Proc Soc Antig Scot, 114 (1984)

FICHE 4: CONTENTS

HILARY K MURRAY	Excavation of 45-4? Gallowgate, Aberdeen	A3-B11
P YEOMAN	Excavation of Castlehill, Strechan, Kincardine and Deeside	C1-63
D V CLARKE, ANNA RITCHIE \& G RITCHIE	Two cists at Boatbridge Quarry. Thankerton, Lanarkshire	65-14

Proc Soc Antig Scot, 114 (1984), fiche 4: ©1-G3

Excavation of chstlehill of strachan, kincardinf and oeeside

PETER YEOMAN

CONTENTS

Tate 5		Feature Dimensions			C3.5
Appendix	3	Baked daub samples	R	M SPEARMAN	C6-11
Appendix	6	Animal remains	[SMITH ANO	C12-14
			[W I HOOCSON	
Appendix	8	Small finds reports	H	3 OUNCAN AND	01-12
			R	M SPEARMAN	
Appendix	9	Geomorphological	A	M D CEMMELL	O13-E1
		roport			
Appendix	10	Pollen analysis	P		E2-3
			J	SHIRRIFFS	
Appendix 11		Palaeobotanical report	\downarrow	E BOYD	E.4-9
Appendix 12		Report on the charcoal	\downarrow	E BOYO	E10.63
		samples			

table 5
reature dimensions

Note: $\mathrm{ph}=$ posthoie: $\mathrm{pp}=$ post-pit

Group 1 Superstructura Phase I
Context Shape Length Width Diameter Depth Filling

457	oval pit	1.10	1.00	-	1.00	458	
280	oval pit	1.10	0.80	-	1.00	467.	281
248	post-pipe	-	-	0.30	0.90	249	
295	oval pit	1.50	1.00	-	0.90	223,	296
227	post-pipo	-	-	0.27	0.60	222	
264	sub-rectangular	-	0.80	-	0.60	289	
285	post-pipe	-	-	0.28	0.40	286	
287	$\begin{gathered} \text { sub-rectan- } \\ \text { gular } \end{gathered}$	-	0.80	-	0.50	288	
239	sub-rectanqular	-	0.88	-	0.40	220	
297	\therefore b-roctangular	-	0.80	-	0.70	298	

GROUP 2 Suparstructure Phase I - Intermal

294	double oval cut.	1.00	0.38	-	0.24	293
450	sub-circular	-	1.00	-	0.73	467
242	sub-circular	-	0.94	\cdots	0.47	243
453	doublo oval cut	0.60	0.48	-	0.33	454
32.	sut-rectangular	-	0.80	-	0.44	33
224	sub-circular	*	1.05	-	0.50	226.
451	chreular ph	-	-	0.45	0.30	452
455	oval ph	0.48	0.40	-	0,28	456

Group 3	Phase I	Partiti	on 1			
Context	Shape	Length	Uidth	Diameter	Dopth	Filling
238	oval ph	0.44	0.30	-	0.18	239
236	circular ph	-	-	0.38	0.18	237
234	oval ph	0.47	0.40	-	0.26	2.35
246	circular ph	-	-	0.30	0.24	247
244	oval ph	0.42	0.34	-	0.15	245
232	oval ph	0.52	0.45	-	0.25	233
230	oval ph	0.36	0.28	-	0.20	231
240	sub-rectangular	0.52	0.44	-	0.12	241
227	oval	0.40	0.30	-	0.18	228
GROUP 4	Phase IV	Partiti	ion 2			
${ }_{6}^{60}$	linear slot	1.98	0.68	-	0.38	$\begin{aligned} & 61, ~ 86,87, \\ & 88(\text { stones }) \end{aligned}$
i_{95}	circular ph	-	-	0.40	0.23	96
151	sub-circular ph	-	-	0.45	0.20	188
GROUP 5	Phase IV	Interna	Struc	ctural Rep	irs	
57	$\begin{gathered} \text { large oual } \\ \text { pp } \end{gathered}$	1.77	1.40	-	0.68	$\begin{aligned} & 30,58,59, \end{aligned}$
154	large subrectangular pp	1.66	1.36	-	0.74	155
291	$\begin{gathered} \text { large oual } \\ \text { pp } \end{gathered}$	1.18	0.80	-	0.50	292
GROUP 6	Phase IV	Interna	al Alto	rations		
26	circular ph	-	-	0.60	0.40	27, 72
34	$\begin{gathered} \text { sub-circular } \\ \text { ph } \end{gathered}$	-	-	0.50	0.46	35, 36 (possible post-plpe)
66	sub-circular ph		-	0.55	0.29	67
152	oval ph	0.44	0.35	-	0.22	187

Context	Shape	Length	Width	Diameter	Dupth	Fillings
270	sub-rectanqular pp	1.3m	1.3 m	-	0.60 m	271
185	$\begin{gathered} \text { sub-circular } \\ \text { pp } \end{gathered}$	1.6m	1.4 m	-	0.55 m	259,186
268	$\begin{gathered} \text { sub-circular } \\ \rho p \end{gathered}$	1.3n	10	-	0.52m	269
(191	$\begin{gathered} \text { sub-circular } \\ \text { pp } \end{gathered}$	$1.25 m$	1π	-	0.30 m	192
(469	$\begin{gathered} \text { sub-circular } \\ \text { ph } \end{gathered}$	-	-	0.33 m	0.44 m	470
272	$\begin{gathered} \text { sub-circular } \\ \text { ph } \end{gathered}$	1.65 m	1.58 m	-	0.38 m	273.274
feature	group 8					
262	$\begin{gathered} \text { stone set- } \\ \text { ting } \end{gathered}$	25 cm	25 cm	-	24 cm	263
182	$\begin{gathered} \text { stone set- } \\ \text { ting } \end{gathered}$	30 cm	30 cm	-	26cm	257
179	post-pit	77 cm	70 cm	-	16 cm	258
181	slot	1 m	36 cm	-	9 cm	256
183	post-pit	1.48 m	1.36 m	-	20 cm	184

```
APPENDIX 3: BAKED DAUB SAMPIES
```

```
F m Spearman
```

introduction
A total of 10.542 kg of clay based faub preserved by mild
baking was examined from this site. This material was dise
tributed primerily through phases III to VI, although there
were a few fragments from a single context in phase I Area
III. The surfaces and random clean breaks of the samples
were examined with a $\times 10$ hand lense and describod under the
following headings:-
1) Heat damage (oxidation, reduction)
2) Tempering additives (chopped vegetable matter,
hair, sand)
3) Internal impressions (withy, squared timber, stone)
4) Surface profiles (flat, concave)
5) Construction (lamina or irregular fracture).
The results of this examination are summarizod for each
context on table 6.
In view of the size and distribution of the daub frag-
ments, it was not thought to be worth examining the baking
temperatures by any quantitive method.
Discussion
Phase I
159 of daub were recovered from the loyest ditch fill
of Area III. There was only minimal oxidation of the clay
which appears to have been only lightly heated. The sample
Is notable as the only daub to have been tempered with halr.
The fragments are too small to retain any structural details
and too poorly fired to indicato any clear fracture pattern.

Abstract

Phase III 850 g of daub were recovered from the general occupation layers of Area I. The pattern of internal reduction and surface oxidation of these fragments suggests that they had oither brokon whilst hot or had been subsequently reheated. There were no traces of any internal impressions although some uneven external surfaces were noted. Unile presumably constructional, the firing and surviving surfaces of this group of material clearly distinguish it from the other main groups of constructional daub.

Phase IV

53259 of daub were recovered from three related layers in Area I. A high froportion of the pieces from all three contexts demonstrate straight withy impressions. These impressions range in diameter from 8 to $25 \mathrm{~mm}(18 \mathrm{~mm}, \mathrm{l}$ 10mm, 1
 ments demonstrate parallel withy impressions while in a fourth example the withigs would have crossed. In addition to the withy impressions there were four examples of internal rightangles resulting from larger squared timbers, or possibly masonry, covered by the daub. The external surfaces are usually flat. One larger fragment, c loomm by lfomm, is slightly concave. Two fragments with parallel external faces demonstrate thicknesses of 27 and 32 mm . One surfacod plece with a wedge shapod section tapers from 23 to 12 ma . A further piece with a single external surface is over 70 mm thick.

The daub had been well baked causing substantial oxidation. Given its similarity of both firing and temper, the daub recovered from this phase may all be derived from a single building operation of even one structure. that evidence there is of form suggests the existence of flat screans or walls. The spacing of withy impressions and presence of internal right-angles implies that a substantial structure was involved, incorporating both dressed timber, or stone, and woven wattie. The various thicknesses of daub would suggest that the building frame had been haphazardly covored.

