Centre for Archaeology Report 46/2005

Tree-Ring Analysis of Timbers from the Church of All Saints, Main Street, Fenton, South Kesteven, Lincolnshire

A J Arnold, R E Howard and Dr C D Litton

© English Heritage 2005
ISSN 1473-9224

Tree-Ring Analysis of Timbers from the Church of All Saints, Main Street, Fenton, South Kesteven, Lincolnshire

A J Arnold, R E Howard and Dr C D Litton

Summary

Tree-ring analysis was undertaken on 24 core samples obtained from different timbers in the nave and south aisle roofs of the Church of All Saints, Fenton, in Lincolnshire. A further six sliced samples were obtained from oak boards covering the nave roof.

The analysis of these 30 samples produced a single site chronology, FENASQ02, comprising 4 samples (all from the oak boards), with a combined overall length of 184 rings. This site chronology was dated as spanning the years AD 1434 to AD 1617.

Unfortunately, given the nature of these dated samples, there is no sapwood, or heartwood/sapwood boundary, on any of them. It is thus not possible to reliably calculate an estimated felling date range for them. It is unlikely, however, that they were felled before AD 1632.

None of the samples from the structural timbers could be dated.

Keywords

Dendrochronology
Standing Building

Author's address
Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD

[^0]Opinions expressed in CfA reports are those of the author(s) and are not necessarily those of English Heritage.

Introduction

The Church of All Saints stands, in traditional style, adjacent to the Manor House and village green near the centre of the village of Fenton, in the district of South Kesteven, Lincolnshire (SK 878 506, Fig 1). It is built from a variety of materials including coursed ironstone rubble, Ancaster stone ashlar, and red brick, and contains remains from several periods. The interior includes two bays of a Norman arcade to the north side, the pillars having scalloped capitals, whilst the north aisle is pierced by a doorway of the Transitional period (ie late-twelfth century). The south arcade, with octagonal pillars, is probably of late-thirteenth century date. To the west end there is a tower of three stages with clasping buttress, belonging to the Perpendicular period (probably of fifteenth century date), as does, it is believed, the nave roof. The roof of the south aisle on the other hand is dated by an inscription to AD 1652. The chancel was rebuilt in AD 1838 and further restoration work, particularly to the north aisle roof, was undertaken in AD 1875.

Sampling

Sampling and analysis by tree-ring dating of the timbers of the nave, chancel, and aisle roofs were commissioned by English Heritage. The purpose of this was to establish the date of these roofs with greater certainty to inform a programme of repairs and renovation which is being currently being grant-aided by English Heritage. Sampling was undertaken at a time when the roof was being repaired, the removal of the lead and the boards beneath, and the provision of scaffold platform throughout giving a unique opportunity to access all the timbers at this time.

The roof of the nave and chancel consists of six bays formed by seven cambered tiebeams, the tiebeams supporting a ridge beam. There are single purlins to each pitch. Within each bay there are five common rafters. Whilst the majority of these timbers are of oak, and appear to be integral with each other and original, a small number of beams are of softwood, the ridge beam between truss 2-3 and between 3-4 for example. The tiebeam at the east gable end is also of softwood. Two views of the roof are given in Figure 2a/b.

The roof of the south aisle comprises four bays formed by five principal rafters, with common rafters of only slightly smaller scantling being found in between. In this instance more than half the timbers have been replaced with modern, probably nineteenth century, softwood beams. One of the principal rafters in this roof has been inscribed with the date '1652' and may represent a mid-seventeenth century repair phase. The north aisle roof is composed of simple small common rafters, these all being some form of modern softwood.

From these roof timbers a total of 24 core samples were obtained. Each sample was given the code FEN-A (for Fenton, site "A") and numbered 01 - 24. Sixteen samples, FEN-A01 - A16, were obtained from the nave and chancel roofs, with a further 8 samples, FEN-A17 - A24, being obtained from the timbers of the south aisle roof. The positions of these samples are marked on plans provided by English Heritage, these being reproduced here as Figure 3.

At the time of sampling it was noted that while most of the boards removed from the roof were of softwood, perhaps having been laid down in one of the nineteenth century repairs phases, a small number of them were of oak. Although slightly broken and split, it was possible to obtain a further six samples, FEN-A25-30, as sliced samples. Although it is known that the boards are from the nave roof, their exact original locations are not known and their positions are not shown on the location plans.

