indundibula isolated (g-j) ant. inf. erased (k-1) both inf. crased (m and later)``` | $\begin{array}{r} 1 \\ 10 \end{array}$ | $\begin{aligned} & 8 \\ & 2 \end{aligned}$ | $\begin{array}{r} 2 \\ 27 \\ 25 \end{array}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | 12 8 |


| $\text { 3. } \begin{aligned} & \text { M3 } \\ & \text { Stage } \end{aligned}$ | Phases $4 \mathrm{ta-b}$ |  | Other |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | in md. | loose | in md. | loose |  |
| ```unworn (a or carlier) first cusp in wear (b) second cusp in wear (c-d) third cusp in wear (e-f) infundibula isolated (g-j) ant. inf. erased (k-1) post. inf. erased (m)``` | $\begin{aligned} & \}^{1} 1 \\ & 1 \\ & 1^{*} \end{aligned}$ | $\left.\begin{array}{l} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{array}\right\}_{1}^{1}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$ |  |

[^2]Northamptonshire Archaeology 18, 1983

| PHASE | Scapula GLP | Humerus BT | Radius Ep | Radius <br> Bd | Metacarpus GL | Metacarpus SD | Metacarpus Bd | Tibia <br> Bd | Astragalus GL1 | Calcaneum GL | Metatarsus GL | Metatarsus SD | Metatars Bd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | (76.0) |  |  |  |  |  | $58.4+$ |  |  | 195.5+ ---- | 22.2------ | $57.8$ |
| 4 a | $\begin{aligned} & 63.4+ \\ & 67.7+ \end{aligned}$ | $\begin{aligned} & 67.6+ \\ & 72.8 \end{aligned}$ | $\begin{aligned} & 69.2+ \\ & 82.4 \\ & 89.7 \end{aligned}$ | 63.9 | $\begin{aligned} & 187.3=- \\ & 175.4+ \\ & 190.1=- \\ & 179.7=- \\ & 188 \\ & 188.7=- \\ & 192.9+ \end{aligned}$ | 27.4 $\qquad$ <br> 29.3 $\qquad$ <br> 29.2 $\qquad$ <br> 26.6 $\qquad$ <br> 29.6 $\qquad$ <br> 37.3 $\qquad$ | $\begin{aligned} & 48.7+ \\ & 50.9 \\ & (51.0) \\ & 51.1 \\ & 51.4 \\ & 52.9 \text { or?Mt. } \\ & 53.3 \\ & 67.5 \end{aligned}$ | 55.8 56.5 <br> 59.4+ <br> 59.5 <br> $60.0+$ <br> 68.5 <br> 69.3 | $\begin{aligned} & 54.5+? \text { juv. } \\ & 56.9 \\ & 59.0 \\ & 59.2+\text { ? juv. } \\ & 59.5 \\ & 60.2 \\ & 60.5 \\ & 61.1 \\ & 64.5 \\ & 67.1 \end{aligned}$ | 128.1+x | $\begin{aligned} & 203.3+---- \\ & 192.1+- \\ & 199.6+- \\ & 218.7+- \\ & 230.4 \end{aligned}$ | $24.3--\cdots-$ $21.1-\cdots$ $22.6--$ $27.0-$ $25.7-$ | $\begin{gathered} 48.0+ \\ 45.2 \\ (49.3) \\ - \\ 49.5 \end{gathered}$ |
| 46 | $\begin{aligned} & 63.6 \\ & 59.0 \mathrm{~F} \end{aligned}$ |  |  | 61.4. | $\begin{aligned} & 165.9+=- \\ & 191.9=- \\ & 190.1+=- \\ & 172.4=- \\ & 198.7+=0 \end{aligned}$ |  | $\begin{gathered} 55.0+ \\ 64.7 \\ 65.2+ \\ (50.5) \\ 75.9+ \end{gathered}$ | $\begin{aligned} & 57.4 \\ & 62.3 \end{aligned}$ | 61.6 <br> 63.5 <br> 63.5 <br> 64.5 <br> $64.8+$ <br> $73.2+$ | $\begin{aligned} & 126.9 \\ & 128.9 \end{aligned}$ | - | - | $\begin{aligned} & (50.2) \\ & (61.7) \end{aligned}$ |

TABLE 8 - Towcester St Lawrence Road, Bos, postcranial measurements
For conventions, definitions, ete see Table 5.

TABLE 9 - Towcester St Lawrence Road.

Bos mandibles, eruption/wear data

Mandibles without a countable $\mathrm{m}_{3}$ or $\mathrm{P}_{4}$ are excluded (after Payne 1973) to prevent double-counting of the same mandible (but see also Table 10 below, in which all teeth are included); a tooth is classed as being 'in wear' once dentine has been exposed. Letter references to stages follow Grant 1975, Fig 220.

| Stage | Phases $4 \mathrm{a}-\mathrm{b}$ | Other |
| :--- | :---: | :---: |
| $M_{1}$ unworn |  |  |
| $M_{1}$ in wear, $M_{2}$ unworn | 1 |  |
| $M_{2}$ in wear, $M_{3}$ unworn | 1 |  |
| $M_{3}$ in wear, post. cusp unworn (b-d) | $3+? 1$ | 1 |
| $M_{3}$ post. cusp in wear ( $\left.e-f\right)$ | 2 |  |
| $M_{3}$ infundibula isolated $(g-h)$ | 3 | 2 |
| $M_{3}$ bovine pillar in wear $(j)$ |  | 1 |
| $M_{3}$ bovine pillar joined $(k-m)$ |  | 2 |

TABLE 10 - Towcester St Lawrence Road.
Bos, mandibular tooth-wear data, including loose teeth, letter references to stages as in Grant 1975, Fig 220.

