T H A M E S V A L L E Y - Pafacioncul S E R V I C E S

Farley Hall Estate, Arborfield, Berkshire

Geophysical Survey (Magnetic)
by Kyle Beaverstock and Tim Dawson

Farley Hall Estate, Arborfield, Berkshire

Geophysical Survey (Magnetic) Report

For Cemex
by Kyle Beaverstock and Tim Dawson
Thames Valley Archaeological Services Ltd

Summary

Site name: Farley Hall Estate, Arborfield, Berkshire
Grid reference: SU 74406713
Site activity: Magnetometer survey
Date and duration of project: 4th March - 8th May 2015
Project manager: Steve Ford
Site supervisor: Tim Dawson and Kyle Beaverstock

Site code: FEA 15/27

Area of site: $1.98 \mathrm{~km}^{2}, c .24 .6$ ha surveyed multiple areas
Summary of results: A wide range of magnetic anomalies were recorded across the survey's 24.6ha area. These included several which may represent buried archaeological features such as ditches and pits, although the majority of these were only weak or diffuse variations from the background readings. Several of the potential archaeological magnetic anomalies appear to align with known cropmarks, suggesting that they do indeed represent buried features. The areas targeted as "blank" samples did prove to be devoid of anomalies of archaeological origin.

Location of archive: The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website:
www.tvas.co.uk/reports/reports.asp.

[^0]
Farley Hall Estate, Arborfield, Berkshire A Geophysical Survey (Magnetic)

by Kyle Beaverstock and Tim Dawson

Report 15/27

Introduction

This report documents the results of a geophysical survey (magnetic) carried out at Farley Hall Estate, Arborfield, Berkshire (SU 74404 67135) (Fig. 1). The work was commissioned by Mr Mike Lang Hall, of Lang Hall Archaeology, 10 Orchard Close, Woolhampton, Reading, Berkshire RG7 5SD of behalf of Cemex Ltd.

Planning permission is to be sought for mineral extraction. As a consequence of the possibility of archaeological deposits on the site which may be damaged or destroyed by development, a geophysical survey has been requested in order to inform a mitigation strategy. The field investigation was carried out to a specification approved by Mr Roland Smith, Archaeology Officer at Berkshire Archaeology. The fieldwork was undertaken by Kyle Beaverstock, Natasha Bennett, Rebecca Constable, Tim Dawson, Sophie Frampton, Anna Ginger, Rhian Greenaway and Andrew Mundin and the site code is FEA 15/27.

The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

Location, topography and geology

The site is located to the south-western of the village of Arborfield, $c .6 \mathrm{~km}$ to the south-east of Reading (Fig. 1). The proposal site itself covers an area of $1.98 \mathrm{~km}^{2}$, of which $c .24 .6$ ha was surveyed, straddling the western and eastern banks of the River Loddon to the south of the A327 Arborfield Road (Fig. 2). The majority of the site is arable land, with the southern-most fields (Areas $\mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ and O) being used for dairy pasture and the fields on the west bank of the Loddon for grazing horses. The fields called Anthills and Gravel Pits (Fig. 2) in which Areas W and Y were located had been recently ploughed and seeded. Field boundaries varied with different combinations of hedgerows, post-and-wire and electric fences being used across the site area. The topography of the site is varied but not extreme with the highest point recorded being 49 m above Ordinance Datum (aOD) at the north-eastern end of the site and the lowest point being 40 maOD on the meadows adjacent to the river. The underlying geology is recorded as London Clay overlain in places with River Terrace Deposits 2 (Areas G, J, L, M, N, O, W and Hyde End Road Farm east), River Terrace Deposits 3 (Areas AI, N, O and Hyde End Road

Farm west), brickearth (Lovegroves, Lawtons and Area M) and alluvium (Areas G and X) (BGS 1946). Areas M, N and O were located on the junction of areas of brickearth, London Clay and Terraces 2 and 3.

Conditions varied throughout the survey period with the earlier, north-eastern, areas being largely dry and bright with morning frost while the weather generally got warmer but with more rain as the survey progressed to the south-west (Pl. 1-16). Ground conditions were generally firm although Area X, located within the Bridge Water Meadows, were fairly waterlogged, with the western-most X survey area being underwater until nearing the end of the survey period when a run of dry weather cleared the standing water.

Site history and archaeological background

A desk-based assessment of the proposed extraction area concludes that the site has moderate to high archaeological potential (Lang Hall 2014). In summary, the report details the archaeological evidence which points strongly to human activity and settlement in the prehistoric and Roman periods. The underlying gravel geology is well known for its richness in archaeological remains from the Mesolithic through to the Saxon period. Several aerial surveys were taken of the archaeology of the river gravels in response to the rapid expansion of the extraction industry in these areas (e.g. Gates 1975, TVAS 1999). These identified a wide range of sites which were visible from the air as cropmarks. In the proposal site itself the aerial surveys were followed by intensive field survey (fieldwalking) (Ford 1997) which went on to identify clusters of worked flint or pottery which may be interpreted as foci of human settlement or activity ranging from the Mesolithic to the medieval periods. A re-evaluation of the aerial photographic record was undertaken for the desk-based assessment (Lang Hall 2014) noted several possible archaeological sites within the proposal site including possible Bronze Age barrows, Iron Age/Roman enclosures and trackways and post-medieval ridge-and-furrow.

A range of archaeological interventions, mainly watching briefs and evaluation trenching, have taken place in the Arborfield and Shinfield areas of the Loddon valley, none of which have located any features of archaeological interest (e.g. Taylor 2005, 2006). Work at Shinfield Infants School located only a single shallow ditch containing modern finds (McNicoll-Norbury 2014) while an undated ditch or large pit were recorded during a watching brief at Hall Farm, Arborfield (Taylor and Jenkins 2002).

Methodology

Sample interval

Data collection required a temporary grid to be established across the survey area using wooden pegs at 20 m intervals with further subdivision where necessary. Readings were taken at 0.25 m intervals along traverses 1 m apart. This provides 1600 sampling points across a full $20 \mathrm{~m} \times 20 \mathrm{~m}$ grid (English Heritage 2008), providing an appropriate methodology balancing cost and time with resolution. The survey of the majority of the proposed area was carried out as intended, however there were a small number of obstructions that prevented some areas from being fully surveyed. These included thick vegetation, standing structures, field boundaries and trackways.

The Grad 601-2 has a typical depth of penetration of 0.5 m to 1.0 m . This would be increased if strongly magnetic objects have been buried in the site. Under normal operating conditions it can be expected to identify buried features $>0.5 \mathrm{~m}$ in diameter. Features which can be detected include disturbed soil, such as the fill of a ditch, structures that have been heated to high temperatures (magnetic thermoremnance) and objects made from ferro-magnetic materials. The strength of the magnetic field is measured in nano Tesla (nT), equivalent to 10^{-9} Tesla, the SI unit of magnetic flux density.

Equipment

The purpose of the survey was to identify geophysical anomalies that may be archaeological in origin in order to inform a targeted archaeological investigation of the site prior to development. The survey and report generally follow the recommendations and standards set out by both English Heritage (2008) and the Chartered Institute for Archaeologists (2002, 2011, 2014).

Magnetometry was chosen as a survey method as it offers the most rapid ground coverage and responds to a wide range of anomalies caused by past human activity. These properties make it ideal for fast yet detailed survey of an area.

The detailed magnetometry survey was carried out using a dual sensor Bartington Instruments Grad 601-2 fluxgate gradiometer. The instrument consists of two fluxgates mounted 1 m vertically apart with a second set positioned at 1 m horizontal distance. This enables readings to be taken of both the general background magnetic field and any localised anomalies with the difference being plotted as either positive or negative buried features. All sensors are calibrated to cancel out the local magnetic field and react only to anomalies above or below this base line. On this basis, strong magnetic anomalies such as burnt features (kilns and hearths) will give a high response as will buried ferrous objects. More subtle anomalies such as pits and ditches, can be seem from their
infilling soils containing higher proportions of humic material, rich in ferrous oxides, compared to the undisturbed subsoil. This will stand out in relation to the background magnetic readings and appear in plan following the course of a linear feature or within a discrete area.

A Trimble Geo7x handheld GPS system with sub-decimetre real-time accuracy was used to tie the site grid into the Ordnance Survey national grid. This unit offers both real-time correction and post-survey processing; enabling a high level of accuracy to be obtained both in the field and in the final post-processed data.

Data gathered in the field was processed using the TerraSurveyor software package. This allows the survey data to be collated and manipulated to enhance the visibility of anomalies, particularly those likely to be of archaeological origin. The table below lists the processes applied to this survey, full survey and data information is recorded in Appendix 1.

Process

Clip from -1.80 to 2.20 nT

Interpolate: y doubled

De-stripe: median, all sensors

De-spike: threshold 1 , window size 3×3

De-stagger: all grids, both by -1 intervals

Effect

Enhance the contrast of the image to improve the appearance of possible archaeological anomalies.

Increases the resolution of the readings in the y axis, enhancing the shape of anomalies.
Removes the striping effect caused by differences in sensor calibration, enhancing the visibility of potential archaeological anomalies.
Compresses outlying magnetic points caused by interference of metal objects within the survey area.

Cancels out effects of site's topography on irregularities in the traverse speed.

Once processed, the results are presented as a greyscale plot shown in relation to the site (Fig. 3), followed by a second plan to present the abstraction and interpretation of the magnetic anomalies (Fig. 4). Anomalies are shown as colour-coded lines, points and polygons. Detailed plots and interpretations for each of the survey areas were produced to allow closer inspection.

The greyscale plot of the processed data is exported from TerraSurveyor in a georeferenced portable network graphics (.PNG) format, a raster image format chosen for its lossless data compression and support for transparent pixels, enabling it to easily be overlaid onto an existing site plan. The data plot is combined with grid and site plans in QGIS 2.6.1 Brighton and exported again in .PNG format in order to present them in figure templates in Adobe InDesign CS5.5, creating .INDD file formats. Once the figures are finalised they are exported in .PDF format for inclusion within the finished report.

Results

A range of magnetic anomalies were recorded across the survey areas (Fig. 4). The clearest of these were caused by modern services but there were also some which are possibly archaeological in origin and a few which may represent variation in the natural geology (Fig. 5). The magnetic anomalies of possible archaeological origin are recognisable as both positive and negative variations in the site's general magnetic field. The positive anomalies usually represent buried cut features such as ditches or pits whereas negative anomalies are indicative of earthen banks, or thickened and disturbance of subsoil.

