TH A M E S
 V A L L E Y

S E R V I C E S

Land at Hill Farm, Rothersthorpe, Northamptonshire

Geophysical Survey (Magnetic)

by Tim Dawson

Land at Hill Farm, Rothersthorpe, Northamptonshire

Geophysical Survey (Magnetic) Report
For Armour Heritage Ltd

by Tim Dawson

Thames Valley Archaeological Services Ltd

Summary

Site name: Land at Hill Farm, Rothersthorpe, Northamptonshire
Grid reference: SP 70005694

Site activity: Magnetometer survey
Date and duration of project: 24th August - 8th September 2015
Project manager: Steve Ford
Site supervisor: Tim Dawson
Site code: BRR 15/166
Area of site: 12.47ha
Summary of results: Two weak positive linear anomalies were identified, however these most likely indicate the location of a previous field boundary that is shown crossing the field at this point on modern maps but which had been removed at some point prior to the survey. The majority of the field was subject to a large amount of magnetic noise, probably caused by metal refuse that was spread across the topsoil, and, additionally, the line of a modern service was identified in the south-western corner of the area.

Location of archive: The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website: www.tvas.co.uk/reports/reports.asp.

[^0]
Land at Hill Farm, Rothersthorpe, Northamptonshire A Geophysical Survey (Magnetic)

by Tim Dawson

Report 15/166

Introduction

This report documents the results of a geophysical survey (magnetic) carried out on a plot of land at Hill Farm, near Rothersthorpe, Northamptonshire (SP 7000 5694) (Fig. 1). The work was commissioned by Ms Sue Farr of Armour Heritage Ltd, Greystone Cottage, Trudoxhill, Frome, Somerset BA11 5DP.

Planning permission is to be sought from South Northamptonshire Council for the construction of a solar PV array. A geophysical survey was requested in order to ascertain the presence/absence and scale of any as yet unrecorded archaeological remains which may be present on the site. This is in accordance with the Department for Communities and Local Government's National Planning Policy Framework (NPPF 2012), and the Council's policies on archaeology. The fieldwork was undertaken by Kyle Beaverstock, Rebecca Constable, Ben Tebbit, Tim Dawson, Anna Ginger and Laurie Greenaway between 24th August and 8th September 2015 and the site code is BRR 15/166.

The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

Location, topography and geology

The survey area consists of a field some 12.47 ha in area on the western side of an unnamed lane $c .1 \mathrm{~km}$ west of the village of Rothersthorpe, Northamptonshire (Fig. 1). The historic centre of Northampton lies $c .7 \mathrm{~km}$ to the east with the River Nene some 3 km to the north and the Grand Union Canal $c .750 \mathrm{~m}$ to the south-west. The site itself is roughly rectangular with the north-eastern corner removed by a carpet recycling facility (Fig. 2). It is bordered by hedgerows and mature trees on all sides except where the carpet recycling facility is demarked by an earth bund and line of newly-planted trees. At the time of survey the field had recently been harvested of its wheat crop with several piles of loose straw left lying on the ground (Pls 1-2). The eastern end of the field is a plateau at $c .97 \mathrm{~m}$ above Ordnance Datum, with the ground dropping down to $c .84 \mathrm{~m}$ at the western end. The underlying geology is recorded as Whitby Mudstone Formation across the majority of the field with bands of Marlstone Rock (limestone) and Dyrham Formation (siltstone and mudstone) towards the bottom of the slope on
the western edge of the field (BGS 1969). Conditions during the first days of the survey were very wet with heavy persistent rain but this soon dried up leaving overcast skies and rapidly drying firm ground.

Site history and archaeological background

A desk-based assessment has been produced detailing the site history and archaeological background (Armour Chelu 2015). In summary the study concluded that the immediate area of the site had only a limited amount of known archaeological features, consisting primarily of medieval ridge and furrow earthworks. The wider region, however contains several archaeological sites representing the later prehistoric, Roman and medieval periods, including the remains of an Iron Age to Roman settlement to the west of the site. The desk-based assessment concluded that the site lies within an area which has potential for further Iron Age to Roman settlement evidence as well as features relating to medieval and post-medieval agricultural practice.