| 1. $\mathrm{M}_{3} / \mathrm{P}_{4}$ Stage | Phases 4a-b |  | Other |  |
| :---: | :---: | :---: | :---: | :---: |
|  | in md. | loose | in md | loose |
| ```M early wear (b-c, e) infundibula isolated (d, f-k) ant. inf. erased (1-m) P earlier early wear (b-f) infundib:lum isolated (g-h)``` | 4 <br> 3 <br> 4 <br> 1 | $\begin{aligned} & 3\{1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$ | 1 2 3 | 1 |




TABLE 11 - Towcester St Lawrence Road
Sus, postcranial measurements

For conventions, definitions, etc see Table 5

| PHASE | Humerus BT | Radius $\mathrm{Bp}$ | Tibia <br> Bd | Astragalus GL1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 a |  |  | 27.6 $28.9 x$ |  |
| 4b | (27.5) | $\begin{aligned} & 26.6+ \\ & 27.6^{+} \end{aligned}$ |  | $\begin{aligned} & 38.7+ \\ & 39.9+ \end{aligned}$ |

TABLE 12 - Towcester St Lawrence Road
Sus, dental measurenents
For conventions etc see Table 5; as tooth length is reduced by wear, teeth at or beyond Grant's wear stage g (Grant 1975, Fig 222) are indicated by the letter $w$.

| PHASE | $\mathrm{m}_{3} \mathrm{~L}$ | $\mathrm{M}_{1} \mathrm{~L}$ | $\mathrm{M}_{2} \mathrm{~L}$ | $\mathrm{M}_{3} \mathrm{~L}$ | $M^{1} \mathrm{~L}$ | $M^{2} L$ | $M^{3} \mathrm{~L}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | (34.1) |  | 23.6(1) |  |
| 3 |  |  |  |  | 16.9w |  |  |
| 4 a |  |  |  |  |  |  | $\begin{aligned} & (30.0) \\ & (32.5) \end{aligned}$ |
|  | 16.2W | 13.7W | 19.1 |  | 14.9w | 20.5 |  |
|  | 19.0 | 15.3W | 19.1 |  | 15.7w | 20.8 |  |
|  | 19.1 | 15.5 w | 19.4 |  | 16.0w | 21.7 |  |
|  | 19.5 | 16.1 | 19.6 |  | 19.9 |  |  |
|  |  | $\begin{aligned} & 16.5 \\ & 18.8(1) \end{aligned}$ | 20.8 |  | 17.1 |  |  |
| $4 b$ |  |  | 18.6 | (35.5) | $\begin{aligned} & 15.5 \mathrm{v} \\ & 17.1 \end{aligned}$ | $21.2+$ |  |
|  |  |  | 20.7+ |  |  |  |  |
|  |  |  | 23.2 (1) |  |  |  |  |

TABLE 13 - Towcester St Lawrence Road
Sus mandibles, eruption/wear data.
Mandibles without a countable $\mathrm{m}_{3}$ or $\mathrm{P}_{4}$ are excluded (after Payne 1973) to prevent doubie-counting of the same mandible (but see also Table 14 below, in which all teeth are included); a tooth is classed as being 'in war' once dentine has been exposed. Letter references to wear stages follow Grant 1975, Fig 222.

| Stage | Phases 4a-b | other |
| :--- | :---: | :---: |
| m3 not yet in wear | 1 |  |
| $M_{3}$ in wear, $M_{1}$ unworn | $? 1$ |  |
| $M_{1}$ in wear, $M_{2}$ unworn | $2+? 1$ | 1 |
| $M_{2}$ in wear, $M_{3}$ unworn | $1+!1$ ) | $1+? 1$ |
| $M_{3}$ in wear (b-c) |  | $? 2$ |
| $M 3$ post. part in wear (d) |  |  |

Table 14 - Towcester St Lawrence Road,
Sus, mandibular tooth-wear data, inciuding loose teeth;
leter references to stages as in Grant 1975, Fig 222

| 1. $M_{1} / M_{2}$ | Phases 4a-b |  |  | Other |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage | ${ }_{\text {M }}^{1} \mathrm{in}$ md. | $\mathrm{M}_{2} \mathrm{in}$ md. | $\begin{aligned} & \mathrm{M}_{1 / 2} \\ & \text { looge } \end{aligned}$ | $\begin{aligned} & M_{1} \\ & \text { in md. } \end{aligned}$ | ${ }_{\text {M }}^{\text {in }}$ md. | $\begin{aligned} & M_{1 / 2} \\ & \text { loose } \end{aligned}$ |
| Unworn | 1 | 2 |  |  |  |  |
| enamel wear only (a) dentine exposed (bmd) | 3 |  |  |  |  |  |
| ant. dentine confluent (e-f) | 3 | $\left.\begin{array}{l} 7 \\ 1 \end{array}\right)^{1}$ |  | 1 | 1 |  |
| post. dentine confluent (g) | 2 |  | 1 |  |  |  |
| ant. dent. conf. with post. (j) | 1 |  | 1 |  |  |  |


|  |  | Phases 4a-b | Other |  |
| :--- | :--- | :--- | :--- | :--- |
| 2. M3 <br> Stage | in md. | loose | in md. | loose |
| unworn | 4 |  | 1 |  |
| enamel wear only (a) | 5 |  |  |  |
| dentine exposed (b-c) <br> dentine exp.post.part (d) <br> ant.dentine confluent (e onward) | 1 |  |  |  |

```
PHASE Scapula Radius Radius Radius Metacarpus Metacarpus Metacarpus Tibia Tibia
2
 205.9 --- 27.4 ---- 45.8+
 4 3 . 7
 48.8+
321.4--72.5
284.0 ---- 29.3 ------
50.0
```

TABLE 16 - Towcester St Lawrence Road,
Canis, measurements.

