T V A S

EAST MIDLANDS

Land at Place Farm, Ingham, Suffolk

Archaeological Evaluation
by Andrew Weale and Andy Taylor

Land at Place Farm, Ingham, Suffolk

An Archaeological Evaluation

For Armour Heritage Ltd
by Andrew Weale and Andy Taylor
Thames Valley Archaeological Services Ltd

Summary

Site name: Land at Place Farm, Ingham, Suffolk
Grid reference: TL 84926988

Site activity: Evaluation
Date and duration of project: 5th October- $10^{\text {th }}$ Dec 2018
Project coordinator: Danielle Milbank
Site supervisor: Andrew Weale
Site code: PFI 18/2167
Parish Code: ING037
OASiS reference: THAMESVA1-329896
HER Event Number: ING037
Area of site: c. 24.7ha
Summary of results: The evaluation was carried out as intended and in total 220 trenches were excavated covering the area of proposed development and associated service corridors. This work revealed a wide range archaeological deposits with a range of periods represented from the later Neolithic through to medieval times. The flintwork recovered also indicated Mesolithic and possibly earlier Neolithic activity. The main periods or deposits of note comprised what is thought to be a 'Burnt Mound' of Bronze Age date, two cluster of earlier prehistoric features a cluster of undated ditches and a cluster of Roman features. A number of other undated and isolated features were also recorded.

Location and reference of archive: The archive is presently held at TVAS East Midlands , Wellingborough and will be deposited with the County Archaeological Service's Store in due course subject to landowner agreement.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website:
www.tvas.co.uk/reports/reports.asp.

Report edited/checked by:	Steve Ford $\quad \checkmark 06.09 .19$	
	Steve Preston	$\checkmark 06.09 .19$

Land at Place Farm, Ingham, Suffolk
 An Archaeological Evaluation

by Andy Weale and Andy Taylor

Report 18/167

Introduction

This report documents the results of an archaeological field evaluation carried out at Place Farm, Ingham, Suffolk (TL 8492 6988) (Fig. 1). The work was commissioned by Ms Sue Farr of Armour Heritage Ltd, Greystone Cottage, Trudoxhill, Frome, Somerset BA11 5DP.

A planning application (DC/18/1039/FUL) has been submitted to St. Edmundsbury Borough Council for the development of a commercial glasshouse with packing facility, 2 flues and office space, with reservoirs, car parking and landscaping, new access and connection to sewage treatment works. The Senior Archaeological Officer at Suffolk County Council Archaeology Service (SCCAS), advisor to the LPA, has recommended an archaeological evaluation is undertaken to establish the archaeological potential and test the results of a geophysical survey (Sumo 2018) completed across the site ahead of a decision on the application. This is in accordance with the Department for Communities and Local Government's National Planning Policy Framework (NPPF 2012), and the Borough Council's policies on archaeology.

The field investigation was carried out to a specification approved by Ms Rachael Abrahams, Senior Archaeological Officer for Suffolk County Council Archaeological Service (SCCAS), advisers to Borough on matters relating to archaeology, and based on a brief supplied by her (SCCAS 2018). The fieldwork was undertaken by Andrew Weale assisted by Luciano Cicu, Pablo Chozas, Daena Guest, Maisie Foster, Kristian Magnus, Pierre Manisse, Mike Murray, Laura Schenck, Nikki Snape, Stella Südekum, Benedikt Tebbitt and David Wallace between the 5 th of October and $15^{\text {th }}$ December 2018 and the site code is PFI $18 / 167$. The field work was monitored by Ms Rachael Abrahams of Suffolk County Council Archaeological Service. The archive is presently held at TVAS East Mid and will be deposited with the County Archaeological Service's Store in due course subject to landowner agreement.

Location, topography and geology

The site lies just to the south west of the Village of Ingham, Suffolk with the Towns of Bury St Edmunds 6 km to the south and Thetford 12 km to the north (Fig. 1). A Tributary of the River Lark runs west to east across the
site which lies within the wider River Lark valley and flood plain and the A 134 runs to the east of the site. It comprises an area of land totalling 24.7 ha over some seven fields (Fig. 2). The majority of the site occupies a single agricultural field under arable cultivation, although it also includes a small section of an arable field enclosure to the south, and for the purposes of the evaluation strategy, includes a narrow strip of land to the west where a service run is proposed across a series of fields. The main field is bordered with hawthorn hedgerows and ditches. Beyond the immediate boundaries, the north of the Site is bounded by a reservoir and farm buildings associated with Place Farm, which lies adjacent to further larger arable fields. A track lies to the west of the Site which runs north to south through the farm, beyond which is a further hedgerow bordering medium to large arable fields and the village of Culford. A further large arable field lies to the east which borders the A134. A small covert of trees surrounding a pond lies to the south east while to the south west of the Site, further open arable fields are located together with the channelised river and drainage ditches. The main field lies on a ridge of higher ground with the highest point just to the south of the north east corner and slopes down gently to the west and the south into the river flood plain from $c .39 \mathrm{~m}$ aOD to $c .22 .70 \mathrm{~m} \mathrm{aOD}$. The underlying geology is mapped as Lowestoft Formation (a glacial till deposit of Clay and Silt) and 3rd River Terrace Deposits (sand and gravels) (http://mapapps.bgs.ac.uk/geologyofbritain/home.html?location=ingham), both of which were observed on the site with silty clays and gravels to the north, sand and gravels to the south and alluvial deposits close to the river.

Archaeological background

The archaeological potential of the site stems from a brief issued by Suffolk County Council Archaeology Service (SCCAS 2018). This indicates the site "lies in an area that is topographically of high archaeological potential for activity from all periods, overlooking a tributary the River Lark in a south facing position". It goes on to confirm cropmark features and a coin of early medieval date have been recorded within the development area itself (ING 026). The cropmarks comprise a series of linear features of uncertain date. The HER records extensive multi period finds scatters surrounding the Site (ING 005, 007, 008, 009, 011, 026 and CUL 012, 031).

The settlement at Ingham is recorded at Domesday (1086) as being held prior to the survey, so is identified as having pre Conquest origins (Williams and Martin 2002). The Church of St. Bartholomew in Ingham (HER ING 012) has mid 14th century origins, although the interior of the church was extensively remodelled in 1861. The earliest map viewed for the report was the 1840 Ingham Parish tithe map, which confirms the main development area was divided into two arable fields. The field boundary identified during the geophysical
survey relates to this subdivision. A trackway to the west of the site is shown and still in use today. Buildings to the north associated with Place Farm are shown albeit in a different layout to the current arrangement. The 1884 Ordnance Survey map shows the site remains largely unchanged, although two small quarries or extraction pits are shown to the immediate south of the site in an area now functioning as a pond. The site remains largely unaltered throughout the 20th century. A boundary is still shown on the 1981 Ordnance Survey map but has been removed by the issue of the 1983-1994 1:10,000 Ordnance Survey map.

To the immediate west, field surface collection identified a collection of worked flints including scrapers and a worked point dating from the Neolithic and Early Bronze Age along with a handful of Iron Age pottery sherds (ING 011). Romano British and medieval pottery sherds were also collected. Cropmarks are also recorded in the valley and include several ring ditches (CUL 005, 026, 027) likely to represent the remains of levelled burial mounds (SCCAS 2018). A further large area of prehistoric occupation and activity was recorded during archaeological investigations at Ingham Quarry to the south (FSG 017). Extensive evidence of Romano British activity is recorded within the vicinity of the site. Some 500 m to the north, an East-West aligned Roman road runs along the hill ridge. Within the valley to the south, findspots are recorded and to the immediate east of the site include a collection of Romano British (or possibly early medieval) artefacts (ING 007) discovered during a programme of metal detecting. A cremation cemetery of the same period was also uncovered in 1823 to the west of the proposed service run (ING 001), which identified 12 urned cremations. To the north of the village of Ingham a recent archaeological evaluation found a small amount of late prehistoric and Roman pottery and worked flints. (Esteves 2018, ING 035). To the immediate north of the site, trial trenching was undertaken (Meredith 2006), although no archaeological features were identified during but a small quantity of surface finds comprising medieval pottery sherds and worked flint was retrieved.

A magnetic geophysical survey (SUMO 2018) has been completed across the site. The survey report stated no magnetic responses were recorded that could be interpreted as being of archaeological interest. There were a number of linear trends in the data which do not appear to respect existing field boundaries or ploughing trends. The report concluded that although an archaeological interpretation seemed improbable, the trends could be agricultural (deep tractor ruts) or due to localised soil effects; as such, they were classified as being of uncertain origin. A line of magnetic anomalies running East-West in the main development area was visible on historic maps as a former field boundary. Along the pipeline route there is a short, weak linear trend aligned NorthSouth; this is marked on Ordnance Survey mapping as an undefined boundary. Ploughing effects and a network of land drains, following a classic herringbone pattern are visible in the main development area. Further
ploughing effects are present along the pipeline route. The geophysical report also confirms a service pipe is present crossing the pipeline route.

Objectives and methodology

The purpose of the evaluation was to determine the presence/absence, extent, condition, character, quality and date of any archaeological deposits within the area of development. All works were to be carried out in such a manner as would not compromise the integrity of the archaeological features or deposits that would be best suited for investigation under conditions pertaining to full excavation.

Specific aims of the evaluation were to:
Test the results of the geophysical survey;
Clarify the presence/absence and extent of any buried archaeological remains within the site that may be impacted by development;
Identify, within the constraints of the evaluation, the date, character, condition and depth of any surviving remains within the site;
Assess the degree of existing impacts to sub-surface horizons and to document the extent of archaeological survival of buried deposits;
Facilitate production of a mitigation strategy for the project;
Relate (where appropriate) the archaeological results to their local, county and regional context in accordance with the regional frameworks.

It was proposed that 220 trenches were to be dug, each 1.8 m wide and 25 m long (Fig. 2) covering a 4% sample of the site in accordance with the archaeological brief issued. Up to a further 1% sample of the area was been included as a contingency, and if fully required, would have resulted in an additional 55 trenches.

The trenches were dug using a 360° type machine fitted with a toothless ditching bucket under constant archaeological supervision. Any features uncovered were cleaned, excavated and recorded using the appropriate hand tools. All archaeological features were sufficiently sampled to characterise and date them. Discrete features were to be half sectioned, and slots excavated through linear features to a minimum of 1 m in width. All spoilheaps were monitored for finds along with a metal detecting survey. Bulk soil samples were taken from all the excavated features and sieved using standard water flotation techniques.

Results

All 220 trenches were dug as intended (Fig. 2) with minor variations to positions due to extant hedges, ditches and a "cover" crop in the southern edge of field 1 with phase 1 consisting of 110 trenches excavated first to enable SCCAS to comment on the archaeological potential of the site ahead of a planning committee meeting in
early November, this was followed by the remaining 110 trenches in phase 2 . The trenches ranged between 21 m and 28.10 m long and between 0.24 m and 0.68 m deep. The stratigraphy fell into two distinct groups with the north half of field 1 consisting of brownish silty clay topsoil overlying a reddish brown silty clay with flints subsoil. The southern half of field 1 and the rest of the site consisted of brownish silty sand topsoil overlying a reddish brown silty sand with flints subsoil. Parts of field 6 and 7 had been heavily subsoiled in the recent past and showed no current subsoil. The northern part of field 1 had a mixture of clays gravels and silty clays as natural geology whilst the rest had sand and gravel with sand natural geology. Fields 2 and 3 showed some alluvial deposits near the channelised water course. A complete list of trenches giving lengths, breadths, depths and a description of sections and geology is given in Appendix 1.

Trench 2 (Figs. 4, 20 and 26)
This trench was aligned E-W and measured 25.10 m long and 0.42 m deep. The stratigraphy consisted of 0.16 m of topsoil overlying 0.20 m subsoil overlying sand natural geology. Four linear features were identified in this trench with ditch 337 at 7 m . This measured 1.10 m wide, 0.35 m deep and its mid brown grey silty sand fill (466) produced 89 sherds of Roman pottery and two pieces of animal bone, two pieces of CBM and 10 pieces of metalworking slag. Between 15 m and 19.10 m was a feature that may be a single linear bending outside the area of the trench or two linears inter-cutting, which it was treated as. A slot [223/224]was dug although no relationship could be determined. 223 measured 0.90 m wide, 0.36 m deep and its mid grey silty sand fill (291) produced a piece of struck flint. 224 was 0.27 m deep but did not contain any finds. At 22 m another ditch was identified into which a slot [222] was dug measuring 1.63 m wide, 0.27 m deep and its dark grey silty sand fill (290) did not contain any dating evidence.

Trench 3 (Figs. 4 and 21)

This trench was aligned approximately NW-SE and measured 26.30 m long and a maximum of 0.43 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.08 m of subsoil overlying sand and gravel natural geology. A ditch was observed between 5.80 m and 7.80 m into which a slot [228] was dug measuring 1.40 m wide, 0.46 m deep and its mid brown grey silty clay fill (297) produced one sherd of Roman pottery.

Trench 4 (Figs. 4, 20, 21 and 22)

This trench was aligned approximately NW-SE and measured 25.70 m long and 0.40 m deep. The stratigraphy consisted of 0.18 m of topsoil overlying 0.15 m of subsoil overlying sand and gravel natural geology. Four linears were observed along the length of the trench. At 1 m ditch 221 was noted measuring 1.60 m wide, 0.35 m deep
and its mid brown grey silty sand fill (289) contained 49 sherds of Roman pottery and an iron nail. At 3m a second ditch was noted into which a slot [220] was dug measuring 2.30 m wide, 0.50 m deep and it had two fills (288 and 298) 288 was a light brown grey silty sand that contained 4 sherds of Roman pottery and a struck flint and 298 was a light grey brown silty sand and contained 5 sherds of Roman pottery. At 14.50 m a third ditch was noted into which a slot [230] was dug measuring 0.90 m wide, 0.27 m deep and its mid yellow grey sand fill (352) produced a struck flint. Between 15.80 m and 22 m were two ditches forming a 90° bend. A slot [247/248] was dug in order to determine a relationship between them, which showed 247 cutting 248.247 measured 0.56 m deep with its dark brown grey sand fill (385) containing 5 sherds of Roman pottery. 248 was 0.20 m deep with its mid brown grey sand fill (386) containing 5 sherds of Roman pottery

Trench 5 (Figs. 4 and 22)

This trench was aligned approximately N-S and measured 26.80 m long and 0.47 m deep. The stratigraphy consisted of 0.17 m of topsoil overlying 0.20 m of subsoil overlying sand and gravel natural. A possible pit [237] was observed at 20 m measuring 1.40 m wide and 0.20 m deep. It contained two sherds of Bronze Age/Iron Age pottery and 14 struck flints.

Trench 19 (Figs. 4 and 17; Pl. 19)

This trench was aligned E-W and measured 26.40 m long and 0.45 m deep. The stratigraphy consisted of 0.24 m of topsoil overlying 0.13 m of subsoil overlying sand and gravel natural geology. A pit [131] was located at 6.50 m measuring 0.80 m wide and 0.43 m deep. Its dark brown grey sand fill (251) did not contain any dating evidence.

Trench 24 (Figs. 5 and 17)

This trench was aligned E-W and measured 26.30 m long and 0.50 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.17 m of subsoil overlying sand and gravel natural geology. At the western end of the trench a ditch was noted into which a slot [111] was dug measuring 1.90 m wide, 0.38 m deep but its light brown grey silty sand fill (179) did not contain any finds. A large linear feature [119] was noted between 10.80 m and 14.80 m into which a slot was dug showing it to be covering another ditch [121] and gully [120]. 119 (which may be a furrow) measured 4.30 m wide, 0.36 m deep and its dark brown grey silty sand fill (187) contained a piece of struck flint. Cut by this feature was gully 120 , which measured 0.49 m wide, 0.26 m deep but its light grey brown silty sand fill(188) did not contain any finds. Ditch 121 measured 1.61 m wide, 0.39 m deep but again did not
contain any dating evidence. At 16 m a gully [112] was noted measuring 0.30 m wide, 0.07 m deep although its mid black grey silty sand fill (180) did not contain any finds.

Trench 26 (Figs. 5 and 17)

This trench was aligned approximately E-W and measured 26.40 m long and 0.43 m deep. The stratigraphy consisted of 0.24 m of topsoil overlying 0.13 m of subsoil overlying sand and gravel natural geology. A ditch was located at 14 m into which a slot [122] was dug measuring 1.02 m wide, 0.18 m deep but its mid brown grey silty sand fill (192) did not contain any finds. At the eastern end of the trench were two inter-cutting terminal ends [123/124]. A slot was dug which showed 123 to be cutting 124. 123 measured 0.35 m wide and 0.38 m deep with 124 measuring 0.82 m wide and 0.25 m deep. Neither produced any dating evidence.

