T H A M E S V A L L E Y
 -ARCHEDOLOECML
 S E R V I C E S SOUTH WEST

Land at Montys Farm, Norton Fitzwarren, Somerset

Geophysical Survey (Magnetic)
by Daniel Bray and Tim Dawson

Land at Montys Farm, Norton Fitzwarren, Somerset

Geophysical Survey (Magnetic) Report
For Solar Venture Limited

by Daniel Bray and Tim Dawson
Thames Valley Archaeological Services Ltd

Summary

Site name: Land at Montys Farm, Norton Fitzwarren, Somerset
Grid reference: NGR ST 18302650
Site activity: Magnetometer survey
Date and duration of project: $18^{\text {th }}-19^{\text {th }}$ December 2014 and $5^{\text {th }}-8^{\text {th }}$ January 2015
Project manager: Steve Ford
Site supervisor: Daniel Bray
Site code: MNF 14/250
Area of site: 10.9ha
Summary of results: The geophysical survey successfully recorded a series of magnetic anomalies. Those of most archaeological interest were located in the central and eastern fields of what appears to be a complex of small enclosures sub-dividing the site within the central field and encroaching into the western edge of the eastern field.

Location of archive: The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website: www.tvas.co.uk/reports/reports.asp.

Report edited/checked by:	Steve Ford $\checkmark 22.01 .15$
	Andrew Mundin $\checkmark 22.01 .15$

Land at Montys Farm, Norton Fitzwarren, Somerset A Geophysical Survey (Magnetic)

by Daniel Bray and Tim Dawson

Report 14/250

Introduction

This report documents the results of a geophysical survey (magnetic) carried out at on land at Montys Farm, Norton Fitzwarren, Taunton, Somerset (ST 1830 2650) (Fig. 1). The work was commissioned Mr Rob Armour Chelu of Armour Heritage limited, Greystone Cottage, Trudoxhill, Frome, Somerset, BA11 5DP on behalf of Solar Venture Limited.

A planning application (25/14/0028) has been submitted to Taunton Deane Borough Council for the construction of a 5MW Solar PV Array and associated infrastructure. A geophysical survey has been requested in order to further inform the determination of the application. This is in accordance with the Department for Communities and Local Government's National Planning Policy Framework (NPPF 2012) and the Boroughs policies on archaeology. The field investigation was carried out to a specification approved by Mr Steven Membery, Senior Historic Environment Officer at Somerset County Council. The work was undertaken by Daniel Bray, Natasha Bennett, Rebecca Constable and Matthew Cano on $18^{\text {th }}$ and $19^{\text {th }}$ December 2014 and $5^{\text {th }}$ to $8^{\text {th }}$ January 2015 with the site code MNF 14/250.

The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

Location, topography and geology

The site consists of three fields, two roughly rectangular and one triangular, 660 m to the northwest of the village of Norton Fitzwarren. The site is located 1 km southeast of Cotford St. Luke and 3.2 km northwest of Taunton. The site covers a total area of 10.9 ha and is at a height of between 28 m and 31 m above Ordnance Datum. Prior to the fieldwork the entire site had been left fallow (Pls. 1-4). The open fields are bounded by mature hedgerows on all sides and internally except for the eastern and southern edge of the triangular, eastern field which is divided from the West Somerset Railway line by wooden post-and-rail fencing. The southern boundary of the western field has been partially removed. The site is bounded on all sides by farmland. The ground across the whole site is flat with the underlying geology recorded as Mercian Mudstone Group (BGS 1984). The conditions
at the time of survey were overcast with sunny spells although the ground did not fully dry out from heavy overnight rain.

Site history and archaeological background

A desk-based assessment was undertaken for the proposal site (McCann-Downes 2014) which provides an indepth study into the site's history and archaeological potential. The site was thought to have moderate archaeological potential, but is sited close to areas of higher archaeological in regards to prehistoric remains. In summary, Norton Fitzwarren is located on the southern slopes of Norton Camp, a large univallate hillfort, some 900 m to the east of the site. Excavation has shown evidence of Neolithic through to Roman occupation at the site, which is a Schedule Monument (SMR1008467). Two late Bronze Age cremation burials within Collared Urns were recovered from excavations at Wick Lane to the east of the survey site along with evidence of $11^{\text {th }}-$ $14^{\text {th }}$ medieval settlement, including metal working. Roman pottery has been recovered from the northern corner of the proposal site. The site itself has reference in the local HER to contain several cropmark enclosures, one which possible relates to a Roman marching camp.

