T H A M E S V A L L E Y - Achaticuecta S E R V I C E S

Park Prewett, Northern Area, Basingstoke, Hampshire

Archaeological Watching Brief
by Susan Porter

Park Prewett, Northern Area, Basingstoke, Hampshire

An Archaeological Watching Brief

for Ian Farmer Associates

by Susan Porter
Thames Valley Archaeological Services
Ltd

Summary

Site name: Park Prewett, Northern Area, Basingstoke, Hampshire
Grid reference: SU 61705420
Site activity: Archaeological Watching Brief
Date and duration of project: 12th-20th April 2012
Project manager: Steve Ford
Site supervisor: Susan Porter
Site code: PPN 12/45
Area of site: 18ha
Summary of results: Fifty-six test pits were excavated between 2.80 and 7.50 m in length and $0.25-2.30 \mathrm{~m}$ deep. No deposits nor artefacts of archaeological interest were observed.

Location and reference of archive: The archive is presently held at Thames Valley Archaeological Services, Reading and will be deposited with Hampshire Museums Service in due course.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website: www.tvas.co.uk/reports/reports.asp.

Report edited/checked by:	Steve Ford \checkmark 24.04.12
	Steve Preston $\checkmark 25.04 .12$

Park Prewett, Northern Area, Basingstoke, Hampshire An Archaeological Watching Brief

by Susan Porter

Report 12/45

Introduction

This report documents the results of an archaeological watching brief carried out at Park Prewett, Northern Area, Basingstoke, Hampshire (SU 6170 5420) (Fig. 1). The work was commissioned by Mr Paul Bailey, for Ian Farmer Associates (1998) Limited, 1 Fairfield Court, Seven Stars Industrial Estate, Wheler Road, Coventry, CV3 4LJ.

Planning consent is to be sought from Basingstoke and Dene Borough Council to construct new housing on an 18ha area to the north of the Park Prewett hospital complex, Basingstoke, Hampshire. A continuous watching brief has been requested to be carried out during the digging of geotechnical test pits, as a result of the possibility of damage or destruction of archaeological deposits. The fieldwork was conducted in accordance with a written scheme of investigation based on a brief for the work has been prepared by Andrew Croft of Atkins (Croft 2012).

The fieldwork was undertaken by Susan Porter and Steven Crabb between 12th and 20th April 2012 and the site code is PPN 12/45. The archive is presently held at Thames Valley Archaeological Services, Reading and will be deposited with Hampshire Museums Service in due course.

Location, topography and geology

The site is located 3 km to the north of Basingstoke town centre and occupies an area of 18 ha on a north-facing slope, between 102 and 120 m above Ordnance Datum (Fig. 1). To the south and east the site is bordered by urban development and the former hospital complex, with mature woodland to the north-east and north-west. There are embankments present along the site boundaries (Fig. 2). To the south-west there is a school and to the north-west is Weybrook Park golf course. The site is currently unused but has been subject to past development in various forms including a golf course, farm complex and sewage works and occupies part of the former Park Prewett mental institution (Croft 2012). The geology of the site is recorded as Cretaceous upper chalk (BGS 1981), and this was observed across the whole site.

Archaeological background

The archaeological potential of the site stems from its location in the rich chalklands of north Basingstoke with a wealth of earlier prehistoric, Iron Age and Roman sites recorded in the area. Many of these were found during the expansion of the suburb of the town, and others recorded by aerial photography (Croft 2012). Recent excavations on earlier phases of development at Marnel Park to the east located prehistoric and Roman settlement and landscape (Wright et al. 2009) with a Roman enclosure to the south (Coles et al. 2011) and Roman villa to the north (Teague 2003). The Roman road from Calleva (Silchester) to Venta (Winchester) forms the western site boundary (Margary 1955).

Objectives and methodology

The purpose of the watching brief was to determine the presence/absence, extent, condition, character, quality and date of any archaeological deposits within the area of development. The aims of the project were to excavate and record any archaeological deposits affected by the works; this was to involve examination of all areas of intrusive groundworks, in this case geological test pits (Fig 3).