Trench 27 (Figs. 5 and 18; Pl. 22)

This trench was aligned E-W and measured 25.60 m long and 0.54 m deep. The stratigraphy consisted of 0.24 m of topsoil overlying 0.20 m of subsoil overlying sand and gravel natural geology. A ditch ran along the length of the trench and had a slot dug into it showing it to have two cuts [142/143] (as well as a land drain). 142, which cut 143 , measured 1.30 m wide, 0.46 m deep and its mid brown grey sand fill (266) contained a sherd of early medieval pottery, six pieces of animal bone, piece of CBM and two oyster shells. 143 measured 0.62 m deep and its mid brown grey sand fill (267) contained one sherd of Medieval pottery and a piece of oyster shell.

Trench 28 (Figs. 5, 16 and 19; Pl. 24)

This trench was aligned approximately NE-SW and measured 26 m long and 0.60 m deep. The stratigraphy consisted of 0.21 m of topsoil overlying 0.29 m of subsoil overlying sand and gravel natural geology. At the southern end of the trench was a linear feature into which a slot was dug that showed two inter-cutting ditches [44/45]. 44 measured 1.45 m wide, 0.50 m deep and its mid brown grey sandy silt fill (159) contained two sherds of medieval pottery. 45 measured 0.42 m deep and its mid grey brown sandy silt fill (160) contained a sherd of medieval pottery and 11 pieces of animal bone. Between 10 m and 16 m was a large area of what appeared to be inter-cutting linear features into which a slot was excavated and showed 6 separate features (203, 204, 205, 209, 211, 227). Ditch 203 measured 0.80 m deep, 204 was 0.83 m deep and 205 was 0.60 m deep and 211 was 1.62 m wide and 0.40 m deep. 211 cut 205 , which cut 204 , which cut 203 , all of which were cut into the top of 209 , which itself was dug to a depth of 1.20 m but the base was not reached. 203 produced two sherds of Late Saxon pottery, a piece of animal bone and five pieces of mussel shell. Ditch 204 contained one sherd of Medieval pottery, four pieces of animal bone and a shell fragment and 209 produced five pieces of animal bone. Ditch 205
contained 2 sherds of Medieval pottery. None of the others contained any finds. Between 16.60 m and 20.90 m was another linear feature [232], although this was not excavated.

Trench 29 (Figs. 5, 17 and 20; Pls. 15, 16 and 26)
This trench was aligned approximately NW-SE and measured 25.70 m long and 0.68 m deep. The stratigraphy consisted of 0.29 m of topsoil overlying 0.28 m of subsoil overlying sand and gravel natural geology. A series of inter-cutting ditches [213-218] were located between 2 m and 15 m , although these remained undated, with only 214 containing a struck flint. Another series of inter-cutting features (linears [126, 128, 129, 135, 138, 302] and possible pits $[127,130,136]$) was located between 19 m and 24.60 m , although all of these remained undated. A George II halfpenny was recovered from the topsoil in this trench.

Trench 30 (Figs 6, 18 and 19; Pl. 25)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 26 m long and 0.50 m deep. The stratigraphy consisted of 0.27 m of topsoil overlying 0.16 m of subsoil overlying sand and gravel natural. A large 10 m wide linear feature was identified at the south end of the trench, which after excavation was seen to be nine inter-cutting ditches 145-202 and along with ditches 238,239 and 249 may in fact represent a trackway or droveway that has been systematically re-cut. 148 and 149 produced one and 10 pieces of animal bone respectively and a piece of oyster shell from 149. None of the other features produced any dating evidence.

Trench 31 (Figs. 6 and 16)

This trench was aligned N-S and measured 26.30 m long and 0.45 m deep. The stratigraphy consisted of 0.22 m of topsoil overlying 0.16 m of subsoil overlying sand and gravel natural geology. A ditch was noted at 20 m into which a slot [106] was dug measuring 0.72 m wide and 0.15 m deep. It had been truncated by a land drain and its mid grey brown sand fill (174) did not contain any dating evidence. An unexcavated ditch [107] was noted at the northern end of the trench.

Trench 32 (Figs. 6 and 16)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 25.50 m long and 0.55 m deep. The stratigraphy consisted of 0.27 m of topsoil overlying 0.21 m of subsoil overlying sand and gravel natural geology. Two linear feature were observed at the southern end of the trench. Ditch 108 measured 1.05 m wide, 0.26 m deep and gully 109 measured 030 m
wide and 0.05 m deep. Both had mid black grey sandy silt fills, 176 and 177 respectively, but neither produced any dating evidence.

Trench 35 (Figs. 6 and 15)

This trench was aligned N-S and measured 26 m long and 0.49 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.14 m of subsoil overlying sand and gravel natural geology. A linear feature was observed between 6.50 m and 9.50 m into which a slot was dug that showed two certain ditches [34 and 36], with a possible third [35] (150), although this in fact just be another fill of ditch 36.34 measured 0.75 m deep and was cut by 36 , It had three fills $(98,99$ and 155$)$ none of which produced any dating evidence. 36 measured 1.80 m wide, 0.78 m deep and had two fills $(151,152)$ neither of which contained finds.

Trench 36 (Figs. 6 and 15)

This trench was aligned N-S and measured 25.30 m long and 0.60 m deep. The stratigraphy consisted of 0.29 m of topsoil overlying 0.21 m of subsoil overlying sand and gravel natural geology. Between 4 m and 12 m was large linear feature into which a slot was dug that showed three ditches [28, 29, 30] although no relationships could be determined between them and none of them contained any finds.

Trench 37 (Figs. 6 and 16)

This trench was aligned approximately N-S and measured 26.40 m long and 0.68 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.30 m of subsoil overlying clay with flint natural geology. A ditch was observed between 12.80 m and 15.50 m into which a slot [49] was dug measuring 2.05 m wide and 1.25 m deep. It had three fills $(164,165,166)$ but none of these produced any dating evidence.

Trench 38 (Fig. 6)

This trench was aligned approximately $\mathrm{N}-\mathrm{S}$ and measured 26 m long and 0.45 m deep. The stratigraphy consisted of 0.26 m of topsoil overlying 0.13 m of subsoil overlying clay with flint natural geology. A ditch [21] was located between 19.30 and 21.60 m although this was not excavated.

Trench 41 (Figs. 6 and 15)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 28 m long and 0.65 m deep. The stratigraphy consisted of 0.26 m of topsoil overlying 0.28 m of subsoil overlying clay with flint natural geology. Two linears were noted in this trench, ditch 20 was located between 11.40 m and 12.50 m although was not excavated. A gully ran between
13.50 m and the end of the trench, which had two slots [17 and 33] dug into it. 17 measured 0.65 m wide and 0.22 m deep and 33 measured 0.60 m wide and 0.19 m deep. Both had mid grey brown clayey silt fills (74 and 94 respectively) but neither produced any dating evidence.

Trench 45 (Fig. 7)

This trench was aligned N-S and measured 25.50 m long and 0.43 m deep. The stratigraphy consisted of 0.20 m of topsoil overlying 0.18 m of subsoil overlying clay with flint natural geology. A ditch [18] was noted between 16.90 m and 20.30 m although this was not excavated.

Trench 46 (Fig. 7)

This trench was aligned N-S and measured 24.50 m long and 0.54 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.19 m of subsoil overlying clay with flint natural geology. Two ditches were observed in this trench with [19], between 3.80 m and 6.20 m unexcavated, although it is likely the same as the feature(s) identified in trench 146 . Gully 16 was at 20 m and measured 0.55 m wide, 0.32 m deep but its mid grey brown silty sand fill (72) did not contain any finds.

Trench 57 (Figs. 7 and 16)

This trench was aligned N-S and measured 25.50 m long and 0.42 m deep. The stratigraphy consisted of 0.24 m of topsoil overlying 0.12 m of subsoil overlying clay with flint natural geology. A pit [43] was located at 11 m and measured 1.05 m in diameter and 0.50 m deep. Its yellow brown sand fill (158) did not contain any dating evidence.

Trench 62 (Figs. 7 and 16)

This trench was aligned N-S and measured 26.30 m long and 0.53 m deep. The stratigraphy consisted of 0.31 m of topsoil overlying 0.13 m of subsoil overlying clay and flint natural geology. At the southern end of the trench was a linear feature that had a slot dug into it showing it be three linears cutting each other, 39 cut 38 which cut 42 . 38 measured 1.07 m wide and 0.31 m deep. 39 measured 0.75 m wide and 0.31 m deep and 42 measured 0.71 m wide and 0.12 m None of these produced any dating evidence.

Trench 65 (Figs. 7 and 15)

This trench was aligned approximately E-W and measured 25.50 m long and 0.49 m deep. The stratigraphy consisted of 0.22 m of topsoil overlying 0.19 m of subsoil overlying clay with flints natural geology. A posthole [12] was located at 5 m measuring 0.43 m in diameter and 0.23 m deep although its mid yellow brown clay fill
(73) did not contain any finds. At 19 m a ditch was observed into which a slot [11] was dug measuring 1.12 m wide, 0.29 m deep but its mid yellow brown clayey sand fill (67) did not contain any finds.

Trench 68 (Figs. 7 and 14)

This trench was aligned E-W and measured 28.10 m long and 0.40 m deep. The stratigraphy consisted of 0.32 m of topsoil overlying 0.05 m of subsoil overlying natural geology. A small pit [5] was located at 22.50 m measuring 0.30 m wide and 0.12 m deep. Its dark brown black sandy silt fill (61) contained 11 sherds of Early Iron Age pottery and two pieces of animal bone.

Trench 71 (Figs. 7 and 14)

This trench was aligned N-S and measured 25.80 m long and 0.46 m deep. The stratigraphy consisted of 0.36 m of topsoil overlying 0.10 m of subsoil overlying natural geology. A ditch was located at 8 m into which a slot [8] was dug measuring 0.92 m wide, 0.23 m deep and its mid yellow brown clayey sand fill (64) contained a sherd of Early Iron Age pottery.

Trench 72 (Figs. 7 and 14; Pl. 13)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 27 m long and 0.40 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.09 m of subsoil overlying natural geology. Two ditches were observed in this trench, one at 8 m [9] and the other at 18 m [1]]. Ditch 9 measured 0.58 m wide, 0.24 m deep and its mid grey brown silty clay fill (65) did not contain any finds. Ditch 1 measured 1.20 m wide, 0.60 m deep and it had two fills $(59,60) .59$ was a mid grey brown sandy silt and 60 was a mid grey yellow sandy silt. Neither of these contained any dating evidence.

Trench 77 (Figs. 7 and 15)

This trench was aligned N-S and measured 27 m long and 0.42 m deep. The stratigraphy consisted of 0.32 m of topsoil overlying 0.07 m of subsoil overlying natural geology. A ditch was located at the northern end of the trench into which a slot [13] was dug measuring 1.45 m wide, 0.30 m deep and its mid grey brown sandy silt fill (69) contained 4 sherds of Roman and Early Iron Age pottery and seven pieces of struck flint.

Trench 78 (Fig. 8)

This trench was aligned approximately NW-SE and measured 26.50 m long and 0.35 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.04 m of subsoil overlying natural geology. A possible ditch [27] was noted between 10.30 m and 12.50 m although it was not excavated.

Trench 88 (Figs. 8 and 26)

This trench was aligned E-W and measured 24.50 m long and 0.68 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.20 m of subsoil overlying sand natural geology. A likely geological channel was noted which had a slot [343], which did produce 10 pieces of animal bone. Due to the acidic nature of the natural geology the presence of animal bone is likely to mean that this feature is no older than medieval or later.

Trench 90 (Figs. 8, 24 and 25)

This trench was aligned approximately NW-SE and measured 26.20 m long and 0.50 m deep. The stratigraphy consisted of 0.36 m of topsoil overlying 0.12 m of subsoil overlying sand natural geology. Several linear features were observed in this trench. At the SE end was a large feature that remained unexcavated. Next to it was ditch [321] at 5 m measuring 2.80 m wide, 0.45 m deep and it had two fills (484 and 485) with 484 , a mid grey brown silty clay containing two struck flints and 485, a mid grey brown silty sand fill containing one sherd of Roman pottery. Two inter-cutting gullies [322/323] were located at 8.50 m which showed 323 to cut 322 . Another slot in gully 322 [326] measured 0.90 m wide, 0.55 m deep and contained 9 sherds of Roman pottery and a struck flint. Next to this was another ditch [327], which measured 0.85 m wide and 0.48 m deep. This contained 5 sherds of Roman pottery, four pieces of animal bone and three pieces of struck flint. A possible terminal end of another ditch [342] was noted in this slot but did not produce any finds. A group of inter-cutting features were also observed which showed two further gullies [324/325] with 325 cutting 324 and 325 contained 5 sherds of Roman pottery and a struck flint. Three other possible pits/terminals [328, 340, 341] showed 340 cutting the other two but none contained finds.

Trench 91 (Figs. 8, 22 and 23)

This trench was aligned E-W and measured 26 m long and 0.46 m deep. The stratigraphy consisted of 0.34 m of topsoil overlying 0.04 m of subsoil overlying sand natural geology. A ditch was located at 9 m into which a slot [303] was dug measuring 1.60 m wide, 0.25 m deep and its light grey silty sand fill (390) did not contain any finds. A ditch terminus/pit was at 18 m into which slot [304] was dug measuring 0.90 m wide, 0.35 m deep but its mid grey silty sand fill (391) did not contain any finds. A gully was located at 21 m into which a slot [305] was
dug measuring 0.90 m wide, 0.47 m deep but again its fill of light grey silty sand (392) did not produce any dating evidence.

Trench 92 (Figs. 8 and 23)

This trench was aligned approximately E-W and measured 26 m long and 0.35 m deep. The stratigraphy consisted of 0.32 m of topsoil directly overlying natural geology. Several features were noted along the length of this trench. At 8 m was a ditch which had a slot [312] dug into it measuring 0.60 m wide and its fill of mid grey brown sandy silt (451) contained a sherd of pottery. A pit was at 9.50 m , which after excavation was two pits. 313 measured 0.86 m in diameter, 0.36 m deep and it had two fills $(452,453)$ and 318 measured 1.05 m in diameter and 0.37 m deep and also had two fills $(454,455)$, with 313 containing four struck flints. At 12 m was a gully into which a slot [314] was dug measuring 0.56 m wide, 0.20 m deep but again did not contain any finds. An intercutting gully and ditch $[315,316,317]$ were located between 13 m and 21 m into which two relationship slots were dug but relationships could not be determined. Each produced struck flints, one, four and three respectively with 316 producing a sherd of Early Iron Age pottery

Trench 93 (Figs. 8 and 25)

This trench was aligned N-S and measured 26 m long and 0.51 m deep. The stratigraphy consisted of 0.44 m of topsoil overlying 0.05 m of subsoil overlying sand natural geology. A possible pit/tree throw was located at 6 m measuring 2.20 m wide and 0.20 m deep. Its mid brown grey sandy silt fill (463) did not contain any dating evidence.

Trench 95 (Figs. 8 and 25)

This trench was aligned approximately E-W and measured 26 m long and 0.40 m deep. The stratigraphy consisted of 0.24 m of topsoil overlying 0.12 m of subsoil overlying sand natural geology. A ditch was located at 19 m into which a slot [330] was dug measuring 1.60 m wide, 0.57 m deep and its mid grey brown silty sand fill (464) contained 2 sherds of Roman pottery and two struck flints.

Trench 97 (Figs. 9 and 26)

This trench was aligned approximately NW-SE and measured 25.50 m long and 0.32 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying sand and gravel natural geology. Two ditches [335 and 336] were observed in this trench with 335 at 12.50 m measuring 1.10 m wide and 0.27 m deep and 336 measured 0.74 m wide and 0.30 m deep. Neither contained any finds.

Trench 98 (Figs. 9 and 26)

This trench was aligned NE-SW and measured 25.50 m long and 0.31 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.04 m of subsoil overlying sand and gravel natural geology. A ditch was located at 9 m into which a slot [339] was dug measuring 1.50 m wide and 0.23 m deep. It had two fills (496 and 497) but neither contained and dating evidence.

Trench 118 (Figs. 9 and 14)

This trench was aligned N-S and measured 26 m long and 0.40 m deep. The stratigraphy consisted of 0.32 m of topsoil overlying 0.06 m of subsoil overlying silty sand clay flint natural geology. A pit [3] was located at 24.50 m measuring 0.67 m wide, 0.35 m deep and its dark brown grey sandy silt fill (57) contained a piece of struck flint. This was cut by an historic land drain [2].

Trench 124 (Figs. 9 and 14)

This trench was aligned E-W and measured 27.30 m long and 0.39 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.07 m of subsoil overlying clay with flint natural geology. A ditch was observed at 9 m into which a slot $[4]$ was dug that had two fills $(58,153)$ and produced two struck flints.