Details of the samples are given in Table 1. In this Table, all frames and timbers are numbered from west to east, following that of the plans provided, and identified on a north - south basis as appropriate.

The Laboratory would like to take this opportunity to thank Alex Mcintyre for his help in providing details on the site and in arranging access during repair work. We would also like to thank the staff of John Coxon, Roofing Ltd, for their help and assistance during sampling and for their interest and enthusiasm for the project.

Analysis

Each of the 30 samples obtained was prepared by sanding and polishing and their annual growth-ring widths were measured. The growth-ring widths of all 30 samples were compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum value of $t=4.4$, very slightly lower than the usual minimum figure of $t=4.5$, a single group comprising 3 samples, FEN-A26, A27, and A30, could be formed

The three cross-matching samples were combined at their indicated off-set positions to form FENASQ01, a site chronology of 166 rings. This site chronology was then satisfactorily dated by comparison to a number of relevant reference chronologies for oak as spanning the years AD 1452 to AD 1617.

Site chronology FENASQ01 was then compared to all the remaining ungrouped samples. With the majority of samples there was no further satisfactory crossmatching. There was, however, a match between FENASQ01 and sample FENA25, with a low, though maximum, value of $t=4.1$. This is found when the first ring of FEN-A25 is at minus 18 rings relative to the first ring of site chronology FENASQ01, the first ring date of which is AD 1452.

To check this cross-match, sample FEN-A25 was compared individually to a full range of reference chronologies. This indicated a series of satisfactory crossmatches with a number of these reference chronologies giving the sample a first ring date of AD 1434 and a last measured ring date of AD 1529. Such a date is consistent with this sample's cross-match with site chronology FENASQ01.

Because of this the three samples of the site chronology and sample FEN-A25 were combined to make a new site chronology, FENASQ02, with a combined overall length of 184 rings. The relative positions of these four samples are shown in the bar diagram, Figure 4. Site chronology FENASQ02 was then dated by comparison to a number of reference chronologies as spanning the years AD 1434
to AD 1617. Evidence for this cross-matching is given in the t-values of Table 2.
All the remaining ungrouped samples were than compared individually to a full range of reference chronologies, but there was no further satisfactory crossmatching.

Interpretation and conclusion

Analysis by dendrochronology has produced a single site chronology, FENASQ02 comprising 4 samples, its 184 rings dated as spanning the years AD 1434 to AD 1617. Unfortunately, given that the samples are from boards which have been heavily trimmed to fit close together, there is no sapwood or even heartwood/sapwood boundary on any of the dated samples. It is thus not possible to calculate a felling date range for the timbers represented. It is unlikely, however, that the timbers were felled before AD 1632, this date being based on a 95% probability of a minimum of 15 sapwood rings. Given the last measured ring date, however, the next possible historical context into which the boarding might fit is the mid-seventeenth century work on the south aisle roof denoted by one of the main rafters here inscribed with the date '1652'.

A large number of samples, 26 in total, remain undated. Although all of them have sufficient rings for dating, the numbers of rings on them are generally low, with most of them having only 55-65 rings. Some of the samples also show slightly complacent rings which can also make cross-matching and dating difficult. These factors, along with some possible reuse of older material, and substantial replacement by later inserts making many of the timbers in effect singletons, might account for the lack of cross-matching between samples and the dating of the samples individually.

Bibliography

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-EOI, Queens Univ, Belfast

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1987 List 20 no 3 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 18, 53-4

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 List 57 no 8 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 25, 36 - 40

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 no 8 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 27, 78-81

Howard, R E, Laxton, R R, and Litton, C D, 1997 List 75 no 7a/c, 8 - Nottingham University Tree-Ring Dating Laboratory Results: general list, Vernacular Architect, 28, 124-7

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Tyers, I, and Groves, C, 1999 unpubl England London, unpubl computer file LON1175, Sheffield Univ

Table 1: Details of samples from All Saints Church, Fenton, Lincolnshire

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	Nave and chancel roof timbers					

Table 1: continued

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	South aisle timbers continued					