Phase V
2585 g of daub were recovered from this phase．20109 of this came from the sealing layer in Area I ．Several of these fragments demonstrate internal withy impressions ranging from 12 mm to 27 mm in diameter（2 $12 \mathrm{~mm}, 2$ 15min， $1 \& 20 \mathrm{~mm}$, ？ 27 mm ）．The only external surface is flat．Little can be said about the structure or structures involved here other than that a possibly flat frame of withies had been daubed and subsequently lightly baked．li75g of minimally tempered and only lightly baked clay came from the fill of furnace 45 in Area I．The quallty is poor and the quantity so small that it is unlikely to have b⿴囗十力 part of an＇oven＇dome．If indeed it is related to the furnace，the clay may instead have been part of a patchy lining or bonding．This clay is quite unlike that rocovered from Phase III．（See also＇oven＇ report．）

No comment can oe made about the single small fragment of daub fror posthola 199 in Area III．

400g of daub were 1 eccuered from the Phase V ditch fills of Area III．This material was well 1 aminated and had been only very lightly baked．One plece was part of a structural corner with two external surfaces at right－engles．This daub appears to have been part of a wall surfacing rathor than con－ structional daub．

Phase VI
16509 of daub were recovered from the sealing layers of Area I．Several of these fragents retain internal withy impressions ranging in diameter from $8 m m$ to 25 mm （2 8 mm ， 1 10mm， 2 12mm， 3 ． $15 \mathrm{~mm}, 1$ 25mm）．The external sur－ faces were all flat．One fragment with parallel external surfaces is 20 min thick while ouher pieces are over 35 min thick， The fragments are similar in firing and temper to those from layers 5 and θ in Area I phase V ．In this case there is slightly better avidence for tho structure consisting of flat screans or walle．
table 6
oistribution ano mescription of daub samples

Min - Minimal
Ext = External
Int : Internal

100g were recovered from the final ditch fill of Area 3. No impressions or surfaces were noted but the temper and fracture of this daub make it more comparable to other daub from this phase and layers 5 and 8 than the provious daubs frow the ditch.

Conclusions
This is a collection of foirly small fragments of lightly baked daub. The vast majority or 1 t was recovared from general layers, and where individual features have been involved (ie contexts 44 and 99) the quantities wera small and their assoclation with daut probably misleading. The phase I hair tempered daub while distinct and interesting is too scarce and fragmontary to suggest any function. The phase III material had received an unusual baking but unfortunately retained little structural evidence. The larger groups of material from phases IV and V/VI contain several small surface fragments which were most probably derived from flat screens or walling. The framework for these structures consisted of withies normally of 12-15mm diameter. In the case of the phase IV debrie these withles had been woven and imcorporated with withies of 20 mm diameter as well as dressed timber, or stonework. It seems likely therefore that the different daubs from phases IV and $V / V i$ represent the demolition/destruction of two pose sibly consocutive buildings.

Catherine Smith and G L Hodgson

Summary
The animal remains came from the thifteenth- and fourteenth-century levels of midden deposits in the N sumit area of the motte and the backfill of a ditch around the motte base. The bones and teeth come mainly from domestic animals which, in the absence of evidence as to animal based industries, are presumed to be the remains of carcass dressing and of meals.

The relative frequoncies of species present are estimated by weighing and by counting methods. The material reported on is very frlable, having in all cases been burnt and often calcined. The physical condition of the ramains is taken as evidence of the destruction of the site by fire rather than of crude cooking procedures.

Methodology
The animal remalns were ldentified by direct comparison with modern material. Ribs and vertebrae other than the first two neck vertebrae were not identifled as to species and are, therefore, not recorded. The single fish bone found was not identified as to species. Measuroments were taken In accordance with the scheme proposed by Driesch (1976, 19-100).

Because the bone material was in a uniform state of preservation, irrespective of the contexts from whence it came, it was decided to investigate the relative frequencies of species by welghing as well as by counting methods. The advantages of the welghing method are discuseed elsewhere (Uerpmann 1973, 310-11), but with fragmented materlal the maln advantage of auch a method is that it avoids overestime ation of the secies present.

The samples

Abstract

The animal remains reported on are dated from midthirteenth to mid-fourtaenth century. These samples may reflect inan's interactiun with the animals which were all domestic in origin. In the absence of any clear evidence as to industrial or commercial waste, these remains are presumed to be those of animals which were eaten. The bones recovered from this site were in a state of extreme fragmentation: most of them were either burnt or calcined, thereby making identification difficult.

Size of sample
The samples presented for examination waighed 1542.29 (air dyy welght). Of these, 451.69 of bones and teeth were identified as to species. In all, only 36 bones weighing 18月. $3 g$ were identified. The bones came from the following specios: cattle - 19, shaep - 15, pig - 1, fish - 1. Fragments of sinqle teeth were present: these were mainiy husks of enamel which were apparently shattered by heat.

Relative frequancies of spacies
The relative frequencies of species were estimatod on the bases of total riumber of identified bones of eech species present, and total weight of idantified bone. The table gives percontages of bones derived by these methods.
tABLE 7

PERCENTAGES AND UEIGHTS OF IDENTTFIED EONES, ESTIMATED GY Number and weight (EXCluding fish)

	M based on no of bones	\# based on weight	Total weight of bone (g)
Cattle	54.3	84.8	382.9
Sheoplgoat	42.9	5.8	26.1
Plg	2.9	9.4	42.5

Eatimates/

Abstract

Estimates of the relative frequancy of species present vary with the muthod usad: by welght the order is cattle, pig. sheep/goat: by counting it is cattie, sheep/goat, plo. The sample is small and this may account for the absence of deer, horse, dog. cat, bird and vermin bones, all of which would have been expected to appear at a site like this.

Ages of animals on death
On the basis of fusion of distal epiphyses, there is no evidence to suggest that young cattle, sheep or plga were present. Howevar, one unworn bovine molar tooth indicatad the presence of a young ox.

Butchery and carcass analysis
(a) Butchery

The fragmented and calcined nature of the gamples obgeures the butchely techniques used. It is assumed that the phyalcal nature of the remalns $1 s$ due to the burning of the alte rather than the butchery or cooking practices used.
(b) Disparsal of parts of carcaoses

A comparison of the numbors of 11 mb bones (high mogt yielding) shows a high percentago of low most ylalding bones this may be due to the meat rich bones (jolnte of meat) being removed fron this part of the eite and, after further butchery and cooving, being diacelded elsawhare oo the remaling of maals. Altarmativaly, it may olmply refluct the fact that low moa: yiold bonae ara luas liahlo to bo butcherad and, therefore, more likely to be logentflaj,

A high proportion of the ramaine from cattio, shaup/ goat and pigs ara elthar aingla tegth or tonth fiagmonta. Noddia (1975) hae arguad thot ush saplas : f fodeativo of alowly accumblated depoalta. The reatituction of the site by fire may have ghattered fau bonos, thereby jnctuage ling the number of sfngle tath and tooth frogmonts.

APPENDIX B: SMALL FINDS REPORTS

H 8 Duncan and $R M$ Spearman

The artefacts are divided into five groups according to material. With the exception of nails, each catalogue entry 1 g numbarad consecutively and their phase, area location, context number, excavation accession number ano SDD lab number ara included. The excavated contexts have been grouped lnto six phases:

Phase It	c 1250
Phase IIt	c $1255-85$
Phase III:	c $1265-80$
Phase IV:	late thirteenth century
Phase V:	c $1308-20$
Phase VI:	plough-soil

For the discussion of the finds see the printed part of this report. Apperiolx 8 .

IRON (111U:25)

H B D.mes

1 Knlfe blede and tang with etralght back and cutting -dge, tapering to point. Pronounced moulders. The blade 1strlamgular in crosesection. The cutting adge hes beon raducad by whetting. Tapering tang of rectangular croses esction. Length 120.2 mm l wath of tang 8.4 mm wioth of blade 8.4 mm thlckness of teng 6.4 mm : thicknoss of blade 6. Bmm, Phase IV, Ares I $(43,43), 500$ lab no 810901.

2 Deahaped buckle made frum a rod of ractangular crosa= saction ($B, 3$ by $B, 4 \mathrm{~mm}$). Looped tongue of rectungular eroses section (0.7 by 6.8 mm) tepering to wocij ahaped point. Tha fod thine at the point of attachment of the tongue. Damegod/

Damaged and eplit along the stralght edge. Buckle length 37.5 mm ; breadth 47.3 mm : tongue length 48.4 mm . Phase V, Ares III (200, 60). SOD lab no 810918.

3 Rectangular buckle made from a rod of rectangular crosssection (10.4 by ?mm). Looped tongue of roughly rectangular cross-section (12 by 7.8 mm) tapering to a wedgeshaped point. The rod thins at the point of attachment of the tonque. Buckle length 54. 7 mm i breadth 66.9 mm ; tongue length 63.9mm. Phase III, hrea $1(186,40)$. SOD lab no 810989.

4 Padlock key with loop-shaped ward and ring-shaped bow. The shank tapers toward the bow. Length 165 mm width 18.7 mm thlckness 8.7 mm . Dhase V, Area $\mathrm{I}(27,49)$. SDO 1at no 810907.

5 Padlock key minus bow. Roughly y-anapod ward. The bit is set laterally to the shank. Length 108.7 mm ; width 12.5mmithlckness 7.3mm. Phase V, Area VII (302. 67). SOD lab no 810925.

6 Key with plain oval bow (damaged) and tubular shank which taperg toward the bow. Heavy bit. LMMC type III. Length 116.8 min . Priase VI, Area VII $(300,62)$. S00 lab no 810920.

7 Small kay with plain oval bow and tubular shank which tapers toward the ward. For a chest or casket. LMMC Type III. Length 36.2mm. Phase V, Ares III (200, 65). SOO lab no 810923.

8 Mount fitting for a box or chest. Shank of rectangular crossesection (0.2 by 5 mm) both ends of which areflattened. Dna end le oval in plan, the other trefollin plan. Bothends are perforated with mali rivets in Uty, Length 71.7mm. Dhase V, Area VII (302, 67). 300 lab no 810925.

9 Strap－and hook of rectangular cross－section，tapering in wldth toward hooked and．Tha opposite and ratains about malf of a sunded perforation．Total langth 54.6 mm with 25．9inml thicknege 7．Emm．Phaee IU，Area I（55，47）． SUO lab mo 810905.