Trench 130 (Figs. 9, 14 and 15)

This trench was aligned N-S and measured 24.70 m long and 0.39 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.10 m of subsoil overlying sandy clay and flint natural geology. Two postholes were observed in this trench, the first at 4.40 m [10] measuring 0.17 m in diameter and 0.08 m deep. Its dark grey brown sandy silt fill (62) contained a sherd of pottery. The second posthole [6] was at 21 m and measured 0.22 m wide and 0.22 m deep and its dark grey brown sandy silt fill (66) produced two struck flints and one sherd of Late Bronze Age pottery.

Trench 131 (Fig. 9)

This trench was aligned E-W and measured 26.50 m long and 0.35 m deep. The stratigraphy consisted of 0.29 m of topsoil overlying 0.05 m of subsoil overlying clay with flints natural geology. Two inter-cutting gullies [14/15] were located between 4 m and 9 m with 14 measuring 0.20 m and 0.18 m deep and 15 measured 0.21 m wide and 0.32 m deep. 14 contained a single struck flint.

Trench 140 (Figs. 9 and 16)

This trench was aligned E-W and measured 24.70 m long and 0.38 m deep. The stratigraphy consisted of 0.0 .30 m of topsoil overlying 0.06 m of subsoil overlying clay with flints natural geology. A ditch was located at 12 m into which a slot [40] was dug measuring 1.02 m wide and 0.40 m deep. Its mid yellow brown clayey sand fill (154) did not contain any finds.

Trench 146 (Figs. 10 and 15; Pl. 7)

This trench was aligned N-S and measured 25 m long and 0.40 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.10 m of subsoil overlying sandy clay with flints natural geology. A large linear feature ran along most of the length into which a slot was dug that determined it to be two ditches [31 and 32]. 31 measured 0.41 m deep and 32 measured 0.12 m deep with 31 cutting 32 although neither contained any dating evidence.

Trench 147 (Figs. 10 and 16)

This trench was aligned N-S and measured 25 m long and 0.45 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying sandy clay with flints natural geology. Between 7 m and 11 m was a ditch [47] with a re-cut [48]. It measured 1.16 m wide and 0.48 m deep and did not contain any finds. It did have a land drain running down the centre and so may be a modern drainage ditch.

Trench 157 (Figs. 10 and 16)

This trench was aligned E-W and measured 24.50 m long and 0.40 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.07 m of subsoil overlying sand natural geology. A ditch was located at the eastern end of the trench which had a slot [46] dug into it measuring 0.70 m deep. Its mid brown grey silty and fill (161) produced a piece of metalworking slag.

Trench 161 (Figs. 10 and 15)

This trench was aligned approximately NW-SE and measured 26.60 m long and 0.52 m deep. The stratigraphy consisted of 0.38 m of topsoil overlying 0.11 m of subsoil overlying clayey sand and flint natural geology. Between 14.50 m and 19.50 m was a large deposit that upon investigation was observed to in fact be five linear features [22-26], with ditch 22 cut by ditches 23 and 24.22 measured 1.50 m wide and 0.51 m deep but did not contain any finds. 23 measured 1.16 m wide, 0.28 m deep and its dark grey brown sandy silt fill (80) contained an iron nail. 24 measured 0.86 m wide, 0.35 m deep and its mid grey brown silty sand fill (81) contained a piece of CBM and a struck flint. Gully 25 measured 0.62 m wide, 0.14 m deep and its mid grey brown silty sand fill (82) contained a sherd of Saxon pottery and a piece of animal bone.

Trench 162 (Figs. 10 and 16)

This trench was aligned E-W and measured 25 m long and 0.40 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.10 m of subsoil overlying sand natural geology. At the western end of the trench a pit [102] was noted measuring 1.90 m in diameter and 0.45 m deep. It had two fills $(169,361)$ but neither contained any finds. A possible ditch was located at the eastern end of the trench into which a slot [110] was dug measuring 0.94 m deep but again no finds were recovered.

Trench 164 (Figs. 10 and 16)

This trench was aligned E-W and measured 26.30 m long and 0.42 m deep. The stratigraphy consisted of 0.36 m of topsoil overlying 0.03 m of subsoil overlying sand natural. Between 7 m and 9.30 m was pit which upon excavation was in fact two pits [101 and 103] with 101 measuring 0.21 m deep and cut by 103.103 measured 0.64 m wide and 0.24 m deep. Neither of these contained any finds.

Trench 166 (Figs. 10 and 16)

This trench was aligned N-S and measured 25.10 m long and 0.42 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.11 m of subsoil overlying sand natural geology. A gully was located at 11 m into which a slot [100] was dug measuring 0.35 m wide and 0.10 m deep but no finds were recovered.

Trench 169 (Figs. 11 and 17)
This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 25 m long and 0.51 m deep. The stratigraphy consisted of 0.36 m of topsoil overlying 0.10 m of subsoil overlying sand natural. A ditch was located between 7.80 m and 17 m into which a slot [113] was dug measuring 0.74 m wide and 0.25 m deep. Between 4.80 m and 7 m was ditch terminus [118], which measured 0.75 m wide and 0.24 m deep. Neither of these produced any dating evidence.

Trench 170 (Figs. 11 and 17)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 24 m long and 0.55 m deep. The stratigraphy consisted of 0.25 m of topsoil overlying 0.25 m of subsoil overlying sand natural geology. A pit [114] was located at 5.60 m measuring 1.15 m in diameter and 0.20 m deep and at 4 m was ditch [115] measuring 0.82 m wide and 0.43 m deep. Neither of these contained any dating evidence.

Trench 171 (Figs. 11 and 18; Pl. 18)

This trench was aligned N-S and measured 23.50 m long and 0.52 m deep. The stratigraphy consisted of 0.20 m of topsoil overlying 0.30 m of subsoil overlying sand natural geology. Two gullies were observed in this trench, with the first between 6 m and 8 m into which a slot [133] was dug measuring 0.40 m wide and 0.19 m deep. The second gully was between 21.30 m and 22.20 m and had slot [134] dug into it measuring 0.70 m wide and 0.20 m deep. Neither of these contained any dating evidence.

Trench 175 (Figs. 11 and 18; Pls. 21 and 23)

This trench was aligned N-S and measured 24.50 m long and 0.45 m deep. The stratigraphy consisted of 0.20 m of topsoil overlying 0.20 m of subsoil overlying sand natural geology. Three linear features [139, 140, 144] were observed in this trench. at the southern end of the trench up to 9 m were 140 and 144 with 140 measuring 0.82 m wide and 0.35 m deep and 144 measuring 0.83 and 1.02 m deep. Ditch 139 measured 0.50 m wide and 0.48 m deep but none of these features produced any dating evidence.

Trench 176 (Figs. 12 and 18)

This trench was aligned E-W and measured 24.70 m long and 0.55 m deep. The stratigraphy consisted of 0.35 m of topsoil 0.15 m of subsoil overlying sand natural geology. A ditch was located between 15.20 m and 17.70 m into which a slot [141] was dug measuring 1.60 m wide and 0.40 m deep although its light brown grey silty sand fill (263) did not contain any dating evidence.

Trench 177 (Figs. 12 and 19)

This trench was aligned N-S and measured 24.70 m long and 0.60 m deep. The stratigraphy consisted of 0.35 m of topsoil overlying 0.20 m of subsoil overlying sand natural geology. At 3 m was a ditch into which a slot [207] was dug measuring 1.60 m wide, 0.44 m deep and its mid grey silty sand fill (273) produced a struck flint. At 13 m was a pit which after excavation was two pits [208 and 210] with 208 measuring 0.67 m wide and 0.24 m deep and 210 measured 0.84 m wide and 0.30 m deep. Neither of them contained any finds.

Trench 178 (Figs. 12 and 19)

This trench was aligned N-S and measured 25.30 m long and 0.40 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.10 m of subsoil overlying sand natural geology. A ditch was located at the southern end of the trench into which a slot [206] was dug measuring 1.10 m wide and 0.22 m deep. Its light brown grey sand fill (278) contained a struck flint.

Trench 179 (Figs. 12 and 19)

This trench was aligned N-S and measured 25.50 m long and 0.60 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.23 m of subsoil overlying sand natural geology. A ditch was located between 9.30 m and 14 m into which a slot [212] was dug measuring 0.85 m wide and 0.48 m deep although its dark grey brown sandy silt fill (277) did not contain any finds.

Trench 188 (Figs. 12 and 21)

This trench was aligned E-W and measured 25.20 m long and 0.35 m deep. The stratigraphy consisted of 0.28 m of topsoil overlying 0.06 m of subsoil overlying sand natural geology. A ditch was located at 16 m into which a slot [229] was dug measuring 1.53 m wide and 0.53 m deep. It had three fills $(299,350,351)$ with only 350 , a mid grey brown sandy silt, containing finds: 34 sherds of Early Iron Age pottery, a piece of animal bone (along with 13 burnt pieces) and four struck flints.

Trench 190 (Figs. 12 and 21; Pl. 9)

This trench was aligned N-S and measured 24.60 m long and 0.36 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.04 m of subsoil overlying sand natural geology. Two linear features were observed in this trench with the first between 2.20 m and 4.50 m into which a slot [225] was dug measuring 1.25 m wide and 0.30 m deep. The second [226] was located between 13.50 m and 14.80 and measured 1.40 m wide and 0.37 m deep. Neither contained any finds.

Trench 191 (Figs. 12, 21 and 22)
This trench was aligned N-S and measured 25.50 m long and 0.36 m deep. The stratigraphy consisted of 0.31 m of topsoil overlying 0.03 m of subsoil overlying sand natural geology. Several features were observed between 8 m and 16.60 m with a linear feature between 8 m and 13 m into which a slot was dug which showed it to be a gully [245] with a re-cut [244]. 245 measured 0.15 m deep and 244 measured 0.77 m wide and 0.15 m deep. Neither contained any finds. At 11.80 m was a posthole [246] measuring 0.39 m wide and 0.23 m deep. It contained a mid red brown silty sand fill (384). At 14 m was an inter-cutting pit and posthole [231, 236 respectively] with 231 measuring 0.87 m wide, 0.20 m deep and cutting 236. Its dark grey brown silty sand fill (358) contained 26 sherds of Bronze Age pottery and a flint arrowhead and posthole 236 measured 0.23 m wide and 0.25 m deep but it did not contain any finds. A ditch was located between 15 m and 16.60 m into which a slot [243] was dug measuring 1.20 m wide and 0.20 m deep. Its mid brown grey silty sand fill (381) contained seven small pieces of fired clay and six struck flints.

This trench was aligned E-W and measured 25 m long and 0.42 m deep. The stratigraphy consisted of 0.33 m of topsoil overlying 0.07 m of subsoil overlying sand natural geology. Between 12.60 m and 15.60 m were four intercutting linear features $[233,234,235,240]$ and a possible pit [241]. 233 measured 1.08 m wide, 0.25 m deep and cut 234.234 was 0.75 m wide and 0.32 m deep and cut by both 233 and 235.235 was 0.49 m wide, 0.24 m deep and cut by 240 , which was 1.32 m wide and 0.24 m deep. Pit 241 was unexcavated but contained one Roman sherd in the top, was cutting ditch 240 . None of the other features contained any dating evidence.

Trench 197 (Figs. 12 and 22)

This trench was aligned E-W and measured 24.50 m long and 0.52 m deep. The stratigraphy consisted of 0.44 m of topsoil overlying 0.06 m of subsoil overlying sand natural geology. A ditch was located between 3 m and 5.80 m into which a slot [242] was dug measuring 1.20 m wide and 0.50 m deep. Its mid brown grey silty sand fill (365) produced 5 sherds of Roman pottery and eight pieces of animal bone. A possible pit [301] was located at 17 m measuring 1.60 m wide and 0.15 m deep. Its light brown grey silty sand fill (388) contained 5 sherds of Roman pottery.

Trench 198 (Figs. 13, 22 and 24)

This trench was aligned $\mathrm{N}-\mathrm{S}$ and measured 25 m long and 0.28 m deep. The stratigraphy consisted of 0.27 m of topsoil overlying sand natural geology. Three linears were observed in this trench with [319] at 11m, which measured 0.61 m wide and 0.20 m deep. Ditch [320] was at 12.50 m and measured 0.87 m wide and 0.26 m deep with gully 300 located between 16.80 m and 18.10 m measuring 0.40 m wide and 0.70 m deep. None of these contained any dating evidence.

Trench 199 (Figs. 13, 23 and 25)

This trench was aligned E-W and measured 25 m long and 0.41 m deep. The stratigraphy consisted of 0.30 m of topsoil overlying 0.09 m of subsoil overlying sand natural geology. A gully [308] was at the western end of the trench measuring 0.88 m wide and 0.35 m deep. Its mid grey silty sand fill (393) contained one sherd of Roman pottery. A large feature was present between 7 m and 18.60 m into which a small slot was dug that appeared to show two gullies [306, 307] with 306 cutting 307 with 306 containing two struck flints, but no other finds. Another slot at the E end of the trench showed gully 309 cutting 310 , but again these were undated. It was unclear as to the nature of 311 as it was a slot dug into a large area of fill. This measured 0.20 m deep and its dark
brown black silty sand fill (396) contained a sherd of pottery. Another slot was dug into this area that may show a ditch or pit [331/332] and this contained 163 sherds of Roman pottery, one sherd of Early Iron Age pottery, 10 pieces of animal bone and 59 struck flints, including a laurel leaf arrowhead and scraper.

Trench 201 (Figs. 13 and 26)

This trench was aligned N-S and measured 25 m long and 0.41 m deep. The stratigraphy consisted of 0.32 m of topsoil overlying 0.09 m of subsoil overlying sand geology. A likely geological channel was noted which had a slot [338], which produced three pieces of animal bone. Due to the acidic nature of the natural geology the presence of animal bone is likely to mean that this feature is no older than medieval or later.

Trench 203 (Figs. 13 and 25)

This trench was aligned E-W and measured 25.80 m long and 0.34 m deep. The stratigraphy consisted of 0.27 m of topsoil overlying 0.05 m of subsoil overlying sand natural geology. A possible ditch was observed in this trench, which had two slots [333 and 334] dug into it with 333 producing modern pottery.

Trench 218 (Figs. 13 and 16)

This trench was aligned E-W and measured 24.80 m long and 0.26 m deep. The stratigraphy consisted of 0.26 m of topsoil overlying 0.09 m of subsoil overlying clay natural geology. A gully [104] was located between 6.30 m and 8 m measuring 0.30 m wide and 0.18 m deep but was undated. A second linear [105] was located at the eastern end of the trench measuring 1.15 m wide and 0.26 m deep. This contained one sherd of Medieval pottery and a piece of animal bone.

Finds

Prehistoric Pottery by Sara Percival

A total of 115 sherds weighing 833 g were collected from sixteen contexts (Appendix 3B). The prehistoric assemblage comprises 27 sherds of Early Bronze Age pottery (244g), and 76 sherds, 560 g of Early Iron Age pot dating to $c .650 \mathrm{BC}-350 \mathrm{BC}$, nine Iron Age sherds $(28 \mathrm{~g})(\mathrm{c} .350 \mathrm{BC}+)$ and three scraps which are not closely datable. The assemblage is in poor to moderate condition with a mean sherd weight of 7 g .

Methodology

The assemblage was analysed in accordance with the guidelines for analysis and publication recommended by the Prehistoric Ceramic Research Group (PCRG 2010). The total assemblage was studied and a full catalogue
prepared. The sherds were examined using a binocular microscope (x10 magnification) and were divided into fabric groups defined on the basis of inclusion types. Vessel form was recorded and the sherds were counted and weighed to the nearest whole gram. Decoration, condition, food residues and sooting were also noted. Fabrics are described in Appendix 3A.

Assemblage description

Bronze Age

A small quantity of Bronze Age sherds in distinctive grog tempered fabrics were collected from two contexts. A single scrap of body sherd came from fill (359) of ditch [237] which also contained a very small fragment of possible Iron Age pottery. A large fragmentary base sherd from pit [231] is from a very truncated urn. The base is incomplete and very abraded. An Early to Middle Bronze Age date is suggested.

Early Iron Age

A small assemblage of 76 Early Iron Age sherds weighing 560 g was collected from eleven contexts (Appendix 3C). Within the Early Iron Age assemblage flint-tempered fabrics dominate forming 80% of the assemblage by sherd count and 71% by weight. Flint tempered fabrics containing varying sizes and densities of burnt flint are highly characteristic of Post Deverel-Rimbury pottery from Suffolk, Norfolk, and the eastern fen-edge in Cambridgeshire and were noted locally in contemporary assemblages from Ingham Quarry (FSG013 and FSG015 Percival 1998). Sherds with predominantly sand temper from 20% by sherd count and 30% by weight, however within this group almost all also contain small to moderate flint inclusions, with sandy flint-tempered fabrics forming 17% of the total assemblage by sherd count and 29% by weight.