Hyde End Road Farm west (Figs. 5-6)

This 1ha block was located to target a "blank" area at the western end of the site, on the western bank of the River Loddon. The survey recorded three short sections of linear positive anomaly which may have been archaeological in origin. They appear to form three sides of a sub-rectangular shape in the centre of the area's north-eastern edge [Fig. 6: 1], although none of them join at the corners. A large number of discrete magnetic spikes were recorded scattered across the area. These were probably caused by buried ferromagnetic objects with those at regular intervals in straight lines possibly representing temporary fence lines. The area itself was in use as a horse paddock with several of the neighbouring fields containing lengths of temporary electric fencing to sub-divide the larger areas

Hyde End Road Farm east (Figs. 7-8)

The second "blank" area to the west of the Loddon was originally planned as being $100 \mathrm{~m} \times 100 \mathrm{~m}$ but the presence of a large amount of the temporary electric fencing necessitated changing the area to measure $60 \mathrm{~m} \times$ 160m. The magnetic survey recorded no anomalies of archaeological interest. It did, however, identify the course of a large service pipe or cable [Fig. 8: 2] crossing the northern half of the area and another patch of magnetic disturbance caused by a nearby overhead electricity pylon [3]. As with the previous area several magnetic spikes were recorded across the plot.

Area G (Figs. 9-10)

The first survey area to specifically target cropmarks, Area G was located directly adjacent to the River Loddon, with a north-western annexe extending into the next field (Fig. 9). The cropmarks, a series of circular shapes along the north-western edge of the main part of Area G, were interpreted as a possible group of Bronze Age barrows (Lang Hall 2014). The only magnetic anomaly that appears to match this description is a length of weak positive anomaly which forms a slightly skewed semicircle [Fig. 10: 4] to the south-west of the centre of the annexe. The only other anomalies with possible archaeological origins are three discrete positive patches in the
main area of $G[5,6,7]$. These are roughly circular strong anomalies, which may represent buried pits. In the north-eastern end of Area G the survey recorded a large area of strong positive and negative readings [8] which, due to their organic appearance, most likely indicates a variation in the underlying geology. A more extreme range of values was recorded at the southern end of Area G with what appears to be a dense scatter of magnetic spikes [9]. These are most likely indicative of ferromagnetic debris although they may also represent an area of buried heavily disturbed ground. Immediately adjacent to this patch area two areas of stronger magnetic disturbance caused by the close proximity of the steel field gate and what appears to be a water pipe protruding vertically from the ground.

The two parts of Area G are located on different geology with the main south-eastern one on alluvium and the north-western extension on River Terrace Deposits 2 (BGS 1946). These differences seem to be reflected in the background magnetic "noise" in both plots, with the gravels giving a much noisier reading to the more diffuse alluvium (Fig. 9).

Area J - Tanners Left (Figs. 11-12)

While the survey plot of Area J is dominated by a large swathe of magnetic disturbance that cuts across the centre of the site indicating the presence of a buried service [Fig 12: 14], several weaker positive linear anomalies can be identified around the edges (Fig. 11). These all appear to be on a similar alignment $[\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}$, 13], with some forming 90° corners [11, 12], however these are very faint, with [10] and [11] appearing more as general trends rather than identifiable features. A series of small square enclosures on a similar alignment has been identified in this location as cropmarks and it is possible that the magnetic anomalies which were identified relate to these.

Area L - Tanners Right (Figs. 13-14)

Area L was positioned to target two linear cropmarks which ran parallel to the existing field boundaries. Of these, however, only one was identified in the geophysical survey [Fig. 14: 15]. This consisted of a weak trend of positive anomalies which extended for $c .152 \mathrm{~m}$ south-east from the area's north-western boundary, possibly representing a buried ditch. A large positive anomaly with diffuse edges [16] sits in the centre of the linear anomaly but is most likely natural in origin rather than archaeological. The fencing which bordered the field caused several smaller areas of magnetic disturbance along the northern and western perimeter of the survey area.

Areas M, N and O - Tanners Hill and Back of Dairy (Figs. 15-16)

Areas M, N and O were located to target a series of linear cropmarks interpreted as possible Iron Age or Romano-British trackways at the north-western end of Tanners Hill and Back of Dairy fields. M, to the northeast in Tanners Hill. This was found to contain only a short length of weak positive linear anomaly of possible archaeological origin in its northern corner [Fig. 16: 17]. Three further lengths of very weak linear positive anomaly $[\mathbf{1 8}, \mathbf{1 9}, \mathbf{2 0}]$ were identified in N to the south-west. All four anomalies appear to match the cropmarks plotted in these locations and therefore may be archaeological in origin. Other anomalies recorded include a strong set of discrete positive readings which form a close-packed line [21] and represent the lowered fence which marks the boundary between Areas N and O . This feature includes several stronger areas of disturbance and dipolar spikes. In Area M a diffuse positive discrete anomaly [22] is probably the result of a buried natural depression while an area of strong dipolar readings to the south-west [23] indicate the presence of scattered ferrous debris or an area of heavily disturbed ground. A steel drinking trough prevented a small area of M from being surveyed masked the readings close to it, while the fence along the north-eastern boundary of Area N also caused a zone of strong magnetic disturbance.

Lawtons (Figs. 17-18)
The 1ha survey area in Lawtons field was placed to target a "blank" area of the landscape. The only magnetic anomaly of note was a series of stronger positive and negative readings which formed a line parallel to the edge of the field [Fig. 17: 24]. This appeared to coincide with an area of deeper rutting in the ground surface. Several strong magnetic spikes were noted in this survey area, possibly representing buried ferrous objects, along with a large discrete positive anomaly [25], which probably indicates the presence of a buried natural depression or hollow.

Lovegroves (Figs. 19-20)
The Lovegroves survey area was targeted as another "blank" sample location. This proved to be the case with only some weaker positive anomalies being identified in the plot (Fig. 19). With their organic shapes these are probably natural variations within the subsoil or underlying geology. As with the other survey areas several magnetic spikes were recorded scattered across the plot.

Area W - Anthill (Figs. 21-22)

The largest survey area, Area W, was positioned to target a complex of cropmarks which had been interpreted as a series of Iron Age or Romano-British enclosures. The geophysical survey did identify several linear positive anomalies which may represent buried archaeological activity, but these were all very weak with several being
more positive trends than well defined features (Fig. 21). Two of the stronger anomalies were detected in the western-most corner of the survey area [Fig. 22: 26] and appear to form a right-angled junction. These are in the same location but at a different orientation to a similar feature recorded by the cropmark studies. The largest magnetic anomalies within Area W are a series of five weak positive linear trends $[\mathbf{2 7}, \mathbf{2 8}]$ which extend southwestwards from the eastern edge of the area. The parallel layout and diffuse appearance of these anomalies suggest that they may represent the furrow components of a medieval or post-medieval ridge-and-furrow agriculture. A shorter length of positive linear anomaly with a similar appearance [29] was noted on the northern edge of [27]. This directly aligns with the western edge of a subrectangular enclosure which was identified as a cropmark (TVAS 1999). Similarly, two more weak linear positive anomalies were identified in the northern corner of the area, forming a T-shape [30], which, again, corresponds to a junction in two longer linear cropmarks. A shorter section of weak linear positive anomaly appears on a different orientation a short distance to the west [31].

A clear shape is formed by a series of anomalies [32,33] in the south-eastern corner of the survey area. This appears to primarily consist of strong positive and dipolar discrete or short linear anomalies with a gap in the south-western edge. Its orientation and position regarding the field boundaries to the east suggest that it represents an extension of Area U or a smaller field that has since been merged with the larger Anthills field.

Of particular note in Area W is the change in the field's background magnetic readings. The western half is much noisier than the eastern, possibly indicating a change in the underlying geology although this is recorded as River Terrace Deposits 2 for the whole area (BGS 1947). The noise appears to increase towards the river, opposite to that observed in Area G (Fig. 9) which had a smoother variation on the alluvial ground. In Area W the disturbance is so intense that it may have a masking affect on any weaker anomalies.

Area X west - Bridge Water Meadows (Figs. 23-24)
Area X was divided into four 1ha blocks to cover a series of cropmarks which had been interpreted as a possible Iron Age or Romano-British complex. The westernmost tha area was flooded for the first half of the survey period due to a combination of wet weather and its close proximity to the Loddon. Once it had dried out approximately two thirds of the area were available for surveying with the north-western corner being an area of wetland along the riverbank.

The survey of this area identified several magnetic anomalies, including six of potential archaeological origin. A discrete strong positive anomaly was located in the centre of the area [Fig. 24: 34], possibly indicating the presence of a buried pit, while a series of weaker positive linear features crossed the area from north-east to
south-west. Of these, [35] and [36] appear as parallel trends rather than clear features while [37] has a much stronger signature. Another weaker positive anomaly [38] runs on a perpendicular alignment. All of these weaker linear anomalies $[\mathbf{3 5}, \mathbf{3 6}, 38]$ appear to correspond to cropmarks of the enclosures which make up the western end of the Area X complex. Other anomalies recorded in this area include a patch of strong positive and negative readings in the south-western corner [39] and a slightly coarser one in the centre [40] which most likely represent changes in the underlying geology or, in the case of the latter, scattered ferromagnetic debris.

Area X east - Bridge Water Meadows (Figs. 25-26)

Of the remaining three 1 ha blocks of Area X , the two southernmost were found to be devoid of any anomalies which may be of archaeological origin while the north-eastern block contained several (Fig. 25). All of these were identified as linear weak positive trends [Fig. 26: 41, 42, 43, 44], most of which ran parallel to one-another in a north-west to south-east direction. Another weak positive trend [45] appears to cross the northernmost of these [43] with a second one on a loosely similar orientation to the west [44]. The two longer trends [42, 43] may correspond to cropmarks which have been plotted as crossing this location. To the north of the linear trends are two much more amorphous strong positive anomalies [46] which are probably geological in origin. The centre of the block contains a high concentration of magnetic spikes, probably indicating a series of buried ferrous objects. Area Y - Gravel Pits (Figs. 27-28)

Area Y was positioned to target the cropmarks of a possible roundhouse. These were potentially located in the form of two very weak curvilinear positive anomalies [Fig. 28: 47] which together appear to form half of the perimeter of a circle. A much stronger positive linear anomaly with associated negative response [48] extends from the southern tip of [47] westwards towards Rounds Copse. Another weaker curvilinear positive anomaly [49] was identified extending from the northern edge of the survey area to its southern edge, cutting across the eastern side of the possible semicircular anomaly [47]. A slightly less well defined pair of positive linear anomalies extend parallel to one another at a distance of $c .7 \mathrm{~m}$ some 40 m north-eastwards into the survey area [50]. They appear to terminate in a linear area of magnetic disturbance [51] which probably represents a modern service run. This part of Area Y was the site of game breeding coops so it is likely that the service is water or electricity that was used to supply them.