10 Damngad horgeahog，partlally claanad，consisting of a Dotition of ond oido with two ractangular parforationa aid two furthar ilvots ing ofus．The outur edge of the ahou la biokam off．The caulkimo do mot surviva．Maximum width 2与inmi thickmeos Emm．PhasuI，Areo VIII（4E2，84）． 900 1at no 010942.

11 Twevzarg comalatimg of two rode of rectangular cooss～ mbition joimad at ona and to form a flat，taparimg hamdia． Tha the of the twayara tapar in thicknosa and are foundag bit plam．Langth 05.5 mml width Emal thicknuse （i．）Thin，Phate IV ，Atua II（113，36）．500 lab no 810894.

1？NHftow chlaul（4）oplka of ructangulat eroea－goction．

 Hhate VI，Atea I（4，45）， 300 14日 mo 910902．

13 Foftlun of a chlual of ruatamgulat ctoan＝auction．The

 （4，94），500 dab 110 U10002，

14 Apptomemately malf of an ammulat ting of oval plan

15 Annulat tiry af tactangulat croanmanctian with foundad adgan，Gual in plam，Greadth 14.1 mml lamoth 15 mm
 500 lab no 日10日23，
is Hook of rectangular cross-section. The opposite end is missing. Length 30.6 mm ; breadth of hook 12.6 mm ; width 7mm; thickness 6.2mm. Phase IV, Area I (55, 47). 500 lab no 810905.

17 Portion of a curved rod of rectangular crossusection. Both ands ara missing. Part of a hook? Length 67 mm : width 8. bmm ; thicknass 7. 5mm. Phase VI, Area I (4, 44). SOD lab no 810902.

18 Portion of a rod of rectangular cross-section, ona and berit. Both ands are inissing. Possibly a nail shank. Length 22.9 mm ; width 8.2 mm ; thicknoss 7.2 mm . Phase IV, Area I (43, 51). SOD lat no 810909.

19 Portion of a rod of rectangular cross-section, one and bent. Both ends are misalng. Possibly a nall shank. Length 24. Grim; width 5. Gmmi thickness 4. Gmm. Phaso IV, Arab i (4J, 51). 500 lab no 810909.

20 Portion of a rod of rectangular crose-section. The rod 1a silghtly curvad and both ands aramissing. Posalbly a mail shank. Lamgth 20 mm width 8 mint thickness 6. 5mm. Phese IV, Area I (43, 51). S00 lab no B10909.

21 Postion of a sod of triangular croagesection. Both endo
 Phase IV, Area I (43, 51). 500 lab no $81090 日$.

22 Portion of a rod of gquasa erosaagection taparing to a polnt. The oppoaita and lamisalig. Probably a mail shank, Langth 25.7mml width 4. 日inm thleknues 4. Binm. Phaee IV, Atra I (5E, 52). 500 lab mo 310910 .

23 Portion of rod of ractanguiar ctosemsaction. Both ende afa miaging. Lamgth 10. Emml width LOmi thicknees Bmm. Phase IV, Atea I (56, 52), SDO lab no 810310.

241

24 Portion of a rod of rectangular cross-section tapering toward one end. One end is missing, the other is distorted by corrosion. Length 40.9man width 19 mm ; thickness 15 mm . Phasa VI, Area I (4, 44). SOD lab no 810902.

25 Portion of a rod of rectangular cross-section taporing in thickness toward one end. Both ends are missing. Possibly a nail shank. Length 33. 4mm: width 6. 9 mm ; thickness 7. 3rim. Phase IV, Area I (55, 47). SDO lab no 810905.

25 Portion of a rod of rectangular cross-section tapering in thickness toward one end. Both ends are missing. Length 21.4 mm ; width 6.3 mm ; thickness 6.2 mm . Phase IV, Area I $(55,47)$. SDC lab no 810905.

27 Portion of a rod of rectangular cross-section, bent and tulsted, tapering toward one end. Both ends are missing.
 Area III (200, 65). SOL lab no 810923.

28 Portion of a tapering rod uf plano-convex cross-section, slightly curved. Both ends are missing. Length 43 mm width 9.4mmithicknoss 6.2m. Phase , Area (42, 5). SOO lab no 010863.

29 Portion of a bedly danaged tapering rod of oval crosssection. Both ends aremissing. Length 28. Gmmi widih 7. 3 mm thickness 7 mm . Phase I, Araa VIII (463, 83). 500 1ab no 810941.

30 Portion of a tapering rod of rectangular cross-section. One and forme a wedge-shaped point which is silghtly bent. The oppoalta and 1 smlasing . Possibiy a mall shank. Langth 30.4 mm f with 7 mml thickness 5.2 mm . Phage III, Area I (76, 3日) , SDD dab na 810896.

31 Rod of sub-triangulat plan tapering sharply in width toward one and which la broken. Rectangular th ctosem section/
section. Length 32 mm ; width 15 mm ; thickness 12.9 mm . Phase V, Area VIII (302, 67). SDD lab no 810925.

32 Portion of a sheet of rectangular cross-section. Subtriangular in plan. None of the existing edges is original. Length 38.7 mm ; wioth 43.3 mm ; thickness 5mm. Phase VI, Area II (101, 15). SOD lab no 810873.

33 Portion of a thin sheet of rectangular cross-section, sub-rectangular in plan. None of the edges is original. Length 31.9mm; width 27. 3nm; thickness l. 6 mm . Phase VI, Area í (108, 18). SDO lab no 810876.

34 Portion of a faitly thick sheot or blade, roughly subrectangular in plan and cross~section. One edge and one end are missing. The opposite end is partially thickened and bevelled. One edge is bevelled. Length 120.3inm: width 64. 5mm; thickness 6.8-9.9mm. Phase VI, Area II (101, 33). SDO lab no 810891.

35 Very badly damaged sheet of rectangular crose-section, partially coverod in corrosion. No original edges appear to survive. Length $82.6 \mathrm{~mm} ;$ widh 51 mm thickness 2.8 mm . Phase VI, Aroa II (108, 17). SOD lab no 810875.

36 fortion of a shoet bent at about a 90 degrea angle, damaged. The shaet tapers toward one and which rotalns a portion of a base. The oppooite and 1 s missing. Purpose uncertain (leg of Lron vesgel?). Length 49. 3mm: haight 20.3nmi width 17.6mm; thickness 8.7min. Phase VI, Area II (101, 34). SOD lab no 810892.

37 Portion of a etrip of flat, ractanguiar cross-section. Both anda aremisalng and one edge le broken. Length 14. 3mm width E. 4 mm thickness 3 mm . Phase IV, A5sa I (43, 51). 500 lab no 810800.

38 Portion of a strip of rectangular crose-section. Botm ends aremiaelng. Distorted by corrosion. Longth 13.8 mmi width/
width $14 \pi m$; thickness 8. 0 mm. Phase VI, AIea $1(4,44)$. 900 lab no 810902.

39 Portion of a strip of rectangular cross-section. Both ends are missing. Length 21. 3mm; width 9.7mm; thickness 4. 6ma. Phase IV, Area $I(55,47)$. SDD lab no 810905.

40 Portion of a strlp rff ractangular cross-section, subrectangular in plan. Tapering in width toward one end. Both ends are missing. Length 22. 9 mm ; width 11.9 mm ; thickness 4.8mm. Phase V, Area III (200, 65). S00 lab 110810923.
$4 i$ Portion of a strip of rectangular cross-section, triangulal in plan. Tapering in width toward one and. Both ends are missing. Length 22. 1mm width 10.7 mm ; thickness 2.5mm. Phase V. Area III (200, 65). 500 iab no 810923.

42 Damagad and corroded cylindrical 'tin can', mow flattened. Gase attached. Height 70 mml estimated diameter 75 mm . Phase V. Area III (201, 59). S00 lab no 810917.

43 Totally corroded fragmant of sub-ractangular plan, presently plana-convex in cross-saction. Dna endis missing, the opposite and $1 s$ covered in corrosion but has a curving outilna. Langth 26.8 mm width 28.9nim thickness 13. 3mm. Phase V. Area III (100, 65). SOD lab no 810923.

NAILS (IIIUS 26)

R m Spoarman

Of tho 100 nall fragments (nos 44-143) racovarod, 78 חalls and two staplas (nog 144, 145) fatainad racognisabie fagtures. A further olx fragnants, ineluded in the precede 1חg cotalogue, may ba nałl shanks. Thago wore x-Rayed and glven/
given a basic cleaning followad by detalled cleaning and conservation of specific examples. Their attributes are considered under the following headings: over-all length; horizontal and vertical section of head; horizontal and vertical section of shank; and welght (for complete results see archive). All of the nail shanks are either ractangular or square iri horizontal section. The following nail types are therefore established largely on the basis of head type and then length.

```
44-84 Flat-headed nails (111us 26, nos 44-8)
```

This is the commonest type of nail from tho sita, with 41 examples recovered. The heads are of a subrectangular form between 15 and 25 mm square. Their shanks are approximately square, although a few rectangular oxamples occur. Thirty-six of the nails range $i n$ over-all langth between 20 and 50 min with individual examples at $58,65,67,90$ and 140 mm . For the majority therefore the longth of the mail is 1.4 to 2 times the width of its iread.

85-92 Splay-headed nalls (111us 26, nos 85, 86)
Only elght axamplas of this type were recovered. The 'heads' of these nalls appoar only as a slight expansion of their square or rectangular shanke. They vary in longth from 10 to 155 mm .