The assemblage includes rims from six vessels (Appendix). These include a range of coarse and fine ware shouldered jars, the fine vessels being distinguished by burnished surfaces and a class III angular shouldered bowl with direct rounded rim. One body sherd has fingertip impressions on an angular shoulder. No base sherds were recovered. The range of forms also compares well with vessels found in Early Iron Age assemblages from Ingham Quarry (Percival 1998).

Iron Age

Nine body sherds (28 g) in reduced sandy fabric have been assigned a broad Iron Age spotdate, probably dating to c 350 BC to 50 BC .

Discussion

The bulk of the assemblage contains a range of coarse and fine ware jars and bowls characteristic of the Early Iron Age, dating to $c .650 \mathrm{BC}-350 \mathrm{BC}$ and comparable with similar pottery recovered locally during excavations at Ingham Quarry, Fornham St Genevieve, Suffolk, where both Late Bronze Age and Early Iron Age settlement was recorded (Percival 1998). In addition Post Deverel-Rimbury assemblages have been excavated at Lackford Quarry (LKD050; Percival 2005) and at Drovers Went, Bury St Edmunds (BSE199 Percival 2003) perhaps suggesting a focus of Late Bronze Age and Early Iron Age activity concentrating on the Lark Valley.

Roman pottery by Alice Lyons

A total of 439 sherds, weighing 8984 g (4.57 estimated vessel equivalent (EVE)) of early-to-mid Roman pottery was recovered during this evaluation (Appendix 4C). A minimum of 97 individual vessels were recorded. The pottery was found in a fragmentary condition and although significantly abraded some use deposits (soot residues) survive. The average sherd weight of $c .20 .5 \mathrm{~g}$, is relatively large and reflects the high proportion of heavy storage jars found.

In addition to the topsoil and subsoil layers Roman pottery was found within eleven of the evaluation trenches, mostly from within silted up ditched field systems (Appendix 4A).

Methodology

The pottery was analysed following the national guidelines (Barclay et al 2016) and has been recorded by fabric and form, also quantified by sherd count and weight. Decoration, residues and abrasion were also noted. TVAS curates the pottery and archive.

The Pottery

A total of seven broad Roman pottery fabrics were identified (Appendix 4B)

Coarse wares

Most of the assemblage, by sherd count and EVE (84.5\%), are a limited range of well-made Sandy grey ware vessels, some of which are finished in a black slip, produced in a micaceous rich clay that is typical of the Waveney Valley area (Tomber and Dore 1998, 184). Most of the vessels found are globular jars, some of which are decorated with a single girth groove. Sooty residues survive on the exterior surfaces of some of the vessels which suggests they have been exposed to an open flame when used as cooking pots. A small number of
beakers, dishes, platters and storage jars were also found in this fabric. Also found were a small number of Sandy white ware ring-necked flagons, some of which were produced in a similar micaceous fabric.

Storage jars are well-represented within this group, forming a large part of this assemblage by weight. The most common fabric is a grey coarse ware produced with large lumps of grog (previously fired pottery) and occasional pebbles that break through the surface of the vessel; the rims are rolled, and occasional decorative slashes are found on the shoulder. This fabric is common in Essex (Going 1987, 10) particularly between the late $1^{\text {st }}$ and $3^{\text {rd }}$ centuries AD. Horningsea-type storage jars are also present within the assemblage with a distinctive 'biscuit-like' texture and internal combing (Lyons 2017, 57, plate 3.2). These wares were produced just north of Cambridge and are particularly widely distributed in the $2^{\text {nd }}$ and $3^{\text {rd }}$ centuries AD (Evans et al 2017, 83-107).

Fine wares

Fine wares are not common within this group. Three samian, distinctive red glossy Gaulish table wares, vessels were found comprising a South Gaulish conical cup (Dr33) fragment, also two Central Gaulish dish fragments (Dr18/31). These vessels were undecorated, and no makers stamps were seen. A single colour coated jar fragment was also found which probably originates from the Nene valley industries, but the close proximately of the Pakenham colour coated manufacturing centre (Tomber and Dore 1998, 182) means a more local source cannot be discounted.

Specialist wares

Specialist wares are rare within the assemblage. A single base sherd from a white coarse ware mixing bowl or mortarium was identified, produced in the St. Albans area between the mid- $1^{\text {st }}$ and the end of the $2^{\text {nd }}$ century $A D$ (Tyers 1996, 132-134).

Summary

A relatively small group of early-to-mid Roman pottery was recovered during this archaeological evaluation. The assemblage mostly consists of locally produced utilitarian coarse wares, including a notable number of storage jars from at least two distinct regional sources. Fine ware and specialist wares are present only in very small numbers.

The presence of this pottery suggests a community was living near-by who dumped their waste, including broken pottery, into the fields during the later part of the 1 st and into the $2^{\text {nd }}$ centuries AD . Although primarily relying on good quality local wares they also had access to material traded from regional sources and the wider Roman Empire.

Post-Roman Pottery by Sue Anderson

Saxon and Medieval

Fifty sherds of pottery weighing 456 g were collected from 13 contexts during the evaluation. Appendix 5A shows the quantification by fabric; a summary catalogue by context is included as Appendix 5B. Quantification was carried out using sherd count, weight and estimated vessel equivalent (eve). A full quantification by fabric, context and feature is available in the archive. All fabric codes were assigned from the Suffolk post-Roman fabric series (Anderson 2019). Form terminology follows MPRG (1998). Recording uses a system of letters for fabric codes together with number codes for ease of sorting in database format. The results were input directly onto an Access database, which forms the archive catalogue.

Late Saxon (10th/11th c.)

Possible local Thetford-type ware sherds were recovered from two contexts in trenches 28 (ditch fill 270) and 169 (gully fill 82). These were in sandier fabrics than typical of Thetford-type wares from urban sites, but similar to those found on some rural sites in the county. However, it is possible that these sherds were Roman, given the large quantities of Roman pottery from elsewhere on the site. Fragments of Grimston Thetford-type or unglazed ware were recovered as an unstratified find in Trench 187 (five pieces of a base), and from subsoil in trenches 7 and 51 (body sherds). Two small body sherds of St Neots-type ware came from ditch fill 269 in trench 28.

Early medieval (11th-M.13th c.)

There were 19 sherds of handmade early medieval pottery, including the thin-walled type typical of Norfolk and north Suffolk, and a slightly thicker variety which is commonly found in and around Bury St Edmunds. Most fragments were body sherds, but two pieces in a gritty fabric (EMWG) were part of a jar with a slightly thickened everted rim which had piecrust thumbing at the edge.

Medieval (12th-14th c.)

Fourteen sherds dated to the high medieval period. Eight were Bury fabrics, including a bowl with a flat-topped everted rim in ditch fill 159 (Tr. 28). There was one tiny sandy greyware sherd which has been recorded as MCW, recovered in subsoil of Trench 27, but identification was uncertain and the sherd could be Late Saxon or possibly Roman. A jug rim fragment of gritty coarseware was in a fabric superficially similar to Bury Coarse

Sandy ware, but was micaceous and contained no calcareous inclusions; this was found in topsoil of Trench 28. Two sherds of SW Suffolk sandy micaceous ware were similar, but less gritty.

Glazed wares comprised a small body sherd of green glazed Grimston ware from topsoil in Trench 158, and a strip-decorated green glazed body sherd of Hedingham ware from subsoil in Trench 17.

Modern

A fragment of a pearlware saucer with a black transfer-printed floral design came from modern deposit 53 (Tr . 87) and was associated with two sherds of unglazed white earthenware, possibly from a plantpot. Two small sherds of blue transfer-printed whitewares, both with floral designs, were found in ditch fill 490 and topsoil of Trench 198.

There is evidence for activity of early and high medieval date across several trenches, but with particular concentrations in trenches 27 and 28. Most sherds were recovered from topsoil and subsoil, although some were recovered from linear features.

Discussion

This is a small assemblage of mixed date, but nevertheless includes the largest medieval group to have been recovered from anywhere in Ingham parish in recent years. Medieval sherds were recovered during fieldwalking in the 1980s and before, but none of this material has been subject to full recording. The group contains a high proportion of pottery comparable with material generally found in Bury St Edmunds, including glazed wares from Essex and Norfolk. It is likely that these reached the site via the market town.

Concentrations of sherds in two trenches may indicate limited activity of early and high medieval date in these areas. Although the sherd quantities are small, a number of sherds were large and unabraded, suggesting the possibility of activity other than simply the spreading of manure on open fields.

Animal Bone by Ceri Falys

A small assemblage of animal bone was been recovered from 19 contexts within the evaluated area. A total of 99 pieces of non-human bone were present for analysis, weighing 837.5 g (Appendix 4). Small quantities of bone ($\mathrm{n}=5$ fragments, weighing 18.5 g) were also recovered from the topsoil (50), subsoil (51), and modern deposit (53). Due to the unstratified and/or modern nature of these deposits, analyses of these fragments have not been included in the animal bone report. The overall preservation of the remains was poor, with cortical bone surfaces commonly eroded, and all elements were highly fragmented. Initial analyses roughly sorted elements based on
size, not by species, into one of three general categories: "large", "medium", and "small". Horse and cow are represented by the large size category, sheep/goat and pigs are represented in the medium size category, and any smaller animal (e.g. dog, cat etc.) have been designated to the "small" category. Wherever possible, specific identification to species has been made. The determination of the minimum number of individuals both within and between the species was investigated based on the duplication of elements and differences in age categories. It was not possible to identify 18.2% (i.e. 18 of the 99) of the fragments present, to either species or general size category.

A minimum of five animals were found to be represented within the poorly preserved assemblage (Appendix 4): two "large-sized" animals (one horse and one cow), at least one "medium-sized" individual (possibly a deer), and at least two "small" animals (not possible to suggest the species of origin). Skeletal elements of "large" sized animals were the most commonly recovered fragments from the investigated area, with 62 pieces of bone, or 62.6% of the assemblage, collected from eight deposits $(56,172,266,270,365,373,488$ and 552). The presence of at least one horse was supported by a right distal tibia and fragmented teeth in ditch deposits (266) and (365), respectively. A loose cow tooth was recovered from burnt deposit (56), and a left distal tibia in (488). The distal tibia showed evidence the skeleton was in the final stages of maturation, as the distal epiphysis was newly fused. A single "medium-sized" animal was identified by two loose teeth in ditch (160), which were tentatively identified as deer in origin. Pieces of bone from "small-sized" animals, which were primarily portions of long bones, were recovered from four deposits (gully 82, and ditches 272, 370, and 479). The long bones suggested a minimum of two "small" animals were present due to the substantial size differences between femoral fragments in (82) and (370). It was not possible to suggest the species of origin for any of the "small-sized" fragments, beyond the femur in gully (82) was of rodent size. No evidence of butchery practices (i.e. cut or chop marks) were observed, however, it is noted that the single piece of bone in charcoal-rich area 229 (350), was found in association with several small fragments of non-human burnt bone (see burnt bone report). It is possible this location contains the remnants of the cooking process. No further information could be retrieved from the poorly preserved remains.

In summary, the small assemblage of animal bone recovered during the course of this evaluation contained the remains of a minimum of five animals (one horse, one cow, one possible deer, and two unidentified "smallsized" animals.

Burnt Bone

In addition to a single fragment of unburnt non-human bone in the charcoal-rich deposit 229 (350), 13 pieces of burnt bone were also recovered. Weighing a total of just 4 g , the fragments ranged in size from 2.9 mm to a maximum of 45.0 mm , although most of the fragments measured less than 5 mm in length.

The colouring of the bone varied between grey and white, indicating the organic components within the bone were not oxidized to the same degree during the heating process. Holden et al. (1995a, b) found that temperatures up to $600^{\circ} \mathrm{C}$ were required to produce grey bone, which indicates the organic components have been incompletely oxidized, and temperatures above $600^{\circ} \mathrm{C}$ were needed to produce white coloured bone. The largest fragment was identified as a distal portion of a left sheep/goat distal tibial shaft. It is likely this small assemblage of bone is the result of the cooking process. No further information could be retrieved.

Ceramic Building Material by Danielle Milbank

The modest quantity of ceramic building material (7 fragments weighing 910 g) encountered in the evaluation largely comprises tile fragments, with one brick piece present. These were hand-collected and examined under x10 magnification and are summarised in Appendix 5.

The topsoil layer 50 from trench 36 contained a tile piece in a hard, evenly-fired grog tempered red fabric, of post-medieval (probable 19 ${ }^{\text {th }}$ century) date. A piece of similar type and date was recovered from subsoil layer 51. Similar small pieces were recovered from ditch 142 (trench 29) and ditch 337 (trench 2) which are not closely datable but likely to be of post-medieval or Victorian date.

A deposit (53) recorded in trench 87 contained a piece of tile in a fine sandy hard fabric with a light orange colour with pale yellowish lensing and a thickness of 13 mm , with slightly edge thickening which is suggestive of a medieval or early post-medieval date.

Ditch slot 24,81 (trench 161) contained a piece of brick in a slightly friable grog-tempered fabric, a light red colour with yellow white lensing. The form is unfrogged and 50 mm thick, and fairly regular, with slightly rounded arrises and a likely late medieval or early post-medieval date.

Overall, the building material recovered during the evaluation is slight, with most of the material representing post-medieval tile, and a brick piece broadly datable to the late medieval or early post-medieval period based on form, fabric and thickness.

Struck Flint by Steve Ford

A modest collection comprising 188 stuck flints including spalls (pieces less than $20 \times 20 \mathrm{~mm}$), rolled/weathered pieces, tested nodules and core fragments, was recorded during the evaluation and catalogued in Appendix 5. Several types of flint were utilised, much of which was a fine homogenous black flint but there were also a few flakes of grey or brown flint, some with mottled cherty inclusions. Where cortex remained, the rough unweathered cortex on the black flint suggests a source direct from the chalk, whereas the other material may be from gravel or drift deposits. One or two pieces were well patinated, a bluish grey suggesting a different origin than the rest of the collection, and one of these, a well made blade of Mesolithic date implies this may be a chronological difference. The bulk of the flint collection was unpatinated and often in mint condition with one or two pieces showing tiny traces of mottled patination only.

Most of the flintwork was recovered in small numbers usually as residual finds in later features. However, Roman ditch 331 is notable in that it produced 71 pieces, including a laurel leaf; perhaps a Neolithic feature had been truncated by the later ditch digging. Pit 237 was also notable in that it produced 19 pieces, four of which were large serrated flakes and a serrated blade, and a burin. The pottery recovered from this feature was not closely diagnostic but suggested to be of Bronze Age/Iron Age date.

The collection contained a few notable pieces, namely a transverse (petit tranchet derivative) arrowhead from pit 231. A piece described as a notched flake may have been intend to be a borer, with two large notches forming a point between them. What was notable was the presence of numerous mishits, either before one notch was produced, or a failed attempt to enhance the notch. One sturdy narrow flake had some damage at the distal end and possibly functioned as a strike-a-light.

Chronologically the collection has a range of dates present, with a few fine blades (narrow flakes) certainly of Mesolithic date, narrow flakes, although assigned by eye, make up a significant proportion of the collection, but which are not obviously all of Mesolithic date and not all appear to be fortuitous by-products of flint knapping. With the presence of a laurel leaf (spear tip) also there is a suggestion of an earlier neolithic component to the collection, especially ditch 331 . Other material could easily be of later neolithic and Bronze Age date.

Fired Clay by Danielle Milbank

Fired clay was recovered from a small number of contexts encountered during the evaluation. The pieces are small and the material is highly fragmented, in a soft unevenly-fired brown-red clay fabric with no visible
inclusions. The material lacks diagnostic characteristics, but based on the fabric may represent daub material or other fired clay objects such as loomweights.

Metalwork by Aidan Colyer

A total of 14 metal objects were recovered from the evaluation. Of these four are copper alloy, three are lead, and seven are ferrous.

Cat no: 1 is a copper alloy coin. The coin is heavily degraded with only partial lettering left on the obverse and the reverse having no detail at all. The obverse has enough of an impression that the profile of the king can be deduced. Due to the size of the coin (28mm in diameter) this can be confirmed as a George II ha'penny dating from between 1746 and 1754. Unfortunately, this piece was recovered from the topsoil of trench 29 and is not usable for dating.

Cat no: 2 is a small copper alloy object with a high lead content. One of the sides has two raised ridges that run parallel. These look to have been moulded or possibly machine made. The piece is unable to be identified to any specific item and as the piece is unstratified no date can be ascribed although it is possibly post medieval to modern due to the way the piece has been formed.

Cat no: 3 is a small L shape of copper alloy. The fragment is broken on both ends and likely represents part of a small buckle. The reverse of the object is filed and formed and looks to be crudely machine made. This is likely to be a post medieval or modern buckle that has broken and been discarded. Again, there is no context information so associated dating is not possible.

