Proc Soc Antig Scot, 114 (1984)

FICHE 2: CONTENTS

NM ShARPLES	Excevations at Pierowall quarry, Westray, Orkney (cont)	A3-G5
I A G SHEPHERD	A beaker burial at Mains of	67-14
A N SHEPHERD \&	Ealnagowan, Ardursier,	
A F bruce	Inverness District	

Proc Soc Antin Scot, 114 (1984), fiche 2:A4-G5

EXCAUATIONS AT PIEROUALL QUARRY, UESTRAY, ORKNEY (continued)

N M SHARPLES

CONTENTS

Flaked stone
Stone tools
Decoreted stones
Pumice a worked bone
Hinen bone
Lerge Mamal bones
Small enimals
Fish bones
日ird bone
Marine mollusce

CAROLINE WICKHAM-JONES	A5-C4
ANN CLARKE	C5-10.
N M SHARPLES	C11-02
NM SHARPLES	03
D A BIRKETT	$04-9$
F MCCORMICK	$010-\mathrm{F} 2$
A BARLOU	$\mathrm{F3}$
C SWINNEY	$\mathrm{F4}$
A S CLARKE	$\mathrm{F5} 5-7$
A BARLOW	$\mathrm{FB}-\mathrm{G5}$

Flakes
(cont $)$
500

Uhite	x				\times			08:03:01	x		x	11
P grey	\times	$\times 1$	x					07:04:01	x		\times	11
Grey	x	$\times 1$	\times				\times	05:06:01	x		\times	11
Orange	\times	$\times 1$			x			06:05:01	\times		\times	11
Cream	\times							06:04:01	\times	x	\times	11
Pink	x		prox		x		x	07:04:01	\times	\times	\times	11
White	\times		prox		x		x	06:04:01	x	x	\times	11
Red	x			*	x	x	\times	04:05:01	x	\times	x	11
Uhite	\times		prox		\times			05:04:01	x	x	\times	11
Orange	\times	$\times 1$		\times	\times		\times	04:05:01	\times	\times	x	11
White	x		distal					05:05:01	x	x	\times	11
Cream	x				\times		\times	06:05:01	x	\times	x	11
Orang:	\times				\times			05:05:01	\times	\times	\times	11
p grey	$\times p$	$\times 1$			\times		*	06:04:01	\times	\times	\times	11
p grey	\times	$\times 1$			x			04:06:01	\times		\times	11
P gray	$x p$	$\times 1$	prox		x			05:05:01	x	x	\times	11
Orange	\times	$\times 1$	prox	\times	x	\times	${ }^{x}$	04:05:01	\times	x	x	11
Honey	\times				x	\times	\times	06:04:01	x	x	x	11
Cream	*			\times	\times	\times	\times	05104:01	\times	\times	x	11
Orange	x				\times			06:05:01	x	x	x	11
P grey	\times		prox		x		x	06:03:01	x	\times	x	11
Crasm	x	$\times 1$	prox		x		\times	05:03:01	x	\times	x	11
Cream	\times	$\times 1$			\times			04:05:01	x		\times	11
P gray	\times	$\times 1$	distal					05:05:01	\times	x	\times	11


```
Cat Site
no no
```

Retouched Pieces
a) Scrapere

Leyet
61232 Cortical flake; cream: broken: Iight half surviving; artificial platform; diffuse bulb: long sinuous aides diverge from narrow proximal to broad convex distal; shallow edge retouch around distalt macroscopic edge damage undercuts the retouch scars; $32: 18: 05 ; 160^{\circ}$; r 29°; p 95°; d 76°; End Scraper.

61364 Primary flake; pale grey; corticatedt patinated; diffuse bulbi straight cortical sides divarge from blunt proximel to convex distal; some shattering on dorsal surface at proximal and long steep retouch arount diatel and; macroscoplc edge damage undercuts the retauch scars; 2日:27:12: 146°; r 45°; p 52°; d 76°; End Scraper.

614104 Primary flake \ddagger yellow/pink: corticated; pat-
inated; brokent distal survivingt roughly rectangular plant small ateep retouch across stralght distal end; 18:19:06: $182^{\circ} ; \mathrm{r} 18^{\circ}$: - 110°, o 79°, End Scraper

62513 Primary flaket pale grey/whitef corticatedt natural platformi diffuse bulb; triangular plant stralght aldes diverge from pointed proximel to broad convex distali small irregular retouch around distel; macroscoplc edge demage under. cute retouch scers $24: 231071153^{\circ}$ d 64°; End Scraper.

616189 Primery flaket pale greyt corticatedi convex left side and sinuous right diverge from ner. row proximal to convex distalt eteop irreguler retouch around distalimacroscoplc edge demege undercuts the retouch ecare and at the proximal end of the left sidel 24:19107! 127°; 55°, d 53° i End Scraper.

Cat Site

no no

Retouched Pieces (contd)
a) Scrapor: Layor

617115 Primary flaket pale grey/orange; corticated; lightly petinatedi irregular plen: ateep Irregular retouch around convex distal; flatter irregulai rotouch at proximal: macroscopic edge danage undercuts the retouch scare at the diatal end: 21:17:09; 174°; 59°; p 67°; d 78°; Eno Scraper.

6184 Primary flaket white; corticatedi glightly patinated; negative bulb; straight sides diverge from flat proximal to broad convex distal; proximal damaged by sall irregular flakes on dorsal: right side cortex: left side affected by damage at proximal; small ste日p edge retouch around distal: macroscopic edge damage on distal: 18:22:07: 140°; r 71°; d 74°; End Scraper. unstrat

619239 Secondary flaket pale grey: corticated; slightly patinated; natural platfora; diffuse bulb; pletform lipi straight aldes diverge from proximal to convex distalt left side cortext steep lrregular edge retouch around distalt emall irregular edge retouch on right edge; macroscoplcedge damage on distal: 31:19:10t 165°; r 65°; 65° : End Scraper. unetrat

62074 Secondary flaket pale grey/brownt corticatedt artificiel pletformi platform edge trimedt diffuse bulb; straight right and left sides diverging from narrow proximal to obllque sifghtly convex distali left side cortex, seap Irregular retouch around distal. macroscopic edge demage undercuta the retouch scars!
 Soreper.

```
Cat Site
    no no
```

Retouched Pleces (contd)
a) Scrapars
Leyer
621204 Secondary flake; pale grey: slightly cortacatedi
lightly patinated; brokent segment survivingt
stralght aides diverge from stralght snap at
proximal end to broad convex distal; left side
mainiy cortex: steop shallow retouch around
distel: small irregular retouch on right edge
and non cortical areas of left edget macro-
scoplc adge damage undercute the retouch scars
around the distel, ventral surface damaged by
the removal of flakes from the centre of the
right side: 26:21:06: 166°; r 38°; p 87°;
d 60°; End Scraper.
622229 Secondary flake: honeyi corticatedi lightly
patinatedt natural platformi sub-rectangular
plan with sifghtly convex distal; shallow
irregular retouch around distalt slight macro-
scopic edge damage undercuts the retouch scara
and at the proximal end of the left idei ven-
tral surfece demaged by the removal of flakes
from the centre of the right eide: 21:17:07;
140°; 66°; d 55°; End Scraper.
62334 Secondary flaket pale greyt corticatedi par-
tially patinated; brokenf distal segment eur-
Wiling: irregular plant long retouch eround
convex right half of distal: 22:32:09: 272°;
r 91°; 94° id 57° : End Scraper.

624114 Inner flaket pale greyt corticatedi lightly pate inatedi stralght sides diverge from blunt proximal to convex distali long hallow retouch around distali small step retouch at proximal end of left edge: lang thinning flakes removed acrose the proximal end of the ilght sidel slight macroscoplo/