93-115 Fidde-kay headed nalls (lllus 26, mos 93, 94)
Twenty-three examples of this type of mall were recovarad. The head $1 s$ trapezoidal in vortical section, similar to a fiddia key. Eightaen of these nalls are between 27 and 35 mm in length with Lndlue idual axamplas at $38,40,44$ and $45 m$. All have fine equara or rectangular shanks with elongatad pointa.
116.7 Triangular-headed nallo (111us 26, по 116)

Only two examples of this type are present. Thay have a rectangular mank with a small head which is slightly triangular in vartical saction. They have an over-all length of $c 45 \pi m$.

```
118 Rectangular-headed nail (illus 26, no 118)
    Cnly one possible example of this type of nail was
        notod. It has a rectangular shank with a head
        formed by a slight extension to one side of the
        shenk. This example was 38mm in overall length.
219 Oome-headed nail (illus 25, no 119)
        A single fine dome headed nall is prosent. Its
        shank had a square horizontal section with an over-
        all length of 14mm.
120-2 Chamfer-headed nails (illus 26, no 120)
        Two nails of this type were recovered. Their heads
        are square and chamfered on each face. Both nalls
        are l00mm in length with square horizontal sectioned
        shanks.
144-5 Staples (111us 25, no 144)
        Two incomplete staples were recovered. The larger
        of the two has a 7.5mm square horizontal section.
        The aecond staple is rectangular in section, 5 by 7min.
```

Bronze (IIlus 27)
H B Suncan
145 Cast stickepin with disc head and fillat. The head
is roughly oval in plan and rectangular in cross-
sectiun. Tuelve Lnclsed notches decoratad the outar
edge of the haad. The shaft is oval in ctoss-bection,
swalling silghtly at mid-section and then tapering to
a rounded polnt. Length 109. Gmm: wldth hood 11 mm
shank wioth 4. 3mm Mead thicknoss 2 mm thickneos
shank 4mm. Phase I, Area VIII (462, 267). SDD lat
no 日1095日.
147 Poftion of a handig of buckio consisting of a rod
of/
of oval cross-section tapering toward both ends and curved in a C-shape. Both ends are missing. Length 47 mm ; width 4.6 mm thickness 4 mm . Phase IV, Area I (43, 260). SDD lab no 810951.

14 B Backing plate or mount of rectangular cross-section and roughly rectangular plan. In plan the ends of the plate have a semi-circular extension, each containing a circular perforation, 2.6 mm in dianeter. One of the perforations still contains a rivet with a globular head, and the remains of a washer. At mid-point on the edges of the plate is a rectangular notch, 3 mm in length. Une end is damaged. Length $43,7 \mathrm{~mm}$: width 16 mm thickness 1 mm . Phase V. Area II (200, 263). SOO lab no 810954.

143 Portion of a backing plate of rectangular plan and cross-section. One end is damaged and has a V-shaped notch on lts surface. The opposita and has two parallel circular perforations, $2.5 m m$ in diameter. This end is broken. Length 22. 3mmitwith 14.5 mm thickness 1mm. Phaso V, Aroa III (200, 261). SOD lab no 810952.

150 Three fragnents of a thin sheet of rectangular crosesaction. All three fragmenta appear to be from the same objact and all are sinuous in side-viow. Fragmant A ratalns ona original edge, which appeara to ba an evartad rim. Fragmont θ has a rectangular parforatton, 5.5mm by 2 mm , on 1 ts lower ourface. The adges of this perforation are falded over on the raverse face. Length A 21 mm , B 24.9mm, C Bmml width A 26 mm, B 31.9mm, C 17.5 mml thicknoss A $0.8 \mathrm{~mm}, ~ B ~ 0.7 \mathrm{~mm}, ~ C ~ D .7 m m . ~$ Phese V, Area VII (302, 265). S00 lat no 810956.

151 Ffagmented ahoet, in three majn placea, of ractangulat crogemection, vory thin. Nome of the fragmants appears to have orlgimal adges and all are curved, Langth A 25 mm , θ 2amm, C 28 mml width A 27 mm , B $17.5 \pi m$,
 Area III (200, 262). G00 lab no 010953.

152 Portion of a flat sheet or plate of rectangular crosssection and sub-rectangular plan. Dnly one pdge appears to be original. Length 41 mm ; width 13.7 mm ; thickness 1.7mm. Phase V, Area VII (302, 266). SDO lab no 810957.

153 Binding strip of flat rectangular cross-section. Dne end is missing. The opposite end is slightly splayed and contains one complete circular perforation (2mm in diametar) and about half of a second. This and is also damaged. The strip is presently bent round to form an irfegular oval. Length $196 \mathrm{~mm} ;$ width 11.5 mm : thickness 1.7mm. Phase V, Arba III (200, 264). SOD lab no 810955 .

154 Portion of a thin, flat strip of ractangular plan and cross-section. Both ends are missing. Length 17. 6mm width 5.2 mm thickness 0.5 mm . Phase V, Area III (200, 262). 50^{n} lab no 810953.

155 Portion of a thin strip of rectangular crossmesection which 15 foldad over. Lamgth 12 mml width $7.6 \mathrm{~mm}:$ thickness 2.5mm. Phaes V, Area III (200, 262). SDD lab no 810552.

SILUER (ILIUs 2日)

156 Small atick-pin, in two places, with a squat cisculaf haed. Attached to the head 19 a wite of rectangular crose-section. It is curvad and the and broken off. The shaft 1 a cifcular 1 n croasesaction taparling to a damaged point. Langth 24 min had width 3. 3 mm, ahaft
 Atea III (200, 201). 500 lab ma 日10047.
i57 Portion of aplral (?) flmgotuting ratalning oniy one apital. Tha ring it made fiom a wita of olteulat crouamagotion. About half of the ring hae decotative notchimg, aohiquad by foclalng oftciag on the citcume
 -1manciona/

```
dimensione of ring l9mm by lemm; diameter of wire
1.7mm. Phase V. Miea III (200, 280). SDD lab no
810946.
158 Half of a sllver long cross ponny of Henry IIt,
    sucond lssue. Phase I, Ares I (281, 282). SOD lab
    no 810948.
GLASS
159 Small globular bead of pale yellaw vitreous paste,
    unperforated but with a roughly ractangular depreg-
    sion on itg upper gurface. In pocr condition with
    laminating surface. Helght 7.lmmi width &.7mm:
    thlckness 8mm, Phase V, Area III (200, 290). SDO
    lab no 810950.
STONE (Illus 29)
160 Small sub-rectangular whetstone of rectangular cross-
    section. The stone is perforated in two places,
    near either end. One perforation is cylindtical (4mm
    in diameter) and the other is hourglass (4.5mm in
    dlameter). The stone tapers toward une end, which is
    dameged. Length 60mm; width 10mm: thickness 7.7mm.
    Phase V, Area III (200, 270). SOD lab mo 810949.
    The discussion of the small finds is in print,
Appendix 8.
```


APPENOIX 9: GEOMORPHOLOGICAL REPORT

Alestalr $\begin{gathered}\text { O Gommell }\end{gathered}$

The nill appers to be composed of a mass of poorly sorted and badded sand and oraval, probably a kame which would have formed at roughly the end of the last glacial period to affect the district, ie c 15000 years ge. Kemes are formed by the Inflliling of potholes or tunnels in the glacier by sand and gravel laftas mound uhich of ten possesses quite stoep sides, 30 to 40 degrees. Thus a natural defene sue sita would have ben avallable throughout post-glaclal time, further enhanced by the presence of a strem on the E side possibly cutting away the base and steopeming the slope.

```
The top of such a mound could be naturally flat emough to build on, but that is the exception, and it would seen more likely that some shaping of the top would be required. Evidence for this is contained in the layer of gravel overlying what appeses to be former turf layer. Although the gravels in the kame are naturally not vary cohesive, this gravel layer has a slightly different texture and pattern which is commensurate with the ide that it is made ground. The flanks of the mound show somevidence of slippage, partLeularly on the SE Elde, and tho resultant breaks in the veqetation cover reveal evidence of wash of eand and fine grevels down the flanks. This wembng is antural procese, but 1 t 1 s only really ffectlve where there is no vegetetion cover, eo that the soll can be attacked diractly by rainfall. A the natural atate of the keme for mot of 1 te history would be vegetstion covered, it lequite posaible that the wesh deposite were laid down at athe when the turf had been broken by ush ectionse leveliling the top of the mound, theugh it is aso posible that it could be alightiy moterecent phenomenon.
```

Around the foot of the mound of the Cestlehill, and perticularly to the outh of the mote. a shallow winding depression/
depression levisiole in the fields. A study of the eerial photegrephs (111 us 30) of the area revealed that 1 t was probably the line of pormer course of the feugh Burn. The interpretation is slightly complicated by the presence of enother chennel joining the depression from the N. lmaedlately to the W of the Castlenlli. This latter channel leads down to the floof of the feugh valley by way of estes of mounds of what eppear to be fluvioglacial materials, and is therefore considered to be meltwater channel, possibly dating from the deglaciation of the basin some 13500-15000 BP.

The origin of the channel to the south of the motte 1 s rathor more difficult to interpret. It has shallow grade lent, shows signs of rather gentle and abdued meandering, and starts and stops in positions adjacent to the present course of the Rlver feugh. It therefure seme likely that it is former channel of that river, but one which might date from a period much closet to the date of occupancy of the motte than did the ghannel from the N. The possibility remelned, however, that it was a line of defence asociated with the mote, pusibly a ditch.