For definitions, conventions, etc, see Table 5

| Phase | $\begin{gathered} \mathrm{P}^{4} \\ \mathrm{~L} \text { ext. } \end{gathered}$ | $\begin{aligned} & \mathrm{M}^{1} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & \mathrm{M}^{1} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & M_{i} \end{aligned}$ | Pelvis <br> LAR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 a | $\begin{aligned} & 19.2---14.6---13.6 \\ & 19.0 \end{aligned}$ |  |  | $\begin{aligned} & 21.8 \\ & 22.4+ \end{aligned}$ | (25.3) |
| 4b |  |  |  |  | (21.3) |

Table 17: Relative abundance of the main species, different phases from
Towcester St Lawrence Road and Park St compared. See text comments about sample bias.

|  | $\begin{aligned} & \frac{\text { Ovis/Capra }}{\text { and }} \\ & \text { cf. Ovis/Capra } \end{aligned}$ |  | Bosandcf. ${ }^{\text {Bos }}$ |  | $\frac{\text { Sus }}{\text { and }}$ |  | $\frac{\text { Equus }}{\text { and }}$ |  | $\frac{\text { Canis }}{\text { and }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Park St. Phase ${ }_{4}$ ( $\mathrm{C} 1-\mathrm{Cz}$ ) | 102 | 123\% | 97 | 41\% | 25 | 11\% | 6 | 3\% | 6 | 3\% |
| Park St. Phase 5 (ca) | 65 | $40 \%$ | 52 | 32\% | 27 | 17\% | 1 | 1\% | 15 | 9\% |
| St. Lawrence Road Phase 4 ta ( $330-335 \mathrm{AD}$ ) | 190 | 27\% | 362 | 52\% | 108 | 15\% | 3. | 4\% | 7 | 1\% |
| St. Lawrence Road, Phase to (335- ) | 91* | 27\% | 181 | 55\% | 32 | 10\% | 22 | 7\% | 4 | 1\% |
| Park St. Phase 9 ( C13-1/4 $^{\text {a }}$ | 32 | $\underline{38 \%}$ | 100 | 53\% | 23 | 12\% |  | 3\% | 8 | 4\%\% |

* includes group of 10 ?intrusive specimens, see footnote to Table 5

TABLE 18 - Ovis/Capra measurements (probably nearly all Ovis), Towcester St Lawrence Road (Phases $4 \mathrm{a}-\mathrm{b}$ ) and Park St (Phases 4-5, C1-C2 AD) compared. See Table 5 for conventions, etc.

| Humerus BT |  | Radius BP |  | Metacarpus GL |  | Metacarpus Bd |  | Tibia Bd |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SLRd | PkSt |
| 25.4+ | $\begin{aligned} & 22.7 j \\ & 24.7 \end{aligned}$ | 28.6 | $\begin{aligned} & 23.8 \mathrm{j} \\ & 25.6+\mathrm{j} \\ & 26.4 \mathrm{j} \\ & 28.1 \end{aligned}$ | $\begin{aligned} & 126.7 \\ & 131.7 \end{aligned}$ |  | $\begin{aligned} & 24.2 \\ & 24.8 \end{aligned}$ |  | 24.2$(24.4)$ | $\begin{aligned} & 23.5 x \\ & 23.6 \\ & 23.7 \end{aligned}$ |
|  |  |  |  |  | 106.6 |  |  |  | 23.7 |
|  |  |  |  |  | 110.6 |  | 20.4 |  | 24.7 |
|  |  |  |  |  | 114.2 |  | 21.0 |  |  |
|  | 26.0 |  |  |  | 115.0 |  | 21.7 |  |  |
| 26.2 |  |  |  |  | 115.1x |  | 21.9x | 24.8 |  |
| 26.2+ |  |  |  |  | 116.5 |  | 22.1 | 24.9 |  |
| $26.4+$ |  |  |  |  | 121.9 |  | 22.8 |  | 25.5x |
| 26.6 |  |  |  |  | 122.8+ |  | 23.5 |  | 26.2+ |
| 26.9+ |  |  | (30.3) j |  |  |  |  | 26.4x |  |
| ) $27.2+$ |  | 33.9 |  |  | 126.9 |  | 24.6 | 26.4 |  |
| 27.5 |  |  |  |  |  |  |  | 26.7 |  |
| $27.8+$ |  |  |  |  | 132.1+ |  |  | 26.8+x |  |
| 27.9 |  |  |  |  |  |  |  | 26.9 |  |
|  |  |  |  |  |  |  |  | 27.0 |  |
|  |  |  |  |  |  |  |  | 28.0 |  |
|  |  |  |  |  |  |  |  | (30.2) x |  |

TABLE 19 - Sus tooth measurements, Towcester St Lawrence Road (Phases 4a-b) and Park St (Phases 4-5, C1-C2 AD) compared. Worn teeth (ie at or beyond Grant's stage g (Grant 1975, Fig 222)) have been excluded.


# ANIMAL BONES FORM THE 1977 EXCAVATIONS 

by $\operatorname{Dr} \mathrm{J}$ M Holmes
Sub-department of Veterinary Anatomy, University of Cambridge

## Phase 2

282 (2), Alchester road side ditch

0 Ox
(a) Many fragments of an mandible, right side. It is to be assumed that they all belong to one jaw. Three molar teeth and a premolar are present. The teeth are of Grant wear stage 35. According to Silver's age estimates (for 19 th century breeds), this animal would be over 5 yrs of age.
(b) (2 pieces) an intact right mandible of an ox with all premolar and molar teeth present. The teeth are of Grant wear stage $l_{4} 3$.
(c) An upper jaw ox tooth.
(d) The centrum of a lumbar vertebra, probably of an ox.