Approximately sixty 4 m long test pits were proposed and were to be excavated by a machine fitted with a ditching bucket until the archaeologically relevant levels were reached. Archaeological deposits exposed by the pits were to be recorded but not further excavated unless threatened. Spoil heaps were to be monitored and a metal detector used to enhance recovery of metal finds. In the event of discovery of human remains these were to be reported to the coroner and no further action taken as part of the watching brief, any discovered burials were to be recovered and protected and the geological test pit was to be repositioned. No human remains were discovered on site

Results

A total of 56 test pits were dug across the site (Fig. 3). They ranged in length from 2.30 m to 7.50 m and in depth from 0.25 m to 2.30 m . The width of all test pits was 1.60 m with the exception of test pits 50 and 52 which were 0.70 m wide. All test pits were excavated with a ditching bucket with the exception of pits 31 and 32 where the made ground was too difficult to excavate and a toothed bucket was used to reach the natural geology

A complete list of trenches giving lengths, breadths, depths and a description of sections and geology is given in Appendix 1.

Many of the test pits revealed similar stratigraphy, differing only in dimensions and depths (Appendix 1). Those with similar stratigraphies are described collectively below, and only the exceptions described in detail.

Test pits $1-7,11,14-20,27,28,30,36-8,40,41,44-6,49-53,55$ and 56

The stratigraphy of all of these test pit consisted of $0.10-0.25 \mathrm{~m}$ of a very dark brown grey silty clay topsoil and typically $0.20-0.35 \mathrm{~m}$ of subsoil consisting of mid red brown sandy clay (usually with chalk flecks), overlying light yellow grey chalk natural geology (Pls 1 and 4). The subsoil layer was shallower in test pit 5 and deeper in test pits $28,36,37$ and 45 but otherwise very little variation was noted. The subsoil in test pit 30 in the north of the site contained frequent flint nodules and degraded chalk flecks and here was much deeper $(0.85 \mathrm{~m})$. The section of test pit 41 is illustrated as representative of this group (Fig. 4). No deposits of archaeological interest were observed and no finds were recovered from any of these test pits or their spoil heaps.

Test pits 8-10, 48 and 54

The stratigraphy of this group of test pits consisted of 0.10 m dark red brown silty clay topsoil over $0.12-0.27 \mathrm{~m}$ of mid red brown sandy clay with chalk flecks subsoil, overlying mottled light yellow grey chalk and mid red brown clay natural geology. No deposits of archaeological interest were observed and no finds were recovered from these pits.

Test Pit 12

Test Pit 12 was aligned NW-SE and was 4.50 m long and 0.70 m deep. The stratigraphy consisted of 0.40 m mid grey brown silty clay made ground with concrete and brick, over 0.10 m very dark brown grey silty clay buried topsoil overlying 0.15 m mid red brown sandy clay subsoil, which in turn overlay light yellow grey chalk natural geology. The made ground covered 2.50 m of the test pit from the south-east end, the north-west end stratigraphy comprised 1.10 m topsoil and 0.15 m subsoil over the natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 13

Test Pit 13 was aligned NE-SW and was 4.40 m long and 1.00 m deep. The stratigraphy consisted of 0.10 m mid yellow grey sandy silt with frequent gravel (made ground), and 0.30 m heavily burnt grey brown sandy clay (made ground) with brick and tile inclusions, overlying 0.55 m mid yellow brown silty sand made ground containing brick and metal wire, which in turn overlay patchy, light yellow grey chalk and red brown silty clay natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 21

Test Pit 21 was aligned NW-SE and was 4.30 m long and 0.80 m deep. The stratigraphy consisted of 0.20 m very dark brown grey silty clay topsoil and 0.10 m mid red brown sandy clay subsoil overlying 0.30 m redeposited chalk (made ground) which in turn overlay 0.20 m dark brown silty clay made ground with frequent brick, tile and chalk inclusions, above light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 22

Test Pit 22 was aligned NE-SW and was 5.20 m long and 0.66 m deep. The stratigraphy consisted of 0.15 m very dark brown grey silty clay topsoil, and 0.51 m dark yellow brown made ground with frequent brick and tile inclusions above a concrete surface. This test pit was not further excavated.