Methodology

Sample interval

Data collection required a temporary grid to be established across the survey area using wooden pegs at 20 m intervals with further subdivision where necessary. Readings were taken at 0.25 m intervals along traverses 1 m apart. This provides 1600 sampling points across a full $20 \mathrm{~m} \times 20 \mathrm{~m}$ grid (English Heritage 2008), providing an appropriate methodology balancing cost and time with resolution. Three separate grids were laid out across the three survey fields using a Nikon total station. Each grid was aligned to the long axis of its respective field.

The Grad 601-2 has a typical depth of penetration of 0.5 m to 1.0 m . This would be increased if strongly magnetic objects have been buried in the site. Under normal operating conditions it can be expected to identify buried features $>0.5 \mathrm{~m}$ in diameter. Features which can be detected include disturbed soil, such as the fill of a ditch, structures that have been heated to high temperatures (magnetic thermoremnance) and objects made from ferro-magnetic materials. The strength of the magnetic field is measured in nano Tesla (nT), equivalent to 10^{-9} Tesla, the SI unit of magnetic flux density.

Equipment

The purpose of the survey was to identify geophysical anomalies that may be archaeological in origin in order to inform a targeted archaeological investigation of the site prior to development. The survey and report generally follow the recommendations and standards set out by both English Heritage (2008) and the Institute for Archaeologists $(2002,2011)$.

Magnetometry was chosen as a survey method as it offers the most rapid ground coverage and responds to a wide range of anomalies caused by past human activity. These properties make it ideal for fast yet detailed survey of an area.

The detailed magnetometry survey was carried out using a dual sensor Bartington Instruments Grad 601-2 fluxgate gradiometer. The instrument consists of two fluxgates mounted 1 m vertically apart with a second set positioned at 1 m horizontal distance. This enables readings to be taken of both the general background magnetic field and any localised anomalies with the difference being plotted as either positive or negative buried features. All sensors are calibrated to cancel out the local magnetic field and react only to anomalies above or below this base line. On this basis, strong magnetic anomalies such as burnt features (kilns and hearths) will give a high response as will buried ferrous objects. More subtle anomalies such as pits and ditches, can be seem from their infilling soils containing higher proportions of humic material, rich in ferrous oxides, compared to the undisturbed subsoil. This will stand out in relation to the background magnetic readings and appear in plan following the course of a linear feature or within a discrete area.

A Trimble Geo7x handheld GPS system with sub-decimetre real-time accuracy was used to tie the site grid into the Ordnance Survey national grid. This unit offers both real-time correction and post-survey processing; enabling a high level of accuracy to be obtained both in the field and in the final post-processed data.

Data gathered in the field was processed using the TerraSurveyor software package. This allows the survey data to be collated and manipulated to enhance the visibility of anomalies, particularly those likely to be of archaeological origin. The table below lists the processes applied to this survey, full survey and data information is recorded in Appendix 1.

Process

Clip from -3.00 to 3.00 nT

De-stripe: median, all sensors

De-spike: threshold 1 , window size 3×3

Effect

Enhance the contrast of the image to improve the appearance of possible archaeological anomalies.
Removes the striping effect caused by differences in sensor calibration, enhancing the visibility of potential archaeological anomalies.

Compresses outlying magnetic points caused by interference of metal objects within the survey area.

De-stagger: all grids, both by -1 intervals

Cancels out effects of site's topography on irregularities in the traverse speed.

Once processed, the results are presented as a greyscale plot shown in relation to the site (Fig. 3), followed by a second plan to present the abstraction and interpretation of the magnetic anomalies (Fig. 4). Anomalies are shown as colour-coded lines, points and polygons. The grid layout and georeferencing information (Fig. 2) is prepared in EasyCAD v.7.58.00, producing a .FC7 file format, and printed as a .PDF for inclusion in the final report.