Horse
(a) Part of the mandible of a horse.
(b) Two loose horse tecth. These may also belong to the mandible. The teeth are well worn and include the third molar, so the horse was aged.

Sheed
Three upper jaw sheep teeth (well worn)
Summary: The bones are not charred and show little evidence of weathering or ghawing. The remains are essentially those of two cattle and a horse, all fully mature, and a sheep, together with six oyster shells.

195, plot boundary, west of Alchester road.
0 x
(a) Head of right femur. Epiphysis fused.
(b) Tibial tarsal. One end chopped obliquely across. Length approx 68 mm .
(c) Part of left ulna - anconeal process, etc (olecranon missing)
(d) Distal end of right tibia, cpiphysis fused (width approx 62 mm ).
(e) Piece of lower jaw articulation (two pieces)
(f) Piece distal shaft left humerus
(g) Piece of cervical vertebra
(h) 3rd phalanx intact. Heel-toe length 67 mm
(i) Left wing of atlas - rather small, could be a large sheep or deer.
(j) Piece of neural spine of thoracic vertebra

Several of these ox bones are weathered or dog-gnawed. They show signs of chopping (the jaw, femur, tibia fragments have marks on them, and several of the otners have been cut across cleanly in ancient times). They could all come from one animal. If so, the animal was of small stature and probably mature (all visible epiphyses are fused). None of the bones show any evidence of charring.

Sheep
Mandible with permanent promolars and Ms 1 and 2 Payne wear stage $F$
(suggested age 3-l ycars).
PHASE 3
282 (1) Recut ting, Alehester road side ditch.

0 O

1. (Two fragments). Metatarsal bone distal end and shaft. Epiphysis intact + fragment of upper part of bone allowing estimate of length at 228 mm . From measurements of distal width and minimum diaphyseal width, the bone probably comes from a female
2. Fragment of dental pad of premaxilla.
3. First phalanx substantially intact. Length 58 mm .
4. Piece of articulation of mandible.

Horse
Upper jaw cheek tooth.
Chece
Fragment of ileum.
Summary: These bones are not badly weathered or gnawed and show no evidence of charring. Knife marks are visible on the ox metatarsus.

PHASE 4 (b)
185: plot boundary, west Alchester road.
Several small fragments of bone
The fragments clearly all belong
to a skull - the bases cranii, occipital region, petrosals, one tympanic and both maxillae being substantially present. The skull is that of a small dog.

Northamptonshire Archaeology 18, 1983

The bones are too fragmentary entirely to eliminate fox, but there are features suggesting they are canine. There are no surviving teeth. The dog was very small - about the sire of a fox. It would seem all the teeth had erupted and, although many of the breakages are along suture lines, most of the sutures appear to have been fused, so the dog was an adult. Within the range of Roman lap-dogs.

## by Anne Eastham

Of the total of 68 bird bones or fragments thereof which wore excavated from this site 59 are of chicken, four of a duck comparable in size with mallard but probably a domesticated breed, a smaller Anatidae, which could possibly be a wigeon, two goose bones and two raven. The distribution of bones within the time scale of the site is even more restricted. No bird bones were discovered from the first phase of the $1 \mathrm{st} / 2$ nd century, one chicken in Phase 2, another in the later 3rd century Phase 3, two in the earlier 4 th century Phase and the remainder, including the water fowl and raven among the final lith century occupation material. The last two chicken bones appeared on the surface of the site.

Table 1
Summary of the Bird Bones of lowcester, St Lawrence Road
Species Phase 2 Phase 3 Phase ta-k

| domesticated Mallard |  |  | 1 |
| :---: | :---: | :---: | :---: |
|  |  |  | 1 |
| (possibly domestie duck) wigeon in size |  |  |  |
| Anser anser |  |  | 2 |
| domesticated goose |  |  |  |
| callus gallus | 1 | 3 | 53 |
| chicken |  |  |  |
| Corvus corax |  |  | 2 |

## Waterfowl

The geces and ducks, of which there are only a total of 7 bones, were extremely few in number. The mallard, whether of a domesticated or wild species, is represented by a humerus, 2 ulnae and a femur. Three of these bones, humerus, ulna and femur, carry the same site reference and could well belong to the same individual. The other ulna is from a smaller specimen and was found in another location. It would therefore seem logical to suggest that just a pair of duck approximate in size to mallard werc found in these excavations.

The other anatidae humerus is markedly more slender than is usual in mallard and approximates very much in size to Anas penelope, wigeon. Whether it is such or whether a smaller domesticated duck it is difficult to make a definite decision. The bone is a distal fragment of humerus, which does not carry any distinctive
diagnostic features in the bones of waterfowl.
The two goose bones are both left ulnae which indicates two individual specimens. One of these carries the same site reference as the mallard in Fhase ta. These ulnae are larger than the wild bean goose, Anser fabalis, and a little smaller than grey lag, Anser anser. This makes it most likely that they are both domesticated geese bought in for the table.