In order to test the hypothesis that it was a ditch, a simple screw auger was taken to the site and a section of the channel was atigerad. The resultant analysis covers a depth of $c 1.5 \mathrm{~m}$. within this 'core' the predominant materlal la fine silt/clay sediment, particularly neer the arface. Thla material le Interrupted by thin layers of rather coarser material, malinly sand and flne/medium gravele, the proportion of fines diminishing with depth. At c lom a cuarse grevel wes encountered which could not be penetrated with the auger.

As a check on the resulte, attempts were made to auger et two other eltes, one on the open low ground edjecent to the 'channal' In which the cor deacribed above was taken, and the other near amall stream which debouches on to the velley floor just to the i of the mote, In both ceses, thase bores could only be taken to very shallow levele an e result of encountering coarse gravels virtually et the surace.

Abstract

The sedimente encountered in the care from the floor of the depreselon are of character which is in eccordance with the depression marking the line of a former course of the feugh. The gravels encountered near the bese of the core are similer to those forming the present bed of the stream. The ovarlying finer material, interrupted by thin bende of coarser material, is linterpreted as backwater deposits, probebly laid down as the course of the stream changed and the former channel abandoned to give quiet-water cond1tions. The cosiser layers probably merk periods of flood, or at leat very high discharge, at which time the depression mignt heve become a temporary chancel of the Feugh. Once the waters receded, however, only the fine muds and ills would be likely to be deposited there.

The fact that the other altas agered did not reveal a simllar stratigraphy shows that the depressian le not just - topographic 'crinkle' In the floor of the feugh valley but leatually olfferent from the rest of the flood plaln. The evidence alao tende to rule out an artificial origin for the form, for a ditch cut into flood-plain gravels ls not likaly to contaln the relatively delicate stratification and fine sediments descrited above. Instead, one might expect it to be lergoly fllled with fairly coarse gravelo, with fis leyere of floar materiale. Such a diteh would have been cut diractly into the gravel forming the majorlty of the vallay floor, and if floode brought a flow of water along that ofteh, the welle would probably have calleped, filling the ditch with mixture of coerse gravel and flner material. No such leyer has been diecovered.

The conclusion of the research cartied out is that the depresion cutting across the valley floor to the south of Cestlehill of btrachan marks the line of a former course of the river Fough.

```
P D Hulme and J Shiritifs
Depertment of Peat and Forest Solls,
macaulay Institute for Soll Research, Aberdeen
```

Samplea for pollen analysis were taken from a 20 cm deop profile at the bottom of the long $N=S$ ofientated section which ran from the motte summit to Area VIII. The profile was positioned on the N lip of the mote. The upper 10 cm is composed of the thirteenth-century primary occupation doposit and tha lower locm is apparently a buried preoccupation soll for which no prectse dute can be given. Standard techniques were used to prepare the samples (fageri \& Iversen 1974; Moore d webo 1978) and rasults of the analysis are presented ss percentages of total pollon in illus 31.

The pollen spectrum of the pre-occupation goil is dominated by trae pollen. Batula and Alnus are the principal tree taxa, only low values being recorded for the other broad-laved trees and pinus. Thla suggests an abundance, at last locally, of birch and alder woodland. The very low plne values indicate that the pollen spectrum from this soil repreantse perlod beginning no ariler than 2000 gp (before present). Calluna values are comparatively low but are consistent with the suggested local abundance of birch ad alder woodland. Geveral of the herb taxe are ruderals (eg frtemiala, Compositas, Plantago lanceoleta, Ranunculaceaa), genefally associated with ground dieturbence motly due to cultivation and tree clearance. The low amounte of ruderal pollen and the correspondingly high tree pollen values, however, indicate that nuther cultivation nor trea clearance was a major feature In the immediate vicinity of the site during the time represe ented by the presoccupation oll.

The primary occupation deposit contalne pollen spece trum similar to that of the pra-occupation solli however, the percentage values of number of the taxe olffer abo. etantially. In the primary oecupation deposit there is sog nlpleantly lese tree pollen owing to a haluing of the betula values/
values. In adoltion, the Calluna pollen content gratiy increases and the amount of ruderal pollen almost doubles. These fatures suggest that at or around the time of primary occupation there was period of birch clearance. Heather could have replaced bitch in part of the cleared area, ospecially if it was present in the woodland ground flora. Clearance was probably assoclated with increased agrlcule tural sctivity, although some of the ruderal pollen could have cone from areas disturbed during the primary occupetion of the site.

```
APPENDIX 11: PALAEOBDTANICAL REPORT
W
    E Boyd
Samplas E2 and E3
Thi report presents the results of the identification of amall number of aeds and other botanical ramains submitted to the athor. This ruport mould be consldered in conjunction with the report on the botanical remains from sample E日.
Sample Ez Area I context 43 , midden
Definite fossils:
1 Cereal caryopis, broken gnd carbonized. Further
    identification not possible.
2 Hordeum vulogre (e-row barley) caryopeis, piobably hulled:
    almost ontire, condition poor, cartoonized and puffedi
    size 4 x 3 x 2mm.
3 Corytus avollana (hazel) 5 nut fragments, carbonized.
Probable modern contaminants:
1 Rymex ap (sorrol), a flowers with fruit, l fruiti all
    uncerbonized.
2 Fungal fruiting bodies, 7 plus 3 fregments.
gamole E3 Aree I context 44, f111 of furmace 45
Definite foesilst
1 Hotitunf sp (barley), caryopsis, Mullod, but not possible
        to determine whether 2-row (H diftichum) or 6-row (H vulonfe)
        1: present. 5.5 \ 3 < 2.5mm, c 5/B completel cerbonlzed.
2 Rolyopnum muleulers egg (knotgrase) fruit, with ramnonts
        nf the ceftonitad iloworice 3mm long x l. Imm wlde.
```


Poselble Poseilt

Probable modern contaminants:
1 Rumax sp (sorrel), 2 plowers with fruit and 2 fruit.
2 Rubus sp (hramble), 1 sead.
3 Fungal fruiting bodies, 1 plus 2 fragments.

Comments
Hordeum vulgare has been recorded at Castlehill of Strachan 1 n sample $E f$ and the comments in that report suffice (see below). Polyopnum aviculate aga and chenopodium album are both weeds of cultivated and waste ground.

Sample EG Area III context 200, ditch fill

Introduction
This wet-siaved residue sample (c 75 ml) wes examined under a low-power (to $\times 25$) binoculat microscope, and the presance of ldentifiable plant remalns recorded. Where nacessary, ldentification of specimens was made under a highpower ($\times 250$) binocular microscode, and was by refarence to a collection of plant remains held in the Department of Sotany, University of clasgow.

The bulk of the samply comprises wood charcoal, with occasional unburnt or semp-burnt wood and bark fregments. Nearly 100 other carbonized plant remains were identified. Detalls are qiven in table 8 , and disussion follows.

Aycia strfogea (orfatiengt) Two almost complete primary florets fali lato the size range of A atydeose (cf Jeseen \& Helouek 1944, 49-501 Renfrew 1973. 92ff). There are the remaine of occasional halrs on the lemmas, and although the floret beses are damaged, one of the specimens appears to have a narrow base (c 4 mm), typical of g atripera. The ofstinctive 'suckermouth' base of A fetul (wild ost) is abeent, and the more or less perallel edoes of the florets contrast the typleally more rounded ones of A matlya (culte Iveted out). There is the possible remnant of achille bese/
$\frac{2}{7}$
base in one of the florets. Ons caryopsis fregment and one flotat fragment are identified as Avena cf strigosal the suggestion of straight edges and the absence of a wide V-shaped ventral furrow (typical of A fatua) indicatas that the caryopsis fragment may be A strioosa, whereas the tentative identificetion of the floret fragment is founded on the prasence of a nerfow (c 4mm) base. Two fragments are ldent. 1fied as Avona sp. on the besis of the general shape and, on one, the presenca of malra.

Avena strigosa 1 s a cultivated oat which was grown extonglvely during historical times throughout Scotland, oftan in marginal sites on the poorest goils. It is prese ently grown as a crop only on the northern and western islands of Scotiand, especially on sandy alkaline solis, and in some of the Dutar Isles, motably the Uigts, most of the oats grown are still A strigoga (81and 1971, 126-7). Despite its former widespread historical presence in Scotland, it is poorly representedin the archaeolopical record. The only other medieval recorde are at the probable medieval site at Camp H111, Glasgow (Jessen \& Helback 1944) and possibly at Perth (DE Robinson pers comm).

Hordeum vylosag (six-foubatley) Flve caryopses are ldentifled as Hularis. On thré, fragments of the glumes arepresent, on which the microscopic spines, typleal of hulled berley (Korber-Erohne \& piening 1980), can be seen. Three of the caryopses show the charactarlatic elongate ridges and anguler crossesaction of hulled barley, whereas two are lese angular in section, belng tightly enclosed in their glumes. All flue are twigted, lndicating that $\operatorname{six}=\mathrm{fow}$ batley is present (Van Zelet 1970, 50). The Herdeym sp catyopsis la a very poorly preatued, slightly puffad geace 1men. Howner, there is sufficient remalming detall to Identify it as bing hulied, and it probably is alao from s $1 x=$ row berley.

Batley is an esty maturing orain which, athough is not ldeally sultad to orowth conditions in scotland, is better/

Abstract

better adapted than other cereals to grow in the marginal agricultural conditions found in Scotland (Bland 1971: Herlan 1976), and consequently was important cereal in prehiatoric and historic Britain. Six-row barleys, such as 'bere' barley, are primitive cultivated cereals which have bean superceded by twortow variaties, and at present are grown only on some of the western and northern lalands of Scotiandi sfx-row barley wes formerly grown extensively throughout upland Scotland (Bland 1971). Barlay la the most commonly occuring cereal in Scottish archacological contexts, although it has not been racorded very frequently at medieval sites. Six-row barley has been found in medieval Aberdean, Perth and Elgin (Fraset l98i) and in Glasgow (Jessen \& Helbaek 1944).