Methodology

Sample interval

Data collection required a temporary grid to be established across the survey area using wooden pegs at 20 m intervals with further subdivision where necessary. Readings were taken at 0.25 m intervals along traverses 1 m apart. This provides 1600 sampling points across a full $20 \mathrm{~m} \times 20 \mathrm{~m}$ grid (English Heritage 2008), providing an appropriate methodology balancing cost and time with resolution.

The Grad 601-2 has a typical depth of penetration of 0.5 m to 1.0 m . This would be increased if strongly magnetic objects have been buried in the site. Under normal operating conditions it can be expected to identify buried features $>0.5 \mathrm{~m}$ in diameter. Features which can be detected include disturbed soil, such as the fill of a ditch, structures that have been heated to high temperatures (magnetic thermoremnance) and objects made from ferro-magnetic materials. The strength of the magnetic field is measured in nano Tesla (nT), equivalent to 10^{-9} Tesla, the SI unit of magnetic flux density.

Equipment

The purpose of the survey was to identify geophysical anomalies that may be archaeological in origin in order to inform a targeted archaeological investigation of the site prior to development. The survey and report generally follow the recommendations and standards set out by both English Heritage (2008) and the Chartered Institute for Archaeologists (2002, 2011, 2014).

Magnetometry was chosen as a survey method as it offers the most rapid ground coverage and responds to a wide range of anomalies caused by past human activity. These properties make it ideal for the fast yet detailed surveying of an area.

The detailed magnetometry survey was carried out using a dual sensor Bartington Instruments Grad 601-2 fluxgate gradiometer. The instrument consists of two fluxgates mounted 1 m vertically apart with a second set positioned at 1 m horizontal distance. This enables readings to be taken of both the general background magnetic field and any localised anomalies with the difference being plotted as either positive or negative buried features. All sensors are calibrated to cancel out the local magnetic field and react only to anomalies above or below this base line. On this basis, strong magnetic anomalies such as burnt features (kilns and hearths) will give a high response as will buried ferrous objects. More subtle anomalies such as pits and ditches, can be seen from their infilling soils containing higher proportions of humic material, rich in ferrous oxides, compared to the undisturbed subsoil. This will stand out in relation to the background magnetic readings and appear in plan following the course of a linear feature or within a discrete area.

A Trimble Geo7x handheld GPS system with sub-decimetre real-time accuracy was used to tie the site grid into the Ordnance Survey national grid. This unit offers both real-time correction and post-survey processing; enabling a high level of accuracy to be obtained both in the field and in the final post-processed data.

Data gathered in the field was processed using the TerraSurveyor software package. This allows the survey data to be collated and manipulated to enhance the visibility of anomalies, particularly those likely to be of archaeological origin. The table below lists the processes applied to this survey, full survey and data information is recorded in Appendix 1.

Process

Clip from -8.00 to 12.00 nT

Interpolate: y doubled

De-stripe: median, all sensors

De-spike: threshold 1 , window size 3×3

De-stagger: all grids, both by -2 intervals

Effect

Enhance the contrast of the image to improve the appearance of possible archaeological anomalies.

Increases the resolution of the readings in the y axis, enhancing the shape of anomalies.
Removes the striping effect caused by differences in sensor calibration, enhancing the visibility of potential archaeological anomalies.
Compresses outlying magnetic points caused by interference of metal objects within the survey area.

Cancels out effects of site's topography on irregularities in the traverse speed.

Once processed, the results are presented as a greyscale plot shown in relation to the site (Fig. 3), followed by a second plan to present the abstraction and interpretation of the magnetic anomalies (Fig. 4). Anomalies are shown as colour-coded lines, points and polygons. The grid layout and georeferencing information (Fig. 2) is
prepared in EasyCAD v.7.58.00, producing a .FC7 file format, and printed as a .PDF for inclusion in the final report.

The greyscale plot of the processed data is exported from TerraSurveyor in a georeferenced portable network graphics (.PNG) format, a raster image format chosen for its lossless data compression and support for transparent pixels, enabling it to easily be overlaid onto an existing site plan. The data plot is combined with grid and site plans in QGIS 2.6.1 Brighton and exported again in .PNG format in order to present them in figure templates in Adobe InDesign CS5.5, creating .INDD file formats. Once the figures are finalised they are exported in .PDF format for inclusion within the finished report.