Area AE - Back of Bridge (Figs. 29-30)

Cropmarks noted in the south-western corner of Back of Bridge field suggested the presence of roundhouses and Area AE was located in order to target them. This has potentially been successful as a series of weak positive anomalies appear to form sub circular shapes, $c .12 \mathrm{~m}$ in diameter, in the western part of the survey area [Fig. 30:

52, 53]. The eastern part of [53] is linked to a short length of linear weak positive anomaly [54] which extends eastwards for $c .8 .5 \mathrm{~m}$ and may be related to another east-west linear anomaly further east [55]. To the north of this is a section of weak positive linear anomaly with a right-angled turn [56]. Another, less well-defined, weak positive anomaly [57] appears to the north of the circles and extends south-east until it terminates in a small area of magnetic noise [58].

Back of Bridge (Figs. 31-32)
The survey area in the north-eastern corner of Back of Bridge field was located to target a prehistoric pottery scatter identified by the Loddon Valley Survey (Ford 1997). While several magnetic spikes were recorded (Fig. 31) they did not appear to be associated with any buried archaeological features. The only anomaly of note in this area was a concentration of magnetic spikes [Fig. 32: 59] north-west of the area's centre point.

Area AI - Home Field (Figs. 33-34)

The final two survey areas were located in the north-eastern corner of the proposal site in order to target a series of possible pits. The only anomalies of possible archaeological origin were found in the northern of the two areas, both consisting of weak positive linear anomalies [Fig. 34: 60, 61] with the southernmost [61] including a obtuse-angled turn towards the south-west. A discrete strong positive anomaly was recorded at the join of the angle, possibly indicating a buried pit. Both parts of Area AI were dominated by a very strong linear area of magnetic disturbance $[\mathbf{6 2}, \mathbf{6 3}]$ caused by a high pressure gas main that runs under the fields at this point.

Conclusion

A wide range of magnetic anomalies were recorded across the survey's 24.6 ha area. These included several which may represent buried archaeological features such as ditches and pits, although the majority of these were only weak or diffuse variations from the background readings. It is unclear as to what has caused these anomalies to be so weak, particularly as the site's underlying geology is so variable, so poor geological conditions in one place would not necessarily affect other survey areas. Several of the potential archaeological magnetic anomalies appear to align with known cropmarks, suggesting that they do indeed represent buried features. The areas targeted as "blank" samples did prove to be devoid of anomalies of archaeological origin.

The majority of the survey areas were successfully covered by the geophysical survey although there were some that had to be reshaped due to the presence of unforeseen fences or reduced in size as a result of vegetation-based obstructions. One area, Area Z, which was to be positioned at the southern end of Gravel Pits, to the south of Area Y, was abandoned completely as game bird coops had been erected in a row up the length of
the area. Unlike those in Area Y, it was not possible to have them moved due to a need to allow access due to the presence of breeding birds.

References

BGS, 1946, British Geological Survey, 1:50,000, Sheet 268, Drift Edition, Keyworth
CIfA, 2002, The Use of Geophysical Techniques in Archaeological Evaluation, IFA Paper No. 6, Reading
CIfA, 2011, Standard and Guidance: for archaeological geophysical survey, Reading
CIfA, 2014, Standard and Guidance: for archaeological geophysical survey, Reading
English Heritage, 2008, Geophysical Survey in Archaeological Field Evaluation, English Heritage, Portsmouth (2nd edn)
Ford, S, 1997, 'Loddon Valley (Berkshire) fieldwalking survey’, Berkshire Archaeological Journal 75, (for 1994-7), 11-33
Gates, T, 1975, The Middle Thames Valley: an Archaeological Survey of the River Gravels, Berkshire Archaeological Committee Publication 1, Reading
Lang Hall, M, 2014, 'Farley Hall Estate, Shinfield Berkshire: An archaeological assessment of the implications of mineral extraction', Lang Hall Archaeology unpublished report, Woolhampton
McNicoll-Norbury, J, 2014, 'Shinfield Infants School, Schoolgreen, Shinfield, Berkshire: An archaeological evaluation', Thames Valley Archaeological Services report 14/30, Reading
Taylor, A, 2005, '12 Arborfield Road, Shinfield, Reading, Berkshire: An archaeological evaluation', Thames Valley Archaeological Services report 05/55, Reading
Taylor, A, 2006, '41 Hyde End Road, Shinfield, Reading, Berkshire: An archaeological watching brief', Thames Valley Archaeological Services report 06/69, Reading
Taylor, A and Jenkins, P, 2002, 'Hall Farm, Church Lane, Arborfield, Berkshire: An archaeological watching brief', Thames Valley Archaeological Services report 02/64, Reading
TVAS, 1999, 'Catalogue of probable later prehistoric/Roman cropmark evidence', Thames Valley Archaeological Services report 99/10, Reading

Appendix 1. Survey and data information

Programme:	
Name: T	TerraSurveyor
Version: 3	3.0.25.0
Hyde End Road Farm west	
Raw data	
Survey corner coordinates (X/Y):	
Northwest corner:	472729.13, 166102.58 m
Southeast corner:	472829.13, 166002.58 m
Direction of 1st Traverse: 307.37 deg	
Collection Method:	d: ZigZag
Sensors: 2	2 @ 1.00 m spacing.
Dummy Value:	2047.5
Dimensions	
Composite Size (readings): 400×100	
Survey Size (meters):	rs): 100 mx 100 m
Grid Size: 20	20 mx 20 m
X Interval: 0	0.25 m
Y Interval:	1 m
Stats	
Max: 99	99.97
Min: -100	-100.00
Std Dev: 2	2.17
Mean: 0.	0.68
Median: 0	0.60
Composite Area:	1 ha
Surveyed Area:	1 ha
Source Grids: 25	
1 Col:0 Row:0 gri	grids $101 . x g d$
2 Col:0 Row:1 gri	grids $102 . x g d$
3 Col:0 Row:2 gri	grids $103 . x g d$
4 Col:0 Row:3 gri	grids $104 . \mathrm{xgd}$
5 Col:0 Row:4 gri	grids $105 . x g d$
6 Col:1 Row:0 gri	grids $106 . x g d$
7 Col:1 Row:1 gri	grids $107 . x g d$
8 Col:1 Row:2 gri	grids $108 . x$ dd
9 Col:1 Row:3 gri	grids $09 . x$.xd
$10 \mathrm{Col} 11 \mathrm{Row}: 4$ gri	grids $\backslash 10 . \mathrm{xgd}$
11 Col 2 2 Row:0 gri	grids $\backslash 11 . x g d$
12 Col 2 2 Row:1 gri	grids $\backslash 12 . x g d$
13 Col 2 2 Row:2 gri	grids $113 . \mathrm{xgd}$
14 Col:2 Row:3 gri	grids $\backslash 14 . \mathrm{xgd}$
15 Col 2 2 Row:4 gri	grids $\backslash 15 . \mathrm{xgd}$
16 Col:3 Row:0 gri	grids $\backslash 16 . x g d$
17 Col:3 Row:1 gri	grids $\backslash 17 . x \mathrm{xg}$
18 Col 3 3 Row:2 gri	grids $118 . x g d$
19 Col:3 Row:3 gri	grids $\backslash 19 . x g d$
20 Col 3 3 Row:4 gri	grids $\backslash 20 . \mathrm{xgd}$
21 Col:4 Row:0 gri	grids $121 . x g d$
22 Col:4 Row:1 gri	grids $122 . x \mathrm{gd}$
23 Col:4 Row:2 gri	grids $\ 23 . x \mathrm{gd}$
24 Col:4 Row:3 gri	grids $\backslash 24 . \mathrm{xgd}$
25 Col:4 Row:4 gri	grids $\backslash 25 . \mathrm{xgd}$
Processed data	
Stats	
Max: 2.20	2.20
Min: -1.80	-1.80
Std Dev: 0	0.55
Mean: 0.	0.02
Median: 0	0.01
Processes: 6	
1 Base Layer	
2 DeStripe Median	ian Sensors: All
3 De Stagger: Grids	rids: All Mode: Both By: -1 intervals
4 Despike Threshol	shold: 1 Window size: 3×3
5 Interpolate: Y Doub	Doubled.
6 Clip from-1.80 to	to 2.20 nT