Iriticum se (wheat) The identification of Iriticum is difflcult. The two caryopes recorded here have the typlcel pericarp cell patterns of Triticum (Korber-Gronno \& Plening 1980), and although they are drop-shaped, a characteristic regarded by Van Zeist (1970, 52.3) as highly diognostic of cartionized I dicoccum (ammer), the ventral face ind chasks appear to be more rounded then is common in ideoccum.

What cultivation has a general east-coast distribution In Scotland, although it is not widespread (Bland 1971). Tagetfuum (oread wheat), compactun! (club wheat) and dicoccum (emmer) are all represented at premedeval archaeological sites throughout Scotiond, but only fasitivum is recorded in mediaval contexts, at Perth, Aberdeon and Elgin (Fraser 1gel).

Hergs The Chengpodium saeds are all burnt, often having lost their outer layers. Howevat, many of than are sufficiently well preserved to be identifled as fhenogodium aloum (fat hen), and it le probably thet those ldentifled es chenopedium so are 130 Chbym. Tho identification of Bratica and sinepis seeds is difficult, and identification to epecies level may not be poselble with certainty ($D \mathrm{E}$ Roblnuon pers comm). The seede ldentifled here were differentlated on the basla of overall elze as will as the size of the palisade cell lumineel measurements/

蕅

```
maseurements of the latter size hare for Brassica sp are
c 12 m in diameter, and for Sinapls sp, c 6m. The coarse
IEticulum frequently of use in soeciflc identiflcetion is
not present in these specimens. The polygonum lapathifolium
(pale persicaria) frult is burnt and slightly broken, but
generally in good condition, whereas the Rumex sp (sorrel)
fruits and the Sporquag sp (spuriey) seed have corroded surfaces.
```

All the berbs are weads of arable and disturbed ground. The 日ragsica and Sinapls pocles include both wild and cultivated turnips, cabbages, rape, charlock and mustards, and may repesent the cultivation of such plants. Chenopodium aldum has a Mistory of use, possibly having been specifically cultivated in the past (Fraser 1981, 57). All the herby recurded here are common in archaedogical contexts, and have occurfed frequently at medieval sites (frager 1981).

NB A further 20 environmental amples retrieved during the excavation still await specialist attention.

TABLE 8

DETAII.S OF IDENTIFIABLE PLANT REMAINS FROM SAMPLE E6

$$
\begin{gathered}
\text { sizes (mm) } \\
\text { length breadth thickness fragment }
\end{gathered}
$$

Rvens stripose

florets	1	5.5	1.5	1.5
	2	5.5	1.5	1.5

A. of strigosa
caryopsis $\quad 2.0 \quad 1.25 \quad 1.5$ e $1 / 3$
floret
$4.5 \quad 2.0 \quad 1.25$
c 1/3
Avena sp

caryopsis	1	3.0	1.5	1.00	$1 / 2$

Hordeum vuloare

caryopsis	1	4.5	2.5	2.0
	2	5.0	2.0	1.5
	3	5.0	2.5	2.5
	4	5.0	3.0	2.25
	5	5.0	3.0	2.0

Hordeum 90
coryopsis
$4.5 \quad 2.75 \quad 2.25$ end lo.t
Triticum sp

Introduction and methods
Forty-one eamplea were submitted for examination. These varied considerably in size and compoition geveral samples contained abundant large fragments wheress, at the other extreme, several samples contained few frogments most of uhich are blow a practical sizo for identification. Consequently, an arbitrary sampling system was devised, which is considered to provide the principal characteristicg regarding species content and size data of the original wood represented lueach sample. In each sample, an examination sub-sample consisting of all the larger fragments was selected. Large fragents are definad loosely as being larger thanc $5 \times 5 \times 5 \mathrm{~mm}$, although in certain cases smaller fragments were examined. Generally a sub-sample defined in thls way represents 20\% or mora of the total number of frogments in each samp' a. Unlike other plant macrofossil assemblages (such as seds and fifits), the composition of charcoal fragments not only reflects the orlginal proportions of specles, but also, and more importantly, the degree to which the orlginal charcoal has broken wp. The overall proportiona of species in one sampla may therefore reflect factors such as the tendency for wood to fragment during burning and post-depositional framentation and preservation. The presence and (less importantly) abance of spocies in each cample is therefore more important then the relative abundance of fragmants. The examination sub-sampla must not be ragarded as an entirely random sample, and it la possible that epecies which tend to fragment into vety small fragments may have been biased ogainat. However, qiven the relatively amall proportion of the orlginal wood which has survived and been collected as chercoal, it le consldered that the sampling aystem ueed here has provided the principal characteristics regerding the secies represented.

There are several exceptions to this sampling eystem. 5ample 7 1e particularly large sample, conalating mainly of $/$
of large fragments, and only $10 \$$ of the fragments were examined. In samples 9,12 and 46 , which consist only of quercus, only a few of the larger fragments were ldentified in detail, and the :est, mostly lerge fragmente, was ecanned under low power mage nifleation to conflrm that the entire sample consisted of quercus. Finally, sample 45 consists of tiny slivers of charcoal (less than 1 mm broad and 0.5 mm thick) and consequently only one fragment out of $c 100$ wat examinedi likewlse, sample 30 consists of over 30 very small fregments, of which only two were identified.

Each fregment wes measured along thres perpendicular axes (not necessarily perpendicular to the structural axes of the original wood), and their minimum or maximum diameter wes estimated by comparison with a seriea of templates of known diameter. The 'minimum diameter' recorded represents the minimum diamater of the original wood (branch) from which the charcosl fragment comes. The 'meximum diameter' is, likeulse, the maximum diameter of the original branch, and in recorded wher part of the outer surface of the original wood is present. This represents the original wood or oranch dimensions and does not lmply anything regerding artifact dimensions. 妙ere the minimum diameter ls recorded, it must be remembered that this is the minimum thickness, and that in the case of, for example, posts, the outer parts mey have bean entiraly removed during burning.

Each fragment was examined under low (to $\times 25$) and medlum ($\times 250$) power mictoscopes, and the charecterletice of the wood anatomy compared with reference material held ln the Departmunt of Botany, University of Glasgow, and data presented oy Goduln (1956, Table 1) and Gteques (1959).

A summary of the results presented on table 9 and

 the detalled results are documented on tables 10 to 12 . From table 8 it ls clear that Alay is by far the moat abundant specise at thly site, belng ueed in more than twice as many contexte as any other species. All the species ropresented here, with the excoption of Carolays (ace below) are treas wn!ch/which grow in NE Scotland, and probably were natural componente of both managed and unmanaged madieval woodiand in this araa. The charcoal ldentified at Alnus, Ilex. Carpinus and Corylus represent wood of the only British species of these genera, le Alnus olutinose (slder), Ilex equifolium (holly), Gesplays betulus (nornbeam) and forylus avoliana (hazel) rase pectively. The anatomy of both quercus and gotyle is indiatingulshable at species level (Jane 1970, 315 \& 392), and the chereol identifled as such may represent one or both of the British species in each genus, ie querfes robur and g petfale (oak), and getula pendula and B oubescens (birch) respoctively. On the besis of the British distributions of cretegons, Sopbus and Populus specios, the charcoal of these genera recorded here probably represent Cratequi monogyne (hawthorn). Sorgus queuparia (rowan) and populustrimula (aspen).

For the purposes of decussion, the samples are loosely grouped according to their archaeological contexts, and the following groups are used:

```
Possible structural features: semples 7, 46 & 47: table lo.
Associated with midoen deposits: samples 8 & lO; table ll.
M1scelleneous postholes from summit erea: samples 9, 11 & 12:
        table 12.
Palleade: samples 13 to 18: table 13.
miscalluncous postholes, pits atc: sampies 20 to 45:
    tabl. 14.
```

gemples associeted with posesble etructures on mote eummit (tatele 10)

Sample 7. This is sample of chatcosl from alot cone telning a large mount of charcoal. The slot $i s$ very important as it may be one of very few suruluing structural ramalne of the motte ummit builolng. The sample contalne the widet diveralty of socies in any sample. Much of the charcoal feedred here le unilkely to represent etfuctural timbet. Cfitiequs it the mot common spectes, although all the charcoal way be from aingle orlolnal fragont. Fittiegus i and has bean/
ben widely usad to provide both living hedges and dead-wood fencea (Pollard at 1974), but according to Rackham (1980, 353) there are no historlcal records of ite use as timber, All the Alnus fragments and une of the quercus fregments indicate contorted growth, In contrast with most of the othar charcoal examined from this site. Finally, the presence of Ilex and Carginus is intureating. Itex has a sap-rich, closegrainod wood which, while accesionally being used for small carpentry 1tens, ls generaliy not used for constiuctional purposes, and ite history of use 10 primarily as an animal fodder plant (Reckham 1980, 345). Carpinus, represented only in this sample. is unusual, belng the only non-native tree to north Britalin which is rapresented by charcosl at this site. Carpinus grows naturally in $5 E$ England and is regarded as an introduction - lsewhere in Britain (Clapham at al 1981). Although there are Cerplnys pollen recorde during the last several thousand years in Aberdeenshire (Strlchen Moss: Fraser \& Goduin 1955), these are sporadic and may represent long-distance pollen, possibly from the European malmland, where Cardinys is common. Its wood anatomy is distinctive, and there is llu doubt regarding the charcoal identification. This opens two possibilities. Fifst, that the chareos represents lmported or drift wood, or, secondly, that Carplnus had been introduced by this period to NE Scotland. As a useful wood, it has little potential and is easily mistaken for other tress (Rackham 1980, 221). Conaequently, it may have been collected and ueed unlintentionally.