The Chicken Bones
Table 2- Distribution of Gallus gallus (omitting articulated skeleton)

|  | Phase 2 | Phase 3 | Phase 4a-b | Surface |
| :---: | :---: | :---: | :---: | :---: |
| Sku11 |  |  |  |  |
| Mandible |  |  |  |  |
| Coracoid |  |  | 2 |  |
| Sternum |  |  |  |  |
| Furcula |  |  |  |  |
| Scapula |  |  |  |  |
| Vertebrac |  |  |  |  |
| Ribs |  |  |  |  |
| Pelvis |  |  |  |  |
| Humerus |  |  | 3 | 1 |
| Radius |  |  | 3 |  |
| Ulna |  |  | 1 |  |
| Carpo-Metacarpus |  |  | 1 |  |
| Digits |  |  |  |  |
| Tibio-Tarsus |  |  | 7 | 1 |
| Fibula |  |  |  |  |
| Tarsus-Metatarcus | 1 |  | 2/1 |  |
| Phatangos |  |  |  |  |
| Femur |  | 1 | 3 |  |

Apart from 33 bones which were found all together, the 20 chicken bones were mainly fron the later phase of the site. Both the tarsus metartarsus from Phase 2 and the femur from Phase 3 are noticeably longer and more robust than those from Phases 4a-b. The fragmentary nature of the bones means that comparative measurements are rarely available. Such as they are, they are demonstrated in Table 4.

Table 3
Phase 3
Phases 4a-b

| Measurements of Gallus (excluding articulated skeleton)mm |  |  |  |  |  | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{A}{n} \end{aligned}$ | $\frac{\text { Site }}{\text { Ref. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coracoid |  |  |  | $\begin{aligned} & 55.0 \\ & 50.4 \end{aligned}$ |  |  | 173 |
| Humerus |  |  |  |  |  | 19.55 | $\begin{aligned} & 14(1) \\ & 11(1) \end{aligned}$ |
| Ulna |  |  |  |  | 09.8 |  | 106 |
| Femora |  |  |  | 67.4 | 13.9 |  | 63 |
|  |  |  |  |  | 15.0 |  | 18 |
|  |  |  |  |  | 11,25 |  | 31(3) |
| Pibiotarsua |  |  | 14.0 |  |  | 9.6 | 525 |
|  |  |  |  |  |  |  | 14(1) |
|  |  |  |  |  | 16.5 |  | 11(1) |
|  |  |  |  | 117.3 | 20.85 | 10.5 | 6 |

In the final phase of the site most of the chicken bones approximate very closely in size with the modern pheasant phasiamus colchinus. Obviously with so few bones any determination or guesswork as to breed of fowl is irrelevant. No evidence of animal farming seems to have appeared on this site so that like the mamals the chickens were probably just brought in for food and not reared in the vicinity.

Although the sites were sc dissimilar in function, comparison of the chicken bone measurements of both the later phases of Fishbourne Roman palnce and the 3 rd and 4 th century phases of Porchester Castle shows a broad similarity of size variation.

Table $4_{k}=$ Bcies of Gallus cound associated in Pit 171 (1) (Phase 4b)


One of two interesting points are raised with reference to the 33 bones of a single cockerel found in the lower levels of Pit 171 (1) below a layer of carkonised wood and ash. This scems to have been a very large rubbish pit but the cockerel was apparently thrown away whole, although its skull and the right wing below the hamerus are missing; and there are no marks on the bones suggesting that it was cut up, either for jointing before cooking or at the table. The lond kone mearmrements are very similar to those of other bones of thats pericut, a smallish breed of chicken (see Table 5).

Table 5 - Meashrements of an articulated cackerel found in Pit 171 (1) measurements in millimetres

|  | Eength | Proximal | Distal |
| :---: | :---: | :---: | :---: |
| Humeri | 6.98 | 1.95 | 1.585 |
|  | 6.48 | 1.90 | 1.575 |
| U6ince | 7.07 | 1.83 | 1.014 |
| Caprars | 3.106 | 1.1/85 | . 845 |
| Cobacorat | 5.575 |  |  |
|  | 5.67 |  |  |
| Fenceft | $7.71{ }^{5}$ | 1. 1865 | 1.54 |
|  | 7.57 | 1.175 | 1. 56 |
| Ththenamatis |  | 89.09 | 1.199 |
|  | 10.79 | 8.07\% | 1.22 |
| Tarnometatarces | 7.46 | 1.985 | 1.11 |
|  |  | 1.52m |  |

The fematns ge thit cockerel include part of hiss pelvis and the dorso bucrum to which the gtudieg of A 1 Promptaff who researched the inheritance of the
 in the late $1920^{\circ} \mathrm{s}$ may be wefully applied. From a range of $/$, (oor ehickens from a varicty of breeds he was able to define three different dopto maerat typer, indicating different nosture in the individuat. The 'Bantam' type with I dorso saeral vertebrae implies a mather horfzonti body posture. The 'Nowal' notempe ios lound fn breeds with four dorso sacral vertebrae and breeds Ltke Grphntond, Faviofis, frdian name and a great many murebred typets of peultry fall into this eategory. A minch more ereet posture fe held by those with 5 derto taekal vertebre and a baekward removal of the pelvie bence Typical of thits its the orlaff type of podtey and many of the largor breedts.

The dordo thefuin of this cockefel falls into the 'Orloff' or 5 dorso gneral vertebrat type, gwet though ficegerementes thow that it is relatively smanl in site. Whether further restareh along thege línes, provided that enough Roman dorso gacra were availables, would give definitive inforthation on Roman races of towl, I am not ecrtaith Promptofl docs point out that pure racess of domestic poutry are never turifornly of any given pelvie typer, thet at modern torkfog as bred for showing has a very horizontal gesture, whereas the hybrids produced for stancifig upright four to a cage int a bettery unit secm in the specimens $I$ have studicd to have the 5 des typer of pelvis. birortunately I have not had an opportonity to stuly the atetal pelvic cirale of any of
of the valuable Dorkings which are supposed to be the oldest race of poultry in this country and to have been imported in Roman times.