Test Pit 23

Test Pit 23 was aligned North-South and was 4.20 m long and 0.63 m deep. The stratigraphy consisted of 0.13 m very dark brown grey silty clay topsoil and 0.22 m mid red brown sandy clay subsoil, overlying 0.25 m mottled mid grey brown sandy clay and chalk, which in turn overlay light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 24

Test Pit 24 was aligned North-South and was 4.20 m long and 1.00 m deep. The stratigraphy consisted of 0.20 m very dark brown grey silty clay topsoil and 0.80 m dark yellow brown made ground with frequent brick and tile inclusions above a concrete surface. This test pit was not further excavated.

Test Pit 25

Test Pit 25 was aligned North-South and was 7.50 m long and 0.95 m deep. The stratigraphy consisted of 0.20 m very dark brown grey silty clay topsoil and 0.50 m dark grey brown sandy clay made ground with frequent brick, tile and chalk, overlying 0.25 m dark yellow brown chalky made ground with frequent brick and tile which in turn overlay light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 26 (Pl. 2)

Test Pit 26 was aligned North-South and was 4.60 m long and 0.80 m deep. The stratigraphy consisted of 0.17 m very dark brown grey silty clay topsoil and 0.13 m mid yellow brown sandy clay and chalk made ground, overlying 0.40 m mid grey brown sandy clay with frequent chalk inclusions made ground which in turn overlay 0.08 m mid yellow grey degraded chalky clay, above light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 29

Test Pit 29 was aligned North-South and was 4.60 m long and 1.20 m deep. The stratigraphy consisted of 0.15 m very dark brown grey silty clay, and 0.15 m dark yellow brown made ground with frequent brick, tile and chalk, overlying 0.30 m dark red brown silty clay original buried topsoil, which in turn overlay 0.55 m mid red brown sandy clay with chalk flecks subsoil, above light yellow grey chalk natural geology. A natural dissolution hole was visible in this test pit but no deposits of archaeological interest were observed and no finds were recovered.

Test Pit 31 (Fig. 4, Pl. 3)

Test Pit 31 was aligned North-South and was 4.00 m long and 2.30 m deep. The stratigraphy consisted of 0.20 m of very dark brown grey silty clay topsoil, and 0.30 m very dark grey brown silty sand with frequent brick and tile demolition rubble, overlying 0.10 m mid brown grey silty clay made ground, which in turn overlay 0.20 m mottled chalk and mid brown grey silty sand in a pipe trench (pipe in place), cut into mid grey brown silty clay made ground, 1.10 m deep, This in turn overlay 0.40 m chalky rubble and silty brown clay, above light yellow grey chalk natural geology. No deposits of archaeological interest were observed, a modern frogged brick (dimensions: L 220 mm , W 100 mm , D 70 mm) from the made ground was recorded but not retained.

Test Pit 32

Test Pit 32 was aligned East-West and was 4.20 m long and 1.70 m deep. The stratigraphy consisted of 0.20 m very dark brown sandy clay made ground, and 0.30 m degraded Tarmac, overlying 0.50 m dark yellow brown made ground with frequent brick and tile, which in turn overlay 0.60 m dark mottled chalky brown silty clay made ground above light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 33

Test Pit 33 was aligned North-South and was 3.50 m long and 0.70 m deep. The stratigraphy consisted of 0.10 m dark yellow brown made ground with frequent brick, tile and chalk, and 0.60 m very dark brown grey sandy clay demolition rubble containing, brick, tile, metal and plastic pipes, overlying a concrete surface. This test pit was not further excavated. At the southern end of the test pit a modern brick wall remained standing to a height of 0.60 m .