Results

The magnetic plot of the survey area (Fig. 3) revealed only a very small number of anomalies which may represent features of potential archaeological interest (Fig. 4). These consisted of two short lengths of weak positive linear anomaly, probably indicating the presence of buried ditch-type features, which were noted towards the northern and southern edges of the field [Fig. 4: 1, 2]. The modern Ordnance Survey Explorer map (Fig. 1) shows a field boundary cutting across the current field on a north-south orientation and these anomalies probably represent sections of this. The majority of the field was subject to scattered magnetic noise with areas of greater density [3, 4], particularly in the region of the carpet recycling facility [3]. A wide range of metallic objects were noted in the topsoil across the whole field during the survey and it is likely that the magnetic noise is caused by these. The only other anomaly of note is the strong bipolar linear which cuts across the southwestern corner of the field [5]. This type of signature usually denotes the presence of a buried modern service, such as a pipe or cable.

Conclusion

The geophysical survey of the land at Hill Farm was successfully undertaken although the results were largely negative. Only two weak positive linear anomalies were identified, however these most likely indicate the location of a previous field boundary that is shown crossing the field at this point on modern maps but which had been removed at some point prior to the survey. The majority of the field was subject to a large amount of magnetic noise, probably caused by metal refuse that was spread across the topsoil, and, additionally, the line of a modern service was identified in the south-western corner of the area. The magnetic noise and the strong
signature of the buried service may potentially have masked any weaker anomalies caused by buried archaeological features.

References

Armour Chelu, R, 2015, 'Land at Kislingbury, Northamptonshire; Proposed Solar AV Array: Historic Environment Desk Based Assessment', Armour Heritage unpublished report AH278/1, Frome
BGS, 1969, British Geological Survey, 1:50000, Sheet 202, Solid and Drift Edition, Keyworth CIfA, 2011, Standard and Guidance: for archaeological geophysical survey, Reading
CIfA, 2014, Standard and Guidance: for archaeological geophysical survey, Reading
English Heritage, 2008, Geophysical Survey in Archaeological Field Evaluation, English Heritage, Portsmouth (2nd edn)
IfA, 2002, The Use of Geophysical Techniques in Archaeological Evaluation, IFA Paper No. 6, Reading NPPF, 2012, National Planning Policy Framework, Dept Communities and Local Government, London