Cat Site

no no
Ratouchad Pleces (contd)
a) Scrapers
Layer
624114 macrogcoplc edge dakage undercute tha retouch
(contd) scare eround the distal; ventrel surface
danaged by the removal of flakes from the
centre of the 11 ght side; $35: 27: 06$: 130° :
I 31°; d 52°; End Sctaper.
20
625 Inner flatio: pale grey: ellghtly corticated;
patinated: atificial facetted platform: dif-
fuse bulbi sub-circular plen with straight
left side; atemp irregular retouch around dis-
tal: mecroscoplcedge demage wndercute the
retouch acary and is on the dorsal edge of the
broad platform at the proximal end 15:18:06;
181° : r 48° : p 102°; 66° : End Scraper. unstrat
626224 Inner flake; whitei corticatedt brokenf left
half survivinof irregular plant salll steep
retouch at proximal and of left edge and on
surviving length of dietc: edge: 24:17illt
185°; d 78°; Broken End Screper.
627 4 Inner flake: greyi pertially corticated:
ineavily patinated; D-shaped plen with straight
left edget flake etruck from larger partially
pollshed piecel left aide blunted and atialgh-
tenad by polishing which has given it a curved
hinge profilei the polising is somewhat
obscured by the patination steep retouch
around the rest of the margin of the flake gives
the rlght edge ereversed S profile ne it lo
flaked from the ventral surface the proxiaal
end but from the dorsel surface at the distel
end meeting in e length of ulfacial work at the
centre of the dgel considerable macroscople
edge denage undercute all retouch scaret
16:25:07; r $58^{\circ} ;$ p $87^{\circ} ;$ d 91° Double-Ended
striper.

```
Cat Site
Retouched Piecee (contd)
a) Scrapers
    Layer
628 76 Cortical flake; cream; broken; segment sur-
        viving: triangular plan: curved left side and
        stralght proximal and distal converje at right
        side; long steep retouch on left elde; macro-
        scopic edge damage undercuts the retouch scars;
        21:24:09; 1 690; p 680; d 65', Side Scraper. 11
    629 24 Inner flakeipink; corticated; broken; proximal
        gegment surviving: artificial platform; diffuse
        bulb; triangular plani broad stralght proximal
        and right side: convex left side meets the
        right at a distal point; steep sheilow retouch
        around left sido; nacroscopic acipe damage
        undercuts the left sidel right side and proximal
        alsu damaged; 19:26:09: 1 76 ; 工 65% p 670;
        Side Scraper.
        8
    630 20 Inner flake; crean; corticated; pronnunced
        bulbi triangular plan; atraight proximal and
        gtralght left and right sides converge at dis-
        tal: mmall irreguler retouch along left edge;
        22:20105: 1 600; r 100', S1de Scraper.
        1 0
            63142 Secondery flakel cream: corticated; broken;
        distal cegment surulvingi straight snaps along
        left side and proximal; convex distal and right
        sidet mall steep retouch eround distal and
        right sidesi macroscopic edge damage undercuts
        the retouch scare: 14115t06; 1 1220% r 830;
        p 80员 d 72 ' End and Side Scraper.
        21
            632 4, Secondary flakel cream! corticatedi natural
        platform: ractangular plan with cortical left
        side! stesep shallow retouch around distal and
        right sidesi macroscopic odge demage undercuts
```



```
        d 69'`, End and Side Scraper.
        1 1
```

```
Cat Site
no no
Retouched Pleces (conta)
a) Scrapers
633 38 Inner flake: white; corticated: diffuse bulb;
        irregular plani small steep retouch on straight
        distal ard straight distal end of rigat side;
        15:18:05; r B0'; p 370
        Scraper.
634 75 Jecondary flake: white; corticated: broken;
        distal segment surviving; irregular chunky
        Dlan and profile; steep itrejular retouch
        all round with the exception of part of the
        left side where cortex remains: macroscopic
        damage undercuts the retouch scars; 20:26:12;
        1 950; r 860
    635 29 Inner flake; cream; corticated; artificlal
        platform: diffuse bulb; itreqular plen; tri-
        angular cross section with flat left side
        upon which the flake will stand; lung shallow
        retouch extending down right side from central
        crest: deep macroscupic edge damage undercuts
        this retouch; 28:15:08; 1 76 % r 560
        crest 80'; Orokon Scraper face (possibly rep-
        resenting deliberate regharpening).
    10
b) Edge retouched flakes
63621 Primary flake; honsyl corticatedt partially patinated; broken: proximal surviving; natural platform: diffuse bulbi shallow frregulat retouch on sinuous left edge: 25:18:07; 1 55 ; r \(49^{\circ}\) : Broken Edge Retouched Flake: (flake knife).
637217 Inner flakel pale grey; allghtly corticated: llghtly patinatedi artiflcisl facetted platform: platform edge trimedi diffuse bulb with/
```

```
Cat Site
no no
Retcuched Pieces (contd)
b) Edge retouched flakee
637 217 with platform lip; long straight sides
(contd) diverge from narrow stralght proximal to
        broad convex distal; deep irregular retouch
        around the left, distal and right edges, macro-
        scopic edge damage undercuts the retouch ecare
        along both left and right sides; 56:26:05;
        1680
        Flake, (flake knife).
    2 2
638 108 Inner flake; white; corticated; broken; distal
        tip and part of left side removed; artificial
        platform; negative diffuge bulb; irregular
        plan due to break; sllghtly convex right side
        and narrow proximal; deep irregular retouch
        around the right edge and remmant of left adge:
        macroscopic edge damage undercuts the retouch
        scars and there is also some damage of the
        ventral surface along the right and left sides:
        40:22:08: 1 630; r 56 % Edge Retouched Flake.
        (flake knife).
        2 2
639 80 Inner flakef corticatedt llghtly patinatedt
        broken: proximal suruivingt artificial plat-
        form: diffuse bulb; platform edge trimmed;
        slightly binuous sides lead from narrow etraight
        proximal to broad atraight smap below distel:
        11regular retouch on right edget large deep
        retouch on left sidel macroscopic edge damago
        on both sides: 24t22:08; 1 64'0; r 64%' Broken
        Edge Retouched Flake, (flake knife) possibly
        unfinistiod.
c) Other retouch/
```

```
Cat Site
no no
Retouched Pieces (contd)
c) Uther retouch Layer
640 112 Primary shunk; white: corticated; one side
                                steep shallow retouch; ventral surface some
                                damage from the removal of shallow flakes;
        21:20:00; retouched edge angle E0';
        Miscellarieous Retouch.
E41 40 Cortical flake; cream; broken; distal surviv-
    ing: steep shalluw edge retouch on small area
    of convex distal; 12:16:04; d 60% ; Eroker
    Retouched Flake.
E4? 6 Inner flake; red/orown; lightly patinated;
    broken; distal gurvivingt roughly rectangulat
    plan: irregular inverse edge retouch on left
        side; 41:30:17; 1 80 % r 740; d 740%
        Miscellaneous Retouch Flake.
    543 14E Inner flake; honey/cream; partially corticated;
        lightly patinated; broken: proxjmal segment
        surviving; artificlal platform: diffuse bult;
        irregular plan; steep irregular retouch on
        stralght right side; macrosroplc edge damage
        undercuts retouch scars: veritral surface damaged
        by flakes removed along the right slow; 32:24:11:
        r 67 % Miscellaneous Retouched Flake.
            39 Innor flake; pele grey/cream: cortlcated!
        broken: central segment surviving: lrregular
        steep retouch on atraight left and convex
        rlght sides; in both cases the retouch is trunc-
        ated by the smeps at both distal and froximal
        ends: conalderable macroscopic odge damage
        undercuts the retouch scars: 22:23:07: 1 75%;
        r 68'0, Broken Retouched Flake.
        10
```

STONE TDOLS

Ann Clarke

The assemblage comprises 20 items of which five are Skalli knives, efght are cobble tools, three have pecked hollows, and the rest are a collection of miscellaneous items, including a pebble rubbed in four places forming facets, one possible anuil stone, a sandstone slab smoothed over one surface and an irrogular chunk grooved on three surfaces.

The Skalll knives are flakes fram beach pabbles. The four spaller knives (646, 647, 64日, 649) exhibit edge damage in the form of denticulation, snapping and light flaking. Experimental butchering using Skalll kniver resulted in edge damage on the finer pieces similar to that appearing on these knives. The larger knlfe (645) appears to have been flaked bifacially around part of the perimeter before use to reduce the edge angle. Subsequent edge damage consists of heavy bifacial flaking and rounding around most of the perimeter.

The cobble tools consist of a 1 x pounders $(650,651,652$, 653, 654 (655), bifaclal cobble (656) and one hamerstone (657). The pounders vary in shape, size and amount of wear although most exhibit the following general characteristics. All but two (650 , 655) have been worked at both ends. This use war is in the form of pecking and grinding which tende to form asmentrical convex urfacea and a alight off centre ridgo on which slight faceting can sometimes bo seen. The pecking forms a lightly pittud urface but on some pleces the central protruding areas appear much moothar. This is perhaps due to arinding or a etirring motion used to collect together the material being processed. The moothirg may also be as result of holding the stone whilst using the opposite -nd.