Loose oak roof boards

FEN-A25	Oak board, exact location unknown	96	no h/s	AD 1434	------	AD 1529
FEN-A26	Oak board, exact location unknown	166	no h/s	AD 1452	-----	AD 1617
FEN-A27	Oak board, exact location unknown	146	no h/s	AD 1471	-------	AD 1616
FEN-A28	Oak board, exact location unknown	114	no h/s	-------	-------	------
FEN-A29	Oak board, exact location unknown	101	no h/s	------	------	------
FEN-A30	Oak board, exact location unknown	62	no h/s	AD 1531		AD 1590

*h/s = the heartwood/sapwood boundary is the last ring on the sample $\mathrm{c}=$ complete sapwood on timber, all or part lost during sampling

Table 2: Results of the cross-matching of site chronology FENASQ02 and relevant reference chronologies
when first ring date is AD 1434 and last ring date is AD 1617

Reference chronology
Manor House, Sutton in Ashfield, Notts Mansfield Woodhouse Priory, Notts East Midlands
England
Lowdham Old Hall, Lowdham, Notts
21 Church St, Mansfield, Notts
15/19 Station St, Mansfield Woodhouse, Notts London England

Span of chronology t-value

AD 1441-1656	9.8	(Howard et al 1996)
AD 1432-1579	9.2	(Howard et al 1987)
AD $882-1981$	9.1	(Laxton and Litton 1988)
AD $401-1981$	8.2	(Baillie and Pilcher 1982)
AD 1422-1527	7.9	(Howard et al 1997)
AD 1439-1584	7.6	(Howard et al 1994)
AD 1431-1538	7.4	(Howard et al 1997)
AD $413-1728$	6.0	(Tyers and Groves 1999)

Figure 1: Map to show general location of Fenton

© Crown Copyright and database right 2013. All rights

Figure 2a: View of the nave roof looking from east to west

Figure 2b: View of the south aisle roof looking from east to west

Figure 3: Plan of the roof to show timbers sampled (after Peter McFarlane, architect)

North aisle - modern softwood rafter roof

Figure 4: Bar diagram of the samples in site chronology FENASQ02

white bars = heartwood rings
no $\mathrm{h} / \mathrm{s}=$ there is no heartwood/sapwood boundary on the sample

Data of measured samples - measutrments in 0.01 mm units

FEN-A01A 57
$1101471329978526152617788657571 \quad 607067839482$
 $\begin{array}{lllllllllllllll}81 & 116 & 69 & 79 & 86 & 60 & 56 & 44 & 53 & 70 & 76 & 83 & 81 & 62 & 81 \\ 65 & 73\end{array}$

FEN-A01B 57

$106139133967056 \quad 6256668480607162587467859678$

FEN-A02A 55
174165271266212214154138124190155135130110121199236156120140 246298271169260227103118173135176195213157174153149238227230
$\begin{array}{lllllllllllllllllll}196 & 144 & 87 & 57 & 43 & 42 & 44 & 68 & 80 & 88 & 100 & 95 & 104 & 118 & 103\end{array}$
FEN-A02B 55
171163280268225202160134120191150134129110127204232149121144 253300271176258233110116175134182191218147176179143222228227
185145806141414769809010090107119101
FEN-A03A 56
10515318416711017419213915917414412216312515015171546748
$\begin{array}{lllllllllllllllllll}72 & 73 & 38 & 37 & 44 & 71 & 76 & 83 & 81 & 62 & 81 & 65 & 73 & 87 & 82 & 67 & 73 & 71 & 65\end{array} 73$
81116697986605644537081100113123145150
FEN-A03B 56
10316017716512117520616216718316014415413213115474436251
$\begin{array}{llllllllllllllllll}70 & 79 & 43 & 35 & 42 & 72 & 71 & 91 & 80 & 58 & 83 & 68 & 68 & 83 & 83 & 64 & 71 & 68 \\ 63 & 80\end{array}$
$\begin{array}{llllllllllllllllllllll}84 & 105 & 71 & 84 & 78 & 58 & 53 & 60 & 71 & 77 & 85 & 102 & 114 & 120 & 139 & 153\end{array}$
FEN-A04A 61
1161481178115983101126141132114137160131161122164126139163 162103122164137116194172120223116162132134104197104129121192 125124129101118119283191194136921251091011081159910791107 88
FEN-A04B 61
143128116841437997128135127100150155135153129162118147170 140120104153133121201146156209126148133142117137114135138187 125125139107111113216173229127921291081041051199910691100 81
FEN-A05A 73
1001551991451472042411435250476567115108212228314277210
2202523213903474173502843975024354015694966735867651819572
8810610390103122126125134149134151160163645263477680
11112712913815115219415614714093110105
FEN-A05B 73
1261461591571561992331435271334977100120202244310291201 2132573283953633913492923945054354055555006835898091978176 9410210095124105127118131138139149152174906362487286 1041331261401461581881491501369810796
FEN-A06A 59
300250239264271304159127223150206238194175173146200123165194
504100297313292352392186188174121199147249199282209152174175
14598111116113145149141115136144110158149136125122185152