Appendix 1. Survey and data information

115 Col:4 Row:29 grids $\backslash 115 . x g d$ 116 Col:5 Row:0 gridsl116.xgd 117 Col:5 Row:1 grids $\ 117 . x g d$ $118 \mathrm{Col}: 5$ Row:2 grids $1118 . x g d$ 119 Col:5 Row:3 grids $1119 . x g d$ 120 Col:5 Row:4 grids $\backslash 120 . x g d$ 121 Col:5 Row:5 grids 121 .xgd 122 Col:5 Row:6 grids $122 . x g d$ 123 Col:5 Row:7 grids $\backslash 123$.xgd 124 Col:5 Row:8 grids $\backslash 124 . x g d$ 125 Col:5 Row:9 grids\125.xgd 126 Col:5 Row: 10 grids $\backslash 126 . x g d$ 127 Col:5 Row:11 grids $\backslash 127 . x g d$ 128 Col:5 Row:12 grids $\backslash 128 . x g d$ 129 Col:5 Row: 13 grids $\backslash 129 . x g d$ 130 Col:5 Row:14 grids $\backslash 130 . x g d$ 131 Col:5 Row: 15 grids $\backslash 131 . x g d$ 132 Col:5 Row:16 grids $\backslash 132 . x g d$ 133 Col:5 Row: 17 grids $\backslash 133 . x g d$ 134 Col:5 Row:18 grids $\backslash 134 . x g d$ 135 Col:5 Row:19 grids $\backslash 135 . x g d$ 136 Col:5 Row:20 grids $\backslash 136 . x g d$ 137 Col:5 Row:21 grids $\backslash 137 . x g d$ 138 Col:5 Row:22 grids $\backslash 138 . x g d$ 139 Col:5 Row:23 grids $\backslash 139 . x g d$ 140 Col:5 Row:24 grids $\backslash 140 . x g d$ 141 Col:5 Row: 25 grids $\backslash 141 . x g d$ 142 Col:5 Row:26 grids $\backslash 142 . x g d$ 143 Col:5 Row:27 grids $\backslash 143 . x g d$ 144 Col:5 Row:28 grids $\backslash 144 . x g d$ 145 Col:5 Row:29 grids $\backslash 145 . x g d$ 146 Col:6 Row:0 grids\146.xgd 147 Col:6 Row: 1 grids $147 . x g d$ 148 Col:6 Row:2 grids $148 . x g d$ 149 Col:6 Row:3 grids $\backslash 149 . x g d$ 150 Col:6 Row:4 grids $\backslash 150 . x g d$ 151 Col:6 Row:5 grids 151 .xgd 152 Col: 6 Row: 6 grids $\backslash 152$.xgd 153 Col:6 Row:7 grids 1153 .xgd 154 Col: 6 Row:8 grids $\backslash 154 . x g d$ 155 Col:6 Row:9 grids $1155 . x g d$ 156 Col:6 Row:10 grids $1156 . x g d$ 157 Col:6 Row: 11 grids $\backslash 157 . x g d$ 158 Col:6 Row:12 grids $\backslash 158 . x g d$ 159 Col:6 Row:13 grids $\backslash 159 . x g d$ 160 Col:6 Row:14 grids $\backslash 160 . x g d$ 161 Col:6 Row: 15 grids $1161 . x g d$ 162 Col: 6 Row: 16 grids $\backslash 162$ xgd 163 Col: 6 Row: 17 grids $\backslash 163$.xgd 164 Col:6 Row:18 grids $\backslash 164 . x g d$ 165 Col:6 Row:19 grids $\backslash 165 . x g d$ 166 Col:6 Row:20 grids $1166 . x g d$ 167 Col:6 Row:21 grids $\backslash 167 . x g d$ 168 Col:6 Row:22 grids $1168 . x g d$ 169 Col:6 Row:23 grids $\backslash 169 . x g d$ 170 Col:6 Row: 24 grids $\backslash 170 . x g d$ 171 Col:6 Row: 25 grids $1171 . x g d$ 172 Col:6 Row:26 grids $\backslash 172 . x g d$ 173 Col:6 Row:27 grids $\backslash 173 . x g d$ 174 Col:6 Row:28 grids $\backslash 174 . x g d$ 175 Col:6 Row:29 grids $\backslash 175 . x g d$ 176 Col:6 Row:30 grids $1176 . x g d$ 177 Col:7 Row:0 grids $\backslash 177 . x g d$ 178 Col:7 Row: 1 grids $178 . x$.xd 179 Col:7 Row: 2 grids $\backslash 179 . x g d$ 180 Col:7 Row:3 grids 180 .xgd 181 Col:7 Row: 4 grids 181 .xgd 182 Col:7 Row:5 grids 1822 xgd 183 Col:7 Row: 6 grids $183 . x g d$ 184 Col:7 Row:7 grids $\backslash 184 . x g d$ 185 Col:7 Row:8 grids $185 . x g d$ 186 Col:7 Row:9 grids $186 . x g d$ 187 Col:7 Row: 10 grids $1187 . x g d$ 188 Col:7 Row:11 grids $\backslash 188 . x g d$ 189 Col:7 Row: 12 grids $1189 . x g d$ 190 Col:7 Row:13 grids $\backslash 190 . x g d$