On the finer andstone pleces light flaking of the cortical material occurs around the perimeter of the pecked area through/
through use. The two coarse grainod pourders (653, E54) appear to have been heavily used. Lar゙ge stap fractures have considerably reduced the wotking end. However, both are riddled with rigtural flaws which have encoutgged this heauy flaking, The use that all the frounder have beer fut to is probably very sinilar despite the varylng types of wear. Grain size and the occurence of inclusions or flaws will be important in determining the way the working erid of the stone is moulded through use.

stone tools catalogue

Skaill kniver

645	67	Primary flake of grey micaceous sandstone． Further modifiod by bifacial flaking on part of the edge to reduce the edge angle．Edge damage consists of bifacial flaking and heavy rounding over most of the pertmeter．3日2g； $87: 170: 20$
646	282	```Secondary flake of grey micaceous sandstone. Edge damage consists of denticulation and light untficial flaking. 32g: 53:48; 13 10```
647	283	Primary flake of gray micaceous sandstone． Edge damage consists of denticulation and light unifacial floking．80g；64！84： 15
648	281	Primary flake of gray micaceous sandstone． Edge darage consists of denticulation．59gl 6日；6日： 12
64.7	280	Primary flake of grey micaceous bandstone． Edge damage consists of denticulation and snapping．619：78：69：11
Pound	53 and	Hammerstones
650	272	Coarse grained grey micaceous sandetone cobble．Elongated oval．Pecked on one end to form two facets．Flaking around perimeter of pecked area．Opposite and slightly smoothed parhaps through holding．6789：123；80：50 109
651	275	Madium grained grey miceceous sandatone cob－ 010．Cylindrical．Pecked at either end to form convex surfaces．Facets appear to have been removed．Central areas moother than reat of pecked area，1073g1 117175；70
852	274	Fine grained black micaceous andetone cobe ble．Slightiy square in section．Pecked －t／

Pounders and Hammerstones (conto)

 661, grooved stonet 660, smoothed stone (scale et A4 $1: 3$ except 660 which 1s 1:6)

Miscellaneous tools (contd)

Stones with hollows
6529 Oual slab of coatse grained sandstone. Roughly pecked mollow slightly off centre on vential face. Probably pivot stone. 35529: 200, 180才 75; hollow 70 d18m 70 deop 5

663 IO Roughly triangular slab of grey micaceous saride stone. Shallow hollow of pecking on upper surface. 1554日g: 380; 280; 111: lol1uw 50nm diam 5mm deop

664
285
Long natrou slob of gray micaceous sandstone, oblique at one end. Ehibits a regular oval shaped hollow on ilrst third of one edge made by pecking. $236213901110: 55$ hollow 85: 33t 10 dep unstrat

665287 This stone appears to be almost complete and it Is poesible to atteapt e reconstruction of the design which occurs on one face only. Along the top edge the weathering is considerable and in particular the top laft edge has suffered greatly from surface flaking. An estioated 15 to 25 mm is wissing from it. The ides and bottom seem to have suffered only a slight rounding of the edges though this has obscured some of the grooves of the design. Weathering on the surface has proceeded along the natural flaws in the stone and in some areas this distorts and obscures the original design.

The basic design consists of two pairs of spirals conjoined spectacle fashion (see Twohig 1981, 114). They are set back to back so that the upper right hand spiral turne anticlockwise and the upper left clockwise. The axis of symmetry is slightiy offset. All the paired spirala have between lt and ld turne. Both pairs ara not only foined by the continuation of the spirals but, are framed by another line along the front which joins onto the eplrals at each end. In the blenk spece remalning on the left of the face another siral has been carved. This rung anticlockwlee for almost two complete turne before joining on to the line framing the top left hand spiral. An 1soleted line comes off the bottom of the lower left hand apiral and runs undernath the leolated spiral apparently tracing the original edge of the stone.

The line has been made by aerles of closely set plck marks (Twohlg 1981, 117). Many of the individual pick marke can still be discerned even though they have been subject to considerable westhering. /

Decorsted stones (contd)

$665 \quad 287$
 (contd)

666 28日
weathering. thus it is clear that no attempt has tean made to smooth these out to form an over groove unere Individual fickmarks occut thoy havo a diameter of $\mathrm{c} 2-3 \mathrm{~mm}$. The width of the dine furmed varies considerably betwoon 6 and 15 mm . 316 : 296: 140
unstrat
The question of whether this atone is complete Is dependent on how one interprets tha design. Agaln this occurs on one face. but unlike the other two stones it is restricted to only a trifd of the face to one side. There is very littie weathering of this surface but several deep natural hollows occur over the undecoratect part of the face.

The design consists of two very badly axecuted spirals set back to back. That on ther ilght runs clockwise for c lit turns that on the left runs anticlockwisa for roughiy half a turi. The talls of these splrals running rouyhiy streight and parallel to each then disappear off the top edge of the stone. Around the bottom and free side of the right spiral is an arc which jolns onto the bottom of the left sultal.

It seems unlikely that this was over fritended to be a completed design. It qives the inp:esslon that $1 t$ is the oottom half of an upposed pair of linked spleals as is present on the two other stones from plerowall. If this is in fact the case then elther the stone has solit in two or else it was corved in situ with the upper holf of the destgin on an adecent stone. The evidence would tend to fovour the former Mypotiosis. This has hoppened to the large decorated stone, for example. The suruiving portion of this stone elso gives clear signs that it couldyet split In two along natural fault parallel to the upper surfect.

2:C12

666 2是 (contd)

The design was created in a aimilar manner to stoin 665. Individual plck marks eppear to be slightly lerger: on merage $c \quad 3 \frac{1}{2} m$ in diameter. The width of the grooves varles from c c gm to 15 هm. 552: 255: 90 unstrat

This stone was found in two pieces approxiately three monthe epert. Both, howaver, clearly join and togather they represent the large part of one stone. Other than the iwo obvious chunks missing from the corners, it is thought that the decorated surface is complete and thet the main dimansions of the stone accurately reflect its original shape. This claim is largely based on the overall intigration of the decoration, the repeated use of dots along the edges and an attempt to decorate an area where the dge ie not straight on the left side. The upper half of the decoration has been heavily weathered and in some aroes the surface has flaked off. The weathering does not colncide with the edge of the eplit but as it does not appear on the lower part of the stone it is imposible to tell whether it occured before or after the stone broke.

The design originally completely covered the surface of the tone and consiste of three mein elements: two pelre of epectacle-1inked spirale set back to back t two opposing sets of concentric arcs and a pair of linked spirale. Aa can be seen in the fllustration (27) the upper palr of apectacle-1inked spirale has right anilclockwise epiral of two turns and a left anticlockwise piral for 2% turns. The right spiral is increased by having a concentric arc which encompasses thresquarters of its circumference. The/

```
Oecoreted ytonos (contd)
```

The loust pair of spectacle-linked soirals consists of a right anticlockelse sional of 3 t Lirs s and a left clockelse spisal of 3y tu:fis. Bot*palss areclosed al thefront. In tratuper this is done by two arcs, in the lower yy a stralght lino linking thu noajs of the splrais. All the sfirals have a contral dot and ariothor dot apuoars between the spiral of the louer Daif.

The coposed sets of arcs which are boch centrod on 0 Jot at ihe stono's udge consist respective'y of a group of mine sami-circles wit'i an ute: dismeter of 0.24 m and a graun of 10 with an outer dianeter of \quad. 1 man. The contrast hare between a large riumber of semi-circles occutirg in a smaller aroa emphasizos a feature of the stone wich is apparent alsu in the opposed cairs of spiralg. The decotation of tio stene lncluding bot't these elesents can be dluidad visually along its length Lnto two sides, lu which on ono slie the motify reflect those on the other but are much saaller and more concontrated. This assymetry of the decoration may reflect an atempt to counteract the problems of pergoectivel the larger motifs being assigned to the pert of the stone rurthest from the eye. This. hovever. is probably unlitaly becausefor such a device to be fective the otane would hava to have been bullt into the calrn revetaent at much higher position than wes found to be the cate ith any other lintul.

The final part of the deslgn consista $=$ a folr of spirals which, unlike the provious sats, both turn anticlockwlse. The uppor spiral lias three turns, the lower eplral 2 ; turns. The tall of the/

```
Decorated atones (contd)
```

```
667 289
(contd)
```

the lower spiral joina the upper spiral and this then ancircles the pair completely before becoming an incomplete arc around the upper set of semicircles. Again, both spirals have a dot at thoir centre.

Various techniques have bean used to fill in the areas between and around these main motifs. To the left of the pair of spirals described above is a small group of three concentric arcs with a dot cupped by the smallest arc. The uppermost arc merges with part of the line which passes around the splral near ic and goes on to describe a shape like a triangle further up. There are two curving parallel lines which follow what eeeme to be a hollow at the edge of the stone above these arcs. Along the right edge of the stone there are a series of four or five arce which lie concentric with the adjacent spirals. The tip of the stone outside these is decorated with a series of horizontal lines. Between the pairs of linked spirals and the opposed sets of concentric semf-circles there is a serles of arce concentric to the adjacent motife. These define a lozenge-shaped space at the cantre of which is a dot. There are dote also in the seces between the main motifs on the lower edge of the stone. On the left alde of the lower edge there also seme to be line along the edge.