Hyde End Road Farm east	
Raw data	
Survey corner coordinates (X/Y):	
Northwest corner:	473079.44, 166330.46 m
Southeast corner:	473139.44, 166170.46 m
Direction of 1st Traverse: 54.57 deg	
Collection Method: ZigZag	
Sensors:	2 @ 1.00 m spacing.
Dummy Value: 2047.5	
Dimensions	
Composite Size (readings): 240×160	
Survey Size (meters): 60 mx 160 m	
Grid Size:	20 mx 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	100.00
Min:	-100.00
Std Dev:	17.88
Mean:	-0.12
Median:	0.65
Composite Area:	0.96 ha
Surveyed Area:	0.94745 ha
Source Grids: 24	
1 Col:0 Row:0	grids $115 . x \mathrm{xd}$
2 Col:0 Row:1	grids $116 . x g d$
3 Col:0 Row:2	grids $17 . \mathrm{xgd}$
4 Col:0 Row:3	grids $\backslash 18 . x$ dd
5 Col:0 Row:4	grids $19 . \mathrm{xgd}$
6 Col:0 Row:5	grids \20.xgd
7 Col:0 Row:6	grids $21 . \mathrm{xgd}$
8 Col:0 Row:7	grids $122 . x g d$
9 Col:1 Row:0	grids $108 . x$ dd
$10 \mathrm{Col}: 1 \mathrm{Row}$:1	grids $09 . \mathrm{xgd}$
11 Col 11 Row :2	grids $\backslash 10 . \mathrm{xgd}$
$12 \mathrm{Col:1} \mathrm{Row:3}$	grids $111 . x g d$
13 Col:1 Row:4	grids $112 . x g d$
$14 \mathrm{Col}: 1 \mathrm{Row}: 5$	grids $113 . \mathrm{xgd}$
$15 \mathrm{Col}: 1$ Row:6	grids $114 . \mathrm{xgd}$
$16 \mathrm{Col}: 1 \mathrm{Row}: 7$	grids $23 . \mathrm{xgd}$
17 Col:2 Row:0	grids $101 . x g d$
18 Col:2 Row:1	grids $102 . x g d$
19 Col:2 Row:2	grids $103 . \mathrm{xgd}$
$20 \mathrm{Col}: 2 \mathrm{Row}: 3$	grids $104 . \mathrm{xgd}$
$21 \mathrm{Col} 22 \mathrm{Row}: 4$	grids $105 . \mathrm{xgd}$
$22 \mathrm{Col}: 2 \mathrm{Row}: 5$	grids $06 . \mathrm{xgd}$
23 Col 2 2 Row:6	grids $107 . x g d$
24 Col:2 Row:7	grids $124 . \mathrm{xgd}$
Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	1.01
Mean:	0.03
Median:	0.00
Processes: 6	
1 Base Layer	
2 DeStripe Median Sensors: All	
3 De Stagger: Grids: All Mode: Both By: -2 intervals	
4 Despike Threshold: 1 Window size: 3x3	
5 Interpolate: Y Doubled.	
6 Clip from -1.80 to 2.20 nT	
Area G (main)	
Raw data	
Survey corner coordinates (X/Y):	
Northwest corner:	473450.28, 166499.06 m
Southeast corner:	$473570.28,166299.06 \mathrm{~m}$

Direction of 1st Traverse: 117.45 deg	Processes:
Collection Method: ZigZag	1 Base Layer
Sensors: 2 @ 1.00 m spacing.	2 DeStripe Median Sensors: All
Dummy Value: 2047.5	3 De Stagger: Grids: All Mode: Both By: -1 intervals 4 Despike Threshold: 1 Window size: 3×3
Dimensions	5 Interpolate: Y Doubled.
Composite Size (readings): 480×200	6 Clip from -1.80 to 2.20 nT
Survey Size (meters): 120 mx 200 m	
Grid Size: $\quad 20 \mathrm{mx} 20 \mathrm{~m}$	Area G (annexe)
X Interval: $\quad 0.25 \mathrm{~m}$	Raw data
Y Interval: 1 m	Survey corner coordinates (X/Y):
	Northwest corner: $\quad 473323.4,166414.95 \mathrm{~m}$
Stats	Southeast corner: $\quad 473383.4,166314.95 \mathrm{~m}$
Max: 100.00	Direction of 1st Traverse: 41.78 deg
Min: -100.00	Collection Method: ZigZag
Std Dev: 9.01	Sensors: 2 @ 1.00 m spacing.
Mean: -1.40	Dummy Value: 2047.5
Median: $\quad-0.90$	
Composite Area: $\quad 2.4$ ha	Dimensions
Surveyed Area: $\quad 1.38 \mathrm{ha}$	Composite Size (readings): 240×100
	Survey Size (meters): 60 mx 100 m
Source Grids: 46	Grid Size: $\quad 20 \mathrm{mx} \mathrm{20} \mathrm{m}$
1 Col:0 Row:7 grids $127 . x \mathrm{xd}$	X Interval: $\quad 0.25 \mathrm{~m}$
2 Col:1 Row:0 gridsl18.xgd	Y Interval: 1 m
3 Col:1 Row:1 gridsl19.xgd	
4 Col:1 Row:2 gridsl20.xgd	Stats
5 Col:1 Row:3 gridsl21.xgd	Max: 100.00
6 Col:1 Row:4 gridsl22.xgd	Min: -100.00
7 Col:1 Row:5 gridsl23.xgd	Std Dev: 6.78
8 Col:1 Row:6 gridsl24.xgd	Mean: -0.29
9 Col:1 Row:7 gridsl25.xgd	Median: -0.28
$10 \mathrm{Col}: 1 \mathrm{Row}: 8$ grids $126 . x g d$	Composite Area: $\quad 0.6 \mathrm{ha}$
11 Col:2 Row:0 grids $338 . x \mathrm{xd}$	Surveyed Area: 0.5229 ha
12 Col 2 2 Row:1 grids $339 . x \mathrm{xd}$	
13 Col:2 Row:2 grids $440 . x \mathrm{xd}$	Source Grids: 15
14 Col:2 Row:3 grids 41. xgd	1 Col:0 Row:0 grids $101 . x \mathrm{xd}$
15 Col:2 Row: 4 grids $442 . x g d$	2 Col:0 Row:1 grids $02 . \mathrm{xgd}$
$16 \mathrm{Col}: 2 \mathrm{Row}: 5$ grids $443 . \mathrm{xgd}$	3 Col:0 Row:2 grids $103 . x \mathrm{xd}$
17 Col:2 Row:6 grids $444 . x \mathrm{xd}$	4 Col:0 Row:3 grids $104 . x$ gd
18 Col:2 Row:7 grids $445 . x \mathrm{xd}$	5 Col:0 Row:4 grids $105 . x \mathrm{gd}$
19 Col 2 2 Row:8 grids $446 . x \mathrm{xd}$	6 Col:1 Row:0 grids $106 . x \mathrm{gd}$
20 Col 3 3 Row:0 grids $128 . x \mathrm{xd}$	7 Col:1 Row:1 grids $107 . x \mathrm{xd}$
21 Col:3 Row:1 grids $129 . x \mathrm{xd}$	8 Col:1 Row:2 grids $108 . x \mathrm{gd}$
22 Col 3 Row:2 grids $330 . x g d$	9 Col:1 Row:3 gridsl09.xgd
23 Col:3 Row:3 grids $331 . x g d$	$10 \mathrm{Col}: 1 \mathrm{Row}: 4$ grids $\backslash 10 . \mathrm{xgd}$
24 Col:3 Row:4 grids $332 . x g d$	11 Col:2 Row:0 grids $\backslash 11 . x g d$
25 Col:3 Row:5 grids $333 . x \mathrm{xd}$	$12 \mathrm{Col}: 2$ Row:1 grids $\backslash 12 . \mathrm{xgd}$
26 Col 3 Row:6 grids $334 . x \mathrm{xd}$	13 Col:2 Row:2 grids $\backslash 13 . x g d$
27 Col:3 Row:7 grids $335 . x \mathrm{xd}$	14 Col:2 Row:3 grids $14 . \mathrm{xgd}$
28 Col:3 Row:8 gridsl36.xgd	15 Col 2 2 Row:4 grids $115 . \mathrm{xgd}$
29 Col:3 Row:9 gridsl37.xgd	
$30 \mathrm{Col}: 4 \mathrm{Row}: 0$ grids $009 . x \mathrm{xd}$	Processed data
31 Col:4 Row:1 grids $\backslash 10 . x g d$	Stats
32 Col:4 Row:2 grids $\backslash 11 . x g d$	Max: 2.20
33 Col:4 Row:3 grids $112 . x g d$	Min: -1.80
34 Col:4 Row:4 grids $\backslash 13 . x g d$	Std Dev: 0.82
35 Col:4 Row:5 grids $\backslash 14 . x g d$	Mean: 0.04
$36 \mathrm{Col}: 4$ Row:6 grids $\backslash 15 . \mathrm{xgd}$	Median: 0.01
37 Col:4 Row:7 grids $16 . x$ dd	
$38 \mathrm{Col}: 4$ Row:8 grids $\backslash 17 . x \mathrm{xd}$	Processes: 6
39 Col:5 Row:0 grids\01.xgd	1 Base Layer
40 Col 5 5 Row:1 grids $102 . \mathrm{xgd}$	2 DeStripe Median Sensors: All
41 Col 5 Row:2 grids $103 . x \mathrm{xd}$	3 De Stagger: Grids: All Mode: Both By: -1 intervals
42 Col 5 5 Row:3 grids $104 . x \mathrm{xd}$	4 Despike Threshold: 1 Window size: 3×3
43 Col:5 Row:4 grids $005 . x \mathrm{xd}$	5 Interpolate: Y Doubled.
44 Col:5 Row:5 grids $006 . x g d$	6 Clip from -1.80 to 2.20 nT
45 Col 5 5 Row:6 grids $\backslash 07 . \mathrm{xgd}$	
$46 \mathrm{Col}: 5$ Row:7 grids $008 . x \mathrm{xd}$	$\frac{\text { Area J }}{\text { Raw data }}$
Processed data	Survey corner coordinates (X/Y):
Stats	Northwest corner: $\quad 473808.67,166025.32 \mathrm{~m}$
Max: 2.20	Southeast corner: $\quad 473928.67,165865.32 \mathrm{~m}$
Min: -1.80	Direction of 1st Traverse: 316.81 deg
Std Dev: 0.96	Collection Method: ZigZag
Mean: 0.06	Sensors: 2 @ 1.00 m spacing.

46 Col:5 Row: 1 grids $111-\mathrm{a} . \mathrm{xgd}$ 47 Col:5 Row:2 grids\12-a.xgd 48 Col:5 Row:3 grids $113-\mathrm{a} . \mathrm{xg} \mathrm{d}$ 49 Col:5 Row:4 grids $\backslash 14-$ a.xgd 50 Col:5 Row:5 grids $115-\mathrm{a} . \mathrm{xgd}$ 51 Col:5 Row: 6 grids $116-\mathrm{a} . \mathrm{xgd}$ 52 Col:5 Row:7 grids 17 -a.xgd 53 Col:5 Row:8 grids $\backslash 18-\mathrm{a} . \mathrm{xgd}$ 54 Col:6 Row:0 grids $\backslash 01-\mathrm{a} . \mathrm{xgd}$ 55 Col:6 Row: 1 grids $102-$ a.xgd 56 Col:6 Row:2 grids 103 -a.xgd 57 Col:6 Row:3 grids $104-$ a.xgd 58 Col:6 Row:4 grids $105-\mathrm{a} . \mathrm{xgd}$ 59 Col:6 Row:5 grids $\backslash 06-\mathrm{a} . \mathrm{xgd}$ 60 Col:6 Row: 6 grids $\backslash 07-$ a.xgd 61 Col:6 Row:7 grids $108-$ a.xgd 62 Col:6 Row:8 grids $109-$ a.xgd

Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	0.52
Mean:	0.02
Median:	0.00
Processes: $\quad 6$	
1 Base Layer 2 DeStripe Median Sensors: All 3 De Stagger: Grids: All Mode: Both By: -1 intervals 4 Despike Threshold: 1 Window size: 3×3 5 Interpolate: Y Doubled. 6 Clip from -1.80 to 2.20 nT.	