Test Pit 34

Test Pit 34 was aligned North-South and was 5.60 m long and 0.60 m deep. The stratigraphy consisted of 0.35 m dark yellow brown made ground with frequent brick, tile and chalk, and 0.23 m very dark brown grey silty sand made ground with brick and tile overlying light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 35

Test Pit 35 was aligned East-West and was 4.00 m long and 0.55 m deep. The stratigraphy consisted of 0.15 m very dark brown grey silty clay topsoil, and 0.35 m very chalky mid grey brown silty clay subsoil, overlying patchy, light yellow grey chalk and red brown silty clay natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 39

Test Pit 39 was aligned North-South and was 4.40 m long and 1.20 m deep. The stratigraphy consisted of 0.20 m dark brown grey silty clay topsoil, and 0.60 m mid brown grey silty sand and redeposited natural made ground, overlying 0.30 m mid brown grey silty sand with chalk inclusions subsoil, above light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 42

Test Pit 42 was aligned North-South and was 4.70 m long and 1.80 m deep. The stratigraphy consisted of 0.30 m very dark brown grey silty clay topsoil, and 0.40 m mid yellow grey sandy clay with chalk made ground, overlying 0.90 m dark red brown sandy clay with frequent flint inclusions subsoil, which in turn overlay 0.10 m light yellow grey degraded chalk, above light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 43

Test Pit 43 was aligned North-South and was 2.90 m long and 1.30 m deep. The stratigraphy consisted of 0.20 m very dark brown grey silty clay topsoil and 0.90 m dark red brown sandy clay with frequent flint inclusions subsoil, overlying 0.15 m light yellow grey degraded chalk, which in turn overlay, light yellow grey chalk natural geology. No deposits of archaeological interest were observed and no finds were recovered.

Test Pit 47

Test Pit 47 was aligned North-South and was 3.80 m long and 0.80 m deep. The stratigraphy was 0.20 m topsoil and 0.40 m subsoil of mid red brown sandy clay with chalk flecks, overlying 0.18 m light yellow grey degraded chalk, which in turn overlay light yellow grey chalk natural geology. Two possible postholes were investigated but were revealed as natural features, and no finds were recovered.

Conclusion

Due to its location in the rich chalklands, the proximity of previously recorded Roman sites and numerous cropmarks, and the relatively undeveloped nature of the site there was a high possibility of archaeological deposits being disturbed by the programme of geological test pits. However, none of the 56 test pits excavated during the course of this watching brief revealed deposits of archaeological interest. The areas of the former sewage works and institution comprised heavy layers of demolition and made ground which would have disturbed any archaeological remains in the area during their construction and subsequent demolition. In the area of the golf course there are pockets of made ground from the landscaping of the course, however, archaeology may have been present within these areas as the made ground lies above the original ground surface and has not disturbed the subsoil layers. No deposits of archaeological interest were observed in these areas either. The negative results of this watching brief suggest low archaeological potential for this site.

References

BGS, 1981, British Geological Survey, 1:50 000, Sheet 284, Solid and Drift Edition, Keyworth
Coles, S, Lowe, J and Ford, S, 2011, 'Excavation of a Roman enclosure at Park Prewett Hospital, Basingstoke, Hampshire', Hampshire Studies, 66 59-94
Croft, A, 2012, 'Park Prewett Northern Area, specification for an archaeological watching brief', Atkins Heritage, Birmingham
PPS5, 2010, Planning for the Historic Environment, The Stationery Office, Norwich
Margary, I D, 1955, Roman Roads in Britain, London
Teague, S, 2003, 'Manor Farm Monk Sherborne, Hampshire, archaeological investigations in 1996', Proc Hampshire Fld Club Archaeol Soc 60, 64-135
Wright, J, Powell, B and Barclay, A, 2009, 'Excavations of prehistoric and Romano-British sites at Marnel Park, (Popley), Basingstoke, 2004-8', Wessex Archaeology, Salisbury