Most of the Qugrcus and Gratheous fragments are derived Prom moderately thlck brenches or atems (to 180 mm minimum diame ater) and some of these may repreaent subatantial timbera, if they rapresent timbers. Howover, the mlxture of spocias and generel constructional unsuitabllity of those present (other than Queffye sugget that the charcoal represente elther a moderately crude construetion (perhaps woven pence or ecrean) rether then en ltem of carpentty, or the burning of mixed wood 10 © ily.

Sample 4B. This ample ie from burnt, posalble timber samalne/
remelne which perhape represent collapsed plank flooring, from the central motte summit ares. The sample i one of three samples containing only gupreus, and it is probable that all the charcoal is derived from one original frement. Most of the fregments are broken radially, ie along the wood raye, but given the nature of quereus vood anatomy, this probably represente natural breakage on burning rather than ertificial shaplng of the wood. There le little evidence fron this sample alone to sugest the original artifact dimene sions, let along suggest that the charcoal represents coliapsed plank plooring.

Abstract

Sample 47. This samole contains charcoal from possible lerge timbers from en early passible construction phase deposit on the north mote sumit slope. Most of the sample consists of Alnus, which is generally in o poor, rather eogy state of presetuation. The preservation contrasts that of the other samples, which le genarally qood. The charcoal is derived from fit least two sources. Ona of the guerfes fragments appears to be squared-off, resembiling an artefact, and is probably ferived from timber or other carpontered wood. In contrast to this, the Alnys chercoal, mostly from twige and small branches, is probably not derived from conetructional timbers, olthough the twige and small branches may heve been used in wover hurdes, fences or sereens.

Samplesessocisted with midden deposits (teble li)

Sample 8. This is amall random ample taken from a low midden deposit in the E summit ares. The entiresample consiste of Alpus, with the orlginal outer surface surviving on most of the fragmente. It le poselble, therefore, to meseure the maximum dianeter of the orlginal hranches, and in thle cese, the orlginal wood le motably emell. Several frage ments may have formarly conetituted one lerger fregment. It semen improbable that this wood was used for construction putposes, and the chareosl mey represent hearth waste.

semplel

Semple 10. This i part of the charcoal from possible mifuen layer in the N part of the mette summit. This sample, mostly contalning Alnys, also contalns the only recorded fragment of Sorbus. Although the orlginal Quercus and Sorbus wood was moderately thick, the Alnus consists almost entirely of frogmente of twigs and small branches. Fragmonts 4 to 7 may be from one orlginal fragment. fhe charcoal possibly represente hearth waste rather than uurnt construction timber, although it may be the burnt reniains of a won sereen of somekind.

Miscellanaous postholes from the sumblt area (table l?)

Samples 9 \& 12. Sample 9 consists of all the charcoal from the illl of posthol 151, on the $山$ part of the summit, and ample 12 le from the fill of posthole 152 in the same area.

These are two of the three samples contalning only Quarcui and in both cases, the fragments examined are derlved from modetatuly thick orlghal wood (eample g, to 190 mm mine 1mum diameterl ample 12 , to 200 mm minimum diameter). The entiresample in each case probably derlues fiom elngle orloinal poet or timber, burnt 10 .

Sample 11. The sample cunsiste of charcosl from the f111 of amell poselble posthoi in the Nw summit ares, and contains the only pogulus chareoal recorded at this eite. This ie In notable contrast to the charcoal in other postholes assigeleted with the gallsade (samples 12 to lg) in which
 monts in sample 11 ere emall, and the minlmum diameter is therefors offficuit to aseses, at least one of the framente represente a mbudeesited orioinal branch, and probably repe reaents a peot. Along with Alays (ase balow), Pogule had a coeclal value durlng mudeval elmes as one of fiow none conlferous eoftwoods, and was used for conatruction purposes (nackiam 1080, 342).

```
Samplas mssociated with the palisade (taole 13)
```

Sample 13. This is all of the charcoal from the fill of posthole 184, part of the palisade on the east mote summit. The sample consists of Alnus, probably derived from more than one orfginal fregment. The fragments are notable in that their growth ringe are very irregular, and the estime ation of minimum and maximum diametera was therefore difficult. Nevertheless, frament 2 represents a tuig whereas at least fragment 1 represents somewhat thicker original wood.

Samole 14. This is the total charcoal from the fill of posthole l70, part of palisade 150. The sample consists mainly of very small fragments, so only a mall proportion of it could be identifled. This fragmert derives from at least a medium-sized original piece of wood.

Sample 15. This is all the charcoal from the fill of a slot, posidily associated with the palisade. Like sample 14, this sample contains only very faw gufflciently large fragments for identification, and therefore only a small proportion of the antire gemple was ldentified. This contalne three species, and the efore is derlved from several original fragments. Of particular note is the largo size of the original Crataequs wood (to 200 mm minimum diametar).

Samples $16,17 \& 18$, Sampla 16 is the total sample of charcoal from posthole 182 , In line with three to the w of palisade 150, and which mey be linked to the palisade by elot 181. Samples 17 and 18 are from the 1111 of postholes 163 and 165, both belng part of the pelisade. These amples all contaln only a fow mall fragments, probebly all belng Eretaloust, and possibly all derived from moderately small orlginal wood.

Asauming that the charcoal recovered from the pallase postholes and slot reprasente the wood used for the palisade construction, the principal wood used was Alnus end critiequs, and/
and it appers that mainly small branches and twigs were used. Crataequs 1 e principally recorded in samples associated with the palisade, and this clearly illustrates its use in the cone etruction of a defensive structure, use to which its spin1nese le well suited. Most of the charcosl probably represents the small wood of the horizontal rods of woven fences of, lese probably, wooden packing for the main uprights, whereas the thicker Crataeque charcolifn sample 15 probably represants one of the vertical upright posts probably placed in ach posthole.

Sample 19. This ample contains charcoal from the fill of posthole 268, one of series of postholes 283, situated to the w of the palisade, and which may bearlier than the palisade. The entire ample examined consists of Crataegus charcoal. some of which orlginates from moderately arge (220mm minimum diameter) orlginal wood. Thlsefragments may be from a single original fragment, and probably represent the post which infilled posthole 268.

Charcoal from miscellaneous postholes, pits etc on the mote summit (table14)

Samples 20 to 45. These consist of large number of small samples from postholes, pitend pipe fills in the motte summit Area I. These ore possibly all from the destuction of poste and other iteme unich stood in these features.

Alnus 1 s the mot common species, occurting in ali except one (tample 27) of the samples, and belng considetably more bundant then the other bocies. Alnys makes poot builde 1ng timber, although it has documentad history of use, especlelly for the provision of small timber and items of temporafy carpentry, having had a secial value as a comonly avillabe non-coniferous coft wood during medieval times (Reakhem 1080, j0sff). In this report it le interesting to note thet one of the only two possiblertefacte pound monget the chareoul samples ls fragent of Alnus (omplo 3日) which resables anaved ellvar or ohip of wood. The abundence of Anu/

Alnut at this aite may reflect ather 1 te local natural abundance, or poselbly some local form of woodend management to proulde e ready supply of the aasily worked alder wood. (It should be noted that nowever probable it is that local woodland management occurrad, there 1 s no direct evidence of such management in the charcoal evidence presented here). Quercus is the other common apecies used, presumebly delforately, as a building timber. The other three species present (Betula, Ilex and Corylus) may represent the sporadic use or avallability of these species, of even their inadvertent use. However, it must be borne in mind that the total charcosi sample examined to reach such conclusions is only a tiny proportion of the total wood that must have been usad at a sita such as this, and therefore the use of these letter species may have been mora widaspasa than $1:$ indicated by the sparseness of their charcoal in these samples. Most of the charcoal in this group of eamples is derlved from original wood of gmall dimensions, and indead, some of the charcoal must have been derived from twigs and small branches (eg the Alnus in samples 20, 25, 29, 32, etc, and the Alex in sample 39). There are few fragments which have a moderately large minimum diameter ($80-120 \mathrm{~mm}$) but nothing in this group approaches the proportions of wood used in the construction of, for example, the palisade. Although this may be due to the more fflcient burning of the original wood, it $1 s$ probable that the charcoal 1 n samples 20 to 45 generally represents lems of light conetruction such es woven acreans and nonewight-bearing frames and walls.
table 9

Summary	Number of contexte All samples	spectes present 1 n Samples $20-45$
A1048	31	24
Quercus	13	6
Gentimous	8	-
fathe	3	3
Carydus	2	2
19x	2	1
cmulus	2	-
Aarbus	1	-
cirolnus	1	-

table 10
chapocal samples associateo with possiele structhaes i: motte summit

$\operatorname{Sanple}_{\because 0}$	Context No	```Examination sub-sample (% of total sample)```	Charcoal identification		Oime	ioris	(mme)	$\begin{aligned} & \text { Giameter }(\mathrm{mm}) \\ & \text { min max } \end{aligned}$		Notes
7	61	c 10\%	Alnus	1	53	56	46	-	-	contortes fragment
				2	47	35	28	-		slightiy contorted
				3	29	29	24	-	-	with krot
			Quercus	1	59	35	36	-		contorted fragment
				2	42	39	30	180	-	
				3	45	32	17	181	-	
			Cratagqus	1	26	21	15	70	-	
				2	37	24	17	70	-	
				3	27	23	16	-	-	
				4	40	25	9	70	-	
				5	$2 E$	2.9	19	40	-	
				6	45	32	17	160	-	
				7	42	18	14	140	-	
				8	52	22	13	-	-	
				9	27	27	23	50		contorted fregment