FEN-A06B 59
303239242277304337153152210138167230186149160150198116165198 462117340299300342375187179179104192146231204276218148179165 143100114109125143152139109126130107154148138128112184159 FEN-A07A 71
141123152201198147192159168247235174123131147111140135159132 127156115110961161379812811412312211813191131129119118102 1331191261281618912315017213012110213717913913692125109101 9910791107881029882120104101
FEN-A07B 71
175129148194188154180155170247225181146121150124140134157146 112159121112998414110711611112711811612610111512212811796 13910813014413510210116715213413510613917214012792129108104 9910691100811049389105113120
FEN-A08A 57
60921331211691301291541329958677998134123137121102174
$\begin{array}{llllllllllllllllllllllllllll}158 & 230 & 234 & 142 & 91 & 56 & 52 & 68 & 67 & 59 & 78 & 70 & 56 & 48 & 47 & 66 & 76 & 51 & 44 & 44\end{array}$
$\begin{array}{llllllllllllll}43 & 88 & 89 & 66 & 71 & 75 & 41 & 49 & 29 & 41 & 43 & 52 & 58 & 43 \\ 55 & 49 & 68\end{array}$
FEN-A08B 57
5783134129162132134155132101647482100127124149118102153 $\begin{array}{llllllllllllllll}162 & 231 & 230 & 130 & 80 & 54 & 45 & 59 & 79 & 53 & 69 & 63 & 52 & 51 & 51 & 58 \\ 69 & 53 & 45 & 39\end{array}$

FEN-A09A 71
363326370362292288409521125635192175181216351378169146323 23522733931034983112981091591831571322732652451068560108
899290115253506951711341335559625456736110193
194191168169141174204231266191182
FEN-A09B 71
3833093733673013064045141296055102168180210383374167132306 23822333734335188101113110132189158124260275228110787299

205196160175147171219238262193181
FEN-A10A 66
2714374004224103453624646101628153109149168211226216231293
3482592632321168364899613910511417218416812275566071 426964821141216669466675701089796197138157140163 148150166188266196
FEN-A10B 66
2344234204013993383794365981717458105153177206233221229276 3352592602341257471859614010412515519115513584565350

160150175194264206
FEN-A11A 60
18824420617715114711314110714913215690147162103125110142134 79125114110146149155126173187178156163138124244251208155201 182164117157177209145115114129981221221449110910711399130 FEN-A11B 60
16923920517414915610614511215212315711214415910112192153126 92118124101146155152135181180189151172145114248237219157203 16616312216017622215312010612510011813514295107108120103123 FEN-A12A 61
157141133135147119135126188183155196128193196223218209200161 16817918812415712013511610397130154141168154121190155165156 82101100104801521407283115154156164153961249210510495 95

FEN-A12B 61
159149141130139129141128178179159190134199190229211201201169 17817517813515611813112510794124153145139144123177157162130 851081041099815614179751261561541621479612610391110100 89
FEN-A13A 65
12911110010315213712296841271211041171228312111111187114 97961091261481661851121732451501791771691534732415152
 7770757871
FEN-A13B 65
1191059611015713112192861271291041261668312412111975112 961031071191521651791201762371421801761621617245495652