Cat no: 4 is a small copper alloy decorative piece. There is no context information so the date of the piece is not able to be identified. The fragmentary nature of the object also removes the possibility of coming to a firm conclusion about its full form or function. The quality and nature of the metalworking suggests that it is a later piece possibly even post medieval to modern in nature. It was likely affixed to another object by way of a small rivet as one side shows a scalloped decoration and the other is flat.

Cat no: 5 is a large piece of lead recovered from the topsoil of trench 116 . The piece weighs 78 g and is 65 by 45 mm . The thickness is $2-3 \mathrm{~mm}$. The shape of the piece suggests that it is leading hat has been used to cover a ridge. There is copper content to the piece as evidenced by the Verdigris that has formed on the outside. It is likely an offcut or a discarded piece of roofing lead.

Cat no's: 6 and 7 are musket balls that were recovered from Area B. They are of different sizes with cat no 6 being the smaller of the two. The diameter is 10.75 mm with a flattened edge which shows that it has been
fired. The weight is 8.5 g which transfers to roughly 0.53 bore or 0.44 calibre. Such a size is small and likely comes from a pistol or carbine. The ball has been fired with some sign of banding. Cat no 7 is slightly larger at 12.5 mm in size and 11.5 g in weight. This transfers to 0.42 bore or roughly 0.48 calibre. Again, this is on the smaller side for a rifle or musket and as such is likely from a carbine or pistol. The damage to the bullet has come from firing with a flattened edge created when it impacted and also some banding and possible evidence of a second strike from a ricochet. There is a nub on the outer edge showing that this was sprue cut and likely home-made. These are likely the result of hunting and would fit $18^{\text {th }}$ and early $19^{\text {th }}$ century firearms. There is a possibility that they are of the same age as the coin that was recovered. Similar musket balls have been recovered from metal detecting along the Eastern coast of the United States at revolutionary war sites and have been identified as small rifle or pistol shot. Due to the dating there is a high possibility of these being dated to the early to mid 18th century.

Cat no: 8 is a copper alloy brooch without a pin. There is inlaid blue enamel along the outside of the bow of the brooch. The brooch is a Roman dolphin brooch with a circular raised design at the peak of the bow of the brooch near the hinge. There is no enamel within the top of the design although it is likely that there would have been some form of decoration there given the detail in the rest of the brooch. The lozenge shaped blue enamel decoration extends down the outside of the bow and is also mirrored on the arms of the hinge. The base of the bow has a socket shape that is empty although there is no evidence of a stone or piece of enamel that would have been placed there. The pin of the brooch has been broken near the hinge but apart from that the brooch is in good condition with only some minor concretion in the recesses. This style of brooch typically dates to the first century AD. There is no context information from this brooch so it can only be said that it was lost or discarded and does not date any features.

Cat no: 9 is a heavily corroded ferrous object recovered from (53), a modern deposit. This is possibly the shaft of a nail although some chisels have a similar shape. The piece is 76 mm in length and no diameter can be measured accurately due to the corrosion. The piece weighs 22 g .

Cat no: 10 is a ferrous object recovered from a ditch slot [221] within deposit (289) in trench 4. The object weighs 4 g and is 37 mm in length with a width of 6 mm While corroded this object resembles a nail with the shaft broken. The head is globular although this is likely due to the corrosion.

Cat no: 11 is a ferrous nail recovered from a ditch slot [23] within deposit (80) in trench 161. The nail is square shafted with an amorphous head and the tip of the nail broken off. The shaft is bent which likely means that it was hammered down after being driven through a piece of wood. The length of the nail is 71 mm with a
shaft width of 9 mm and a head width of 12 mm . This nail weighs 11 g . While undated this would be a type 1 b nail under Manning's typology of Roman nails and is a standard nail used for general woodwork.

Cat no: 12 is a ferrous nail recovered from the subsoil of trench 10 . The nail is straight with an amorphous head and only the tip being damaged. Its total length is 65 mm with a shaft width of 8 mm and a head width of 15 mm . The piece weighs 18 g . This nail is undatable due to being found with no context although if Manning's typology is used this would be a type 1b general use nail for woodwork.

Cat no: 13 is a fragmented ferrous nail recovered from the subsoil of trench 142 . The nail is heavily damage with a couple of fragments of shaft present and the near complete amorphous head. The head width is 20 mm with the length being 12 mm . The damage to the piece and that it was found within the subsoil mean that no date or type can be ascribed to it.

Cat no: 14 is a small animal bone with ferrous corrosion on both ends. The corrosion that has attached itself is extensive and has degraded the bone in the centre between he two ends. The piece is not a ferrous object as such and therefore cannot be identified.

Shell by Cristina Mateos

A small assemblage of shells was recovered from the site weighing a total of 39 g . The main group of shell belong to common oysters (Ostrea edulis), along with a small amount of mussels (Mutilis edulis L.) (Appendix 9). According to the pottery, the chronology of the shell from deposits (267) and (270) are early medieval and the mussels from context (269) are Late Saxon. The finding of this type of shellfish in both periods is normal.

Charred Plant Remains by Jo Pine

Ten soil samples were taken ranging in in size from 16-40L were processed from the site. The flots were wet sieved to 0.25 mm and air dried. These were examined under a low-power binocular microscope at magnifications between x10 and x40.. Remarkably few charred plant remains were recovered, all charcoal. A small amount of charcoal was present in samples $<1>$ (56) with more frequent flecks in sample $<8>$ [229] (380), however this material of was of size and structure that does not allow species identification.

The exception to this was Sample $<7>$ [217] (285) from a waterlogged ditch in trench 29, This contained organic remains, dominated by small twigs, but has not been further examined

Conclusion

The evaluation identified archaeological deposits on the site with larger concentrations evident in the centre and to the south west end of the site and smaller ones elsewhere. These deposits dated from the Late Neolithic,

Bronze Age/Iron Age, Roman, Saxon, medieval and post medieval periods. One of the largest clusters, that to the south west is clearly of Roman date, perhaps with occupation spalling the whole of the Roman period. A few other Roman features lay further to the east. The other dense cluster of deposits was not well dated but did include a few possible Late Saxon/Medieval features. Smaller clusters of deposits were of earlier prehistoric date,with some Late Bronze Age/Iron Age deposits to the north east (trenches 68 and 130), Some Neolithc/Bronze Age features to the south (trenches 5, 188, 191), with a small probable 'burnt mound' of Bronze

Age in trench 118. These areas of potential are depicted on Figures 27 and 29.

References

Anderson, S, 2019, Suffolk Fabric Series. Access database, unpublished.
Barclay, A, Knight, D, Booth, P, Evans, J, Brown, D.H, Wood, I, 2016, A Standard for Pottery Studies in Archaeology, Prehistoric Ceramics Research Group, Study Group for Roman Pottery (Historic England)
Evans, J, Macaulay, S, and Mills, P, 2017,The Horningsea Roman Pottery Industry in Context. Volume 1. Production, Distribution and the Old Tillage. East Anglian Archaeology 162
MPRG, 1998, A Guide to the Classification of Medieval Ceramic Forms. Medieval Pottery Research Group Occasional Paper 1.
BGS, 2018, British Geological Survey, (http://mapapps.bgs.ac.uk/geologyofbritain/home.html?location=ingham
Brudenell, M, 2012, Pots, practice and society: an investigation of pattern and variability in the post-Deverel Rimbury ceramic tradition of East Anglia. Unpublished PhD thesis, York University
Esteves, L, 2018, Ingham Solar Farm North, Bodney Farm, Ingham, Suffolk an Archaeological Evaluation, TVAS East Midlands report 18/70, Wellingborough
Going, C, 1987, The Mansio and other sites in the south-eastern sector of Caesaromagus: the Roman pottery, CBA Research Report No 62, Chelmsford Archaeological Trust Report 3.2
Lyons, A. L, 2017, 'Coarse combing’ in Evans, J, Macaulay, S, and Mills, P, The Horningsea Roman Pottery Industry in Context. Volume 1: Production, Distribution and the Old Tillage, East Anglian Archaeology 162, 57-59
NPPF, 2012, National Planning Policy Framework, Dept Communities and Local Govt, London
Percival, S, 1998, 'Prehistoric pottery' in Anderson, S., and Caruth, J. 1998. Archaeological Excavation Report. Tarmac Ingham Quarry FSG013 and 015. Unpublished Suffolk County Council Archaeological Service Report 98/91
Percival, S, 2003, Prehistoric Pottery from Drovers Went, Bury St Edmunds. Unpublished report, Suffolk County Council Archaeological Unit, Bury St Edmunds
Percival, S, 2005, An Archaeological Assessment of the Prehistoric Pottery from Lackford Quarry, Suffolk, Norfolk Aarchaeological Unit Specialist Report 19, Norwich
Prehistoric Ceramic Research Group 2010, The Study of Later Prehistoric Pottery: General Policies and Guidelines for Analysis and Publication. PCRG Occasional Papers 1 and 2. 3rd edition
SCCAS 2018, Brief for an Archaeological Evaluation at Land at Place Farm, The Street, Ingham, Suffolk County Council Archaeological Service, Bury St Edmunds
Sumo 2018, Geophysical Survey Report, Place Farm, Ingham, Suffolk, Sumo report 13285, Upton on Severn
Tomber, R, and Dore, J, 1998, The National Roman Fabric Reference Collection, MoLAS Monograph 2
Tyers P, 1996, Roman Pottery in Britain, London, Batsford
Williams, A and Martin, G H, 2002, Domesday Book, a complete translation, London

Conclusion

The evaluation identified archaeological deposits on the site with larger concentrations evident in the centre and to the south west end of the site and smaller ones elsewhere. These deposits dated from the Late Neolithic,

Bronze Age/Iron Age, Roman, Saxon, medieval and post medieval periods. One of the largest clusters, that to the south west is clearly of Roman date, perhaps with occupation spalling the whole of the Roman period. A few other Roman features lay further to the east. The other dense cluster of deposits was not well dated but did include a few possible Late Saxon/Medieval features. Smaller clusters of deposits were of earlier prehistoric date,with some Late Bronze Age/Iron Age deposits to the north east (trenches 68 and 130), Some Neolithc/Bronze Age features to the south (trenches 5, 188, 191), with a small probable 'burnt mound' of Bronze Age in trench 118. These areas of potential are depicted on Figures 27 and 29

References

Anderson, S, 2019, Suffolk Fabric Series. Access database, unpublished.
Barclay, A, Knight, D, Booth, P, Evans, J, Brown, D.H, Wood, I, 2016, A Standard for Pottery Studies in Archaeology, Prehistoric Ceramics Research Group, Study Group for Roman Pottery (Historic England)
Evans, J, Macaulay, S, and Mills, P, 2017,The Horningsea Roman Pottery Industry in Context. Volume 1: Production, Distribution and the Old Tillage. East Anglian Archaeology 162
MPRG, 1998, A Guide to the Classification of Medieval Ceramic Forms. Medieval Pottery Research Group Occasional Paper 1.
BGS, 2018, British Geological Survey, (http://mapapps.bgs.ac.uk/geologyofbritain/home.html?location=ingham
Brudenell, M, 2012, Pots, practice and society: an investigation of pattern and variability in the post-Deverel Rimbury ceramic tradition of East Anglia. Unpublished PhD thesis, York University
Esteves, L, 2018, Ingham Solar Farm North, Bodney Farm, Ingham, Suffolk an Archaeological Evaluation, TVAS East Midlands report 18/70, Wellingborough
Going, C, 1987, The Mansio and other sites in the south-eastern sector of Caesaromagus: the Roman pottery, CBA Research Report No 62, Chelmsford Archaeological Trust Report 3.2
Lyons, A. L, 2017, ‘Coarse combing’ in Evans, J, Macaulay, S, and Mills, P, The Horningsea Roman Pottery Industry in Context. Volume 1: Production, Distribution and the Old Tillage, East Anglian Archaeology 162, 57-59
NPPF, 2012, National Planning Policy Framework, Dept Communities and Local Govt, London
Percival, S, 1998, ‘Prehistoric pottery' in Anderson, S., and Caruth, J. 1998. Archaeological Excavation Report. Tarmac Ingham Quarry FSG013 and 015. Unpublished Suffolk County Council Archaeological Service Report 98/91
Percival, S, 2003, Prehistoric Pottery from Drovers Went, Bury St Edmunds. Unpublished report, Suffolk County Council Archaeological Unit, Bury St Edmunds
Percival, S, 2005, An Archaeological Assessment of the Prehistoric Pottery from Lackford Quarry, Suffolk, Norfolk Aarchaeological Unit Specialist Report 19, Norwich
Prehistoric Ceramic Research Group 2010, The Study of Later Prehistoric Pottery: General Policies and Guidelines for Analysis and Publication. PCRG Occasional Papers 1 and 2. 3rd edition
SCCAS 2018, Brief for an Archaeological Evaluation at Land at Place Farm, The Street, Ingham, Suffolk County Council Archaeological Service, Bury St Edmunds
Sumo 2018, Geophysical Survey Report, Place Farm, Ingham, Suffolk, Sumo report 13285, Upton on Severn
Tomber, R, and Dore, J, 1998, The National Roman Fabric Reference Collection, MoLAS Monograph 2
Tyers P, 1996, Roman Pottery in Britain, London, Batsford
Williams, A and Martin, G H, 2002, Domesday Book, a complete translation, London