## The Raven

Ravens are almost a trademark of Romano British sites in this country, and it would be a disappointment to find a site without one. The fragmentary 1 iz and tibio tarsus fragments found in site ref 177 have been dated to Phi : lib. often in the villas and military estabiishments they were tame and lived to a very areat old age.

## Conclusion

In gummary, amart from the raven, it is logical to regard the bird bones from this site as food items rather than accidental deaths. As such, it is clear that the settlement was poorly supplied with poultry for most of its period of existence and its inhabitants never indulged in the luxury of feotic table birds as se many of their richer contemporaries did elsewherc. Chicken stew not roast peacock would appear to represent the height of their celchrationc; the simple $f$ fef of the artisan in which the indulgence of poultry wan a rare oceasion.


Fig. M16 Towcester, Alchester road suburbs: bird bone: cockerel skeleton from Pit 171(1).
by C.T.P. Woodfield.


Cranium: Severely damaged by machine at time of discovery. Face, major part right parietal, most upper mandible missing.

Strong occipital crest and pronounced mastoid processes. Brow ridges missing.

Sutures: Saggital largely closed on ext.table. Coronal commencing at bregma. Lambdoid suture closure proceeding. No wurmian bones.

Measurements: $\quad\left(\mathrm{S}_{2}\right)=113 \mathrm{~mm}$
Post Cranial skeleton:
Measurements: $\left(\mathrm{FeL}_{1}\right)=432.5$ (one on1y) $\begin{array}{lrl}\left(\mathrm{TiL}_{1}\right) & 338.2 & \text { No squatting facets } \\ \left(\mathrm{TiD}_{2}\right) & 23.0 \\ \left(\mathrm{TiD}_{1}\right) & 33.8 \\ \left(\mathrm{FLL}_{1}\right) & 339.7 \text { (one only) } \\ \left(\mathrm{RaL}_{1}\right) & 237.8 \text { (one only minimum) }\end{array}$

Based on Trottor \& Gleser regession equations for white males, height estimated at $163.82-165.87 \mathrm{~cm}=$ (avge of 4) $=164.7 \mathrm{~cm}$.

Pelvis: strongly marked muscle attachments. Sciatic notch acute Preauricular sulcus damaged, prob, absent.

| Traumae: | One phalanx (pes) has abnormal lateral growths, probably due to trauma in life. <br> Right ulna has healed fracture towards wrist, without corresponding break in radius. Fracture has healed correctly. |
| :---: | :---: |

Pathological conditions: None could be detected. Northamptonshire Archaeology 18, 1983

The total number of oyster (ostrea edulis) shells or ports was 545. There were 305 upper valves and 240 lower. The minimum number of oysters represented was 305. One complete oyster ie upper and lower valves still paired, was noted. Shell widths were plotted in the manner suggested by J G Evans (What to do with shellfish on archaeological sites, Fig 7) (Fig M18). There were 122 measurable upper valves and 76 measurable lower valves.



[^3]
# Deposits on the inside of pottery fragments <br> by G.C. Morgan 

Several pottery fragments were seen to have greyish or black deposits adhering to the inside. On examination these proved to be the following:

|  | Pottery fabric t) $p e$ | Vessel type if known | Context or fragment (phase in brackets) | Nature of deposit |
| :---: | :---: | :---: | :---: | :---: |
| 1. | 44 (c) | Cooking pot base | 7 (3) (4b) | $\begin{aligned} & \text { Silica } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$ |
| 2. | 44 (c) | Cooking pot body sherd. | $7(3)(4 b)$ | $\begin{aligned} & \text { Silica } \\ & \left(\mathrm{SiO}_{2}\right) \& \\ & \text { lime }{ }_{\text {scale }} \end{aligned}$ |
| 3. | 44 (b) | Body sherd | 21 (4b) | Vegetable matter? |
| 4. | 44(c) | Cooking pot body sherd | $64(4 b)$ | Silica $\left(\mathrm{SiO}_{2}\right)$ \& organic matter |
| 5. | 20 | Body sherd | $64(4 b)$ | $\begin{aligned} & \text { Silica } \\ & \left(\text { Sio }_{2}\right) \text { \& } \\ & \text { lime } \end{aligned}$ |
| 6. | 35 (is) | Small vide mouthed jar | 66 (4b) | Fibrous <br> vegetable <br> matter - <br> ?cereal |
| 7. | 44(c) | Cooking pot body sherd | $68(4 a)$ | ```Burnt org- anic matter - ?cercal``` |
| 8. | $44(b)$ | Body sherd | 140(1)(4b) | Vegetable matter ?cereal |

A11 this suggegts the use of these pots for boiling water and cooking. in addition a fuecd burnt mass from 33 (eulvert, Building $4 / 5$. Phase 4) proved to be burnt cereal of some kind, possibly in the form of porridge or malt.

## Possible daub fragments

by G.C. Morgan

Lumps of a mortar-like substance formed of a calcareous mud, probably daub, were found in the following locations, both beionging to Phase $4 b$ :

1. $132(1)$ (Area 4, recutting of Alchester road side ditches, western side). Five small fragments up to 55 mm long (1976, S277) 。
2. 56 (Stone floor, Building 4/2b). Larger lump, $110 \mathrm{~mm} \times 60 \mathrm{~mm}$ with smooth face (1976, S189).