Area M

Survey corner coordinates (X/Y):

Northwest corner:	$474233.65,166313.59 \mathrm{~m}$
Southeast corner:	$474333.65,166153.59 \mathrm{~m}$

Southeast corner: $\quad 474333.65,166153.59 \mathrm{~m}$
Direction of 1st Traverse: 134.24 deg
Collection Method: ZigZag
Sensors:
Dummy Value: $\quad 2$ @ 1.00 m spacing.
Dummy Value: 2047.5
Dimensions
Composite Size (readings): 400×160
Survey Size (meters): $100 \mathrm{~m} \times 160 \mathrm{~m}$

Grid Size:	20 m x 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	100.00
Min:	-100.00
Std Dev:	5.61
Mean:	-1.14
Median:	-1.05
Composite Area:	1.6 ha
Surveyed Area:	1.3189 ha

[^1]

$12 \mathrm{Col}: 1 \mathrm{Row}: 4$ grids $\backslash 12 . \mathrm{xgd}$	9 Col :1 Row:3 grids $109 . \mathrm{xgd}$
13 Col:1 Row:5 grids $\backslash 13 . x g d$	$10 \mathrm{Col}: 1 \mathrm{Row}: 4$ grids $10 . \mathrm{xgd}$
14 Col:1 Row:6 grids $\backslash 14 . x g d$	11 Col:2 Row:0 grids $\backslash 11 . x g d$
15 Col:2 Row:0 grids $\backslash 15 . x g d$	$12 \mathrm{Col}: 2 \mathrm{Row}: 1$ grids $12 . \mathrm{xgd}$
16 Col:2 Row:1 grids $\backslash 16 . x g d$	13 Col:2 Row:2 grids $13 . x \mathrm{xg}$
17 Col:2 Row:2 grids $\backslash 17 . x \mathrm{xd}$	$14 \mathrm{Col}: 2$ Row:3 grids $14 . x$.xd
18 Col:2 Row:3 grids $118 . x$ xd	$15 \mathrm{Col}: 2 \mathrm{Row}: 4$ grids $15 . \mathrm{xgd}$
$19 \mathrm{Col}: 2 \mathrm{Row}: 4$ grids $\backslash 19 . x \mathrm{xd}$	16 Col 3 3 Row:0 grids $16 . \mathrm{xgd}$
$20 \mathrm{Col}: 2 \mathrm{Row}: 5$ grids $120 . x \mathrm{xd}$	17 Col 3 Row:1 grids $17 . \mathrm{xgd}$
$21 \mathrm{Col}: 2 \mathrm{Row}$:6 grids $121 . \mathrm{xgd}$	18 Col 3 3 Row:2 grids $18 . \mathrm{xgd}$
$22 \mathrm{Col}: 3$ Row:0 grids $\backslash 22 . \mathrm{xgd}$	19 Col:3 Row:3 grids $19 . x$.xd
23 Col:3 Row:1 grids $123 . x g d$	20 Col:3 Row:4 gridsl20.xgd
24 Col:3 Row:2 grids $124 . x \mathrm{xd}$	21 Col:4 Row:0 grids $21 . x \mathrm{xd}$
25 Col:3 Row:3 grids $125 . x \mathrm{xd}$	22 Col:4 Row: 1 grids $122 . x g d$
$26 \mathrm{Col}: 3 \mathrm{Row} 4$ grids $126 . x \mathrm{xd}$	23 Col:4 Row:2 gridsl23.xgd
27 Col:3 Row:5 grids $127 . x g d$	24 Col:4 Row:3 grids $124 . x \mathrm{xd}$
28 Col 3 3 Row:6 grids $128 . x \mathrm{xd}$	25 Col:4 Row:4 grids $225 . x \mathrm{xd}$
$29 \mathrm{Col}: 4 \mathrm{Row}: 0$ grids $129 . \mathrm{xgd}$	
30 Col : 4 Row:1 grids $330 . \mathrm{xgd}$	Processed data
31 Col:4 Row:2 grids $331 . x g d$	Stats
$32 \mathrm{Col}: 4 \mathrm{Row} 3 \mathrm{3}$ grids $332 . \mathrm{xgd}$	Max: 2.20
33 Col:4 Row:4 grids $333 . x \mathrm{xd}$	Min: -1.80
34 Col:4 Row:5 grids $34 . x$ xd	Std Dev: 0.49
$35 \mathrm{Col}: 4$ Row: 6 grids $335 . \mathrm{xgd}$	Mean: 0.01
	Median: 0.00
Processed data	
Stats	Processes: 6
Max: 2.20	1 Base Layer
Min: -1.80	2 DeStripe Median Sensors: All
Std Dev: 0.72	3 De Stagger: Grids: All Mode: Both By: -1 intervals
Mean: -0.03	4 Despike Threshold: 1 Window size: 3×3
Median: 0.01	5 Interpolate: Y Doubled. 6 Clip from -1.80 to 2.20 nT
Processes: 6	
1 Base Layer	Lovegroves
2 DeStripe Median Sensors: All	Raw data
3 De Stagger: Grids: All Mode: Both By: -1 intervals	Survey corner coordinates (X/Y):
4 Despike Threshold: 1 Window size: 3×3	Northwest corner: $\quad 474399.7,166897.74$ m
5 Interpolate: Y Doubled.	Southeast corner: $\quad 474499.7,166797.74 \mathrm{~m}$
6 Clip from -1.80 to 2.20 nT	Direction of 1st Traverse: 0.6931 deg
	Collection Method: ZigZag
Lawtons	Sensors: 2 @ 1.00 m spacing.
Raw data	Dummy Value: 2047.5
Survey corner coordinates (X/Y):	
Northwest corner: $\quad 474426.46,166629.73 \mathrm{~m}$	Dimensions
Southeast corner: $\quad 474526.46,166529.73 \mathrm{~m}$	Composite Size (readings): 400×100
Direction of 1st Traverse: 233.71 deg	Survey Size (meters): 100 mx 100 m
Collection Method: ZigZag	Grid Size: $\quad 20 \mathrm{mx} 20 \mathrm{~m}$
Sensors: 2 @ 1.00 m spacing.	X Interval: $\quad 0.25 \mathrm{~m}$
Dummy Value: 2047.5	Y Interval: 1 m
Dimensions	Stats
Composite Size (readings): 400×100	Max: 100.00
Survey Size (meters): 100 mx 100 m	Min: -49.23
Grid Size: $\quad 20 \mathrm{mx} 20 \mathrm{~m}$	Std Dev: 2.09
X Interval: $\quad 0.25 \mathrm{~m}$	Mean: 0.13
Y Interval: 1 m	Median: -0.01
	Composite Area: 1 ha
Stats	Surveyed Area: 1 ha
Max: 99.76	
Min: -100.00	Source Grids: 25
Std Dev: 2.99	1 Col:0 Row:0 grids $101 . x \mathrm{xd}$
Mean: -1.29	2 Col:0 Row:1 grids $102 . x \mathrm{xgd}$
Median: -1.06	3 Col:0 Row:2 grids $03 . \mathrm{xgd}$
Composite Area: 1 ha	4 Col:0 Row:3 grids $04 . \mathrm{xgd}$
Surveyed Area: 0.98975 ha	5 Col:0 Row:4 grids $105 . x \mathrm{xd}$
	6 Col:1 Row:0 grids $006 . x g d$
Source Grids: 25	7 Col:1 Row:1 grids $107 . x \mathrm{xd}$
1 Col:0 Row:0 gridsl01.xgd	8 Col:1 Row:2 grids $108 . x \mathrm{gd}$
2 Col:0 Row:1 grids\02.xgd	9 Col:1 Row:3 grids $109 . x \mathrm{xd}$
3 Col:0 Row:2 gridsl03.xgd	$10 \mathrm{Col}: 1 \mathrm{Row} 4$ grids $\backslash 10 . \mathrm{xgd}$
4 Col:0 Row:3 gridsl04.xgd	11 Col:2 Row:0 grids $\backslash 11 . x g d$
5 Col:0 Row:4 grids $005 . x \mathrm{gd}$	$12 \mathrm{Col}: 2$ Row:1 grids $\backslash 12 . \mathrm{xgd}$
6 Col:1 Row:0 grids $106 . x$ gd	13 Col:2 Row:2 grids $113 . x g d$
7 Col:1 Row:1 grids $007 . x \mathrm{xd}$	14 Col:2 Row:3 grids $14 . x$.xd
8 Col:1 Row:2 grids $008 . x$ gd	15 Col:2 Row:4 grids $\backslash 15 . \mathrm{xgd}$

16 Col:3 Row:0 grids $\backslash 16 . x g d$ 17 Col:3 Row:1 grids 17 .xgd 18 Col:3 Row:2 grids $\backslash 18 . x g d$ 19 Col:3 Row:3 grids $\backslash 19 . x g d$ 20 Col:3 Row: 4 grids $120 . x g d$ 21 Col:4 Row:0 grids $121 . x g d$ 22 Col:4 Row: 1 grids $122 . x g d$ 23 Col:4 Row:2 grids $123 . x g d$
24 Col:4 Row:3 gridsl24.xgd
25 Col:4 Row: 4 grids $125 . x g d$

Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	0.43
Mean:	0.02
Median:	0.00

Processes: 6
Base Layer
DeStripe Median Sensors: All
De Stagger: Grids: All Mode: Both By: -1 intervals
Despike Threshold: 1 Window size: 3x3
Interpolate: Y Doubled.
6 Clip from -1.80 to 2.20 nT

Area W

Raw data

Survey corner coordinates (X/Y):

Northwest corner:	473890.14, 167043.7 m
Southeast corner:	474090.14, 166783.7 m
Direction of 1st Traverse: 127.37 deg	
Collection Method:	ZigZag
Sensors:	2 @ 1.00 m spacing.
Dummy Value:	2047.5
Dimensions	
Composite Size (readings): 800×260	
Survey Size (meters)): 200 mx 260 m
Grid Size:	20 mx 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	100.00
Min: -100	-100.00
Std Dev:	2.77
Mean:	0.00
Median:	0.13
Composite Area:	5.2 ha
Surveyed Area:	4.093 ha