Appendix 1: Trench details

Trench	Length (m)	Width (m)	Depth (m)	Comment
1	26.00	1.80	0.45	$0-0.17 \mathrm{~m}$ topsoil, $0.17 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
2	25.10	1.80	0.42	$0-0.16 \mathrm{~m}$ topsoil, $0.16 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Ditch 337, Gullies 222, 223, 224
3	26.30	1.80	0.43	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.43 \mathrm{~m}+$ sand natural geology. Ditch 228
4	25.70	1.80	0.4	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.33 \mathrm{~m}$ subsoil; $0.33 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology. Ditches 220, 221, 230, 247, 248
5	26.80	1.80	0.47	$0-0.17 \mathrm{~m}$ topsoil, $0.17 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.47 \mathrm{~m}+$ sand natural geology. Pit 237
6	25.20	1.80	0.46	$0-0.21 \mathrm{~m}$ topsoil, $0.21 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.46 \mathrm{~m}+$ sand natural geology.
7	25.00	1.80	0.41	$0-0.16 \mathrm{~m}$ topsoil, $0.16 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.41 \mathrm{~m}+$ sand natural geology.
8	24.60	1.80	0.42	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
9	21.00	1.80	0.40	$0-0.19 \mathrm{~m}$ topsoil, $0.19 \mathrm{~m}-0.33 \mathrm{~m}$ subsoil; $0.33 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
10	25.40	1.80	0.45	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
11	25.20	1.80	0.50	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
12	25.20	1.80	0.49	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.49 \mathrm{~m}+$ sand natural geology.
13	25.30	1.80	0.42	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
14	26.00	1.80	0.39	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.39 \mathrm{~m}+$ sand natural geology.
15	26.30	1.80	0.44	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
16	27.00	1.80	0.35	$0-0.16 \mathrm{~m}$ topsoil, $0.16 \mathrm{~m}-0.29 \mathrm{~m}$ subsoil; $0.29 \mathrm{~m}-0.35 \mathrm{~m}+$ sand natural geology.
17	27.00	1.80	0.43	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.43 \mathrm{~m}+$ sand natural geology.
18	25.70	1.80	0.47	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.47 \mathrm{~m}+$ sand natural geology.
19	26.40	1.80	0.45	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology. Pit 131
20	26.00	1.80	0.50	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
21	25.00	1.80	0.45	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
22	27.00	1.80	0.50	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
23	25.60	1.80	0.45	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
24	26.30	1.80	0.50	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology. Ditches $111,119,121$, Gullies 112, 120
25	25.00	1.80	0.40	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.31 \mathrm{~m}$ subsoil; $0.31 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
26	26.40	1.80	0.43	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.43 \mathrm{~m}+$ sand natural geology. Ditches 122,123 , Gully 124
27	25.60	1.80	0.54	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.54 \mathrm{~m}+$ sand natural geology. Ditches 142,143
28	26.00	1.80	0.60	$0-0.21 \mathrm{~m}$ topsoil, $0.21 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.60 \mathrm{~m}+$ sand natural geology. Ditches 203, 204, 205, 211, 227, 232, Pit 209
29	25.70	1.80	0.68	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.57 \mathrm{~m}$ subsoil; $0.57 \mathrm{~m}-0.68 \mathrm{~m}+$ sand natural geology. Ditches 126,128 , $129,138,213,214,215,216,217,218,302$, Gully 135 , Pits $127,130,136$
30	26.00	1.80	0.50	$0-0.27 \mathrm{~m}$ topsoil, $0.27 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.50 \mathrm{~m}+$ sand with gravel natural geology. Ditches $145,146,147,148,149,200,201,202,238,239,249$
31	26.30	1.80	0.45	$0-0.22 \mathrm{~m}$ topsoil, $0.22 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology. Ditches 106, 107
32	25.50	1.80	0.55	$0-0.27 \mathrm{~m}$ topsoil, $0.27 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil; $0.48 \mathrm{~m}-0.55 \mathrm{~m}+$ sand natural geology. Ditch 108, Gully 109
33	26.00	1.80	0.38	$0-0.16 \mathrm{~m}$ topsoil, $0.16 \mathrm{~m}-0.30 \mathrm{~m}$ subsoil; $0.30 \mathrm{~m}-0.38 \mathrm{~m}+$ sand natural geology.
34	27.00	1.80	0.42	$0-0.22 \mathrm{~m}$ topsoil, $0.22 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
35	26.00	1.80	0.49	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.49 \mathrm{~m}+$ sand natural geology. Ditches $34,35,36$
36	25.30	1.80	0.60	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.60 \mathrm{~m}+$ sand natural geology. Ditches $28,29,30$
37	26.40	1.80	0.68	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.60 \mathrm{~m}$ subsoil; $0.60 \mathrm{~m}-0.68 \mathrm{~m}+$ sand and clay natural geology. Ditch 49
38	26.00	1.80	0.45	$0-0.26 \mathrm{~m}$ topsoil, $0.26 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.45 \mathrm{~m}+$ sand and clay natural geology. Ditch 21
39	24.60	1.80	0.44	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.44 \mathrm{~m}+$ sand and clay natural geology.
40	26.00	1.80	0.54	$0-0.15 \mathrm{~m}$ topsoil, $0.15 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.54 \mathrm{~m}+$ sand and clay natural geology.
41	28.00	1.80	0.65	$0-0.26 \mathrm{~m}$ topsoil, $0.26 \mathrm{~m}-0.54 \mathrm{~m}$ subsoil; $0.54 \mathrm{~m}-0.65 \mathrm{~m}+$ sand natural geology. Ditches $17,20,33$
42	21.00	1.80	0.61	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.53 \mathrm{~m}$ subsoil; $0.53 \mathrm{~m}-0.61 \mathrm{~m}+$ sand natural geology.
43	26.00	1.80	0.58	$0-0.26 \mathrm{~m}$ topsoil, $0.26 \mathrm{~m}-0.47 \mathrm{~m}$ subsoil; $0.47 \mathrm{~m}-0.58 \mathrm{~m}+$ sand natural geology.
44	26.00	1.80	0.62	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.62 \mathrm{~m}+$ sand natural geology.
45	25.50	1.80	0.43	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.43 \mathrm{~m}+$ sand with gravel natural geology. Ditch 18
46	24.50	1.80	0.54	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.54 \mathrm{~m}+$ sand natural geology. Land Drain 16, Ditch 19
47	25.30	1.80	0.53	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.53 \mathrm{~m}+$ sand and clay natural geology.
48	24.60	1.80	0.42	$0-0.21 \mathrm{~m}$ topsoil, $0.21 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with gravel natural geology. Ditches 44 , 45
49	26.00	1.80	0.43	$0-0.21 \mathrm{~m}$ topsoil, $0.21 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with gravel natural geology.
50	26.20	1.80	0.42	$0-0.18 \mathrm{~m}$ topsoil, $0.18 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.42 \mathrm{~m}+$ clay natural geology.
51	27.00	1.80	0.44	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.44 \mathrm{~m}+$ clay with patches of chalk natural geology.
52	26.00	1.80	0.45	$0-0.19 \mathrm{~m}$ topsoil, $0.19 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.45 \mathrm{~m}+$ clay with patches of chalk natural geology.
53	25.30	1.80	0.52	$0-0.26 \mathrm{~m}$ topsoil, $0.26 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.52 \mathrm{~m}+$ clay with gravel natural geology.
54	26.20	1.80	0.52	$0-0.27 \mathrm{~m}$ topsoil, $0.27 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.52 \mathrm{~m}+$ clay with gravel natural geology.
55	25.30	1.80	0.56	$0-0.27 \mathrm{~m}$ topsoil, $0.27 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil; $0.48 \mathrm{~m}-0.56 \mathrm{~m}+$ clay with gravel natural geology.
56	25.00	1.80	0.52	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.47 \mathrm{~m}$ subsoil; $0.47 \mathrm{~m}-0.52 \mathrm{~m}+$ with patches of yellow sand and gravel natural geology.
57	25.50	1.80	0.42	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with patches of chalk natural geology. Pit 43
58	25.40	1.80	0.48	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.41 \mathrm{~m}$ subsoil; $0.41 \mathrm{~m}-0.48 \mathrm{~m}+$ clay with patches of chalk natural geology.
59	25.20	1.80	0.50	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.50 \mathrm{~m}+$ clay with patches of chalk natural geology.

60	25.40	1.80	0.40	$0-0.14 \mathrm{~m}$ topsoil, $0.14 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.40 \mathrm{~m}+$ clay with patches of chalk natural geology.
61	26.10	1.80	0.43	$0-0.23 \mathrm{~m}$ topsoil, $0.23 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.43 \mathrm{~m}+$ clay with patches of chalk natural geology.
62	26.30	1.80	0.53	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.53 \mathrm{~m}+$ clay with patches of chalk natural geology. Ditches 38, 39, 42
63	25.60	1.80	0.50	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.41 \mathrm{~m}$ subsoil; $0.41 \mathrm{~m}-0.50 \mathrm{~m}+$ clay with patches of chalk natural geology.
64	26.00	1.80	0.45	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.45 \mathrm{~m}+$ clay with patches of chalk natural geology.
65	25.50	1.80	0.49	$0-0.22 \mathrm{~m}$ topsoil, $0.22 \mathrm{~m}-0.41 \mathrm{~m}$ subsoil; $0.41 \mathrm{~m}-0.49 \mathrm{~m}+$ clay and gravel with patches of chalk natural geology. Ditch 11, Posthole 12
66	27.00	1.80	0.46	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with patches of chalk natural geology.
67	26.50	1.80	0.51	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.51 \mathrm{~m}+$ clay with patches of chalk natural geology.
68	28.10	1.80	0.40	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.40 \mathrm{~m}+$ clay with patches of chalk natural geology. Pit 5
69	27.10	1.80	0.39	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.39 \mathrm{~m}+$ clay with patches of chalk natural geology.
70	25.70	1.80	0.46	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil ; $0.42 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with chalk patches natural geology.
71	25.80	1.80	0.48	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.48 \mathrm{~m}+$ clay with chalk patches natural geology. Ditch 8
72	27.00	1.80	0.41	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ clay with chalk patches natural geology. Ditches 1 and 9
73	27.00	1.80	0.41	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ clay with chalk patches natural geology. Ditch 7
74	26.50	1.80	0.46	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with patches of chalk gravel natural geology.
75	23.70	1.80	0.52	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.52 \mathrm{~m}+$ clay with patches of chalk and gravel natural geology.
76	27.8	1.80	0.47	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.47 \mathrm{~m}+$ clay with patches of chalk natural geology.
77	27.00	1.80	0.42	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with patches of chalk natural geology. Ditch 13
78	26.50	1.80	0.35	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.35 \mathrm{~m}+$ clay with patches of chalk natural geology. Ditch 27
79	26.70	1.80	0.51	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil; $0.48 \mathrm{~m}-0.51 \mathrm{~m}+$ clay natural geology.
80	24.50	1.80	0.41	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ clay with patches of chalk natural geology.
81	25.80	1.80	0.33	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.33 \mathrm{~m}+$ clay natural geology.
82	25.80	1.80	0.40	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ clay with patches of chalk natural geology.
83	26.80	1.80	0.36	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.36 \mathrm{~m}+$ clay with patches of chalk natural geology.
84	25.20	1.80	0.42	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with patches of chalk natural geology.
85	27.40	1.80	0.49	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.47 \mathrm{~m}$ subsoil; $0.47 \mathrm{~m}-0.49 \mathrm{~m}+$ clay with patches of chalk natural geology.
86	25.30	1.80	0.48	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.48 \mathrm{~m}+$ clay with patches of chalk natural geology.
87	25.60	1.80	0.42	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with patches of chalk natural geology.
88	24.50	1.80	0.60	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.57 \mathrm{~m}$ peaty clay; $0.57 \mathrm{~m}-0.60 \mathrm{~m}+$ sand natural. Palaeo-Channel 343
89	26.00	1.80	0.49	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.49 \mathrm{~m}+$ sand and gravel natural geology.
90	26.00	1.80	0.50	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil; $0.48 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology. Ditches 321,324 , $325,326,327,328,340,341,342$, Gullies 322, 323
91	26.00	1.80	0.42	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Ditch 304, Gullies 303, 305
92	26.00	1.80	0.35	$0-0.32 \mathrm{~m}$ topsoil; $0.32 \mathrm{~m}-0.35 \mathrm{~m}+$ sand natural geology. Ditch 316 , Gullies $312,314,315,317$, Pits 313, 318
93	26.00	1.80	0.51	$0-0.44 \mathrm{~m}$ topsoil, $0.44 \mathrm{~m}-0.49 \mathrm{~m}$ subsoil; $0.49 \mathrm{~m}-0.51 \mathrm{~m}+$ sand natural geology. Tree Throw 329
94	26.00	1.80	0.50	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
95	26.00	1.80	0.40	$0-0.24 \mathrm{~m}$ topsoil, $0.24 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology. Ditch 330
96	25.60	1.80	0.52	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.33 \mathrm{~m}$ yellow sand; $0.33 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.52 \mathrm{~m}+$ sand natural geology.
97	25.50	1.80	0.32	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.32 \mathrm{~m}$ gravel sand natural geology. Gullies 335,336
98	25.50	1.80	0.31	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.29 \mathrm{~m}$ subsoil; $0.29 \mathrm{~m}-0.31 \mathrm{~m}+$ gravel sand natural geology. Ditch 339
99	25.00	1.80	0.35	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.29 \mathrm{~m}$ subsoil; $0.29 \mathrm{~m}-0.35 \mathrm{~m}+$ sand and gravel natural geology.
100	25.80	1.80	0.24	$0-0.23 \mathrm{~m}$ topsoil; $0.23 \mathrm{~m}-0.24 \mathrm{~m}+$ gravel and sand natural geology.
101	25.90	1.80	0.44	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.44 \mathrm{~m}$ sand and gravel natural geology.
102	24.80	1.80	0.42	$0-0.40 \mathrm{~m}$ topsoil, $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ sand and gravel natural geology.
103	25.00	1.80	0.44	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.44 \mathrm{~m}+$ sand and gravel natural geology.
104	27.40	1.80	0.47	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.47 \mathrm{~m}+$ sand and gravel natural geology.
105	24.70	1.80	0.40	$0-0.38 \mathrm{~m}$ topsoil, $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand and gravel natural geology.
106	24.60	1.80	0.45	$0-0.43 \mathrm{~m}$ topsoil, $0.43 \mathrm{~m}-0.45 \mathrm{~m}+$ sand and gravel natural geology.
107	25.00	1.80	0.52	$0-0.38 \mathrm{~m}$ topsoil, $0.38 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil, $0.48 \mathrm{~m}-0.52 \mathrm{~m}+$ sand and gravel natural geology.
108	25.50	1.80	0.51	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.49 \mathrm{~m}$ subsoil, $0.49 \mathrm{~m}-0.51 \mathrm{~m}+$ sand and gravel natural geology.
109	24.60	1.80	0.44	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil, $0.40 \mathrm{~m}-0.44 \mathrm{~m}+$ sand natural geology.
110	26.10	1.80	0.45	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil, $0.40 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
111	24.40	1.80	0.60	$0-0.40 \mathrm{~m}$ topsoil, $0.40 \mathrm{~m}-0.58 \mathrm{~m}$ subsoil; $0.58 \mathrm{~m}-0.60 \mathrm{~m}+$ clay with chalk patches natural geology.
112	24.80	1.80	0.46	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with chalk patches natural geology.
113	27.30	1.80	0.48	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.48 \mathrm{~m}+$ clay with chalk patches natural geology.
114	26.60	1.80	0.26	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.24 \mathrm{~m}$ subsoil; $0.24 \mathrm{~m}-0.26 \mathrm{~m}+$ clay with chalk patches natural geology.
115	26.60	1.80	0.44	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.44 \mathrm{~m}+$ clay natural geology.
116	24.70	1.80	0.42	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.42 \mathrm{~m}+$ clay with patches of chalk natural geology.
117	25.00	1.80	0.41	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.41 \mathrm{~m}+$ clay with patches of chalk natural geology.
118	26.00	1.80	0.40	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ clay and gravel natural geology. Land Drain

				2, Pit 3
119	24.50	1.80	0.39	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.39 \mathrm{~m}+$ clay and gravel natural geology.
120	26.00	1.80	0.40	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.40 \mathrm{~m}+$ clay with patches of chalk natural geology.
121	26.30	1.80	0.38	$0-0.26 \mathrm{~m}$ topsoil, $0.26 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.38 \mathrm{~m}+$ clay with patches of chalk natural geology.
122	26.00	1.80	0.38	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.38 \mathrm{~m}+$ clay with patches of chalk natural geology.
123	27.30	1.80	0.46	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with patches of chalk natural geology.
124	27.30	1.80	0.39	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.39 \mathrm{~m}+$ clay with patches of chalk natural geology. Ditch 4
125	26.10	1.80	0.40	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ clay with patches of chalk natural geology.
126	25.00	1.80	0.47	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.47 \mathrm{~m}+$ clay and gravel natural geology.
127	25.70	1.80	0.38	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.38 \mathrm{~m}+$ clay and gravel natural geology.
128	24.80	1.80	0.40	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.40 \mathrm{~m}+$ clay natural geology.
129	24.50	1.80	0.38	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.38 \mathrm{~m}+$ clay with patches of chalk natural geology.
130	24.70	1.80	0.39	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.39 \mathrm{~m}+$ clay with patches of chalk natural geology. Postholes 6 and 10
131	26.50	1.80	0.35	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.35 \mathrm{~m}+$ clay with patches of chalk natural geology. Land Drains 14 and 15
132	25.30	1.80	0.38	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.38 \mathrm{~m}+$ clay with patches of chalk natural geology.
133	26.50	1.80	0.43	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.43 \mathrm{~m}+$ sandy clay natural geology. Land Drain 37
134	25.00	1.80	0.44	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.44 \mathrm{~m}+$ sand natural geology.
135	22.90	1.80	0.50	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
136	24.70	1.80	0.52	$0-0.37 \mathrm{~m}$ topsoil, $0.37 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.52 \mathrm{~m}+$ sand natural geology.
137	26.80	1.80	0.44	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.44 \mathrm{~m}+$ sand natural geology.
138	25.30	1.80	0.47	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.47 \mathrm{~m}+$ sand natural geology.
139	25.90	1.80	0.46	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.46 \mathrm{~m}+$ sandy clay natural geology.
140	24.70	1.80	0.38	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.38 \mathrm{~m}+$ clay natural geology. Ditch 40
141	26.00	1.80	0.50	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.48 \mathrm{~m}$ subsoil; $0.48 \mathrm{~m}-0.50 \mathrm{~m}+$ clay with patches of chalk natural geology.
142	25.00	1.80	0.50	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.50 \mathrm{~m}+$ clay natural geology.
143	23.50	1.80	0.42	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ clay natural geology.
144	25.40	1.80	0.42	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ clay natural geology.
145	25.20	1.80	0.54	$0-0.37 \mathrm{~m}$ topsoil, $0.37 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.54 \mathrm{~m}+$ clay with patches of gravel natural geology.
146	25.00	1.80	0.44	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.44 \mathrm{~m}+$ clay with patches of gravel natural geology. Ditches 31, 32
147	25.00	1.80	0.45	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.45 \mathrm{~m}+$ clay with patches of gravel natural geology. Ditch 47, Land Drain 48
148	25.20	1.80	0.46	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.46 \mathrm{~m}+$ clay with patches of gravel natural geology.
149	25.00	1.80	0.47	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.47 \mathrm{~m}+$ sandy clay with patches of gravel natural geology.
150	23.80	1.80	0.42	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.42 \mathrm{~m}+$ clayey sand with patches of gravel natural geology.
151	24.70	1.80	0.35	$0-0.27 \mathrm{~m}$ topsoil, $0.27 \mathrm{~m}-0.33 \mathrm{~m}$ subsoil; $0.33 \mathrm{~m}-0.35 \mathrm{~m}+$ clayey sand with patches of gravel natural geology.
152	24.80	1.80	0.50	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.47 \mathrm{~m}$ subsoil; $0.47 \mathrm{~m}-0.50 \mathrm{~m}+$ sand with patches of gravel natural geology.
153	24.50	1.80	0.53	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.53 \mathrm{~m}+$ sand natural geology.
154	25.40	1.80	0.42	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Land Drain 41
155	25.20	1.80	0.48	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.42 \mathrm{~m}$ subsoil; $0.42 \mathrm{~m}-0.48 \mathrm{~m}+$ sand with patches of gravel natural geology
156	25.60	1.80	0.62	$0-0.40 \mathrm{~m}$ topsoil, $0.40 \mathrm{~m}-0.58 \mathrm{~m}$ subsoil; $0.58 \mathrm{~m}-0.62 \mathrm{~m}+$ sand with patches of gravel natural geology.
157	24.50	1.80	0.40	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.37 \mathrm{~m}$ subsoil; $0.37 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology. Ditch 46
158	25.00	1.80	0.38	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.38 \mathrm{~m}+$ sand natural geology.
159	25.00	1.80	0.36	$0-0.29 \mathrm{~m}$ topsoil, $0.29 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.36 \mathrm{~m}+$ sand natural geology.
160	24.10	1.80	0.50	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.50 \mathrm{~m}+$ sand with patches of gravel natural geology.
161	26.60	1.80	0.52	$0-0.38 \mathrm{~m}$ topsoil, $0.38 \mathrm{~m}-0.49 \mathrm{~m}$ subsoil; $0.49 \mathrm{~m}-0.52 \mathrm{~m}+$ sand with patches of gravel natural geology. Ditches 22, 23, 24, Gullies 25, 26
162	25.00	1.80	0.40	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology. Pit 102, Ditch 110
163	24.50	1.80	0.40	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
164	26.30	1.80	0.42	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Pits 101,103
165	25.20	1.80	0.43	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.43 \mathrm{~m}+$ sand natural geology.
166	25.10	1.80	0.42	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Gully 100
167	25.10	1.80	0.41	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ sand natural geology.
168	25.20	1.80	0.38	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}+$ sand natural geology.
169	25.00	1.80	0.51	$0-0.36 \mathrm{~m}$ topsoil, $0.36 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.51 \mathrm{~m}+$ sand natural geology. Ditches 113,118
170	24.00	1.80	0.55	$0-0.25 \mathrm{~m}$ topsoil, $0.25 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.55 \mathrm{~m}+$ sand natural geology. Pit 114, Ditch 115
171	23.50	1.80	0.52	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.52 \mathrm{~m}+$ sand natural geology. Gullies 133,134
172	23.50	1.80	0.60	$0-0.40 \mathrm{~m}$ topsoil, $0.40 \mathrm{~m}-0.60 \mathrm{~m}$ subsoil; $0.60 \mathrm{~m}+$ sand natural geology. Land Drain 116, Gully 117
173	24.00	1.80	0.48	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.45 \mathrm{~m}$ subsoil; $0.45 \mathrm{~m}-0.48 \mathrm{~m}+$ sand natural geology. Land Drain 125
174	24.50	1.80	0.55	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.55 \mathrm{~m}+$ sand natural geology. Land Drain 132
175	24.50	1.80	0.45	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology. Ditch 139 , Gully 140 , 144
176	24.70	1.80	0.55	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.55 \mathrm{~m}+$ sand natural geology. Ditch 141
177	24.70	1.80	0.60	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.55 \mathrm{~m}$ subsoil; $0.55 \mathrm{~m}-0.60 \mathrm{~m}+$ sand natural geology. Ditch 207, Pit 208, 210
178	25.30	1.80	0.40	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology. Ditch 206
179	25.50	1.80	0.60	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.53 \mathrm{~m}$ subsoil; $0.53 \mathrm{~m}-0.60 \mathrm{~m}+$ sand natural geology. Ditch 212