APPENDIX 1: Test Pit details

0 m at South or West end

Test Pit	Length (m)	Breadth (m)	Depth (m)
1	3.00	1.60	0.50
2	3.40	1.60	0.33
3	4.30	1.60	0.35
4	4.00	1.60	0.40
5	4.20	1.60	0.25
6	4.00	1.60	0.55
7	4.40	1.60	0.40
8	4.00	1.60	0.30
9	4.20	1.60	0.25
10	4.60	1.60	0.32
11	4.30	1.60	0.30
12	4.50	1.60	0.70
13	4.40	1.60	1.00
14	4.20	1.60	0.45
15	4.00	1.60	0.30
16	4.00	1.60	0.50
17	4.00	1.60	0.30
18	4.20	1.60	0.70
19	4.30	1.60	0.40
20	4.50	1.60	0.50
21	4.30	1.60	0.80
22	5.20	1.60	0.66
23	4.20	1.60	0.63
24	4.20	1.60	1.00
25	7.50	1.60	0.95
26	4.60	1.60	0.80
27	3.90	1.60	0.52
28	4.60	1.60	0.60
29	4.60	1.60	1.20
30	4.20	1.60	1.10

Comment
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.50 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.50 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.10 \mathrm{~m}$ topsoil, $0.10-0.30 \mathrm{~m}$ mid red brown sandy clay subsoil, $0.30 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.30 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.30 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.32 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.32 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.16 \mathrm{~m}$ topsoil; $0.16-0.23 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.23 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.50 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.50 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.38 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.38 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.30 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.30 \mathrm{~m}+$ mottled chalk and red brown clay natural geology.
$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.22 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.22 \mathrm{~m}+$ mottled chalk and red brown clay natural geology.
$0-0.12 \mathrm{~m}$ topsoil; $0.12-0.30 \mathrm{~m}$ light grey brown clayey sand subsoil; $0.30 \mathrm{~m}+$ mottled chalk and red brown clay natural geology.
$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.28 \mathrm{~m}$ light grey brown clayey sand subsoil; $0.32 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.40 \mathrm{~m}$ mid brown silty clay made ground with concrete and brick; $0.40-$ 0.50 m buried topsoil; $0.50-0.65 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.65 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.10 \mathrm{~m}$ mid yellow grey sandy silt with frequent gravel; $0.10-0.40 \mathrm{~m}$ heavily burnt made ground with brick and tile; $0.40-0.95 \mathrm{~m}$ mid yellow brown sandy clay made ground with brick and metal wire; $0.95 \mathrm{~m}+$ patchy clayey chalk natural geology.
$0-0.25 \mathrm{~m}$ topsoil; $0.25-0.40 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.40 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.25 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.25 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.25 \mathrm{~m}$ topsoil; $0.25-0.45 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.45 \mathrm{~m}+$ light yellow grey chalk with flint inclusions natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.30 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.32 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.35 \mathrm{~m}$ topsoil; $0.35-0.65 \mathrm{~m}$ light grey brown clayey sand subsoil; $0.65 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.35 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.35 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.45 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.45 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.30 \mathrm{~m}$ light grey brown clayey silt subsoil; $0.30-0.6 \mathrm{~m}$ chalky made ground; $0.60-0.80 \mathrm{~m}$ Dark brown silty clay made ground with frequent brick and tile; $0.80 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.66 \mathrm{~m}$ mid grey brown made ground with brick and chalk; 0.66 m concrete surface not further excavated.
$0-0.13 \mathrm{~m}$ topsoil; $0.13-0.35 \mathrm{~m}$ mid red brown sandy clay subsoil; $0.35-0.60 \mathrm{~m}$ mottled mid grey brown sandy clay and chalk; $0.60 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-1.00 \mathrm{~m}$ mid grey brown made ground with brick and chalk; 1.00 m concrete surface not further excavated.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.70 \mathrm{~m}$ dark grey brown sandy clay made ground with brick and tile; $0.70-0.95 \mathrm{~m}$ mid grey brown made ground with brick and chalk; $0.95 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.17 \mathrm{~m}$ topsoil; $0.17-0.30 \mathrm{~m}$ mid yellow brown sandy clay and chalk; $0.30-$ 0.70 m mid grey brown sandy clay with infrequent chalk inclusions; $0.70-0.78 \mathrm{~m}$ mid yellow grey chalky clay; $0.78 \mathrm{~m}+$ light yellow grey chalk natural geology. $0-0.25 \mathrm{~m}$ topsoil; $0.25-0.52 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.52 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.56 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.56 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.30 \mathrm{~m}$ mid grey brown made ground with brick and chalk; $0.30-0.60 \mathrm{~m}$ buried topsoil; $0.60-1.15 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $1.15 \mathrm{~m}+$ light yellow grey chalk natural geology.
$0-0.20 \mathrm{~m}$ topsoil; $0.20-1.05 \mathrm{~m}$ mid red brown sandy clay with flint nodules and degraded chalk flecks subsoil; $1.05 \mathrm{~m}+$ light yellow grey chalk natural geology.