Finally, at the contre of the lower edge are three thin grooves which curve round cutting acrose the maln elements of the desion described above. They eppear superficially to be later then the main dusign but none of them i carriod into the orige inal grooves, so this in difficult to prove.

```
Unllke/
```

Decorated stones (contd)

$\begin{aligned} & 667 \\ & (\text { contd }) \end{aligned} 289$	Unling the two stones previdusly descibed the lines of the desfon are V-shaped grooves. On average these are c limim wise but there is a tendency for them to be narrower in the upper part of the stone. Presumably these groovas were formed by origlnally pecking out these liries in a manner simjlar to the other stones. After this they were made deever and mare uniform by rubting with a stone. 1300, 520, 410 unstrat


```
HUMAN GONE
O A Eirkott
Group I Layer 22
```



```
87650000
mandibie
\begin{tabular}{rl}
\(0=\) & \(t e e^{2}\) lost \\
& after death \\
\(5,5,=\) & number of \\
& teeth present
\end{tabular}
6日2 61 The upper half of an adult right uina
683 82 Portion of mid ghaft on an adult femur, probably mele
684 83 iormal adult upper thoracic vertebra
685 84 Normal adult lower thoracle vertebra
686 B5 Adult upper left rib
687 Normal abult left scapula
\(688 \quad 96\) Upper \(2 / 3\) adult right ulna
689 97 Normal cervical vertebra-probably 3,4 or 5
690 Fragment of adult right scapula
69199 Normal adult lower thoracic vertebra
692 Lll Lumber vertebra, thinwith osteophytes, pro-
bably an older person
693 Rlght fomur from a small infant
\(694 \quad 117\) Normal adult mid-thoracic vertetra
695118 Adult canlne tooti
896 Upper leftrib-adult
\(697 \quad 122\)
Uppor loftrib aduit
```


Abstract

The ample provides little information about the age/ slaughter pattern of the animals. One complete cattle mandible was present. The second moler had not yet erupted, indicating an age of between elght and 13 months. The prasence of three loose worn third molars indicate that cattle over three yoars were slso sloughtered. Little can bo sald of sheep and pig except that both young and mature individuals were present. The wild animals presant consisted of red deer and pine marten.

Group 4 (table 8)
Only a small bone sample was found associated with depositg adjacent to the round-housa. A MNI of four cattle, four shep and one $1 g$ were present, cattle also produced a greater number of fragments. Five pieces of whale bone were present. The fragments were mall so that naither the bone nor the pecies could be ldentifled. Two pieces showed slgns of working (see 'Pumice \& worked bone' section in printed text).

The sample wes again too small to provide any rellable deta about the laughter strategy of the inhabitants. Four partially complete cattle mandibulas were present. Two of these were from calves less than three weeke old. One inde luiduel was $1 x$ or seven months and another between 10 and 30 months at time of death. One sheep mandible came from a lemb egad four months while eecond came from very old Individual. In the letter mont of the teeth were miselng, with only the econd premoler and third molar surviving. The only pig mandible present came from an individual between 21 and 23 monthe.

Summary

The animal bonee from Plesowell show that during the Neolithic the liveetock economy wee dominated by sheep resting. The agelelaughter pattern of the ohesp would appear to eugest that they were prlmarlly kopt for delfye Ing purpose but that mest production was aleo an lmportant conelderation./

HUMAN BONE

Group I (contd)		Layer 22
$\begin{array}{r} \text { Cat } \\ \text { no } \end{array}$	$\begin{gathered} \text { Site } \\ \text { no } \end{gathered}$	
719	155	Normai adult upper thoracic vertebra
720	156	Fib fragment
721	157	Fragmented lower and of adult femur
722	158	Small fragments of 510
723	159	vertetral booy
724	150	Upper half of adult itight fomur
725	161	Lower half of adult left radius
726	162	Tiny long bone fragment
727	163	Small fragment of borie
- 28	164	Fragment of shaft of lorg bone? humerus? femur
729	165	Mid shoft of acult femur
730	166	Fragmented shaft of right femur - adult
731	167	Small fragment from cociput of stull
1,52	158	Lower half of left tiola - glgns of periostitis on it
733	169	Lowar $2 / 3$ of left male humerus with gigns of severe arthritis
734	170	Adult sacrum and loft ilium with a fused sacrolliac joint - no ovidence of any other diseses to cause this secro-lliac arikylosis
735	171	Fragments of mandible
		very worn teeth **654320 **tooth lost before death
730	172	Simall fragent - probably palvis
737	173	fragent of left dilum with acatabulum
738	174	Lower $2 / 3$ of left peaut ? adult female

HUMAN BONE

Group (contd)		Layar 22
Cat no	Site no	
739	175	Canine tooth
740	175	Upper thoracic vertebra
741	177	Fragmented mid shaft of adult humerus
742	190	Fragments of shaft of adult left famur
743	191	Normal adult right acetabulum and iachium
744	192	Fragment of fomoral shaft
745	193	Lower end of adult femur? male
746	194	Fragment of sacrum
747	195	Adult right rio
748	296	Lower and of famur - not belonging to 190 or 193
749	197	Partion of thoracic vertabra
750	265	Head of adult radius
751	266	Portion of right rib
752	267	Portion of right ilb
753	268	Lower end of right humerus
754	268	Adult matatarsal
755	270	Portion of long bone shaft ? ulna
756	271	Fragment of rib
Group	II	Layer 9
757	16	Lower 2/3 of right feaur - adult? male
758	22	Upper 2/3 of left femur - probably adult male
759	23	Head of adult femur
780	28	Neck and hasd of left femur
761	251	Tiny bone fragment


```
HUMAN BONE
Group III
(contd)
Cat Site
779 101 maxillary uisdom tooth 12
780 250 Fragment of sacrum 12
781 LOwar and ef adult ulna 12
Remaining Bone
782 N62 Normal adult metatarsal 0
703 263 Lumbar vertabra 8
784 19 Horn molar tooth 10
785 Lower canire tooth 10
```

```
F McCormick
```


Abstract

The excavation at Pierowall produced only a small of animal bone. The alkaline soll ensured good preseryn throughout the site though it was noticeably better in " lower levels. Unfortunately the larger bones tended $t \cdot{ }^{\prime}$. In a very fragmented condition, perhaps due to redeposi: or post-decoositionel moverent of the rubble as it stabil: The chambered tomb and its immediate anvirons was an or. centre for human activity for nearly 2000 years. As ha" 1 . discussed above, these successive perlods of activity, ing both construction and destruction, often considerabl. turbed the existing deposits on the site. As a result it is not only difficult to attribute certain deposits H^{\prime}. cific periods but in many cases residual material must sin: fously confuse the analysie. Consequenti; this report $1, \ldots$ with only a portion of the faunal assemblage, large cincul. associated groups which cone from well stratified conte. Even here, however, in certaln cases there may be problam ouer residual material. In total four separate groups in .. discussed. The first two groups are all of a Neolithic wis and will therefore be considered together. The latter :... contexts, although containing a much raduced number of $\mathrm{i}: 1 \mathrm{l}$ ifisble fragments, are lmportant because they give somp i icetion of livestock composition in the economy of the occupation phase of the site.

Quantification and Ageing Data

The ainimum number of individuals (MNI) was eatimat: : using the method outinod by Chaplin (1971). This qethm: entaile the conadderation of the animal's age and size as well as the frequency of the skelatalements when ca:culating the MNI total. Only the articular ende of rise were counted when calculating the fragments totals. Tho number of messuresble bones present was too small to ailin any useful discussion bout the size and 'types' of animil. present/

2: 010

present on the site. The two complete oulcaprid longbones from the late Neolithic levels provide estimated withers heights of 563 m and 591 m (using multiplication factors of Teichart, quoted in von den Driesch and Boessneck 1974).

Abstract

All the measurements are, however, recorded in tables 10 and 11 es they may in the future prove useful for coaparative purposes

The ago of the animals at time of death was based on data prouided by Silver (1969). Dnly in groups 1 and 2 were the samples large enough to allow detalled analysis of the age-slaughter pattern. Because of the absence of complotes mandibulas this was based on the state of eplphyseal furion of the bones using the method devised by Chaplin (1971).

Groups 1 and 2 (tables 2 \& 3 in printed section)
After the partial collapse of the chambered calri revetment there occur a number of layers on rubble which constitute a platform into whic: was built a small rectangular structure. A considerable quantity of bone was present in these layere. These were divided into two seperate groupe which will be considered soparately. Although the assamblages can be dated to a linited period of occupation, they are derived from separate contexts and are probably the product of different depositional procesese. Some artefactual materlal did occur in these layers but the animal bonee provide the aain evidence for occupation.

The bones from group 1 cane from amongst the collapeed revetment stones (22) which formad the priaery layer above the old ground eurface outside the calin. These bones were in a very fragmented atate and ame had been burned, partice ularly in the northern part of the excavatad area. The escond assemblege comes from the thick shillet layer (20) used as a foundation for the interior of the stucture. This shillet lay imediately on top of, and to a degree was intermixed with, the collapsed revetment stones that conteined the group 1 bonse.

Abstract

1 It is thought the bulk of the shillet layer was delloarately introduced in order to stabllize the underlying rubble and forme level floor for the structure. The animal bones, therefore, are not in their original position. It seems unlikely that this material was transported from any great distence as there ase suble sources of shillet in the lamediete vicinity.

There were also several smaller assembleges of bones which are undoubtedly of late Neolithic date. The bones from these assemblages are listed in appendix 1.