The greyscale plot of the processed data is exported from TerraSurveyor in a georeferenced portable network graphics (.PNG) format, a raster image format chosen for its lossless data compression and support for transparent pixels, enabling it to easily be overlaid onto an existing site plan. The data plot is combined with grid and site plans in QGIS 2.6.1 Brighton and exported again in .PNG format in order to present them in figure templates in Adobe InDesign CS5.5, creating .INDD file formats. Once the figures are finalised they are exported in .PDF format for inclusion within the finished report.

Results

Western Field (Figs. 5 and 6)

The survey plot of the western field is characterised by a series of positive linear anomalies which are orientated NNE-SSW [Fig. 6: 1]. These represent truncation of subsoil deposits, which, in this case, are most likely to be agricultural furrows as the anomalies are aligned parallel to one another and follow the long axis of the field. At the southern end of the field is a very strong linear positive anomaly [2] which marks the position of a previous field boundary that has since been removed and only remains as a faint earthwork.

Central Field (Figs. 5 and 6)

The geophysical survey of the central field identified a large number of positive linear magnetic anomalies of varying strengths, probably and possibly representing filled in boundary ditches, all of which appear to form a system of enclosures aligned approximately NE-SW. Starting in the north-western corner, [3] consists of a strong positive linear anomaly which runs southwards from the northern site boundary before turning sharply to the north-west. Almost immediately to the south of the turn another positive linear anomaly [4] continues on a slightly more westerly heading than the original with a second to the west [5], possibly mirroring the turn in anomaly [3] to the north. A weaker positive anomaly [6] almost abuts [4] from which it extends westwards towards the edge of the field. Further south a curvilinear positive anomaly [7] continues in a general southerly
direction from [4] and, after a short break, possibly and entrance, a second weaker positive anomaly [8] heads westwards, broadly parallel to [6]. This is linked at its eastern end to a short north-south positive anomaly [9] with a possible pit-type positive anomaly where they join. After a short break and a section of weaker positive anomaly, the linear feature [12] appears to turn to follow a more south-westerly course, extending for $c .145 \mathrm{~m}$ before petering out in the south-western corner of the field. As with the northern anomalies, this positive linear has others running perpendicularly from it in a north-westerly direction $[\mathbf{1 0}, \mathbf{1 3}]$. There is also a short length of positive linear anomaly [11] running parallel to [12] just beyond the end of perpendicular anomaly [10]. At the point where [13] joins [12] there appears to be a circular linear anomaly [14] with a diameter of $c .5 .5 \mathrm{~m}$, possibly representing the footing trench of a round building. A second group of positive linear anomalies appears to follow a similar pattern on the eastern side of the field with six lengths [15, 18, 19, 20, 21 and 22] running broadly parallel to $[3,4,7,9$ and 12] and six at right-angles [16, 18, 19 and 20]. Also on a similar orientation are two weak positive linear anomalies [17] which sit between [7] and [15], appearing to form a right-angled corner. Of interest is a very weak group of anomalies [19], which seem to form an arc in the eastern set of enclosures.

The field also contains several discreet positive anomalies which may represent buried archaeological pits. Examples can be seen at $[\mathbf{5}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 4}, \mathbf{2 0}, 22$ and 23] with others scattered across the area. There are also three areas of mixed strong positive and negative magnetic anomalies [28, 29 and 30] which are possibly caused by scatters of buried ferromagnetic debris. This is likely in the case of [29] where historic maps reproduced in the desk-based assessment indicate the presence of now removed field boundaries and streams, however the anomalies at [28] may also be interpreted as being an indication of buried thermoremnant features. These include hearths, kilns, and other structures that have heated the ground to a temperature high enough to realign its magnetic field. Other magnetic anomalies plotted include a large number of strong discreet dipolar spikes spread across the field, representing buried ferrous objects of unknown age.

Eastern Field (Figs. 7 and 8)

As with the Central Field, the survey of the Eastern Field detected a series of positive linear anomalies, probably representing backfilled linear features. These appear to continue the pattern of those from the previous field with [25] being an extension of [20] and [26 and 27] extending perpendicular to [25] but parallel to [19]. Anomalies [24, 32 and 35] are also on the same alignment but are separated from the aforementioned cluster by $80-125 \mathrm{~m}$. In the centre of the field are a group of three linear positive anomalies [33] which form an open-ended rectangle,
apparently on a slightly different alignment to the others linear anomalies. In the centre of the southern end of the rectangle is a single discreet positive anomaly [34], possibly resulting from a buried pit.