Test Pit	Length (m)	Breadth (m)	Depth (m)	Comment
31	4.00	1.60	2.30	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.50 \mathrm{~m}$ very dark grey brown silty sand with frequent brick and tile; $0.50-0.60 \mathrm{~m}$ mid grey brown silty clay; $0.60-0.80 \mathrm{~m}$ mottled chalk and grey brown clayey sand; $0.80-1.90 \mathrm{~m}$ mid grey brown silty clay; 1.90 2.30 m mid brown silty clay with chalky rubble; $2.30 \mathrm{~m}+$ light yellow grey chalk natural geology.
32	4.20	1.60	1.70	$0-0.20 \mathrm{~m}$ mid brown grey clayey sand made ground; $0.20-0.50 \mathrm{~m}$ degraded tarmac; $0.50-1.00 \mathrm{~m}$ mid grey brown made ground with brick and chalk; 1.00 1.60 m dark mottled chalky brown silty clay made ground; $1.60 \mathrm{~m}+$ light yellow grey chalk natural geology.
33	3.50	1.60	0.70	$0-0.10 \mathrm{~m}$ mid grey brown clayey sand made ground with brick and chalk; $0.10-$ 0.70 m very dark brown grey sandy clay demolition rubble with brick; wire; and; plastic 0.70 m concrete surface not further excavated.
34	5.60	1.60	0.60	$0-0.35 \mathrm{~m}$ mid grey brown clayey sand made ground with brick and chalk; $0.35-$ 0.58 m very dark brown grey silty sand with brick and tile; $0.58 \mathrm{~m}+$ light yellow grey chalk natural geology.
35	4.00	1.60	0.55	$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.50 \mathrm{~m}$ very chalky mid grey brown silty clay subsoil; $0.55 \mathrm{~m}+$ light yellow grey chalk natural geology.
36	4.60	1.60	0.65	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.60 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.60 \mathrm{~m}+$ light yellow grey chalk natural geology.
37	4.60	1.60	0.50	$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.46 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.46 \mathrm{~m}+$ light yellow grey chalk natural geology.
38	4.60	1.60	0.40	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.37 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.37 \mathrm{~m}+$ light yellow grey chalk natural geology.
39	4.40	1.60	1.20	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.80 \mathrm{~m}$ mid brown grey silty sand with chalk made ground; $0.80-1.10 \mathrm{~m}$ mid brown grey sandy clay with chalk inclusions; $1.10 \mathrm{~m}+$ light yellow grey chalk natural geology.
40	3.10	1.60	0.30	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.28 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.28 \mathrm{~m}+$ light yellow grey chalk natural geology.
41	4.70	1.60	0.40	$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.35 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.35 \mathrm{~m}+$ light yellow grey chalk natural geology.
42	4.70	1.60	1.80	$0-0.30 \mathrm{~m}$ topsoil; $0.30-0.70 \mathrm{~m}$ mid yellow grey sandy clay with chalk made ground; $0.70-1.60 \mathrm{~m}$ dark brown sandy clay with frequent flint; $1.60-1.70 \mathrm{~m}$ light yellow grey degraded chalk layer; $1.70 \mathrm{~m}+$ light yellow grey chalk natural geology.
43	2.90	1.60	1.03	$0-0.20 \mathrm{~m}$ topsoil; $0.20-1.10 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $1.10-1.25 \mathrm{~m}$ light yellow grey degraded chalk; $1.25 \mathrm{~m}+$ light yellow grey chalk natural geology.
44	4.30	1.60	0.50	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.48 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.48 \mathrm{~m}+$ light yellow grey chalk natural geology.
45	4.20	1.60	0.80	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.75 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.75 \mathrm{~m}+$ light yellow grey chalk natural geology.
46	3.80	1.60	0.62	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.60 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.60 \mathrm{~m}+$ light yellow grey chalk natural geology.
47	3.80	1.60	0.80	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.60 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.60-0.78 \mathrm{~m}$ light yellow grey degraded chalk layer; $0.78 \mathrm{~m}+$ light yellow grey chalk natural geology.
48	4.30	1.60	0.40	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.37 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.32 \mathrm{~m}+$ light yellow grey chalk mottled with red brown clay natural geology.
49	4.00	1.60	0.40	$0-0.11 \mathrm{~m}$ topsoil; $0.11-0.39 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.39 \mathrm{~m}+$ light yellow grey chalk natural geology.
50	2.30	0.70	0.50	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.45 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.45 \mathrm{~m}+$ light yellow grey chalk natural geology.
51	3.70	1.60	0.60	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.58 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.58 \mathrm{~m}+$ light yellow grey chalk natural geology.
52	2.50	0.70	0.50	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.46 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.46 \mathrm{~m}+$ light yellow grey chalk natural geology.
53	4.40	1.60	0.50	$0-0.15 \mathrm{~m}$ topsoil; $0.15-0.48 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.48 \mathrm{~m}+$ light yellow grey chalk natural geology.
54	4.20	1.60	0.40	$0-0.10 \mathrm{~m}$ topsoil; $0.10-0.37 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.37 \mathrm{~m}+$ light yellow grey chalk with mottled red brown clay patches natural geology.
55	4.00	1.60	0.55	$0-0.20 \mathrm{~m}$ topsoil; $0.20-0.51 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.51 \mathrm{~m}+$ light yellow grey chalk natural geology.
56	4.60	1.60	0.35	$0-0.09 \mathrm{~m}$ topsoil; $0.09-0.30 \mathrm{~m}$ mid red brown sandy clay with chalk flecks subsoil; $0.30 \mathrm{~m}+$ light yellow grey chalk natural geology.