[^2]23 Col:1 Row:9 grids $23 . x g d$
24 Col:1 Row: 10 grids $124 . x g d$
25 Col:1 Row:11 grids $25 . x g d$
26 Col:1 Row:12 grids $126 . x g d$
27 Col:2 Row:0 grids $127 . x g d$
28 Col:2 Row:1 grids $\backslash 28 . x g d$
$29 \mathrm{Col}: 2$ Row:2 grids $\ 29 . x g d$
30 Col:2 Row:3 grids $\backslash 30 . x g d$
31 Col:2 Row:4 grids $\backslash 31 . x g d$
32 Col:2 Row:5 grids $\backslash 32$.xgd
33 Col:2 Row:6 grids $333 . x g d$
34 Col:2 Row:7 grids $344 . x g d$
35 Col:2 Row:8 grids 35 .xgd
36 Col:2 Row:9 grids $36 . x g d$
37 Col:2 Row:10 grids $137 . x g d$
38 Col:2 Row:11 grids $138 . x g d$
39 Col:2 Row: 12 grids $139 . x g d$
40 Col:3 Row:0 grids $140 . x g d$
41 Col:3 Row: 1 grids 41 .xgd
42 Col:3 Row: 2 grids 42 .xgd
43 Col:3 Row:3 grids 43 .xgd 44 Col:3 Row:4 grids $144 . x g d$
45 Col:3 Row:5 grids $445 . x g d$
46 Col:3 Row: 6 grids $46 . x g d$
47 Col:3 Row:7 grids 47 .xgd
48 Col:3 Row:8 grids $48 . x$.xd
49 Col:3 Row:9 grids $49 . x g d$
50 Col:3 Row:10 grids $550 . x g d$
51 Col:3 Row:11 grids $\ 51 . x g d$
52 Col:3 Row:12 grids 152 .xgd
53 Col:4 Row:0 grids $153 . x g d$
54 Col:4 Row: 1 grids $154 . x g d$
55 Col:4 Row:2 grids $155 . x g d$
56 Col:4 Row:3 grids $566 . x g d$
57 Col:4 Row:4 grids $157 . x g d$
58 Col:4 Row:5 grids $\backslash 58 . x g d$
59 Col:4 Row: 6 grids $159 . x g d$
60 Col:4 Row:7 grids $160 . x g d$
61 Col:4 Row:8 grids $161 . x g d$
62 Col:4 Row:9 grids $\backslash 62$.xgd
63 Col:4 Row:10 gridsl63.xgd 64 Col:4 Row:11 gridsl64.xgd
65 Col:4 Row:12 grids $165 . x g d$
66 Col:5 Row:0 grids\66.xgd
67 Col:5 Row: 1 grids $167 . x g d$
68 Col:5 Row:2 grids $168 . x g d$
69 Col:5 Row:3 grids $169 . x g d$
70 Col:5 Row:4 gridsl70.xgd
71 Col:5 Row:5 grids $171 . x g d$
72 Col:5 Row: 6 grids $172 . x g d$
73 Col:5 Row:7 grids $173 . x g d$
74 Col:6 Row:0 grids $174 . x g d$
75 Col:6 Row: 1 grids $175 . x g d$
76 Col:6 Row: 2 grids $176 . x g d$
77 Col:6 Row:3 grids $177 . x g d$
78 Col:6 Row:4 grids $178 . x g d$
79 Col:6 Row:5 grids $179 . x g d$
80 Col:6 Row: 6 grids $180 . x g d$
81 Col:6 Row:7 grids $181 . x g d$
82 Col:7 Row:0 grids 182 .xgd
83 Col:7 Row:1 grids $183 . x g d$
84 Col:7 Row:2 grids $184 . x g d$
85 Col:7 Row:3 grids $185 . x g d$
86 Col:7 Row:4 grids $186 . x g d$ 87 Col:7 Row:5 grids $187 . x g d$
88 Col:7 Row:6 grids $188 . x g d$
89 Col:7 Row:7 grids $189 . x g d$
$90 \mathrm{Col}: 8$ Row: 1 grids $90 . x g d$
91 Col:8 Row:2 grids $91 . x g d$
92 Col:8 Row:3 grids 92 .xgd
93 Col:8 Row:4 grids $93 . x g d$
94 Col:8 Row:5 grids $94 . x$.xd
95 Col:8 Row: 6 grids $195 . x g d$
96 Col:8 Row:7 grids $96 . x g d$
97 Col:9 Row: 1 grids $97 . x g d$
98 Col:9 Row:2 grids $198 . x g d$

99 Col:9 Row:3 grids $199 . x g d$ $100 \mathrm{Col}: 9$ Row: 4 grids 100 xgd 101 Col:9 Row:5 grids $\backslash 101 . x g d$ 102 Col:9 Row:6 grids $102 . x g d$ 103 Col:9 Row:7 grids\103.xgd

Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	0.63
Mean:	0.02
Median:	0.00

Processes: 6
Base Layer
DeStripe Median Sensors: All
De Stagger: Grids: All Mode: Both By: -1 intervals
Despike Threshold: 1 Window size: 3×3
Interpolate: Y Doubled.
6 Clip from -1.80 to 2.20 nT

Area X - west

Raw data
Survey corner coordinates (X/Y):
Northwest corner: $\quad 473987.74,167240.17 \mathrm{~m}$
Southeast corner: $\quad 474087.74,167140.17 \mathrm{~m}$
Direction of 1st Traverse: 270.02 deg
Collection Method: ZigZag
Sensors: 2 @ 1.00 m spacing.

Dummy Value:	2047.5
Dimensions	
Composite Size (readings): 400×100	
Survey Size (meters): $\quad 100 \mathrm{~m} \times 100$	
Grid Size:	$20 \mathrm{~m} \times 20 \mathrm{~m}$
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	100.00
Min:	-100.00
Std Dev:	9.06
Mean:	-0.47
Median:	0.00
Composite Area:	1 ha
Surveyed Area:	0.8032 ha

Source Grids: 22
Col:0 Row:0 grids\01.xgd
Col:0 Row:1 gridsl06.xgd
Col:0 Row:2 grids $111 . x g d$
Col:0 Row:3 grids $116 . x g d$
Col:0 Row:4 gridsl20.xgd
Col:1 Row:0 grids $102 . x$ gd
Col:1 Row:1 grids)07.xgd
Col:1 Row:2 grids $\backslash 12 . x g d$
Col:1 Row:3 grids $\backslash 17 . x g d$
10 Col:1 Row:4 grids $21 . x$.xd
11 Col:2 Row:0 grids $103 . x g d$
Col:2 Row:1 grids\08.xgd
Col:2 Row:2 grids $\backslash 13 . x g d$
Col:2 Row:3 grids $\backslash 18 . x g d$
Col:2 Row:4 grids $22 . x$.xd
16 Col:3 Row:0 grids $104 . x g d$
17 Col:3 Row:1 grids $009 . x g d$
18 Col:3 Row:2 grids $\backslash 14 . x g d$
19 Col:3 Row:3 grids $\backslash 19 . x g d$
20 Col:4 Row:0 grids $105 . x g d$
21 Col:4 Row:1 grids $\backslash 10 . x g d$
22 Col:4 Row:2 grids $\backslash 15 . x g d$
Processed data
Stats

Max:	2.20
Min:	-1.80

3 De Stagger: Grids: All Mode: Both By: -1 intervals
4 Despike Threshold: 1 Window size: 3×3
Interpolate: Y Doubled.
Clip from -1.80 to 2.20 nT

Area X - south-east (south)	
Raw data	
Survey corner coordinates (X/Y):	
Northwest corner:	474259.01, 167248.91 m
Southeast corner:	474339.01, 167128.91 m
Direction of 1st Traverse: 270.52 deg	
Collection Method:	d: ZigZag
Sensors:	2 @ 1.00 m spacing.
Dummy Value:	2047.5
Dimensions	
Composite Size (readings): 320×120	
Survey Size (meters)	rs): 80 mx 120 m
Grid Size:	20 mx 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	81.83
Min:	-100.00
Std Dev:	2.74
Mean:	0.86
Median:	0.83
Composite Area:	0.96 ha
Surveyed Area:	0.37105 ha

Source Grids: 15
Col:0 Row:3 grids $115 . x g d$
Col:1 Row:2 grids $\backslash 12 . x g d$
Col:1 Row:3 grids $\backslash 13 . x g d$
Col:1 Row:4 grids\14.xgd
Col:2 Row:1 grids $007 . x g d$
Col:2 Row:2 gridsl08.xgd
Col:2 Row:3 gridsl09.xgd
Col:2 Row:4 grids $\backslash 10 . x g d$
Col:2 Row:5 grids $111 . x g d$
10 Col:3 Row:0 grids $101 . x g d$
11 Col:3 Row:1 grids $102 . x g d$
Col:3 Row:2 grids\03.xgd
Col:3 Row:3 grids $104 . x g d$
14 Col:3 Row:4 grids $005 . x g d$
15 Col:3 Row:5 grids $06 . x g d$

Processed data

Stats

Max:	2.20
Min:	-1.80
Std Dev:	0.57
Mean:	0.02
Median:	0.00

Processes: 6
Base Layer
DeStripe Median Sensors: All
De Stagger: Grids: All Mode: Both By: -1 intervals
Despike Threshold: 1 Window size: 3×3
Interpolate: Y Doubled.
6 Clip from -1.80 to 2.20 nT

Area X - south-east (north)

Raw data

Survey corner coordinates (X/Y):
Northwest corner: $\quad 474299.8,167390.58 \mathrm{~m}$
Southeast corner: $\quad 474359.8,167270.58 \mathrm{~m}$
Direction of 1st Traverse: 180.54 deg
Collection Method: ZigZag
Sensors: 2 @ 1.00 m spacing.
Dummy Value: 2047.5
Dimensions
Composite Size (readings): 240 x 120

Survey Size (meters): $\quad 60 \mathrm{~m} \times 120 \mathrm{~m}$	
Grid Size:	$20 \mathrm{~m} \times 20 \mathrm{~m}$
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	56.99
Min:	-100.00
Std Dev:	3.09
Mean:	-1.81
Median:	-1.75
Composite Area:	0.72 ha
Surveyed Area:	0.346 ha