The survey of the Eastern Field also plotted several magnetic spikes scattered across the field and an extensive area of magnetic disturbance along the southern and eastern boundaries. This magnetic interference was caused by the post-and-wire fencing within the boundary hedge. Another patch of magnetic interference was recorded in both the Central and Eastern Fields approximately a quarter of the way down their shared boundary [31]. This strong interference was the result of the ferrous gate affecting the instrument.

Conclusion

The geophysical survey of the three fields that comprise the site at Montys Farm was completed successfully, recording a variety of magnetic anomalies. These are dominated by the series of linear positive anomalies which indicate the presence of buried ditches. Together they appear to reveal the presence of a complex of small enclosures, all on a similar alignment with a scattering of possible pits and a potential circular structure. The archaeological background of the area suggests that the fields may have been the site of Roman activity and pottery observed on the ground surface during the geophysical survey was considered to include Roman, medieval and post-medieval sherds. While there were very few obstructions to the survey, the areas of magnetic disturbance and buried ferromagnetic debris detected may have had a masking effect on further anomalies in these areas which could be archaeological in origin. At least two features can be related to ditches on historic mapping. Even so, based on the survey results, targeted investigation of the anomalies will best date the linear features that seem to exist on the site.

References

BGS, 1984, British Geological Survey, 1:50000, Sheet 295, Solid and Drift Edition, Keyworth
English Heritage, 2008, Geophysical Survey in Archaeological Field Evaluation, English Heritage, Portsmouth (2nd edn)
IFA, 2002, The Use of Geophysical Techniques in Archaeological Evaluation, IFA Paper No. 6, Reading
IFA, 2011, Standard and Guidance: for archaeological geophysical survey, Reading
McCann-Downes, P, 2014, 'Montys Farm, Norton Fitzwarren, Somerset: Archaeological Desk Based
Assessment \& Heritage Asset Impact Assessment', The Magnificent Science Company, Penryn NPPF, 2012, National Planning Policy Framework, Dept Communities and Local Government, London