$77 \quad 70 \quad 72 \quad 74 \quad 55$
FEN-A14A 54
1381872101791931971831581641201781321402321761559495164243 1341551691191561511761581639816011110512016316612614389121 826666566987320232220223242159214199
FEN-A14B 54
14820019918519721018516116812518114915720017715094123147235 14213717813015415217016016310116512710811718714898148104126 926561718572315223242246254183210192
FEN-A15A 62
89120978873736992141125161918892989766768564
22624524024823214716716413713012911812092746290928089 10590109125128114126118901421121651431047881494810694 7572
FEN-A15B 62
 28725123727325713616818815511412411212883885982957794 988911211312313311812384138111168144112838245449595 6679
FEN-A16A 54
211331347354265206248178250220181223199242159214202199320232 343278268306173183128126126173147171153130159206173110136104 1091081501441402011482052057487145170150
FEN-A16B 54
266335341343248189212194226242158246198254183210186192315223 3423022632901861649713613517913418615113714420517711114288
1031091491721242131531911987179144180158
FEN-A17B 60
210182165182173188177150143140215232261359182312192236242255
272244220235262296305299269261202407290260393246225146218312
146118142145941079511586122204154167176179179164157125156
FEN-A17A 60
194187174179170193172154141153214234259336189293204229228261 276210166230306324325309255286238415279264398253237146228309 153129126145951119910894109209151174166202175147151140160 FEN-A18A 58
192287212192189176244243198237246198223206197140103113185209 153146163169154168153136172115191189166199154183156186181163 163168207181161156130156153140154186122150159138142127

FEN-A18B 58
192283221191193171236244207227249203222197207151115118194205 165152160178150165155129177112187190167182155192156181186159 167174223172164159135156157133140184119147157135150117
FEN-A19A 56
11113415779127126122799810011311513114317220317711511884 346289251247246195172105122157136135163176180127121154109203 187199215174155148165262150177219185238225145172
FEN-A19B 56
1201401617812311212486981001131181321501792141799711980 334291259234262181168111134152134138179161176127116145137201 170189216179145119171257150177219189245227129185
FEN-A20A 55
114123175184150156123164266206157172151144173151112148143107 120202170182219320252201263249230329209260179204190176140164 15696140206452161179158125132111152229179135 FEN-A20B 55
160124173176140173123179267228148182146143177151104144138117 117216152180224318250204263250226331197256180207179163157189 131120142206443142170171119117131160239174149
FEN-A21A 56
166193153202137145153179169225186182202163235253242253292255 1689976578810212210712210283144119149129160143175163187 141819910297951101501491077292142122112112
FEN-A21B 56
147173176183142151156189166232186194214153230247215252317253
1671027658901021231121239088135138144125158138184154185

FEN-A22A 72
146101123781632122281131481331199589120151116145161180143 15216315813399103114118162138111867713716712715994187130 136119109112116829387979295127106107137144126142168142

FEN-A22B 72
13798125751822182161091491281099086116147117136152176128 14517216112999104118119169145110787114115713714999191128 130111106119124859681999195121109104141148123136152138 $\begin{array}{lllllllllll}57 & 66 & 41 & 69 & 76 & 88 & 90 & 68 & 54 & 75 & 78 \\ 88\end{array}$
FEN-A23A 58
18711911313614712517819520121119020317810713710593176265215 18219124311111412115221018414310213787145189189145196202198 187178174193177138130146118129921371781691431047777 FEN-A23B 58
1781201101361391251831872072181872031691271369793175260163 15120524513911612615820818014610414382142189209115170205202 180177173187183140137149115138861501731651641107875 FEN-A24A 59
23236028123624218128329432628216615413192819468124199196 2081571021018366821198797124118101104116118911037572 10917712914611818113210310411314015514911512811291120150 FEN-A24B 60
1681941232141902272041411161066552705310316518013911470