General reaulte
Ali the caprovine metapodia were identified eq sheep on the basis of the criteria devised by Boessneck (1969). It is therefore assumed that goats are absent in the samples.

Sheep account for between 83\% and 87\% of the main food animals (cattle, sheep, pig, red deer) in groups I and II at Pierowall. This may seem unusually high es sheep generally play a minor role compared with cattle and pig during British Neolithic and oarly Bronze Age (Simmons \& Tooley 1981, 198, 226-8). The livestock economy of the Orkneys, however, developed differently from the rest of Britain. Recent evidence from Skera Brae (Noddle unpublished) shows that during the late Neolithic/early Rronze Age there was decline In the importance of cattle in the livestock economy and a corresponding increase in the importance of shap.

In southern Oritein sheep do not become a dominant domesticate until at least the late Bronze Age. Clark (1952) proposed en 'ecological' explanation for this late development of intensive sheep farming. He argued that the wooded enviroment of Neolithic and early Bronze Age western Europe was more suitable for the rearing of cattle and pig as woodland formed the natural habitat of the wild ancestors of both these species. He further atated that in the few parts of Europe where deciduous forest was absent or relatively unimportant se in the Orkneys, or on the rocky islets of Morbihan./

Morbiman, sheep breeding was strongly developed during Neolithic times' (1952, 121). Clerk based his Orcadian euidence on the faunal material from the early Skara Brae excavations (watson 1931). The date from the recent excauations at the sans site and from Pierowell strongly aupport this hypothesis. The recent Skara Brae material, however, poses one important problem. Noddle has shown that during phase I cattle were the predominant species and it was not until after c 2340 bc that a change to a livestock economy based primarlly on sheep rearing occured (Noddle unpublished). Is it posible that the earliest Orcadian farming introduced a livertock economy similar to that of the mainland but that it was only after several hundred years that there evolved a livestock economy more sultable to the local enuironent?

Animal bone assemblages from in and around funerary monuments should always be treated with caution. Generaliy speaking, the aajority of animal bones on settlement sites are related to the dietary activities of the inhabitante. This need not necesearily be the case with funerery monumente as the animal bones may be the product of ritual activity. Furthermore, non human factors, such as the use of monuments as dens by carnivores, may also account for the presence of osteological material. It le therefore necessary to examine closely the material from plerowall Quarry in order to determine which factore account for the esemblages present. Only the two main late Neolithic samples were lerge enough to allow detailed analysiz. The large quantitiea of Orkney vole and passerine bones present were almost certeinly introduced by carnivores (see Barlow, infra).

Sheep: Age-mortality pattern (tables 4 17)
The age-mortality pattern for groups 1 and 2 was based on the state of epiphyseal fusion of the poet-cranial bonest the semples are sall so the resulta should be treated with due caution. Both group were exemined separately and the results veried considerably. In group 158% of the sheep died before the ege of 10 monthe compared with less then 20% In/

In the case of group 2. Again, only 24\% were older then 42 months in group 1 coapared with 50\% in group 2. As it has already been shown that both sssemblages are largely contemporary these contradictory results ralse some obulous problems of interpretetion.

Payne (1973) has produced kill-off pattern models which one would expect for sheep in economies where they were being kept for different purposes. In each of his models he assumes an infant mortality rate of 25%. In a gystem where sheop vere being kept specifically for meat the optioun time for slaghter was when the animals were between 18 and 30 monthe. Neither of the Plerowall groups corrgsponds to this model. In his model for a sheep dalrying eronomy Payne predicts that nearly $6 C \%$ would die during the firat year. These would include the victias of infant mortailty and the killing of unwanted lambs. especially males, so that the ewes' ailk would be avallable for human consumption. There would also be slight posk in slaughter of animals between two and four years owing to breading selection. There would also be significant numbers of old animals present, consisting mainly of ewes wich had passed their milk-producing prime. The age/death pattern in group 1 corresponds closely to this dairying model.

It should be noted that nearly oll of the sheep in the 0.10 month group were nec-natal individuals, indicating that they were dead at birth or died, or werekilled, soon afterwards. A lifgh incidonce of noo-natal indiuiduals uere also noticed in the chambers of the tombs at quanterness and Isulster (Clutton-Brock in Renfrow 1979; Barker 1983). On both these sites the writers suggest that young animals were deliberately selected and deposited as part of the funerary rite. If dalrying was the type of shemp livestock economy practised, it could be ergued that this funerary practice was aimply a ritualistic manifestation of an conomic necussity. It le also possible that the noo-natal sheep comonly found In and around Orcadian chambered tombe may simply rapresent young lembs that died in sheltered places. Sick sheep and lambe/
lambe will of ten seek a sheltered place in which to rest and die. In 1960, for inetance, 77\% of the dead Soay sheep on St kilda were found inside the deserted buildings on the island (Boyd et al 1964, 55). The large calrn stones and, if entry were possible, the chambers of the Drcadian tombs would have proulded obuious shelter for sick and dying lambe.

The age/slaughter pattern of the sheep in group 2 does not correpond to oither the meat production or dalrying models of Payne. In this group there was a 15-20\% kill-off for the flrst three years but a large proportion of the sheep (50\%) were greater than 42 monthb of age at time of death. Only in Payne's model for wool production does a large proportion of the sheep survive into old age (1973, 284). In the latter the old sheep were between six and ten years of age but the actual age of the mature shoep in the pierowall sample cannot be established. It le highly unlikely that sheep were being kept for wool production in late Neolithic Orkney. The fleeces of Neolithic sheep are regarded as being tou hairy for textlia production and the earllest suruluing wool textlles known in Europe date to the Bronze Age (Ayder 1981, 184; 1983, 47). No woollen textiles are known from tho orcadian prahistoric period and the earliest indirect evidence for ite production, le spindle whorls, are from Iron Age contexts.

If the group 2 gelslaugher pattern does not represent a wool producing economy, how ahould it be interpreted? Very faw neonatal bones were present so the youngest age group ($0-10$ monthe) would appear to consist malnly of deliberately olaghtered lambe. Tre sample, therefore, does not contein the 25% infant mortality which Payne includes in all his modele and therefore cannot be directly compared with them. If one were to incresse the proportion present in the youngest ege group in order to include the victime of infant mortellty, the ge/death pettern would correspond in some ways to Payne' delrying model. The relatively large numbers killed during the second and third yeara, however, would uggest/
suggest that meat production was also an important consideration, as this is the optimal age for slaughtering sherp for this purpose. It is unlikely that sheop were boing kept exclusively for a single purpose and the euldence suggests that they were being kept both for their wilk and thoir meat.

The sheep ageing date from Pierowall only allow suggestions to be made concerning the livestock economy practised by the site occupants, especially when one considers the small sample size and the unusual contexts in which the bones were found. The unusually high incidence of meo-natal shoep in group 1 may simply represent the natural phenomenon of sick lambe seeking a sheltered place among the cairn stones in which to rest and, ultimately, die. The group 2 bones come from a disturbed context as the shillet in which they were found was transported from elsewhere. Since little is known about the original archaeological context of the bones any interpretation of them must be of a epeculative nature.

Sheop: Skeletal part distribution
Illus 32 shows the distribution of shoop skeletal parte from groups 1 and 2. It can be seen iamediately that the distribution is similer in both groups. The more compact bones such as the calcanil, astragali and phalanges have survived at much higher rate than skull fragments, longbones and vertebrae. The distribution of bones can often be shown to reflect specific butchering practices. It is not, however, possible to demonstrate this in the present inetance. Superficially, it would seom that the samples contaln a large proportion of the waste skeletal elements. The absence of metacarpals and metatarsals, however, militate against such a purpose. Furthormore, it has already been argued that many of the bones present may be e product of natural rather than human processes. The bones that have suruived well ere the more compact and hard parts of the skeleton. The distribution can therefore be expleined as a product of natural survival processes.

Other domesticates/

Othar domesticates

Cattle and pig were of minor importance in the livestock economy. Two cattle were represented in the material from the calrn collapse. One of these was a neo-natal individual while the second was juvenile.

The same group contained a minimum of only one pig. The calcaneus was unfused, indicating that it was less than 30 months old at time of death.

In group 2 cattle were again represented by two individuals. The first was a juvenile as the phalange had not yet fused, while the second had a fused proximal and of tibia indicating an age of at least $3 \frac{1}{2}$ years at time of death. The plg was represented by three indiuiduals. The phalanges showed that they consisted of a neo-natal, an immature and a ature andmal. One dog bone was present in group 2.

H1d animals
Red deer and otter were present in both groups while pine marten were only present in group 2. The red deer consiated of both meat-bearing and waste parts of the skeleton. Thres pleces of antler were present. These consisted of two tinas from group 1 and a shed burr and beam from group 2. There was no evidence for the use of antler ase raw materisi for industrial purposen.