Appendix 1. Survey and data information

21 Col:1 Row:5 grids $\backslash 17 . x g d$ 22 Col:1 Row: 6 grids $\backslash 18 . x g d$ 23 Col:1 Row:7 grids $\backslash 19 . x g d$ Col:1 Row:8 grids $\backslash 20 . x g d$ Col:1 Row:9 grids $21 . x$ xd Col:1 Row:10 gridsl22.xgd Col:1 Row:11 grids $23 . x$.xd Col:1 Row:12 grids $124 . x g d$ Col:1 Row:13 gridsl25.xgd Col:1 Row:14 grids $26 . x g d$ Col:1 Row:15 gridsl27.xgd Col:1 Row:16 grids $128 . x g d$ Col:1 Row:17 grids $29 . x$ xd Col:2 Row:1 gridsl30.xgd Col:2 Row:2 gridsl31.xgd Col:2 Row:3 gridsl32.xgd Col:2 Row:4 grids $\backslash 33 . x g d$ Col:2 Row:5 grids $344 . x g d$ 9 Col:2 Row: 6 grids $35 . x$.xd Col:2 Row:7 grids $\backslash 36 . x g d$ 41 Col:2 Row:8 grids $337 . x g d$ 42 Col:2 Row:9 grids $138 . x g d$ 43 Col:2 Row:10 gridsl39.xgd 44 Col:2 Row:11 grids $440 . x g d$ 45 Col:2 Row:12 grids $441 . x g d$ 46 Col:2 Row:13 grids $42 . x g d$ 47 Col:2 Row: 14 grids $43 . x g d$ 48 Col:2 Row:15 grids $444 . x g d$ 49 Col:2 Row:16 grids $445 . x g d$ 50 Col:2 Row:17 grids $446 . x g d$ 51 Col:3 Row:1 grids $47 . x$.xd Col:3 Row:2 grids $448 . x g d$ Col:3 Row:3 grids $449 . x g d$ Col:3 Row:4 grids $\backslash 50 . x g d$ 5 Col:3 Row:5 grids 151 .xgd 6 Col:3 Row:6 grids $\backslash 52 . x g d$ 7 Col:3 Row:7 grids $553 . x g d$ Col:3 Row:8 grids $\backslash 54 . x g d$ 59 Col:3 Row:9 grids $555 . x g d$ 60 Col:3 Row: 10 grids $566 . x g d$ 61 Col:3 Row:11 grids $157 . x g d$ 62 Col:3 Row: 12 grids $158 . x g d$ 63 Col:3 Row:13 grids $159 . x g d$ 64 Col:3 Row:14 gridsl60.xgd $65 \mathrm{Col}: 3$ Row: 15 grids 161 .xgd 66 Col:3 Row:16 grids $162 . x g d$ 67 Col:3 Row: 17 grids $163 . x g d$ 68 Col:4 Row:2 grids $164 . x g d$ 69 Col:4 Row:3 grids $165 . x g d$ $70 \mathrm{Col}: 4$ Row: 4 grids $\backslash 66 . x g d$ 71 Col:4 Row:5 grids $67 . x g d$ Col:4 Row:6 gridsl68.xgd Col:4 Row:7 grids $\backslash 69 . x g d$ Col:4 Row:8 grids $\backslash 70 . x g d$ 5 Col:4 Row:9 grids 171 xgd Col:4 Row:10 grids $172 . x g d$ 7 Col:4 Row:11 grids $773 . x g d$ Col:4 Row:12 grids $174 . x g d$ 79 Col:4 Row:13 grids $175 . x g d$ $80 \mathrm{Col}: 4$ Row: 14 grids $176 . x g d$ 81 Col:4 Row: 15 grids $177 . x g d$ 82 Col:4 Row:16 grids $778 . x g d$ 83 Col:4 Row:17 gridsl79.xgd 84 Col:5 Row:1 grids $96 . x g d$ 85 Col:5 Row:2 grids $97 . x$ xd 86 Col:5 Row:3 gridsl81.xgd 87 Col:5 Row:4 grids $82 . x$.xd 88 Col:5 Row:5 grids $183 . x g d$ 89 Col:5 Row:6 grids $184 . x g d$ 90 Col:5 Row:7 grids $185 . x g d$ 91 Col:5 Row:8 gridsl86.xgd 92 Col:5 Row:9 gridsl87.xgd 93 Col:5 Row:10 grids $188 . x g d$ 94 Col:5 Row:11 grids $89 . x g d$ 95 Col:5 Row: 12 grids $90 . x g d$ 96 Col:5 Row:13 grids $91 . x g d$