## ALCHESTER ROAD, TOWCESTER

COAL SAMPLES, ALCHESTER ROAD SUBURBS

## by J C Eaton

Coal samples found during the excavations of 1974 - 76 were looked at briefly to try to identify the coals' type and thus their probable place of extraction. Identification proved difficult (below) duc to small size and dree of weathering. As a result of weathering, the samples had lost almost all of their fussian content and were therefore composed almost entirely of vitrain. The lack of fussian within the coals made direct comparisons with a range of freah (recent) coal apecimens almost impossible, as the vitrains containcd in most coals have identical physical properties. The smoky flames given off by most of the specimeng suggest that the coals are of a bituminous type. Difficulty in igniting the samples may possibly beattributed to oxidation of the coals over a long period of time, causing the calorific values of the coals to deteriorate.

The ceghs' origin or place of extraction is therefore speculative unless additional studies are carried out on more samples, using microscopic and other analytical chemical techniques.

The transportation of coal to the Toweester area during the Roman period must have twen a feat in itself as the nearest coalfields are in the West Midlands and Leicestershire arcas some 50 to 100 km to the north.

Sample No:

## S202

58, side ditch, Alchester road. Phase lat

S238
83, Building $L_{2} / 2 \mathrm{~b}$, Phase $\mathrm{l}_{\mathrm{t}}$ b

## S19!

65, side ditch, Alehester road, Phase It $b$

Description/Flame Test
Black, vitreous lustre, rectangular in shape, easily fractured, flakey, containing a well developed cleat, thin developments of pyrita throughout, low relative density having a brown streak.
Flame test: very smoky, brown/black coloured, sooty, flame small bright orange/blue, difficult to ignite.

Hrown/grey, dull earthy lustre, weathered, thinly laminated, friable, poorly developed cleat, numerous small plant fragments visible along partings, silty liminae present, low relative density having a brown/black streak.
Flame tesit: slightly smoky, black sooty coloured, flame small bright yellow/blur, very difficult to ignite.

Blinck, vitrcous lustre rectangular, thinly laminated, containing thin laminae of pyrite, occasional plant fragments and a poorly developed cleat, low relative density having a browa/black streak.

Flame test: very smoky, black sooty coloured, flame bright yellow/ orange, very difficult to ignite.
(very small sample) Black, highly vitreous, triangular in shape; apparently showing a strong cleat, having a brown streak and a low relative density.
Flanc test: slightly smoky, black sooty, having a bright orange flame with bluc outer, difficult to ignite

S203
58, side diteh, Alchester road, Phase lab

Black, highly vitreous lustre, moderately developed eleat, showing a slight concoidal fracture, triangular in shape having a brown streak and a low relative density; appears very pure in composition.
Flame test: slightly smoky (black), having an orange/yellow small flame, difficult to ignite.
\% ASH

NOT TESTED

## 8.6\%

Purple/grey fine. Very silty a;h
2. 5\%

Orange/brown very fine silty ash

NOT TESTED
$0.36 \%$
pink/brown/arey
finc silty ash

| Sample No: | Description/Flame Test | \% ASH |
| :---: | :---: | :---: |
| 334, Plot 4/7, <br> Base of topsoil | Black, highly vitreous lustre, hexagonal in shape, having a closely spaced well developed cleat with pyrite along cleat faces, streak brown/grey and low relative density. <br> Flame test: slightly smoky (brown/black), having an orange/ yellow flame with blue outer | NOT TESTED |
| ```S216 64, pit, Area 4, Phase 4b``` | Brown/black, dull, weathered, rectangular, wich a vitreous lustre when broken, containing a well developed cleat ( $v$. closely spaced), and abundant weathered pyrite material and sone plant debris, streak brown having a low relative density. <br> Flame test: Very slightly smoky with a very small (poor) yellow/ biue flame, slow burning. | 12. $8 \%$ <br> Dark purple/grey clinkered ash. |
| 5187 <br> 65, side ditch, Alchester road, Phase lit. | Black, vitrcous lustre, rectangular in shape. Showing a well developed concordial cleat, thinly laminated containing very thin clay laminae, very brittle, giving a brown/grey streak and having a low relative density. <br> Flame test: moderately smoky, black sooty with a bright yellow/ orange flame, burned readily. | NOT TESTED |
| 5292 <br> 16't, diteh, Plot $4 / \mathrm{g}$, Phase 4 b | Black, vitreous lustre, cubic in shape, extremely closely spaced cleat with associated pyrite brown/ grey streak and having a low relative density. <br> Flame test: very smoky and sooty (black), with a very bright yellow/ orange flame. | NOT TESTED |

Analysis or slag remains from watching brief, Towcester, 1977.
by R Clough, Institute of Archaeology, University of London.

Four small cakes of slag were found in the fill of a ditch, 282 (2) (the Alchester road side ditch). They are plano-convex/shape, being 150-200mm in diameter and approximately 100 mm deep, weighing c. 0.6 kg .

Similar cakes of slag have beon considered as furnance bottoms, from either smelting or smithing furnaces. Examination of these samples now suggests a smithing origin.

All four samples were extensively weathered which was confirmed by X-ray diffraction where goethite, an iron oxy-hydroxide was predominant in the pattern. This mineral would not be part of the original composition as it is a secondary corrosion product.

During the weatherisg, other elements would have been leached from the slag structure, particularly the more seluble elements such as the alkalis. As a consequence, any analysis can crily approximate the original composition. This imposes an uncertainty on any information which can be derived from the slan, and reconstructions of the thermal conditions operating in the furnace difficult.

The analyces in Table 1 display a wide variation in composition, with furnace bottoms B and D being typical of slag from the bloomery process. Sample A is relatively low in silica but this could still represent a slag from the process with the addition ${ }^{\text {of }}$ iron during the smithing process.

Although the analyses are similar to those of slags from the smelting process they are also acceptable as smithing slags, because during the early stages of smithing the iron, much of the entrapped slag is squeezed out of the iron bloom without any obvious change in composition.