The presence of otter and pine ampten bones in group 2 may provide evidence for the hunting of animals for their skins. It is more likely, however, that the celrn at some stage was used as den by these animals. Dtter bones heve previously bean found at Quanternesa and Skara Brae (ciuttone Brock in Renfrew 1979; Watson 1931). The pine marten bones are the first to have been recorded in Orkney. Their bones were also present in group 3 and suersl bones were found In other deposits on the aite. Although the pine marten is generally regarded as an arboreal mimad it can also thalua/
thrive in an open unforested environment. In treeless parts of Scotland, pine martenu genarally fead on amell birds, rodents, voles, beetles, carrion and fish (Southern 1964, 236). A similer diet would have been evailable to Orcadian plne martena during the Neolithic and early Bronze Age. The pine marten may have formed pert of the indigenous fauna of the Orkneye but as they are excellent sulmmers they may have arfived on the lelends after they were colonized by man.

A small group of bones were in the wall structure of the late Neolithic house (table 9). The sample contained the only grey seal bone found during the examination. This consleted of fuvenile third metecarpal. Seal bones are very rare on early prehistoric Orcadian sites. The only other known examples come from the recent excavatione ut Skara 日rae (Noddle unpublished).

Groups $3 A$ and $3 B$ (tables 6 \& 7)
The ractangular house at Plerowall wae originally used as an industrial area and the floor (li) contained alarge quantity of flint debris. A amall ample of bone ($3 A$) was found with the flint debris (teble 8). The proportion of fragmente and minimum numbere of individuale present, es well ee the dietribution of surviving skeletel elemente, however, strongly sugest that the bones represent contamine ation from the underlying ehillet.

The eecondery occupation leyer (10). In contrast, cone talned en asemblege (30i table 7) so difterent from the praceeding layera that $i t$ must be regarded as largely uncontaminated eample. The bone sample wee much emeller than groups 1 and 2 and the resulte from thelr atudy are probably lese rellable. They do eugoest, however, that the earller sheep domineted liveetock economy had ofven why to en economy where cattle pleyed the domlnant role. The latter eocount for mNI of pour, compered with two each in the case of sheep and plo. Cattle bone frogmente als grestly outnumbered the other two epectet.

The sample provides little information about the age slaughter pattern of the animals. One complete cattle ma dibla was present. The second molar had not yet erupted, indicating an age of between elght and 13 months. The pr ence of three loose worn third malars indicate that cattl over three years were also slaughtered. Little can be sa of sheep and pig except that both young and mature indivi were present. The wild animals present consisted of red and pine marten.

Group 4 (table 8)
Only a small bone sample was found assoclated with deposits adfacent to the round-house. A MNI of four catt four sheep and one pig were present, cattle also producec a greater number of fragments. Five pieces of whale bone were present. The fragments were small so that neither t bone nor the species could be identifled. Two pleces sho signs of working (see 'Pumice \& worked bone' section in printed text).

The sample was again too small to provide any relial data about the slaughter strategy of the inhabitants. Fi partially complete cattle mandibulao were preaent. Two these were from calves lese than threa weake old. One il ividual was six or seven months and another betweon 18 al 30 manths at time of death. Dne sheep mandible came froi lamb agad four months while a second came fram a very ol individual. In the latter most of the teeth were missin with only the second pre-molar and third molar surviving The only plg mandible present came from an indiuidual between 21 and 23 monthe.

Sumpary

The animal bones from Plerowall show that during th Neolithic the livestock conomy was dominated by sheap rearing. The agelsleughter pattern of the shemp would eppear to sugest that they wero primarily kept for dalr ing purpose but that meat production was also an importa consideration./

consideration. The samples from the later contexts are relativaly small and the results from their study must be treated with caution. They do suggest, however, that by the early Iron Age the emphasis had moved from shoop to cattle rearing. Unfortunately the samples cannot provide any detailed information about the later economy.

	Cattle	Sheep	P19	Red Deef
Teeth	2	1	1	-
Caudal vertabra	-	-	2	-
Sacrum	1	1	-	-
Scapula	1	1	-	-
Radius	-	1	1	-
Ulna	-	1	-	-
Metacarpal	1	2	-	-
Pelvis	-	1	-	-
Femur	1	-	-	-
Patella	-	1	-	-
Calcaneus	-	1		-
Astragalus	-	8	-	-
Metatarsal	-	2	-	-
Pralanx I	1	5	-	1
Phalanx II	-	10	-	-
Phalanx 1II	-	5	-	-
Carpalia/tarsalla	-	4	-	-
Matapodia	1	-	-	-
TOTAL	8	44	4	1
MNI	1	4	1	1
Table 6				
Manmal bones. Group 3At skeletal parta and MNI from primary floor level in late Neollthic etructura, leye				

Cattie Sheep Pig Red Deer Pine $\begin{gathered}\text { Marten }\end{gathered}$

Horn core	1				
Skull fregmant	5		1		
mandible	5	1			
Teeth	34	7	2		
Thorasic vertebra		1			
Rib	1	1			
Scapula	3	2			
Humorus		2			1
Radius		1			
Ulna	2	1		1	
matacarpal	3	2			
Pelvis	3	1			
Femur	1	3		2	
Tluia		6			
Calcanoum	1	1			
Astragalus	3	2			
Metatarsal	5	3			
Phalanx I	2	9			
Phalanx II	5	4	2		
Phalanx III	1	1			
Carpalla/tarsalia	6	3			
Metapodia	10				
TOTAL	91	51	5	3	1
Fragments \%	60.3	33.8	3.3	$2 \cdot 0$	0. 7
MNI	4	2	2	1	1

Table 7
Mamel bonea. Group 3B: keletal parta and MNI froa aecondary habitation level in rectangular structure, layer 10

Cattle Shoep Pio | Red Dog Whale |
| ---: |
| Deer |

Horn core/antler	3			3		
Skull fragment	13	1				
Mandible		4	2			
Teeth	32	17	9		1	
Atlag	2					
Axis	1					
Cervical vertebra	4	2				
Thorasic vertabra	2	1				
Lumbar vertebra		2				
Caudal vertebra	3					
Rib	2	10				
Scapula	5	5				
Hurnerus	6	6	2			
Radius	6	3		1		
Ulna		1				
Metacarpal	2	2	1			
Peluis	4	1	2			
Femur	3	5				
Tibia	1	5	1			
Patella	1	1				
Calcaneum	1	1				
Astragalus		6				
Matatersal	3	4	1			
Phalanx I	2	1				
Phalanx II	6	1	1			
Phalanx III	2					
Carpalla/tersalla	6	2		1		
Metapodia	3	1				
TOTAL	113	82	19	5	1	5
Fragments \%	50.2	36.4	8.4	2.2	0.4	2.2
MNI	4	4	1	1	1	1

Table 8
Mamal bones. Group at akeletal parts and mNI fromearly Iron Aga occupation leyers

	Cattle	Sheep	Pio	Red Deer Grey Seal
Skull fragment		2		
Mandible	2			
Teeth	5	10	1	
Cervical vertebra	1			
Thorasic vertebra		2		
Rib	1	4		
Scapula	2		1	
Humerus	1	3		
Radius		4		1
Ulna	1			
Metacarpal	2	3		
Peluis		1		
Femur		6		
Tibia	1	4		
Patella	1	1		
Calcaneum		2		
Astragalus		1		
Metatarsal	1	3		1
Phalanx I	1	10	1	
Phalanx II	6	5	1	
Phalanx		3		
Carpalia/tarsalla	10	5		
TOTAL	35	69	4	11

Table 9
Mammal bone. Group 5 : skeletal parts and MNI fram platform wall, layer 21

	Shoep	Cattle	و P1	Pine Marten	Red Deer
Teeth	2	3	-	-	20
Skull frag	-	-	-	-	5
Mandible	3	-	-	-	2
Vertebra	1	-	-	-	3
Scapula	1	-	-	-	-
Humerua	1	-	-	-	5
Radius	7	1	-	-	6
Ulna	-	-	-	-	1
Metacarpal	3	-	1	-	2
Pelvis	-	-	-	-	1
Femur	1	-	-	-	4
Tibia	7	-	-	1	4
Astragalue	7	-	-	-	3
Calcaneus	3	-	-	-	3
Metatarsal	1	-	\cdots	-	6
Phalanx I	4	-	1	-	4
Phalanx II	2	-	1	-	5
Phalanx III	1	1	-	-	-
TOTAL	44	5	3	1	74
MNI	5	1	1	1	2

Table 10
Mamal tones, Group 6t collapse from platforn wall, leyer 13

Teeth	-	4	-	-	-
Skull	1	-	-	1	-
Mandible	-	-	-	1	-
Vertebra	-	4	-	-	-
Scapula	1	-	-	-	-
Humerus	1	-	-	-	1
Radius	-	1	-	-	-
Ulna	-	1	-	1	-
Pelvie	1	-	-	-	-
Fomur	1	-	-	-	-
Patella	4	-	-	-	-
Tibia	1	-	-	-	-
Astragalus	6	-	-	-	-
Calcaneus	3	-	-	-	-
Metatarsal	1	-	1	-	-
Phalanx I	7	-	-	-	-
Phalanx II	3	-	-	-	-
Phalanx III	-	1	-	-	-
total	30	11	1	3	1
MNI	5	1	1	1	1