97 Col:5 Row:14 grids $992 . x g d$ 98 Col:5 Row:15 grids $93 . x g d$ 99 Col:5 Row:16 grids $944 . x g d$ 100 Col:6 Row: 1 grids $995 . x g d$ 101 Col:6 Row: 2 grids $998 . x g d$ 102 Col:6 Row:3 grids $999 . x g d$ 103 Col:6 Row: 4 grids $\backslash 100 . x g d$ 104 Col:6 Row:5 grids $\backslash 101 . x g d$ 105 Col:6 Row:6 grids $\backslash 102 . x g d$ 106 Col:6 Row:7 grids $\backslash 103 . x g d$ 107 Col:6 Row:8 grids $104 . x g d$ 108 Col:6 Row:9 grids $\backslash 105 . x g d$ 109 Col:6 Row:10 grids $\backslash 106 . x g d$ 110 Col:6 Row:11 grids $1107 . x g d$ 111 Col:6 Row: 12 grids $\backslash 108$.xgd 112 Col:6 Row:13 grids $\backslash 109 . x g d$ 113 Col:6 Row:14 grids $\backslash 110 . x g d$ 114 Col:6 Row: 15 grids $\backslash 111 . x g d$ 115 Col:6 Row:16 grids 1112 xgd 116 Col:7 Row: 1 grids $\backslash 122$.xgd 117 Col:7 Row:2 grids $\backslash 123 . x g d$ 118 Col:7 Row:3 grids $\backslash 124 . x g d$ 119 Col:7 Row:4 grids $\backslash 125 . x g d$ 120 Col:7 Row:5 grids $1126 . x g d$ 121 Col:7 Row:6 grids $\backslash 127 . x g d$ 122 Col:7 Row:7 grids $\backslash 128 . x g d$ $123 \mathrm{Col}: 7$ Row:8 grids $\backslash 129 . x g d$ 124 Col:7 Row:9 grids $\backslash 130 . x g d$ 125 Col:7 Row:10 grids $1131 . x g d$ 126 Col:7 Row:11 grids $1132 . x g d$ 127 Col:7 Row:12 grids $1333 . x g d$ 128 Col:7 Row:13 grids $1134 . x g d$ 129 Col:7 Row: 14 grids $\backslash 135 . x g d$ 130 Col:7 Row:15 grids $1136 . x g d$ 131 Col:7 Row:16 grids $\backslash 137 . x g d$ 132 Col:8 Row:1 grids $\backslash 113 . x g d$ $133 \mathrm{Col}: 8$ Row:2 grids $\backslash 114 . x g d$ $134 \mathrm{Col}: 8$ Row:3 grids $\backslash 115 . x g d$ $135 \mathrm{Col}: 8$ Row:4 grids $\backslash 116 . x g d$ $136 \mathrm{Col}: 8$ Row:5 grids $\backslash 117 . x g d$ $137 \mathrm{Col}: 8$ Row: 6 grids $\backslash 139 . x g d$ $138 \mathrm{Col}: 8$ Row:7 grids $140 . x g d$ 139 Col:8 Row:8 grids $\backslash 141 . x g d$ $140 \mathrm{Col}: 8$ Row:9 grids $\backslash 142 . x g d$ 141 Col:8 Row:10 grids $\backslash 143 . x g d$ 142 Col:8 Row:11 grids $1444 . x g d$ 143 Col:8 Row: 12 grids $\backslash 145 . x g d$ $144 \mathrm{Col}: 8$ Row: 13 grids $\backslash 146 . x g d$ 145 Col:8 Row:14 grids $\backslash 147 . x g d$ 146 Col:8 Row: 15 grids $\backslash 148$.xgd 147 Col:8 Row:16 grids $\backslash 149 . x g d$ 148 Col:9 Row: 1 grids $\backslash 150 . x g d$ 149 Col:9 Row:2 grids $\backslash 151 . x g d$ 150 Col:9 Row:3 grids $\backslash 152 . x g d$ 151 Col:9 Row:4 grids $\backslash 153 . x g d$ 152 Col:9 Row:5 grids 1 154.xgd

Processed data

Processes: 6
1 Base Layer
2 De Stagger: Grids: All Mode: Both By: -1 intervals
3 DeStripe Median Sensors: All
4 Despike Threshold: 1 Window size: 3×3
5 De Stagger: Grids: 51.xgd Mode: Both By: -2 intervals
6 Clip from -3.00 to 3.00 nT

Stats	
Max:	3.00
Min:	-3.00
Std Dev:	0.81
Mean:	0.02
Median:	0.00
East Field	
Raw data	
Direction of 1st Traverse: 123.3775 deg	

Georeferencing (Fig. 2)

West Field
W1: E 318161.7, N 126595.4
W2: E 318154.2, N 126556.0

Central Field
C1: E 318305.7, N 126657.4
C2: E 318289.9, N 126620.7
East Field
E1: E 318476.9, N 126581.1
E2: E 318454.5, N 126547.9

(

Plate 1. Western field, looking south from the northwestern corner.

Plate 3. Central field, looking north-west from the western edge.

Plate 2. Central field, looking south-east from the northwestern corner.

Plate 4. Eastern field, looking north-west along the site's eastern boundary.

TIME CHART

Calendar Years

Modern AD 1901
Victorian AD 1837
Post Medieval AD 1500
Medieval AD 1066
Saxon AD 410
Roman AD 43
Iron Age Iron Age __ 750 BCBC/AD
Bronze Age: Late 1300 BC
Bronze Age: Middle 1700 BC
Bronze Age: Early 2100 BC
Neolithic: Late 3300 BC
Neolithic: Early 4300 BC
Mesolithic: Late 6000 BC
Mesolithic: Early 10000 BC
Palaeolithic: Upper 30000 BC
Palaeolithic: Middle 70000 BC
Palaeolithic: Lower 2,000,000 BC

TVAS (South West), Unit 21 Apple Business Centre, Frobisher Way, Taunton, Somerset, TA2 6BB

Tel: 01823288284
Fax: 01823272462
Email: southwest@tvas.co.uk Web: www.tvas.co.uk