10378140112103821191141231231001238892951118511111883

FEN-A25A 96
12718013713351551261401481891471428312510715186656284 137156188120835297124151172172125169218146170179183179178 1832851091301241961721751591781671571852269077766176110 138155132142129149135118130108921311431041011011081019596 928710791155150150186170135138111168123123136
FEN-A25B 96
12717814213261611051511611791741507613410416777648282 156144165118836088118144175163141168207155153189175138181 19125114714113020317918115218517916617221410572856365113 12515912315411715412912713210598133136941178111610591100 889397103145158139188174132125116169112126155
FEN-A26A 166
11315814913517214718013913316019417088130140174134174175203
1661421272151231127910811812411314116120516023013385100105
9393132139157162144164294243199179226273268218211302184188 180131120131147102119142124164182143143113156150175223173233 253204152165142149158209264236216230292199156110131166152192 142144149152152146157202194211217155193154118107111116127134 1241491511399310010616521420616813915017914315611313796105 10982829911191959511012812918919317120518518914819268 93166161140135163
FEN-A26B 166
13715815714718218317412914615518017278130156166144171167195 160138133222120125771121131101131601331991702321307910891 75106138148161149151161221216214187223260264212207315177156 15612810515614696118132140158168161147119160136185187184250 244197145166133148164201273222235229292161155123119160165185 15115113915714815415819818921719616818514912595122120119142 123157153135849112217519522516513515318014917892134107100 1008482961028590114106134138184176175196195181181192111 125159148154141156
FEN-A27A 146
144314275262340254245239268218310308311292302249302192148196 127128166212245309276180204287200190165190173217147146205173 126805473668470918171711119710090116114106114102 1241071021147399114102118125109111158145998677111139131 187138134103139120122137153124112142132140121119121140127166
 88931191231449484100808611088118134951101031018590 $\begin{array}{llllll}75 & 89 & 74 & 109 & 71 & 84\end{array}$
FEN-A27B 146
233314277249345288260219292209346336322295325242288207174202 139144172208247309282179195280201192181178175230160158199163
 1211059611692851161031281361141241541551199279119154142 189108138110138127113128159119125148134144116122125132128155
 8611310211115511866851008689871201309593111868694 7575879679107

FEN-A28A 114
1791571581612032101481641049176697794116132153129113168

1431301691091271131501351321471131331161411229510011114799

FEN-A28B 114
1371741541522161771551571027984579399108123134136124115 1187672638992113130896883971099087957686126165 15014718812113611215412313314711513311114012093107112143109 1211588812110168596464121908211196889283646161
 $\begin{array}{lllllllllllllllllll}83 & 73 & 75 & 65 & 81 & 95 & 70 & 104 & 62 & 66 & 52 & 76 & 77 & 82\end{array}$
FEN-A29A 101
515582741089691878573101115121160154165194144117122
1241061321318497101121111135104102949010414514111110667 66119115103807269908310498981111091001098510392114 $\begin{array}{llllllllllllllllll}114 & 81 & 83 & 73 & 73 & 50 & 61 & 90 & 67 & 82 & 77 & 64 & 53 & 34 & 55 & 53 & 56 & 69 \\ 71 & 88\end{array}$
 117
FEN-A29B 101
46627887941068293779294120111147138178217164135141
121961111348089901341061421109989869114413411111073
7711612399805961967895109112100115971059396100105
$\begin{array}{lllllllllllllllllllllll}104 & 87 & 75 & 76 & 86 & 44 & 53 & 94 & 68 & 90 & 85 & 71 & 51 & 35 & 52 & 61 & 57 & 62 & 79 & 78\end{array}$
$\begin{array}{lllllllllllllllllllllll}72 & 65 & 55 & 68 & 91 & 85 & 55 & 76 & 82 & 55 & 80 & 74 & 49 & 85 & 96 & 135 & 147 & 140 & 127 & 119\end{array}$ 125
FEN-A30A 62
14116918212098127185147205186136145225192118119133162214172 15214315320217014197116155123134182173282172193171188176165 167174219162173141159125198196183145178207170172205202236236 255165
FEN-A30B 62
146168188141106126185133195187142160190213117121128163230173 153141163190163131102110153128136168154231192191154178178182 181174205165175151155120203219157137195198158169200194219245 253158

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building' (Laxton and Litton 1988) and, Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$. Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig. 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measure twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify, For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15$ 9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

	C45	C08	C05	C 04
C45		+20	+37	+47
C08	5.6		+17	+27
C05	5.2	10.4		+10
C04	5.9	3.7	5.1	

Bar Diagram

C45

SITE SEQUENCE

C08

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t. values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages 34-5 where 'associated groups of fellings' are discussed in detail). However. if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835 . In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