Table 13
Mamal Lones. Group 9: rubbla layer, layer 12

	Shoep	Cattle	Red deer	Cotacan
Teeth	8	11	-	
Skull frag	-	1	-	
Mandible	2	-	-	
Vertebra	-	2	-	
Scapula	1	-	-	
Humeru:	1	-	1	
Radiue	2	2	-	
Ulna	1	1	-	
Metecarpal	1	1	-	
Peluie	1	1	-	
Ferour	3	1	-	
Tibia	-	3	-	
Astiagalus	3	-	-	
Calcanous	2.	-	-	
Phalanx I	4	3	1	
Phalanx II	3	3	-	
Other	-	-	-	2
TOTAL	32	29	2	2
ANI	2	2	1	1
Table 14				
mammal bone. Group 10: layer of decayed atone formed ovar				ed over

	Length (GL)	$\begin{aligned} & \text { Proximal } \\ & \text { Width (BP) } \end{aligned}$	$\begin{gathered} \text { Distal } \\ \text { Widh (BP) } \end{gathered}$	$\begin{aligned} & \text { Shoft } \\ & \text { Width (} \mathrm{BP} \text {) } \end{aligned}$	Group
Radius		29.9			1
		31.1			
Metacarpal		20.6			2
		18.9			
		22.1			
	23.9				
	23.9				
	24.7				
			24.8		1
			26.9		38
Tiola	187			13.2	2
			25.0		
Metatareal	130.1	17.5	21.2	11.4	
			24.8		1
			23.6		
		26.9			38
Scapulat	Group 2: 25.2, 28.6. 31.2				(P).
Calcanouna	Greatest length (GL) : Group 1: 49.9, 52.5, 53.2				
	54.9 Group $2149.0,49.6 .49 .6 .49 .8,51.1 .52$				
Aetragaluet	Greatest lateral length (CLI): Group 1: $25.1,25.6$,				
	25.6. $25.9,26,26.3,26.7,26.7,26.9,26.9$				
	26.9,27.0, 27.2, 27.2, 27.3,27.3.27, 28.3				
	29.0				
	Group 2: $21.1,24.6,25.1,25.2,25.4,25.5$,				
	26.1, 26.5, 26.9, 26.9, 27.1, 27.1, 27.9, 28.1				
	20.4, 29.1, 29.3				
	Group 5i 25.9, 25.9, 26.0,26.9, 27.1, 27.2				

Table 15
Shamp bone measurements

Cattle

```
Scapula (GLP) Group 4; 69.9
Matacarpal (Group 5) GL 21.5, Bp 57.3. Bd 5?.5, SD 31.1
```

P1g
Scapula (GLP) Group 5; 32.0
Red Dear
Radius (GL) Group 5; 246
Pine Marten
Humerus (Group 38) GL 70.9, Bp 12.3. Bd 14.6, SD 15.0
Table 16
Cattle, pig, red deer and pine marten measurements

Approx	Skeletal	Group			Grau	2
fusion age (in months)	part	Fused	Unfused		Fueed	Unfusad
0-10	Scapula, Paluis, Humerus P. Radiue P	11 (42.3\%)	15 (57.78)		(81.2\%)	3 (18.8\%)
18-28	Tluia D, Metacarpal 0 , Metatareal 0	13 (40.6\%)	$19(59.4 \%)$		(66.7\%)	5 (33.3\%)
28-36	Ulina, Famur P, Calcaneus, Radiu: D	14 (24.6\%)	43(75.4\%)		(51.28)	$20(48.8 \%)$
36-42	Humerus P, Femur D, Tiblap	$4(26.78)$	$11(73.38)$		(50.0\%)	$4(50.0 \%)$

Table 17
Epiphyseal fusion data for ageing of sheap (after Silver 1969)

SMALL ANIMALS

A Bariow

9	7	8	5	12		1
11	4	1	2	2		
12	1	3	1	0		
13	61	48	29	28		
15	4	0	3	3		80
16	0	1	0	0		29
20	47	66	42	34	1	86
21	39	44	63	49	12	
22	168	167	162	167		
23	10	5	5	6	1	

If one assumes that each feature is a closed context and thus the bones of any animal in one context cannot be present in another, then the minimum number of indiuiduals of microtus arvalis would be 392. Thie is the total of the highest, figure in each layer. It is, however, unlikely that each layer can be examined in laolation: mot only are several layers redepose ited or introduced but othera are of 1008 e rubble which would allow easy percolation of such small bones. Thus the author would regard the figure of 343 as more representative of the nuaber of Microtus arvalis present.

FISH BONES

G N Suinney

6	Cadue mortua	Ceratohyal	posterior	left
		Coratohyal	mid	right (smaller than above)
		Articular	posterior	
		Premaxilla		
		Maxilla		
	Gadidae	Vertebra		
		Caracoid		
		Pre-oparculum		
		Dentary	fragment	
13	Labrus bergyli.	Pharyngeal甽11		
20	Raja sp	Spine		
21	Labridae	Pharyngeal畍11		
22	Labridae	Pharyngeal mill		
	Raja p	Spine		
23	Labrus bergylta	Premaxilla		
	Gadidae	Jaw		

A S Clarke

Bird bones can be very difficult to identify since, for most families, indiuidual bones have family characteristics and tend to differ mainly in size. It is not always possible, therefore, to be sure whether one is dealing with a large example of a smaller species or a small example of a larger species, g quillemots, razorbills, puffins. This is particularly true for incomplete limb bones since total length is an important criterion.

This difficulty becomes greater the smaller the bird: the smaller passerines (perching or song birds) may require more than simple inspection and comparison with known examples and should be examined and accurately measured under a low power microscope. Much of this material consists of tiny passerine bones but, owing to other commitments, it was not pose sible to devote to their examination the amount of time necessary; nor do I think it likely that the resulting information would have caried sufficient stamp of certainty to justify the time spent.

Additionally, although the Royal Scottish Museum possecses skuls, and sometimes limb-girdies, of most of these smaller birds (finches, buntings, warblere etc) we do not, In general, posese complete skeletons, sor many of the smaller bird bones there was no possibillty of identification by direct comparison. I do not think this le any great lose as such identification would, in the absence of any major climatic change, more acceptably confirm the presence in the past of epecies still present than they would establish species not now known in the area. The identifications given do not necessarily represent all the material in sample, only that for which there was some certainty of correctnese or at least aigh degree of probability. Where a part bone, on inspection, looked like one already well represented I have usually ignored it.

bird bone catalogue

marine molluscs

A Barlow

Abstract

The distribution of the numbers of shells throughout the stratigraphic sequence showed two main groupinge, the largest by far being asociated with the arly Iron Age occupation deposits around the round-house. The other occure amonget Neolithic activity alis the outer revetment of the chambered tombes discreto dumps of shells in association with deposits of disarticulatod human bones. The walls, floor and fill of the lete Neolithic structure built on the cairn rubole contained almost no shellat all. The two concentrationsare also reflected in the greater number of species occuring suge gesting shell collection rather then a natural, gradual accumulation over time.

Mothod
A minimum number of 5994 individuals was established, representing la marine spectes. 7θ landenalls were aleo found, representing 2 epeciee.

Glatroogd:

Each epectes was separated and given three categories, whole, apex and debris. Individuale were counted elther ae whole ehelle or apleas. Then all three categories were welghed individually and combined to alve an cotuel shell welght for each epecies within each layer, which were further comblined to glve welghte for each epectes within the elte and for the total ehell from each layer.

Elveiven

Theee were counted badcally as above, although olfferent Individuelly undqui oheracterletloe were melected. for muse sele and cookles, beake of the valves were countod. Por oyetere valve proflle wet taken at an findeator ae mingee did not survive (sea note at and of thle section), and for the rest/
rest, hinges. These were then examined to determine left and right valves (fregmented shells without the chosen unique characteristic were discounted). All the valves of each spesles of bivalve were then compared with all other opposing ones of that species to determine any left-right matching. If so the individual would be assigned to the lower of the two layers. Individual velves which were not matched with any others were assumed to represent cne animal.

Notes and observations on the species
Patella vulgata (Linnf 175日). The subfossil remains of limpets varied considerably in welght, between 1.8 gand 11.2 g . The overall average weight for whole sholls was 6.lg, compared with Evans's and Spencer's $(1977,215)$ average for a modern ن́elsh sample of 6.6 g . An initial impresslon of a wide range of varlation in shell size and proflle was galned during counting, and it was seen that this could yield infoimation on the pzovenance and pattern of exploitation of limpets.