191 Col:7 Row:14 grids $191 . x g d$ 192 Col:7 Row:15 grids $\backslash 192$ xgd 193 Col:7 Row: 16 grids $\backslash 193 . x g d$ 194 Col:7 Row: 17 grids $\backslash 194 . x g d$ 195 Col:7 Row: 18 grids $\backslash 195 . x g d$ 196 Col:7 Row:19 grids $196 . x g d$ 197 Col:7 Row:20 grids $\backslash 197 . x g d$ 198 Col:7 Row:21 grids $\backslash 198 . x g d$ 199 Col:7 Row:22 grids 1999 xgd 200 Col:7 Row:23 gridsl200.xgd 201 Col:7 Row:24 grids $1201 . x g d$ 202 Col:7 Row:25 gridsl202.xgd 203 Col:7 Row:26 grids $1203 . x g d$ 204 Col:7 Row:27 grids $204 . x g d$ 205 Col:7 Row:28 grids 1205 .xgd 206 Col:7 Row:29 grids $206 . x g d$ 207 Col:7 Row:30 gridsl207.xgd $208 \mathrm{Col}: 8$ Row:0 grids $1208 . x g d$ $209 \mathrm{Col}: 8$ Row: 1 grids $1209 . x g d$ $210 \mathrm{Col}: 8$ Row:2 grids $210 . x g d$ $211 \mathrm{Col}: 8$ Row:3 grids $1211 . x g d$ $212 \mathrm{Col}: 8$ Row: 4 grids $1212 . x g d$ $213 \mathrm{Col}: 8$ Row:5 grids $\backslash 213 . x g d$ $214 \mathrm{Col}: 8$ Row: 6 grids $1214 . x g d$ $215 \mathrm{Col}: 8$ Row: 7 grids $1215 . x$ gd $216 \mathrm{Col}: 8$ Row:8 grids $1216 . x g d$ $217 \mathrm{Col}: 8$ Row:9 grids $1217 . x g d$ $218 \mathrm{Col}: 8$ Row:10 grids $1218 . x g d$ 219 Col:8 Row:11 grids $1219 . x g d$ $220 \mathrm{Col}: 8$ Row: 12 grids $1220 . x g d$ $221 \mathrm{Col}: 8$ Row:13 grids $1221 . x g d$ $222 \mathrm{Col}: 8$ Row: 14 grids 1222 .xgd 223 Col: 8 Row: 15 grids 2223 .xgd 224 Col: 8 Row:16 grids $1224 . x g d$ $225 \mathrm{Col}: 8$ Row: 17 grids $\backslash 225$.xgd $226 \mathrm{Col}: 8$ Row: 18 grids $1226 . x g d$ $227 \mathrm{Col}: 8$ Row: 19 grids $1227 . x g d$ $228 \mathrm{Col}: 8$ Row:20 grids $2228 . x g d$ 229 Col: 8 Row:21 grids $229 . x g d$ $230 \mathrm{Col}: 8$ Row: 22 grids $\backslash 230$.xgd $231 \mathrm{Col}: 8$ Row:23 grids $1231 . x g d$ $232 \mathrm{Col}: 8$ Row: 24 grids $1232 . x g d$ 233 Col: 8 Row:25 grids $\backslash 233$.xgd 234 Col:8 Row:26 grids $1234 . x g d$ $235 \mathrm{Col}: 8$ Row:27 grids $1235 . \mathrm{xgd}$ $236 \mathrm{Col}: 8$ Row:28 grids $2336 . x g d$ $237 \mathrm{Col}: 8$ Row:29 grids $1237 . x g d$ $238 \mathrm{Col}: 8$ Row:30 grids $2338 . x g d$ $239 \mathrm{Col}: 8$ Row:31 grids $1239 . x g d$ $240 \mathrm{Col}: 9$ Row:0 grids $1240 . x g d$ 241 Col:9 Row:1 grids $1241 . x g d$ 242 Col:9 Row:2 grids 1242 .xgd 243 Col:9 Row:3 grids 1243 .xgd 244 Col:9 Row:4 grids $1244 . x g d$ 245 Col:9 Row:5 grids $\backslash 245$.xgd 246 Col:9 Row:6 grids 1246 .xgd 247 Col:9 Row:7 grids $1247 . x g d$ 248 Col:9 Row: 8 grids 248 .xgd 249 Col:9 Row:9 grids $1249 . x g d$ 250 Col:9 Row: 10 grids $1250 . x g d$ 251 Col:9 Row:11 grids $1251 . x g d$ 252 Col:9 Row:12 grids 1252 xgd 253 Col:9 Row: 13 grids 1253 .xgd 254 Col:9 Row: 14 grids $254 . x g d$ 255 Col:9 Row: 15 grids 1255 .xgd 256 Col:9 Row:16 grids $2256 . x g d$ 257 Col:9 Row:17 grids $2527 . x g d$ 258 Col:9 Row: 18 grids 258 .xgd 259 Col:9 Row:19 grids $2259 . x g d$ 260 Col:9 Row:20 grids 1260 xgd 261 Col:9 Row:21 grids\261.xgd 262 Col:9 Row: 22 grids $1262 . x g d$ 263 Col:9 Row:23 grids 263 .xgd 264 Col:9 Row:24 grids $264 . x g d$ 265 Col:9 Row:25 grids $\ 265 . x g d$ 266 Col:9 Row:26 grids\266.xgd