Source Grids: 14
1 Col:0 Row:0 SE 2\06.xgd
2 Col:0 Row: 1 SE 2\05.xgd
3 Col:0 Row:2 SE 2\04.xgd
4 Col:0 Row:3 SE 2\03.xgd
5 Col:0 Row:4 SE 2102.xgd
6 Col:0 Row:5 SE 2\01.xgd
7 Col:1 Row:0 SE 2 112.xgd
8 Col:1 Row:1 SE 2 111.xgd
9 Col:1 Row:2 SE 2\10.xgd
10 Col:1 Row:3 SE 2109.xgd
11 Col:1 Row:4 SE 2\08.xgd
12 Col:1 Row:5 SE 2\07.xgd
13 Col:2 Row: 1 SE 2\14.xgd
14 Col:2 Row:2 SE 2\13.xgd
Processed data
Stats

Max:	2.20
Min:	-1.80
Std Dev:	0.66
Mean:	0.04
Median:	0.02

Processes: 6
1 Base Layer
2 DeStripe Median Sensors: All
3 De Stagger: Grids: All Mode: Both By: -1 intervals
4 Despike Threshold: 1 Window size: 3×3
5 Interpolate: Y Doubled.
6 Clip from -1.80 to 2.20 nT

Area X - north-east

Raw data
Survey corner coordinates (X/Y):

Northwest corner:	$474272.92,167434.69 \mathrm{~m}$
Southeast corner:	$474372.92,167334.69 \mathrm{~m}$

Southeast corner: - 474372.92,167334.69 m

Direction of 1st Traverse: 270.41 deg
Collection Method: ZigZag

Sensors: 2 @ 1.00 m spacing.
Dummy Value: 2047.5
Dimensions
Composite Size (readings): 400×100
Survey Size (meters): $100 \mathrm{~m} \times 100 \mathrm{~m}$
Grid Size: $\quad 20 \mathrm{~m} \times 20 \mathrm{~m}$
X Interval: $\quad 0.25 \mathrm{~m}$
Y Interval: $\quad 1 \mathrm{~m}$

Stats

Max:	100.00	
Min:	-100.00	
Std Dev:	4.23	
Mean:	1.07	
Median:	0.97	
Composite Area:	1 ha	
Surveyed Area:	0.90865 ha	

Source Grids: 25
1 Col:0 Row:0 grids $121 . x g d$
2 Col:0 Row: 1 grids $122 . x g d$
3 Col:0 Row:2 grids\23.xgd

4 Col:0 Row:3 grids $24 . x$.xd	11 Col:2 Row:0 grids $\backslash 11 . x g d$
5 Col:0 Row:4 gridsl25.xgd	$12 \mathrm{Col}: 2$ Row:1 grids $\backslash 12 . \mathrm{xgd}$
6 Col:1 Row:0 grids $16 . x$ gd	13 Col:2 Row:2 grids $13 . x \mathrm{xg}$
7 Col:1 Row:1 gridsl17.xgd	14 Col:2 Row:3 grids $\backslash 14 . \mathrm{xgd}$
8 Col:1 Row:2 gridsl18.xgd	$15 \mathrm{Col}: 2 \mathrm{Row}: 4$ grids $\backslash 15 . \mathrm{xgd}$
9 Col:1 Row:3 grids $19 . x$ dg	16 Col:3 Row:0 grids $\backslash 16 . x g d$
$10 \mathrm{Col}: 1 \mathrm{Row} 4$ grids $120 . x \mathrm{xd}$	17 Col:3 Row:1 grids $\backslash 17 . x g d$
11 Col:2 Row:0 grids $\backslash 11 . x g d$	18 Col:3 Row:2 grids $\backslash 18 . x g d$
$12 \mathrm{Col}: 2 \mathrm{Row}$: 1 grids $\backslash 12 . x g d$	19 Col 3 3 Row:3 grids $19 . \mathrm{xgd}$
13 Col:2 Row:2 grids $\backslash 13 . x g d$	20 Col 3 Row:4 grids $120 . x \mathrm{xd}$
14 Col:2 Row:3 grids $\backslash 14 . x g d$	21 Col:4 Row:0 grids $21 . \mathrm{xgd}$
$15 \mathrm{Col}: 2 \mathrm{Row} 4$ grids $\backslash 15 . \mathrm{xgd}$	22 Col:4 Row: 1 grids $122 . x g d$
16 Col:3 Row:0 grids $\backslash 06 . x g d$	23 Col:4 Row:2 grids $223 . x g d$
17 Col:3 Row:1 grids $007 . x g d$	$24 \mathrm{Col}: 4$ Row:3 grids $24 . \mathrm{xgd}$
18 Col:3 Row:2 grids $008 . x \mathrm{xd}$	$25 \mathrm{Col}: 4$ Row: 4 grids $125 . \mathrm{xgd}$
19 Col:3 Row:3 grids $109 . x \mathrm{xd}$	
20 Col 3 3 Row:4 grids $\backslash 10 . \mathrm{xgd}$	Processed data
21 Col:4 Row:0 grids\01.xgd	Stats
$22 \mathrm{Col}: 4$ Row: 1 grids $002 . x g d$	Max: 2.20
23 Col:4 Row:2 grids $003 . x g d$	Min: -1.80
24 Col:4 Row:3 grids $004 . x \mathrm{xd}$	Std Dev: 0.79
25 Col:4 Row: 4 grids $105 . x g d$	Mean: 0.04
	Median: 0.01
Processed data	
Stats	Processes: 6
Max: 2.20	1 Base Layer
Min: -1.80	2 DeStripe Median Sensors: All
Std Dev: 0.91	3 De Stagger: Grids: All Mode: Both By: -1 intervals
Mean: 0.07	4 Despike Threshold: 1 Window size: 3 x 3
Median: 0.00	5 Interpolate: Y Doubled. 6 Clip from -1.80 to 2.20 nT
Processes: 6	
1 Base Layer	Area AE
2 DeStripe Median Sensors: All	Raw data
3 De Stagger: Grids: All Mode: Both By: -3 intervals	Survey corner coordinates (X/Y):
4 Despike Threshold: 1 Window size: 3x3	Northwest corner: $\quad 474750.83,166931.93 \mathrm{~m}$
5 Interpolate: Y Doubled.	Southeast corner: $\quad 474850.83,166831.93 \mathrm{~m}$
6 Clip from-1.80 to 2.20 nT	Direction of 1st Traverse: 0.6944 deg
	Collection Method: ZigZag
Area Y	Sensors: 2 @ 1.00 m spacing.
Raw data	Dummy Value: 2047.5
Survey corner coordinates (X/Y):	
Northwest corner: $\quad 474363.73,167385.87 \mathrm{~m}$	Dimensions
Southeast corner: $\quad 474463.73,167285.87 \mathrm{~m}$	Composite Size (readings): 400×100
Direction of 1st Traverse: 0.16 deg	Survey Size (meters): 100 mx 100 m
Collection Method: ZigZag	Grid Size: $\quad 20 \mathrm{mx} 20 \mathrm{~m}$
Sensors: 2 @ 1.00 m spacing.	X Interval: $\quad 0.25 \mathrm{~m}$
Dummy Value: 2047.5	Y Interval: 1 m
Dimensions	Stats
Composite Size (readings): 400×100	Max: 99.61
Survey Size (meters): 100 mx 100 m	Min: -54.33
Grid Size: $\quad 20 \mathrm{mx} 20 \mathrm{~m}$	Std Dev: $\quad 1.44$
X Interval: $\quad 0.25 \mathrm{~m}$	Mean: 0.12
Y Interval: 1 m	Median: 0.17
	Composite Area: 1 ha
Stats	Surveyed Area: 0.99965 ha
Max: 100.00	
Min: -100.00	Source Grids: 25
Std Dev: 12.26	1 Col:0 Row:0 grids $101 . x \mathrm{xd}$
Mean: -0.74	2 Col:0 Row:1 grids $02 . \mathrm{xgd}$
Median: $\quad-0.58$	3 Col:0 Row:2 gridsl03.xgd
Composite Area: 1 ha	4 Col:0 Row:3 grids $104 . x \mathrm{xd}$
Surveyed Area: 0.99225 ha	5 Col:0 Row:4 gridsl05.xgd
	6 Col:1 Row:0 grids $106 . x$ gd
Source Grids: 25	7 Col:1 Row:1 grids $007 . x \mathrm{xd}$
1 Col:0 Row:0 gridsl01.xgd	8 Col:1 Row:2 gridsl08.xgd
2 Col:0 Row:1 grids $02 . \mathrm{xgd}$	9 Col:1 Row:3 grids $09 . x$ xgd
3 Col:0 Row:2 gridsl03.xgd	$10 \mathrm{Col}: 1 \mathrm{Row} 4$ grids $\backslash 10 . \mathrm{xgd}$
4 Col:0 Row:3 grids $04 . \mathrm{xgd}$	11 Col:2 Row:0 grids $\backslash 11 . x g d$
5 Col:0 Row:4 gridsl05.xgd	$12 \mathrm{Col}: 2 \mathrm{Row}$: 1 grids $\backslash 12 . \mathrm{xgd}$
6 Col:1 Row:0 gridsl06.xgd	13 Col:2 Row:2 grids $\backslash 13 . x g d$
7 Col:1 Row:1 grids $007 . x \mathrm{gd}$	14 Col:2 Row:3 grids $\backslash 14 . x \mathrm{xd}$
8 Col:1 Row:2 grids $108 . x$ gd	15 Col:2 Row:4 grids $115 . x \mathrm{xd}$
9 Col:1 Row:3 gridsl09.xgd	16 Col:3 Row:0 grids $\backslash 16 . x g d$
$10 \mathrm{Col}: 1 \mathrm{Row} 4$ grids $\backslash 10 . \mathrm{xgd}$	17 Col:3 Row:1 grids $\backslash 17 . x g d$

18 Col:3 Row:2 grids $\backslash 18 . x g d$ 19 Col:3 Row:3 grids $\backslash 19 . x g d$
20 Col:3 Row:4 grids $120 . x g d$
21 Col:4 Row:0 grids $121 . x g d$
22 Col:4 Row: 1 grids $122 . x g d$
23 Col:4 Row:2 grids $123 . x g d$
24 Col:4 Row:3 grids 124 .xgd
$25 \mathrm{Col}: 4$ Row: 4 grids $25 . \mathrm{xgd}$

Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	0.34
Mean:	0.02
Median:	0.00