180	25.00	1.80	0.38	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.38 \mathrm{~m}+$ sand natural geology.
181	26.00	1.80	0.33	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.33 \mathrm{~m}+$ sand natural geology.
182	24.90	1.80	0.34	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.34 \mathrm{~m}+$ sand natural geology.
183	24.50	1.80	0.40	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
184	25.00	1.80	0.46	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.46 \mathrm{~m}+$ sand natural geology.
185	25.30	1.80	0.54	$0-0.40 \mathrm{~m}$ topsoil, $0.40 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.54 \mathrm{~m}+$ sand natural geology.
186	25.20	1.80	0.50	$0-0.37 \mathrm{~m}$ topsoil, $0.37 \mathrm{~m}-0.46 \mathrm{~m}$ subsoil; $0.46 \mathrm{~m}-0.50 \mathrm{~m}+$ sand natural geology.
187	25.10	1.80	0.40	$0-0.34 \mathrm{~m}$ topsoil, $0.34 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
188	25.20	1.80	0.35	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.35 \mathrm{~m}+$ sand natural geology. Ditch 229
189	24.80	1.80	0.37	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.37 \mathrm{~m}+$ sand natural geology.
190	24.60	1.80	0.36	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.34 \mathrm{~m}$ subsoil; $0.34 \mathrm{~m}-0.36 \mathrm{~m}+$ sand natural geology. Ditches 225,226
191	25.50	1.80	0.36	$0-0.31 \mathrm{~m}$ topsoil, $0.31 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.36 \mathrm{~m}+$ sand natural geology. Ditches 231,243 , 244, Gully 245, Pit 246, Posthole 236
192	24.50	1.80	0.40	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
193	27.00	1.80	0.42	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
194	26.10	1.80	0.46	$0-0.35 \mathrm{~m}$ topsoil, $0.35 \mathrm{~m}-0.43 \mathrm{~m}$ subsoil; $0.43 \mathrm{~m}-0.46 \mathrm{~m}+$ sand natural geology.
195	25.00	1.80	0.42	$0-0.33 \mathrm{~m}$ topsoil, $0.33 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology. Ditches 233,234 , 235, 240, Pit 241
196	23.70	1.80	0.39	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.39 \mathrm{~m}+$ sand natural geology.
197	24.50	1.80	0.52	$0-0.44 \mathrm{~m}$ topsoil, $0.44 \mathrm{~m}-0.50 \mathrm{~m}$ subsoil; $0.50 \mathrm{~m}-0.52 \mathrm{~m}+$ sand natural geology. Ditch 242, Pit 301
198	25.00	1.80	0.28	$0-0.28 \mathrm{~m}$ topsoil; $0.28 \mathrm{~m}+$ sand natural geology. Ditches $300,319,320$
199	25.00	1.80	0.41	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ sand natural geology. Ditches 331,332 , Gullies 306, 307, 308, 309, 310, 311
200	23.40	1.80	0.34	$0-0.32 \mathrm{~m}$ topsoil; $0.32 \mathrm{~m}-0.34 \mathrm{~m}+$ sand natural geology.
201	25.00	1.80	0.41	$0-0.32 \mathrm{~m}$ topsoil, $0.32 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ sand natural geology. Palaeo-Channel 338
202	25.80	1.80	0.34	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.34 \mathrm{~m}+$ sand natural geology.
203	25.80	1.80	0.34	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.34 \mathrm{~m}+$ sand natural geology. Ditches 333,334
204	23.00	1.80	0.35	$0-0.28 \mathrm{~m}$ topsoil, $0.28 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.35 \mathrm{~m}+$ sand natural geology.
205	24.80	1.80	0.27	$0-0.15 \mathrm{~m}$ topsoil, $0.15 \mathrm{~m}-0.23 \mathrm{~m}$ subsoil; $0.23 \mathrm{~m}-0.27 \mathrm{~m}+$ sand natural geology.
206	24.80	1.80	0.30	$0-0.20 \mathrm{~m}$ topsoil, $0.20 \mathrm{~m}-0.28 \mathrm{~m}$ subsoil; $0.28 \mathrm{~m}-0.30 \mathrm{~m}+$ sand natural geology.
207	24.70	1.80	0.31	$0-0.30 \mathrm{~m}$ topsoil, $0.30 \mathrm{~m}-0.31 \mathrm{~m}$ subsoil; $0.31 \mathrm{~m}+$ gravel and sand natural geology.
208	26.00	1.80	0.36	$0-0.28 \mathrm{~m}$ topsoil, $0.28-0.32 \mathrm{~m}$ subsoil overlaying yellow mineralised sand natural geology
209	26.00	1.80	0.40	$0-0.39 \mathrm{~m}$ topsoil; $0.39 \mathrm{~m}+$ sand natural geology.
210	25.20	1.80	0.33	$0-0.32 \mathrm{~m}$ topsoil; $0.32 \mathrm{~m}-0.33 \mathrm{~m}+$ sand natural geology.
211	26.10	1.80	0.40	$0-0.33 \mathrm{~m}$ topsoil, $0.33 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
212	24.50	1.80	0.41	$0-0.32 \mathrm{~m}$ topsoil; $0.32 \mathrm{~m}-0.39 \mathrm{~m}$ subsoil; $0.39 \mathrm{~m}-0.41 \mathrm{~m}+$ sand natural geology.
213	24.90	1.80	0.45	$0-0.37 \mathrm{~m}$ topsoil; $0.37 \mathrm{~m}-0.44 \mathrm{~m}$ subsoil; $0.44 \mathrm{~m}-0.45 \mathrm{~m}+$ sand natural geology.
214	24.90	1.80	0.42	$0-0.31 \mathrm{~m}$ topsoil; $0.31 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.42 \mathrm{~m}+$ sand natural geology.
215	26.00	1.80	0.40	$0-0.30 \mathrm{~m}$ topsoil; $0.30 \mathrm{~m}-0.38 \mathrm{~m}$ subsoil; $0.38 \mathrm{~m}-0.40 \mathrm{~m}+$ sand natural geology.
216	24.10	1.80	0.38	$0-0.28 \mathrm{~m}$ topsoil; $0.28 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.38 \mathrm{~m}+$ clayey sand natural geology.
217	25.70	1.80	0.37	$0-0.32 \mathrm{~m}$ topsoil; $0.32 \mathrm{~m}-0.36 \mathrm{~m}$ subsoil; $0.36 \mathrm{~m}-0.37 \mathrm{~m}+$ clayey sand natural geology.
218	24.80	1.80	0.38	$0-0.26 \mathrm{~m}$ topsoil; $0.26 \mathrm{~m}-0.35 \mathrm{~m}$ subsoil; $0.35 \mathrm{~m}-0.38 \mathrm{~m}+$ clay natural geology. Gully 104, Ditch 105
219	28.00	1.80	0.36	$0-0.26 \mathrm{~m}$ topsoil; $0.26 \mathrm{~m}-0.32 \mathrm{~m}$ subsoil; $0.32 \mathrm{~m}-0.36 \mathrm{~m}+$ clay natural geology.
220	25.70	1.80	0.45	$0-0.30 \mathrm{~m}$ topsoil; $0.30 \mathrm{~m}-0.40 \mathrm{~m}$ subsoil; $0.40 \mathrm{~m}-0.45 \mathrm{~m}+$ clay natural geology.

APPENDIX 2: Catalogue of excavated features

Trench	Cut	Fill (s)	Type	Date	Dating evidence
All		50	Topsoil		
All		51	Subsoil		
87		52, 53	Modern Dump		
90		465	Layer		
118		56	Burnt Mound		
72	1	59	Ditch		
118	2	54, 55	Land Drain		
118	3	57	Pit		
124	4	58, 154	Ditch		
68	5	61	Pit	EIA	Pottery
130	6	62	Post Hole	LBA	Pottery
73	7	63	Ditch		
71	8	64	Ditch	EIA	Pottery
72	9	65	Ditch		
130	10	66	Post Hole		
65	11	67	Ditch		
65	12	68,73	Post Hole		
77	13	69	Ditch	Roman	EIA Pottery
131	14	70	Drain		
131	15	71	Drain		
46	16	72	Drain		
41	17	74	Ditch		
46	18	75	Drain		
46	19	76	Ditch		
41	20	77	Ditch		
38	21	78	Ditch		
161	22	79	Ditch		
161	23	80	Ditch		
161	24	81	Ditch		
161	25	82	Gully	Late Saxon	Pottery
161	26	83	Gully		
78	27	84	Ditch		
36	28	85-7	Ditch		
36	29	88-9	Ditch		
36	30	90-1	Ditch		
146	31	92	Ditch		
146	32	93	Ditch		
41	33	94	Ditch		
35	34	98-9	Ditch		
35	35	150	Ditch		
35	36	151-2	Ditch		
133	37	95	Drain		
62	38	96	Ditch		
62	39	97	Ditch		
140	40	154	Ditch		
154	41	156	Land Drain		
62	42	157	Ditch		
57	43	158	Pit		
28	44	159	Ditch	Medieval	Pottery
28	45	160	Ditch	Medieval	Pottery
157	46	161	Ditch		
147	47	162	Ditch		
147	48	163	Land drain		
37	49	164-6	Ditch		
166	100	167	Gully		
164	101	168	Pit		
162	102	169, 361	Pit		
164	103	170	Pit		
218	104	171	Gully		
218	105	172, 173	Ditch	Medieval	Pottery
31	106	174	Ditch		
31	107	175	Ditch		
32	108	176	Ditch		
32	109	177	Ditch		
162	110	178	Ditch		
24	111	179	Ditch		
24	112	180	Gully		
167	113	181	Ditch		
170	114	182	Pit		

Trench	Cut	Fill (s)	Type	Date	Dating evidence
170	115	183	Ditch		
172	116	184	Drain		
172	117	185	Gully		
169	118	186	Ditch		
24	119	187	Ditch		
24	120	188	Ditch		
24	121	190, 191	Ditch		
26	122	192	Ditch		
26	123	193	Ditch		
26	124	194	Ditch		
173	125	195	Drain		
29	126	196	Ditch		
29	127	197	Pit		
29	128	198	Ditch		
29	129	199, 261	Ditch		
29	130	250, 260	Pit		
19	131	251	Pit		
174	132	252	Drain		
171	133	253	Gully		
171	134	254	Gully		
29	135	255	Gully		
29	136	256	Pit		
29	138	257-8, 265	Ditch		
175	139	261	Ditch		
175	140	262	Gully		
176	141	263	Ditch		
27	142	266	Ditch		
27	143	267	Ditch	Medieval	Pottery
175	144	264, 268	Gully		
30	145	366	Ditch		
30	146	367	Ditch		
30	147	368	Ditch		
30	148	369-71	Ditch		
30	149	373	Ditch		
30	200	374-7	Ditch		
30	201	378	Ditch		
30	202	362	Ditch		
28	203	269	Ditch	Late Saxon	Pottery
28	204	270	Ditch	Medieval	Pottery
28	205	271	Ditch	Medieval	Pottery
178	206	278	Ditch		
177	207	273	Ditch		
177	208	274	Pit		
28	209	272	Ditch		
177	210	275	Pit		
28	211	276	Ditch		
179	212	277	Ditch		
29	213	279	Ditch		
29	214	280, 281	Ditch		
29	215	282	Ditch		
29	216	283, 284	Ditch		
29	217	285, 286	Ditch		
29	218	296	Ditch		
4	220	288, 298	Ditch	Roman	Pottery
4	221	289	Ditch	Roman	Pottery
2	222	290	Gully		
2	223	291	Gully		
2	224	292	Gully		
193	225	293	Ditch		
190	226	294	Ditch		
28	227	295	Ditch		
3	228	297	Ditch	Roman	Pottery
188	229	299, 350, 351	Ditch	EIA	Pottery
4	230	352	Ditch		
191	231	353	Pit	Bronze Age	Pottery
28	232	354	Ditch		
195	233	355	Ditch		
195	234	356	Ditch		
195	235	357	Ditch		
191	236	358	Post hole		
5	237	359, 360	Pit	Late Neolithic?	Flintwork; BA/IA Pottery

Trench	Cut	Fill (s)	Type	Date	Dating evidence
30	238	379	Ditch		
30	239	380	Ditch		
195	240	363	Ditch		
195	241	364	Ditch	Roman	Pottery
197	242	365	Ditch	Roman	Pottery
191	243	381	Ditch		
191	244	382	Ditch		
191	245	383	Gully		
191	246	384	Pit		
4	247	385	Ditch	Roman	EIA Pottery
4	248	386	Ditch	Roman	Pottery
30	249	372	Ditch		
198	300	387, 461, 462	Ditch		
197	301	388	Hollow	Roman	Pottery
29	302	389	Ditch		
91	303	390	Gully		
91	304	391	Ditch		
91	305	392	Gully		
199	306	394	Gully		
199	307	395	Gully		
199	308	393	Gully	Roman	Pottery
199	309	397	Gully		
199	310	398	Gully		
199	311	396	Gully	Roman	Pottery
92	312	451	Gully	Roman	Pottery
92	313	452, 453	Pit		
92	314	456	Gully		
92	315	457	Gully		
92	316	458, 459	Ditch	Roman	EIA Pottery
92	317	460	Gully		
92	318	454, 455	Pit		
198	319	399	Ditch		
198	320	450	Ditch		
90	321	484, 485	Ditch	Roman	Pottery
90	322	481	Gully		
90	323	482	Gully		
90	324	477	Ditch		
90	325	478	Ditch	Roman	Pottery
90	326	483	Ditch	Roman	Pottery
90	327	479	Ditch	Roman	Pottery
90	328	474	Ditch		
93	329	463	Tree hole		
95	330	464	Ditch	Roman	Pottery
199	331	486-8, 554	Ditch	Roman	EIA Pottery Neolithic flintwork
199	332	489	Ditch	Roman	Pottery
203	333	490, 491	Ditch		
203	334	492, 493	Ditch		
97	335	494	Gully		
97	336	495	Gully		
2	337	466	Ditch	Roman	Pottery
201	338	467-73	Palaeochannel		
98	339	496	Ditch		
90	340	475	Ditch		
90	341	476	Ditch		
90	342	480	Ditch		
88	343	498-9, 550-3	Palaeochannel		