267 Col:9 Row:27 grids $\backslash 267 . x g d$ 268 Col:9 Row:28 grids $1268 . x g d$ 269 Col:9 Row:29 grids $1269 . x g d$ 270 Col:9 Row:30 grids $1270 . x g d$ 271 Col:9 Row:31 grids $1271 . x g d$ 272 Col:10 Row:0 grids $1272 . x g d$ $273 \mathrm{Col}: 10$ Row: 1 grids $1273 . x g d$ 274 Col:10 Row:2 grids $1274 . x g d$ $275 \mathrm{Col}: 10$ Row:3 grids $1275 . x g d$ 276 Col:10 Row: 4 grids $1276 . x g d$ 277 Col:10 Row:5 grids $1277 . x g d$ $278 \mathrm{Col}: 10$ Row: 6 grids $1278 . x g d$ 279 Col:10 Row: 7 grids $\backslash 279 . x g d$ 280 Col:10 Row:8 grids $1280 . x g d$ 281 Col:10 Row:9 grids $281 . x g d$ 282 Col:10 Row:10 gridsl282.xgd $283 \mathrm{Col}: 10$ Row:11 gridsl283.xgd 284 Col:10 Row:12 grids $1284 . x g d$ 285 Col:10 Row:13 gridsl285.xgd 286 Col:10 Row:14 grids $286 . x g d$ 287 Col:10 Row:15 gridsl287.xgd 288 Col:10 Row:16 gridsl288.xgd 289 Col:10 Row:17 grids $289 . x g d$ 290 Col:10 Row:18 gridsl290.xgd 291 Col:10 Row:19 grids 1291 .xgd 292 Col:10 Row:20 gridsl292.xgd 293 Col:10 Row:21 gridsl293.xgd 294 Col:10 Row:22 gridsl294.xgd 295 Col:10 Row:23 gridsl295.xgd 296 Col:10 Row:24 grids 1296 .xgd 297 Col:10 Row:25 gridsl297.xgd 298 Col:10 Row:26 gridsl298.xgd 299 Col:10 Row:27 gridsl299.xgd 300 Col:10 Row:28 grids\300.xgd $301 \mathrm{Col}: 10$ Row:29 gridsl301.xgd 302 Col:10 Row:30 grids $302 . x g d$ $303 \mathrm{Col}: 10$ Row:31 grids $303 . x g d$ 304 Col:11 Row:0 grids $304 . x g d$ 305 Col:11 Row:1 grids $3305 . x g d$ 306 Col:11 Row:2 grids $1306 . x g d$ 307 Col:11 Row:3 grids 3 307.xgd $308 \mathrm{Col}: 11$ Row: 4 grids $1308 . x g d$ 309 Col:11 Row:5 grids $1309 . x g d$ 310 Col:11 Row:6 grids $1310 . x g d$ 311 Col:11 Row:7 grids $1311 . x g d$ 312 Col:11 Row:8 grids $312 . x g d$ 313 Col:11 Row:9 grids $3313 . x g d$ $314 \mathrm{Col}: 11$ Row: 10 grids $3314 . x g d$ 315 Col:11 Row:11 grids $3315 . x g d$ 316 Col:11 Row: 12 grids $3317 . x g d$ 317 Col:11 Row:13 gridsl319.xgd 318 Col:11 Row:14 grids $1320 . x g d$ 319 Col:11 Row: 15 grids $3321 . x g d$ $320 \mathrm{Col}: 11$ Row:16 grids $3222 . x g d$ 321 Col:11 Row:17 grids 1323 .xgd $322 \mathrm{Col}: 11$ Row: 18 grids $3324 . x g d$ 323 Col:11 Row:19 grids $1325 . x g d$ 324 Col:11 Row:20 grids 1326 .xgd 325 Col:11 Row:21 grids $3227 . x g d$ 326 Col:11 Row:22 grids $1328 . x g d$ 327 Col:11 Row:23 grids $1329 . x g d$ 328 Col:11 Row:24 gridsl330.xgd $329 \mathrm{Col}: 11$ Row:25 grids $1331 . x g d$