Since limpets were known to vary in shell profile in relation to the amount of contraction exerted by the 'foot', and that this relates in turn to either the amount of time the animal spends expoesd and not feeding, or the relative strength of wave action (Evans Usughan 1983; Evans 4 Spencer 1977, 216). it was suggested that the relative stepneas of the limpet's profile could serve to separate the inter-tidel zones inhabited by the enimale in life. The basal area of the shell gives the relative size of the limpet and, when ploted egainet the pointedness of the shell, can be ued to characterize limpet samples from the different archaeological contexts in terme of shore zone exploited (essuming they were selected from the same or simllar shores) and the size of animal being selected.

To investigate the difference between the two main limpet groups (layers 6 \& 22) 300 whole shells were taken at random from earh, and the lengthe, breadthe and helghte were measured to the lsurest millimetere. The relative distance up the eulittoral zon (Louls 1964, 49) et which each limpet was growing 1s/

1s indicated by the pointedness of the shell (Yonge 1949. 141). obtalned by the function of base index over height. $\frac{1}{4}(1+b) / h=\tan \theta$
and the relative size of the animal was taken as the total basal area covered by the shell
pi ($\left.\frac{1}{2} 1 \times \frac{1}{2} b\right)$. Histograms were then prepared from the results (illus 37), which showed thet the meens of the samples were not significantly different from each other in either polntedness or size, implying that the basic charecteiistics of the limpet population or populations were the same in both samples, but examination of the figures shows possible bias in collection.

The same general size of limpet was being collected, but in the Neolithic phase the tendency was to collect from about the middle of the limpet zone down towards low water, whereas In the Iron Age collection ranged fairly evenly acrose the 20ne, without the abrupt cut-off at the upper end demonstrated earlier. This can be connected with the decrease in size of limpets in the Iron Age phase, with m limpet over two yeare ald occurring, although the minimum size collected remalned constant, at ovar one year old. The peak in both cases is lid to 2 years. Under-exploitation could reduce the mean size of the population, due to overcrowding, but since not aingle limpet of a ize approaching the biological maximum is found in the Iron Age, over-predation seoms to have been the wain factor effecting the structure of the population. An optime fzing collection strategy is therefore assumed, with a cut-off ot a minimum of one year's growth.

```
Many of the Neolithic limpets (278) had encrustations of the tubaworm Splrorblespleorbis on the lower part of the outside of the shell. The larvee of this worm settle on clean rock, stable shingle and especially on the frondz of the ulfttoral wrack Fucus serratus. The abance of barnacles on any shell from the site is possibly due to prevailing shore conditions of shelter, or at mot semi-exposure promoting the growth of heavy weed cover and holding them in chack (Lewis)
```


(Luwis 1964, 261), and this 1selso sugested by the L. littoralis and, from lower zone. P. pellucida. The indicatore of heevy weed cover diampear in the Iron Age, and sand ormuddy gravel-dwelling species assuma diatinct presance. This is probably linked with the onset of sand movement in the waters of clean, rocky and sheltered bay, as the appearance of blown sand is first noted on the site between the Neolithic and Iron Age.

Patina pellucida (Linna 1758). All specimens of the bluerayed limpet, with the possible exception of the fregment from layer 23. are of the form laguis, which is associated with the holdfasts of the tangles (Laminaria sp.) on which it lives almost exclusivelyi all these animals start life as the form pellucide, on the fronds of the weed, and a proportion surUive into a second year of life by migrating doun the stalks (stipes) to the holdfast, where they alter shape and coloration in responso to thu diffulunt environment. Laminaria digitata especially tends to cast its fronds and with them any edherent enimels. (Yonge 1976, 62). This weed is cheracteristic of the infra littoral, norally uncovered only at the lowest spring tides, but in winter atoras cast vast quantities of it eshore. All secimans of P. P. laevis come frow the collapse of the cairn's outer revetment and the construction of wall 2l. The apex of ahell from the outer revetment proper 1e possibly the frond-dwelling veriety, although poor shell preservation akes certein identification difficult.

Littorfna 1ftoralis (obtusats) (Linnf 1758). One specimen of the flat winkle, from layer 22 (collapee of calrn's outer revetment) had been perforated by a i.5m diameter hole bored through the wall of the third whorl at the junction of the body-whorl and the epire, perpendiculerly to the stiell surface. A semple of flet winkle sholls gethered from the east and west conste of westray showed that out of 229 littoralis, nine showed analogous damege, giving an incidence of just under $4 \&$ se cause of death, since this presumably indicates predation by muricids or naticide, both of which prey on thelr fellow mollusce by drllling through the shell and/
and rasping out the flesh. It le most likely to be the commun dogwtelk. Nycelle lepldius, at the perforations ere naerly cylindrical and not robeted as with naticlde (ronge 1940, 287). Thus the shell wes presumably empty on eriluel on elte. Seven other flat winkles cane from the ame layur, and 20 out of 31 shalle (84s) cena from layors 20,22 and 23 . Thls gartropod 1. aseociated almost excluelvely with the wrecke of the mue 11ttorel bove the Lemperie zone, llving mainly nif fucye and Ascophydium.

These concentrations of Patinepallugide anis witerlan Letoralle would best be explalned by the prestre of quantitues of seaveeds, certying e remment of thelr formet molluer liope uletions, rotting down dn ilty or drying on the ruble end shedding the shells which hed edhered to it throughuut. Its collection and treneport. Drled seeweed can be etored Indefe lintely, be readlly ground down, and can be retiydrated wify
 4 11 edible to some extent by humans. Hiswiver, domestic ellime ele spoeser to rellen $1 t$, Hepeclelly cettle and sheep. The most prominent example of thle ocsurs in Orkney, on North Ronaldes, where the sheep eat littimelec. Evaris hes elso suggested the presence of esnweed by the presence of Prane.
 Buckquay (Evane Apencer 1877, 2181 Evene 1879, 22). Here he augeste thet $i t$ was belng ueed ae manure. ite uee ee both efoodetuff and manure ere atteeted by mumeroue hietore Lcel end ethnographlc examples (fenton 1070).

```
Yenruple chorpalde (Pennent 1777) and Ymarruple gullintre (montegu 1003). These cerpeteahelle ere quite edibic, and burfow in muddy graval efid other sof uubetiates between tldemarky (and below). These wefe bith found in the flll of the roundehouse well.
```

Endesulam (linns 1783). Seme of theoe epoote could be the very olellar Ghermuntm (joffieye lose), but the peef onndition and fregmentation of the ohulle mevent certaln Identifleation./
identification. In any case, the archaeological implications ara not affected, as in their habite, appearance and edibility they aru amost indistinguishable and are found living in mixed populations, burrowing near the lower tideline in soft eubatrates, particularly coarse sand.

	W	A	D		W	H/B/V	0
Patina pellucida	75	20	5	Ostrea edulis	0	73	17
Litt littorea	72	20	8	Mytilus edulis	0	$53 \frac{1}{2}$	$46 \frac{1}{2}$
Nucella lapillue	$71 \frac{1}{2}$	19	$9 \frac{1}{2}$	Cerastoderma ed	0	45	55
Litt littoralis	63	34	3	Ensis sillqua	0	42	571
Patella vulgata	56	29	15	Pecten maximus	d	-	
Buccinum undatum	46	28	26	Venerupis rhomb	d	-	-
Litt saxatilis	0 d	-	-	Venerupls pulla	n d	-	-
	GASTROPODS					BIUALVES	

$U=$ whole: A apices: $H / B / V=$ hinges/beaks/valves: $D=$ debris: n d = no data

This table shows the relative state of fragmentation of the shells of the 14 species of marine molluscs found, expressed as a percentage of the total waight of ahell of that epecies. The four speciea with no date were represented by a minimum number of one individual.

No complete pairs of bivalve shelis were found. It is therefore not possible to compare them with the gastropods directly, and it is nocessary to take the following factor into account whon assessing the reletive state of fragmentation of three of these speciest

Ostrea has a thinly laminar, loosely compacted ahell, any part of which, once detached from the relatively more solld part of the valve toward the hinge, would break down rapldiy into papery fragmente once removed from a soll matrix in which it had had time to be affected by decompose fition processes. Hence lta position at the top of the bivalve part of the table 1 : rasult of biag in racovery, and not a fesult of any inherent molidity in thensil.


``` way, wis that of Eating, although to a lesear oxtant.
```



```
The loss during recovery due to attrition can also be roughly calculated for those spocies with a larger MNI (say = 100).
```

If the debris of shells is assumed to represent the same shells as those counted as apices and hinges, when these are combined as a single weight and divided by the number of significant fragmentary shells (total MNI minus number of whole shalls), the flgure (average weight per shell) should be lese than or equal to the weight of whole shells divided by the number of whole shells, and the difforance, if any, expressed as a percentage of the average welght of tho whole shells.

In the limpets from the site as a whole the shortfall among broken shells was found to be mearly 31%, and in the winkles, $36 \frac{1}{2} \%$ species with a lower MNI were not treated, as a layer by layer plot for limpets showed that error became unaccoptable below about 70 spocimens.