$\begin{gathered} \text { Sample } \\ \text { yo } \end{gathered}$	$\underset{\text { Context }}{\text { Cose }}$	$\begin{aligned} & \text { Examination } \\ & \text { sub-gample } \\ & \left(\begin{array}{c} \text { of total } \\ \text { samplete } \end{array}\right. \end{aligned}$	Charcoal inentification		Qimenstons		(mm)	Diameter (mm)		
			Alnus	6	38	12	12	-	12	
				7	33	19	9	60	-	
				8	40	14	12	30	-	
				9	20	16	13	-	-	
				111	42	8	8	-	8	
				11	23	14	25	-	-	
			zuercus	1	45	20	15	136		efact
				$?$	25	45	22	-	-	

TABLE 11
CHARCOAL SAMPLES ASSOCIATED WITH MIDDEN DEPOSITS

Sample No	$\begin{gathered} \text { Context } \\ \text { No } \end{gathered}$	Examination sub-sample (8 of total gample)	Charcoal 1dentiffeation		Oimenstons		(mm)	$\begin{gathered} \text { Diam. } \\ (\mathrm{mm}) \end{gathered}$	
8	78	100\%	Alnys	1	45	32.5	25	60	-
				2	30	25	25	-	30
				3	30	20	15	-	30
				4	15	12.5	12.5	-	30
				5	20	12.5	7.5	-	20
				6*	20	20	12.5	-	60
				7	22.5	12.5	10	-	30
10	76	25\%	quercy:		40	22.5	25	100	-
			Alnus	1	25	20	15	-	50
				2	20	22.5	12.5	-	-
				3	40	10	10	40	-
				a	22.5	12.5	7.5	-	15
				5	15	10	10	-	10
				6	20	10	10	-	10
				7	12.5	7.5	10	-	12
				8	17.5	15	10	-	-
			Sorbue		32.5	17.5	15	120	-

[^0]thbre 12
CHARCOAL SAmples from miscellaneous postholes from the summit area

	Somple	$\underset{\text { Mo }}{\substack{\text { Context }}}$	Examination sub-sample (4 of total sample)	Charcoal identification		Dimen	ions	(mm)	Diamete min	$r_{\max }(\operatorname{mon})$	Notes
	9	151	c 5%	Quercus	1	95	75	20	190	-	
					2	45	43	8	-	-	
					3	28	24	18	110	-	
					4	28	21	14	130	-	
$\stackrel{ \pm}{\infty}$			100\%	$\begin{aligned} & c 100 \\ & +\begin{array}{l} \text { others } \end{array} \end{aligned}$		-	-	-	-	-	```sample scanned; probably all Quercus```
	11	226	66\%	Populus	1	17.5	12.5	12.5	60	-	
					2	10	15	6	-	-	
	12	187	20%	Quercus	1	45	45	27.5	180-200	-	
					2	27.5	20	15	50	-	
					3	20	30	10	80	-	
					4	20	13	11	40	-	
			100%	$+c 20$ others		-	-	-	-	-	```sample scanned: probably all``` Quercus

TABLE 13

Charcoal samples associated with the palisade

*with bark

TABLE 14

CHARCOAL SAMPLES FROM MISCELLANEOUS POSTHOLES, PITS ETC ON MOTTE SUMMIT

$\begin{gathered} \text { Samplo } \\ \text { No } \end{gathered}$	$\begin{gathered} \text { Context } \\ \text { No } \end{gathered}$	Examination sub-samplo (8 of total sample)	Charcoel 1dentifleation		Dinenstons		(mm)	$\begin{aligned} & 01 \mathrm{~mm} . \\ & (\mathrm{mm}) \end{aligned}$	
20	193	224		1	5	15	11	-	-
				2	17	12	13	-	18
				3	11	14	9	40	-
				4	15	10	9	nu	-
				5	9	8	13	20	-
21*	81	16\%	Quescu		15	15	15	80	-
			Alnus	1	17.5	10	15	50	-
				2	[6	12.5	8	? 50	-
				3	15	14	9	30	-
				4	10	17	10	60	-
				5	15	14	9	40	-
22	261	100\%	Quarcy		24	24	12	100	-
			Alnys		11	13	6	-	-
23	263	27\%	Quefey		10	16	7	-	-
			Butula		6	8	10	40	-
			Al0us		11	7	5	40	-
24	257	30\%	Alnus	1	21	20	16	80	-
				2	17.5	16	9	-	-
				3	15	14	9	-	30
25	155	1008	Alnus	1	15	8	8	-	8
				2	17	11	7	30	

*All the Progments in this somple are perticularly orittie.

```
TABLE l4 (cont'd)
```

$\underset{N O}{\text { Sampl }}$	$\begin{gathered} \text { Context } \\ \text { No } \end{gathered}$	$\begin{aligned} & \text { Examination } \\ & \text { sub-sample } \\ & \text { (sof total } \\ & \text { sample) } \end{aligned}$	Charcoa identif ication		Dimen	10ns	(mm)		max
28	285	178	Quercus	1		12	5	24	-
				2	9	12	7	-	-
27	42	174	Corylus		17	20	10	-	-
28	251	33\%	Alnus		12	11	15	40	-
			Betula	1	12.5	20	7	60	-
				2	15	10	9	-	-
			Corylug		7.5	11	15	20	-
29	194	25\%	A1048	1	13	17	10	-	20
				2	15	14	7	-	-
				3	10	15	10	-	20
				4	18	11	12	40	-
30	192	7\%	Alnus	1	27.5	20	12.5	60	-
				2	25	10	10	-	10
31	169	100\%	Alnus	1	10	10	15	-	40
				2	20	12.5	15	-	-
32	188	26\%	Atnus	1	41	22	13	-	25
				2	30	22	17	-	25
				3	36	28	13	80	-
				4	35	23	15	-	-
				5	30	18	15	-	-
				8	30	24	7	80	-
				7	30	21	10	-	-
				8	22	23	10	22	-
33	273	20\%	Quersus		27.5	25	12.5	70	-
			AlOus	1	15	12.5	12.5	40	-
				2	20	1%	11	20	-
34	78	218	Alous	1	28	24	10	60	-
				2	23	22	18	*	-
				3	16	17	11	-	-

TABLE 14 (cont'd)

$\underset{N 0}{\operatorname{Sampl}}$	$\begin{gathered} \text { Context } \\ \text { No }_{0} \end{gathered}$	Examination gub-3ample (4) of total sampla)	Charcoal identif ication		Dimensions		(mm)	$\begin{aligned} & 01 \mathrm{am} . \\ & (\mathrm{mm}) \end{aligned}$			
					min						
35	254	13\%	Alnus	1			22	14	15	50	-
				2	24	16	10	60	-		
				3	21	13	10	-	-		
38*	269	29\%	Alnus	1	34	27	20	120	-		
				2	35	14	10	110	-		
37	288	10\%	Alnus		9	8	21	-	9		
38	95/96	30\%	Alnus	1	25	32	15	-	40		
				2	21	35	13	-	40		
				3	36	15	5	30	-		
				4	21	11	9	-	10		
				5	32	13	10	30	-		
			Quercus	1	27	24	19	70	-		
				2	30	17.5	10	70	-		
				3	25	22	9	80	-		
				4	20	16	8	60	-		
39	81	38\%	A1mus	1	43	$4<$	31	130	-		
				2	33	21	18	50	-		
				3	20	17	19	60	-		
				4	31	23	15	120	-		
				5	20	23	10	80	-		
				8	28	21	13	-	-		
			118	1	35	28	12	-	50		
				2	31	18	17	-	40		
				3	32	17	18	-	40		
				4	24	18	10	5	*		
				5	22	27	18	g	-		
			80tule	1	25	18	10	-	-		
				2	23	15	20	80			

TABLE 14 (cont'd)

$\begin{gathered} \text { Sample } \\ \text { No } \end{gathered}$	Context No	Examination sub-ample (\% of total sample)	Charcoal identif. ication		Dimengions		(mm)	$\begin{aligned} & 01 \mathrm{am} . \\ & (\mathrm{mm}) \end{aligned}$	
40	461	17\%	Alnus	1	12	17	7	80	-
				2	19	11	9	80	-
				3	15	14	6	40	-
41	225	17\%	Alnus	1	15	13	6	-	-
				2	9	13	5	-	10
				3	8	9	7	10	-
				4	7	15	4	-	-
42	243	19\%	Atnus	1	21	16	17	70	-
				2	24	19	15	100	-
				3	21	18	16	80	-
				4	15	15	13	110	-
				5	16	12	12	100	-
43	282	20\%	Alnus	1	15	15	12.5	30	-
				2	15	12.5	7.5	-	-
				3	15	7.5	5	80	-
				4	10	15	6	20	-
44	193	16\%	Alues	1	20	18	17	40	-
				2	28	20	15	50	-
				3	18	θ	10		20
				4	15	17	13		13
				5	23	14	15	30	-
				6	20	14	13		30
				7	15	13	11		20
45	298	18	Alnus		13	4	2	-	-

[^0]: *allghtly unburnt