330 Col:11 Row:26 grids\332.xgd 331 Col:11 Row:27 grids 3333 .xgd 332 Col:11 Row:28 grids $1335 . x g d$ 333 Col:11 Row:29 grids\337.xgd 334 Col:11 Row:30 grids $1339 . x g d$ 335 Col:11 Row:31 grids $341 . x g d$ 336 Col:12 Row:11 grids $\backslash 316 . x g d$ 337 Col:12 Row:12 grids $318 . x g d$ 338 Col:12 Row:27 grids $3334 . x g d$ 339 Col:12 Row:28 grids 1336 .xgd 340 Col:12 Row:29 grids $\backslash 338 . x g d$ 341 Col:12 Row:30 grids $3440 . x g d$ $342 \mathrm{Col}: 12$ Row:31 grids $342 . \mathrm{xgd}$

Processed data

Stats
Max: $\quad 12.00$
Min: $\quad-8.00$
Std Dev: 4.91
Mean: $\quad 0.28$
Median: 0.03
Composite Area: $\quad 17.92$ ha Surveyed Area: $\quad 11.634 \mathrm{ha}$

Processes: 6
1 Base Layer
2 De Stagger: Grids: All Mode: Both By: -2 intervals
3 DeStripe Median Sensors: All
4 Despike Threshold: 1 Window size: 3×3
5 Interpolate: Y Doubled.
6 Clip from -8.00 to 12.00 nT

Georeferencing
A: E 470020.22, N 257044.54
B: E 470076.15, N 256844.12

Geophysical Survey (Magnetic)
Figure 2. Survey grid layout.

BRR 15/166

Legend

Positive anomaly - possible cut feature (archaeology)

Weak positive anomaly -
possible cut feature
Negative anomaly - possible earthwork (archaeology)

Positive anomaly - probably of geological origin
Positive anomaly - probably of agricultural origin

Ferrous spike - probable ferrous object
Magnetic disturbance caused by nearby metal objects/services Scattered ferromagnetic debris

57000

56800

BRR 15/166

Plate 1. Survey area, looking north-east towards the carpet recycling facility.

Plate 2. Survey area, looking west.
FHF 13/120
Land at Hill Farm, Rothersthorpe, Northamptonshire, 2015
Geophysical Survey (Magnetic)
Plates 1-2.

THAMESVALLEY ARCHAEOLOGICAL S E R V I C E S

TIME CHART

Calendar Years

Modern AD 1901
Victorian AD 1837
Post Medieval AD 1500
Medieval AD 1066
Saxon AD 410
Roman AD 43
Iron Age Iron Age __ 750 BCBC/AD
Bronze Age: Late 1300 BC
Bronze Age: Middle 1700 BC
Bronze Age: Early 2100 BC
Neolithic: Late 3300 BC
Neolithic: Early 4300 BC
Mesolithic: Late 6000 BC
Mesolithic: Early 10000 BC
Palaeolithic: Upper 30000 BC
Palaeolithic: Middle 70000 BC
Palaeolithic: Lower 2,000,000 BC

Thames Valley Archaeological Services Ltd, 47-49 De Beauvoir Road, Reading, Berkshire, RG1 5NR

Tel: 01189260552
Fax: 01189260553
Email: tvas@tvas.co.uk
Web: www.tvas.co.uk

[^0]: Report edited/checked by: Steve Ford \checkmark 29.09.15
 Steve Preston \checkmark 29.09.15