During smithing, other materials in the furnace are often vitrified and enter the siag structure. Minerals such as silica and iron oxide can be intentionally added as an aid to forging, but fuel ash, and furnace lining often flux the slag resulting in unusual compositions such as that seen in slag $C$ (Table 1), which must include furnace lining or similar high alumina material.

The quantity of slag from the $/$| sample |
| :---: |
| is |
| small |$(2-3 \mathrm{~kg})$, but this could reflect the small area of diteh excavated. None of the samples exhibits any flow structure which is typical of slag tapped from a smelting furnace. No furnace remains werc associated with the slag cakes, which probably resulted from periodic clearing out of a smithing furnace.

Ore deposits are located to the north of Towcester along with traces of early pit mining dating to the Medieval period, and it is possible that Roman smelting operations also took place in that area.

Table 1. Slag analyses Ditch 282 (2)

| Element | A | B | C | D |
| :--- | :---: | :---: | :---: | :---: |
| SIO2 | 9.4 | 14.4 | 21.2 | 26.8 |
| FEO | 60.9 | 57.9 | 4.3 .7 | 52.6 |
| AL203 | 3.2 | 3.4 | 21.9 | 3.0 |
| CAO | 0.8 | 1.7 | N.D | 5.5 |
| MLO | 0.8 | 0.8 | 4.6 | 1.1 |
| SO3 | 0.4 | 0.3 | 0.2 | 0.1 |
| P205 | 1.2 | 0.9 | 0.8 | 0.7 |
| TOTALS | 76.5 | 79.4 | 92.4 | 89.8 M |
|  |  |  |  |  |

Analynalby XRF-cdax, using horite discg.
Water and carbon not analysed for.
Some of the iron in these slags would be in the higher oxidation state.

## TABLE ONE

Distribution of specifically named beetles in the six faunal groups

## SINANTHROPES

I Inported species:
Lamostenus texicola, Oryzaephilus surinamensis, Agles.us brunneus, Gryptolestes fecragineus, C.turticus, Tribolium confusum, T.casteneun, Sitophilus grenarius,
-I Other symantiropes:
Anobius punetatur, Ftinus sur, P.sutpilosus, Lathridius pseudominutus, Enicmus transveranis.

## III Camy/rubbish fauna:

Acritus nigricomis, onthophilus stxiatulus, +Sphacridiun sp., Cercyon unipustulatue Megsoternum ovscurum, tAphodius spp., Oxyomus syvestris, Micropeplus porcatus, owlium lenviusculus, Coryphium angusticolle. Flatystethus arenarius, P.cornutus of degener, Pinitens, inotylus compianatus, A.nitidulus, , rugosub, A.scuiptus, Anthicus florsis, Hycotina hirts, Thizophagus perforatus.

## HATURALLY OGOHRMG SFEGLES

IV Grounc/soli species:
Nobrix brevicsilia, Ftarostichus nig*itn, R.versicolor, Agonum albipas.

## $V$ Vagetetion fasdore:

Chatocnemi concinnx, Hyper* punctate, Gymotron veronica. Phicophthorus zhododectylus, Scolytus intricstus, Hylesinus oliopezda.

## VI Aquatic/wathride fauna:

(Aquatic) Hydroblus fuscipes, Helophorus brevipeipas, H. \&quaticus,
Ochtheblus bicolon, 0.minimus, Limeblus truncatelius.
(Wateride) Lestava hact, Lelongoelytrata, corylophuc cassidotios. (Fond and ponside plant fooders) Hydrothistes maginelie, Notatie acridulus, Tanyaphyrit lemnta.

Not Idontified to apmeien, but Genus diagnontic of hebitst type.

1. Sewing ring. Common in 16 th and 17 th centuries and most likely to have been imported from Nuremburg. For a mid 16th century parallel see Woodfield 1981, Fig. 6, 108. Intrusive therefore in 345, Phase 2. 1967 SF 16.
2. F decorative scabbard binding, possibly Medieval; but a Roman date cannot be entirely ruled out (Mr F Grew, Misemm of Hondon, in litt 1982). Unstratified in area of Buifdirg $4 / 1 b, 1977$ watching brief.

3-5. Brooches, Medieva1 (London Museum 1954, P1. LXXVII 1-2). The contexta are as follows: 3, topsoil, 1975 SF 675; 4. toracis. 1974 Si 2: 5, intrusive in 330 , Phase 2 or 4b, 1967544
6. Gucll bell, copper alioy sphere within; probably postnedieval (Moorehouse 1971, Eig. 25, 163). From 19, land GFAn. 1975 S6 843.
7. PiGEG OE Medieval coultcr (London Museum 1954, P1. XXII). Topsoil over Builaing 4/1b, 1977 watehing brief.

8-10. Horsesfoce. Coute be Roman but not from sealed levels. G Eones from the topsoin, Area 4 (it regembles Portchester, Volf. Fity. 125, 182 (Cuniffe 1975)); 9 from 336, Phases 2 or 4t: 10 Erom 65, Phase 4h.

Th addition the 1967 GzGavations produced two copper alloy tag arig of Poot-medieval date (Woodfield 1981, Fig. 5, 36): intrusive in 335 (phace 4b) and 329 (Phase 2j.


Fig. M18 Towcester, Alchester road suburbs: medieval and post-medieval finds.


[^0]:    *denotes Phase 4 a contexts extending in use into Phase 4 b .

[^1]:    * 

    denotes the incorporation of comments by Professor W H Manning.

[^2]:    *probably intrusive: see footnote to Table 5.

[^3]:    Fig. M17 Towcester, Alchester road suburbs: plot of oyster shell dimensions