Test pit 41
\qquad
Red-brown sandy clay subsoil
Chalk natural geology Base of trench

Park Prewett, Northern Area, Basingstoke,

 Hampshire 2012Archaeological watching brief
Figure 4. Representative sections of Test Pit 41 (above), section of Test Pit 31 (below).

1 m

Plate 1. Test Pit 1, looking north, Scale: 1 m .

Plate 2. Test Pit 26, looking southwest, Scales: 1 m and 0.3 m .

Park Prewett, Northern Area, Basingstoke,
Hampshire, 2012 Archaeological watching brief

Plates 1 and 2.

Plate 3. Test Pit 31, looking west. Scales: 2 m and 1 m .

Plate 4. Test Pit 41, looking south east. Scales: 1 m and 0.3 m .

Park Prewett, Northern Area, Basingstoke,
Hampshire, 2012 Archaeological watching brief

Plates 3 and 4.

TIME CHART

Calendar Years

Modern	AD 1901
Victorian	AD 1837
Post Medieval	AD 1500
Medieval	AD 1066
Saxon	AD 410
Roman	AD 43 BC/AD 750 BC
Iron Age	
Bronze Age: Late	1300 BC
Bronze Age: Middle	1700 BC
Bronze Age: Early	2100 BC
Neolithic: Late	3300 BC
Neolithic: Early	4300 BC
Mesolithic: Late	6000 BC
Mesolithic: Early	10000 BC
Palaeolithic: Upper	30000 BC
Palaeolithic: Middle	70000 BC
Palaeolithic: Lower	2,000,000 BC
\downarrow	\downarrow

Thames Valley Archaeological Services Ltd, 47-49 De Beauvoir Road, Reading, Berkshire, RG1 5NR

Tel: 01189260552
Fax: 01189260553
Email: tvas@tvas.co.uk
Web: www.tvas.co.uk