Processes: 6
Base Layer
DeStripe Median Sensors: All
De Stagger: Grids: All Mode: Both By: -1 intervals
Despike Threshold: 1 Window size: 3×3
Interpolate: Y Doubled.
Clip from -1.80 to 2.20 nT

Back of Bridge

Raw data

Survey corner coordinates (X/Y)
Northwest corner: $\quad 474959.52,167211.48 \mathrm{~m}$
Southeast corner: $\quad 475059.52,167111.48 \mathrm{~m}$
Direction of 1st Traverse: 0.7456 deg
Collection Method: $\quad \mathrm{ZigZag}$
Sensors:
Dummy Value: $\quad 2$ @ 1.00 m spacing.
2047.5

Dimensions	
Composite Size (readings): 400 x	
Survey Size (met	rs): 100 mx
Grid Size:	20 mx 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	99.94
Min:	-85.77
Std Dev:	2.64
Mean:	-0.11
Median:	-0.28
Composite Area:	1 ha
Surveyed Area:	1 ha

Source Grids: 25
Col:0 Row:0 grids $\backslash 01 . x g d$
Col:0 Row:1 grids\02.xgd
Col:0 Row:2 grids $103 . x$.xd
Col:0 Row:3 grids $104 . x g d$ Col:0 Row:4 grids $105 . x g d$ Col:1 Row:0 grids $106 . x g d$ Col:1 Row:1 grids\07.xgd Col:1 Row:2 grids $108 . x$ gd Col:1 Row:3 grids $009 . x g d$
0 Col:1 Row:4 grids $\backslash 10 . x g d$
1 Col:2 Row:0 grids $\backslash 11 . x g d$
Col:2 Row:1 grids $\backslash 12 . x g d$ Col:2 Row:2 grids $113 . x g d$ Col:2 Row:3 grids $114 . x g d$ Col:2 Row:4 grids $\backslash 15 . x g d$
6 Col:3 Row:0 grids $\backslash 16 . x g d$
Col:3 Row:1 grids $\backslash 17 . x g d$
18 Col:3 Row:2 grids $\backslash 18$.xgd
19 Col:3 Row:3 grids $\backslash 19 . x g d$ Col:3 Row:4 grids $\$ 20 . x g d$ Col:4 Row:0 grids $21 . x$.xd Col:4 Row:1 grids $22 . x$.xd Col:4 Row:2 gridsl23.xgd Col:4 Row:3 grids $\ 24 . x g d$

25 Col:4 Row:4 grids $\ 25 . x g d$

Processed data	
Stats	
Max:	2.20
Min:	-1.80
Std Dev:	0.55
Mean:	0.01
Median:	0.01

Processes: 6
1 Base Layer
2 De Stagger: Grids: All Mode: Both By: -1 intervals
3 DeStripe Median Sensors: All
4 Despike Threshold: 1 Window size: 3×3
5 Interpolate: Y Doubled.
6 Clip from - 1.80 to 2.20 nT

Area AI - north

Raw data

Survey corner coordinates (X/Y):

Northwest corner:	$474710.55,167486.57 \mathrm{~m}$
Southeast corner:	$474810.55,167366.57 \mathrm{~m}$

Direction of 1st Traverse: 0 deg

Collection Method:	ZigZag Sensors:
$2 @ 1.00 \mathrm{~m}$	

Dummy Value: 2047.5

Dimensions	
Composite Size (rea	adings): 400×120
Survey Size (meters)): 100 mx 120
Grid Size:	20 mx 20 m
X Interval:	0.25 m
Y Interval:	1 m
Stats	
Max:	100.00
Min:	-100.00
Std Dev:	39.52
Mean:	-7.52
Median:	-0.81
Composite Area:	1.2 ha
Surveyed Area:	1.004 ha

Source Grids: 26
1 Col:0 Row:0 grids\01.xgd
2 Col:0 Row:1 grids $02 . x g d$
3 Col:0 Row:2 grids $003 . x g d$
4 Col:0 Row:3 grids $104 . x g d$
5 Col:0 Row:4 grids 105 .xgd
6 Col:1 Row:0 grids $06 . x$.xd
7 Col:1 Row:1 grids $107 . x g d$
8 Col:1 Row:2 grids $108 . x g d$
9 Col:1 Row:3 gridsl09.xgd
10 Col:1 Row:4 grids $\backslash 10 . x g d$
11 Col:2 Row:0 grids $111 . x g d$
12 Col:2 Row:1 grids $\backslash 12 . x g d$
13 Col:2 Row:2 grids 12 .xgd
14 Col:2 Row:3 grids $14 . x$.xd
15 Col:2 Row:4 grids $\backslash 15 . x g d$
16 Col:3 Row:0 grids $\backslash 16 . x g d$
17 Col:3 Row:1 grids $\backslash 17 . x g d$
18 Col:3 Row:2 grids 18 .xgd
19 Col:3 Row:3 grids $19 . x g d$
20 Col:3 Row: 4 grids $\ 21$.xgd
21 Col:3 Row:5 grids $120 . x g d$
22 Col:4 Row:0 grids $22 . x g d$
23 Col:4 Row: 1 grids 123 .xgd
24 Col:4 Row:2 grids $24 . x$.xd
25 Col:4 Row:3 grids $25 . x g d$
26 Col:4 Row:4 grids\26.xgd

Processed data

Stats
Max: $\quad 2.20$
Min: $\quad-1.80$

Legend

Positive anomaly - possible cut
feature (archaeology)
Weak positive anomaly
possible cut feature
Negative anomaly - possible
earthwork (archaeology)
Positive anomaly - probably of geological origin
Positive anomaly - probably of agricultural origin

Ferrous spike - probable ferrous object
Magnetic disturbance caused by nearby metal objects/services

67000

SU 74400
FEA 15/27

Plate 1. Hyde End Road Farm west, looking south-west.

Plate 3. Area G (main field), looking north-east.

Plate 2. Hyde End Road Farm east, looking south.

Plate 4. Area J, looking south-east.

FEA 15/27
Farley Hall Estate, Arborfield, Berkshire, 2015
Geophysical Survey (Magnetic)
Plates 1-4.

Plate 5. Area L, looking north-west.

Plate 7. Areas N and O, looking south.

Plate 6. Area M, looking east.

Plate 8. Lawtons, looking south-west.

Farley Hall Estate, Arborfield,
Geophysical Survey (Magnetic)
Plates 5-8.

Plate 9. Lovegroves, looking north.

Plate 11. Area X (western grids), looking east.

Plate 10. Area W, looking south-west.

Plate 12. Area X (north-eastern grids), looking north-west.

FEA 15/27
Farley Hall Estate, Arborfield,
Berkshire, 2015
Geophysical Survey (Magnetic)
Plates 9-12.

Plate 13. Area Y, looking south.

Plate 15. Back of Bridge, looking south.

Plate 14. Area AE, looking east.

Plate 16. Area AI, looking east.

FEA 15/27
Farley Hall Estate, Arborfield,
Berkshire, 2015
Geophysical Survey (Magnetic)
Plates 13-16.

THAMESVALLEY ARCHAEOLOGICAL S E R V I C E S

TIME CHART

Calendar Years

Modern AD 1901
Victorian AD 1837
Post Medieval AD 1500
Medieval AD 1066
Saxon AD 410
Roman AD 43
Iron Age Iron Age __ 750 BCBC/AD
Bronze Age: Late 1300 BC
Bronze Age: Middle 1700 BC
Bronze Age: Early 2100 BC
Neolithic: Late 3300 BC
Neolithic: Early 4300 BC
Mesolithic: Late 6000 BC
Mesolithic: Early 10000 BC
Palaeolithic: Upper 30000 BC
Palaeolithic: Middle 70000 BC
Palaeolithic: Lower 2,000,000 BC

Thames Valley Archaeological Services Ltd, 47-49 De Beauvoir Road, Reading, Berkshire, RG1 5NR

Tel: 01189260552
Fax: 01189260553
Email: tvas@tvas.co.uk
Web: www.tvas.co.uk

[^0]: Report edited/checked by: Steve Ford $\checkmark 28.05 .15$
 Andrew Mundin $\checkmark 28.05 .15$

[^1]: Source Grids: 36
 Col:0 Row:0 grids\01.xgd
 Col:0 Row:1 grids $002 . x g d$
 Col:0 Row:2 grids\03.xgd
 Col:0 Row:3 grids $104 . x g d$
 Col:0 Row:4 grids\05.xgd
 Col:0 Row:5 grids $006 . x g d$
 Col:0 Row:6 grids $107 . x g d$
 Col:0 Row:7 grids $108 . x g d$
 Col:1 Row:0 grids $109 . x g d$
 10 Col:1 Row:1 grids $\backslash 10 . x g d$
 11 Col:1 Row:2 grids $\backslash 11 . x g d$
 $12 \mathrm{Col}: 1$ Row: 3 grids $\backslash 12 . x g d$
 13 Col:1 Row:4 grids $\backslash 13 . x g d$
 14 Col:1 Row: 5 grids $\backslash 14 . x g d$
 15 Col:1 Row:6 grids $\backslash 15 . x g d$

[^2]: Source Grids: 103
 Col:0 Row:0 grids $\backslash 01 . x g d$
 Col:0 Row:1 grids)02.xgd
 Col:0 Row:2 grids $103 . x g d$
 Col:0 Row:3 grids $104 . x g d$
 Col:0 Row:4 grids\05.xgd
 Col:0 Row:5 grids $\backslash 06 . x g d$
 Col:0 Row:6 grids\07.xgd
 Col:0 Row:7 grids $108 . x g d$
 9 Col:0 Row:8 gridsl09.xgd
 10 Col:0 Row:9 grids $\backslash 10 . x g d$
 11 Col:0 Row:10 grids $111 . x g d$
 12 Col:0 Row:11 grids $\backslash 12 . x g d$
 13 Col:0 Row:12 grids $113 . x g d$
 14 Col:1 Row:0 grids $\backslash 14 . x g d$
 15 Col:1 Row:1 grids $\backslash 15 . x g d$
 16 Col:1 Row:2 grids $\backslash 16 . x g d$
 17 Col:1 Row:3 grids $\backslash 17 . x g d$
 18 Col:1 Row: 4 grids $\backslash 18 . x g d$
 19 Col:1 Row:5 grids 19 .xgd
 20 Col:1 Row: 6 grids $120 . x g d$
 21 Col:1 Row:7 grids $121 . x g d$
 22 Col:1 Row:8 gridsl22.xgd