Appendix 3: Catalogue of Prehistoric Pottery

3A: Fabric descriptions

Fabric type	Description	Sherd count	\% count	Weight (g)	\% weight
F1	Sparse or moderate to common, finely crushed burnt flint (mainly $0.25-1 \mathrm{~mm}$) in a sand clay matrix.	7	9.21\%	19	3.39\%
F2	Moderate or common medium burnt flint (mainly 1-2mm) in a sandy clay matrix.	32	42.11\%	246	43.93\%
F2OX	Moderate or common medium burnt flint (mainly 1-2mm) in a sandy clay matrix. Oxidised surfaces	10	13.16\%	39	6.96\%
F3	Moderate or common coarse and very coarse burnt flint (mainly $3-4 \mathrm{~mm}$) in a sand clay matrix.	12	15.79\%	93	16.61\%
Q10X	Moderate or common sand, with some sherds having very rare fine or medium burnt flint (mainly $1-1.5 \mathrm{~mm}$). (Oxidised surfaces)	2	2.63\%	1	0.18\%
QF	Moderate rounded quartz sand with sparse finely crushed burnt flint (mainly $0.25-1 \mathrm{~mm}$)	1	1.32\%	28	5.00\%
QF1	Common rounded quartz sand with moderate finely crushed burnt flint (mainly $0.25-1 \mathrm{~mm}$)	10	13.16\%	128	22.86\%
QF2	Common rounded quartz sand with rare finely crushed burnt flint (mainly $0.25-1 \mathrm{~mm}$)	1	1.32\%	5	0.89\%
QFOX	Moderate rounded quartz sand with sparse finely crushed burnt flint (mainly $0.25-1 \mathrm{~mm}$) (Oxidised surfaces)	1	1.32\%	1	0.18\%
Total		76	100.00\%	560	100.00\%

Appendix 3B: Quantity and weight of pottery by form (form descriptions follow Brudenell 2012).

Fabric group	Class	Form	Description	Rim type	Sherd count	Weight. (g)	Rim count
Flint	I	?	Form uncertain	Direct flat	2	4	2
	II	G	Jars with high slack or weakly defined shoulders and upright, hollowed or out turned necks	direct pointed	1	61	1
Sandy with flint	I	?	Form uncertain	Direct flat	1	5	1
	II	F2	Jars with a deep rounded shoulder and short, upright, out-turned or concave neck. These are constricted vessels where the diameter of the mouth is distinctly smaller than that of the maximum girth	Direct pointed	4	99	1
	III	L5	Bowl with well-defined shoulder and broadly upright, but hollowed or concave neck	Direct rounded	1	7	1
			Total		9	176	6

3C: Prehistoric Pottery Catalogue

Trench	Feature	Deposit	Feature type	Date	Quantity	Weight (g)
4	247	385	Ditch	Early Iron Age	1	4
5	237	359	Ditch	Bronze Age	1	2
					1	1
10	51	51	Subsoil	Early Iron Age	3	9
					7	20
					3	1
68	5	61	Pit	Early Iron Age	11	48
77	13	69	Ditch	Early Iron Age	4	7
91	51	51	Subsoil	Iron Age	1	7
92	316	458	Gully	Early Iron Age	1	5
130	6	62	Posthole	Early Iron Age	1	1
188	229	350	Charcoal	Early Iron Age	35	368
195	231	353	Pit	Bronze Age	26	242
198	230	450	Ditch	Early Iron Age	13	78
199	51	51	Subsoil	Early Iron Age	1	12
	554	554	Ditch	Early Iron Age	1	5
Unknown	8	64	Ditch	Early Iron Age	1	1
	---	487	Unknown	Early Iron Age	1	9
	489	489	Layer	Early Iron Age	3	13
Total					115	833

APPENDIX 4: Roman Pottery

4A: Roman pottery quantified by trench and feature type

Trench	Feature	Sherd Count	Weight (g)	Weight (\%)
Whole Site	Topsoil and subsoil	0	0	20.26
2	Ditch	89	641	7.13
3	Ditch	1	10	0.11
4	Ditch	75	970	10.80
77	Ditch	1	3	0.03
90	Ditch and gully	16	152	1.70
92	Ditch	5	89	1.00
95	Ditch	2	19	0.21
195	Ditch and natural depression	10	3	0.03
197	Ditch	85	127	1.41
198	Ditch and gully	79	3020	33.61
199		439	2130	23.71
Total			8984	0.00

4B: Roman pottery quantified by fabric and form, listed in descending order of weight (\%).

Fabric name: abbreviation Published reference	Vessel	Sherd Count	Weight (g)	EVE	Weight $(\%)$	EVE $(\%)$
Storage jar fabric: GW(GROG) Going 1987, 10, fabric 44	Storage jar	128	5884	0.25	65.49	5.47
Sandy grey ware: WAT RE Tomber and Dore 1998, 184	Beaker, jar, dish, platter, storage jar	273	2550	3.86	28.38	84.46
Horningsea coarse ware: HOR RE Tomber and Dore 1998, 116	Jar and storage jar	17	214	0.00	2.38	0.00
Sandy oxidised ware: SOW	Flagon	16	176	0.26	1.96	5.69
Verulamium oxidised ware: VER WH Tomber and Dore 1998, 154	Mortarium	1	111	0.00	1.25	0.00
Samian: SAM Tomber and Dore 1998, 25-41	Cup (Dr33) and dish (Dr18/31)	3	46	0.20	0.51	4.38
Lower Nene Valley colour coat: LNV CC Tomber and Dore 1998, 118	Jar	1	3	0.00	0.03	0.00
Total		439	8984	4.57	100.00	100.00

4C: Roman pottery catalogue
KEY: B = base, BEAK = beaker, C=century, $\mathrm{D}=$ decorated body sherd, Dsc = description, $\mathrm{E}=$ early, FLAG = flagon, $\mathrm{IA}=$ Iron Age. $\mathrm{L}=$ late $, \mathrm{M}=\mathrm{mid}, \mathrm{MORT}=$ mortaria, $\mathrm{R}=$ rim, $\mathrm{SJAR}=$ storage jar, $\mathrm{U}=$ undecorated body sherd.

Trench	Deposit	Cut	Feature	Fabric	Dsc	Form	Count	Weight(g)	Pot Date
	50		Topsoil	GW(GROG)	U	SJAR	1	8	MC1-C3
	50		Topsoil	WAT RE	RU	JAR	2	24	LC1-C4
	50		Topsoil	WAT RE	U	JAR	2	48	LC1-C4
	50		Topsoil	WAT RE	UB	JAR	1	13	MC1-C4
	50		Topsoil	WAT RE	R	JAR	1	35	MC1-C2
	51		Subsoil	GW(GROG)	U	SJAR	1	38	MC1-C3
	51		Subsoil	SAM CG	R	DISH	1	24	M/LC2
	51		Subsoil	WAT RE	B	DISH	1	11	LC1-C2
	51		Subsoil	WAT RE	U	JAR	1	10	MC1-C4
	51		Subsoil	WAT RE	UDB	JAR	2	10	M/LC1-C2
	51		Subsoil	WAT RE	U	JAR	3	41	LC1-C4
	51		Subsoil	WAT RE	U	JAR	3	31	LC1-C4
77	69	13	Ditch	WAT RE	U	JAR	1	3	MC1-MC2
4	288	220	Ditch	GW(GROG)	U	SJAR	4	281	MC1-C3
4	298	220	Ditch	WAT RE	U	JAR	1	14	MC1-C4
4	298	220	Ditch	WAT RE	RU	BEAK	4	15	LC1-C4
4	289	221	Ditch	HORN RE	U	JAR	5	16	C2-C3
4	289	221	Ditch	WAT RE	UDB	JAR	20	206	LC1-C2
4	289	221	Ditch	WAT RE	RUD	JAR	13	93	MC1-C2
4	289	221	Ditch	WAT RE	R	BEAK	1	6	M/LC1-C2

Trench	Deposit	Cut	Feature	Fabric	Dsc	Form	Count	Weight(g)	Pot Date
4	289	221	Ditch	WAT RE	R	JAR	1	17	M/LC1-C2
4	289	221	Ditch	WAT RE	R	JAR	1	12	MC1-MC2
4	289	221	Ditch	WAT RE	R	JAR	1	12	LC1-C4
4	289	221	Ditch	WAT RE	R	JAR	1	42	MC1-C2
4	289	221	Ditch	WAT RE	R	JAR	3	35	MC1-MC2
4	289	221	Ditch	SOW	U	FLAG	2	9	MC1-C3
4	289	221	Ditch	VER WH	UB	MORT	1	111	MC1-C2
3	297	228	Ditch	WAT RE	U	JAR	1	10	MC1-C4
195	364	241	Ditch	LNV CC	D	JAR	1	3	C3-C4
197	365	242	Ditch	WAT RE	R	JAR	1	13	LC1-C4
197	365	242	Ditch	WAT RE	R	JAR	1	11	LC1-C4
197	365	242	Ditch	WAT RE	U	JAR/BEAK	3	11	LC1-C4
4	385	247	Ditch	WAT RE	RU	JAR	7	50	LC1-C4
4	385	247	Ditch	WAT RE	R	JAR	1	16	LC1-C2
4	385	247	Ditch	WAT RE	U	BEAK	2	3	LC1-C3
4	385	247	Ditch	WAT RE	U	JAR	2	7	LC1-C4
4	386	248	Ditch	WAT RE	UDB	JAR	5	25	LC1-C2
197	388	301	Natural hollow	WAT RE	B	JAR	1	12	LC1-C4
197	388	301	Natural hollow	WAT RE	U	JAR	1	49	LC1-C4
197	388	301	Natural hollow	WAT RE	U	JAR	1	4	LC1-C4
197	388	301	Natural hollow	SOW	U	JAR/FLAG	2	27	MC1-C3
199	393	308	Gully	WAT RE	U	JAR/SJAR	1	51	MC1-C2
199	396	311	Gully	WAT RE	U	JAR/BEAK	1	4	MC1-C2
92	451	312	Ditch	WAT RE	U	JAR	1	5	MC1-C4
92	458	316	Ditch	WAT RE	R	JAR	1	60	C2-C3
92	458	316	Ditch	WAT RE	U	JAR	1	17	LC1-C4
92	458	316	Ditch	WAT RE	U	$\begin{aligned} & \text { JAR/BOW } \\ & \text { L } \end{aligned}$	1	3	MC1-MC2
92	458	316	Ditch	WAT RE	U	JAR	1	4	MC1-MC2
90	484	321	Ditch	WAT RE	U	JAR	1	10	LC1-C4
90	478	325	Ditch	WAT RE	U	JAR	1	8	LC1-C4
90	483	326	Gully	WAT RE	RU	JAR	3	36	MC1-MC2
90	483	326	Gully	SOW	RUH	FLAG	6	41	MC1-MC2
90	479	327	Ditch	WAT RE	RUD	JAR	5	57	MC1-C4
95	464	330	Ditch	WAT RE	U	JAR	1	15	LC1-C4
95	464	330	Ditch	SOW	B	JAR/FLAG	1	4	MC1-MC2
199	450	331	Ditch	GW(GROG)	RUB	SJAR	62	2777	MC1-C3
199	450	331	Ditch	WAT RE	R	JAR	1	12	LC1-C2
199	450	331	Ditch	WAT RE	R	JAR	1	10	LC1-C4
199	450	331	Ditch	WAT RE	R	JAR	2	23	LC1-C4

Trench	Deposit	Cut	Feature	Fabric	Dsc	Form	Count	Weight(g)	Pot Date
199	450	331	Ditch	WAT RE	UB	JAR	18	189	LC1-C4
199	450	331	Ditch	SOW	UB	FLAG	1	9	MC1-C3
199	487	331	Ditch	HORN RE	U	JAR	1	6	C2-C3
199	487	331	Ditch	WAT RE	RUD	JAR	8	72	MC1-C2
199	487	331	Ditch	WAT RE	U	JAR	2	29	LC1-C4
199	488	331	Ditch	GW(GROG)	RUB	SJAR	40	1691	MC1-C3
199	488	331	Ditch	WAT RE	U	JAR	8	68	LC1-C4
199	554	331	Ditch	HORN RE	U	JAR	2	6	C2-C3
199	554	331	Ditch	WAT RE	B	PLAT	1	6	MC1-E/MC2
199	554	331	Ditch	WAT RE	U	JAR	2	8	LC1-C4
199	554	331	Ditch	WAT RE	U	JAR	8	54	LC1-C4
199	554	331	Ditch	WAT RE	R	JAR	1	58	MC1-E/MC2
199	554	331	Ditch	WAT RE	R	JAR	2	57	MC1-MC2
199	554	331	Ditch	WAT RE	R	JAR	1	16	LC1-C4
199	554	331	Ditch	WAT RE	R	JAR	1	4	LC1-C4
	489	332	Layer	GW(GROG)	RU	SJAR	20	1089	MC1-C3
	489	332	Layer	HORN RE	UDB	SJAR	1	108	C2-C3
	489	332	Layer	HORN RE	UDB		8	78	C2-C3
	489	332	Layer	WAT RE	R	Fill	2	18	LC1-C4
	489	332	Layer	WAT RE	R	JAR	1	15	LC1-C4
	489	332	Layer	WAT RE	UDB	JAR	21	157	LC1-C4
	489	332	Layer	SOW	UB	FLAG	3	62	MC1-C3
2	466	337	Ditch	SAM SG	D	CUP	1	3	M/LC1-C2
2	466	337	Ditch	SAM CG	R	DISH	1	19	C2-C3
2	466	337	Ditch	WAT RE	UDB	JAR	60	363	LC1-C4
2	466	337	Ditch	WAT RE	R	DISH	2	29	MC2-C3
2	466	337	Ditch	WAT RE	R	DISH	2	40	MC2-C4
2	466	337	Ditch	WAT RE	UDB	JAR	13	87	MC1-C2
2	466	337	Ditch	WAT RE	R	SJAR	1	27	MC1-C4
2	466	337	Ditch	WAT RE	R	JAR	1	13	LC1-C4
2	466	337	Ditch	WAT RE	R	BEAK	1	1	LC1-C2
2	466	337	Ditch	WAT RE	R	JAR	1	7	LC1-C3
2	466	337	Ditch	WAT RE	R	JAR	1	8	MC1-C4
2	466	337	Ditch	WAT RE	R	JAR	1	9	LC1-C4
2	466	337	Ditch	WAT RE	R	JAR	1	7	MC1-C4
2	466	337	Ditch	WAT RE	R	JAR	1	3	LC1-C4
2	466	337	Ditch	WAT RE	R	BEAK	1	1	MC1-C4
2	466	337	Ditch	SOW	U	FLAG	1	24	MC1-C3

APPENDIX 5: Saxon and Medieval Pottery
5A: Saxon and Medieval Pottery quantification by fabric.

Description	Fabric	Date range	No	Wt/g	eve	MNV
Thetford-type ware (Local variants)	THETL	10th-11th c.	2	51		1
Thetford Ware (Grimston)	THETG	10th-11th c.	8	43		3
St. Neots-type ware	STNE	875-1100	2	7		1
Early medieval ware	EMW	11th-12th c.	17	62		8
Early medieval ware gritty	EMWG	11th-12th c .	2	9		1
Medieval sandy coarseware	MCW	L.12th-14th c.	1	1		1
Medieval coarseware gritty	MCWG	L.11th-13th c ?	1	9	0.10	1
Bury medieval coarseware	BMCW	L.12th-14th c.	2	7		2
Bury sandy fine ware	BSFW	L.12th-14th c.	2	5		2
Bury sandy ware	BSW	L. 12th-14th c.	4	148	0.07	2
SW Suffolk sandy micaceous ware	SWSSM	12th-14th c.	2	8		2
Grimston-type ware	GRIM	L.12th-14th c.	1	3		1
Hedingham ware	HFW1	M.12th-M.13th c.	1	11		1
Late post-medieval unglazed earthenwares	LPME	18th-20th c.	2	47		1
Pearlware	PEW	L.18th-M.19th c.	1	41	0.15	1
Refined white earthenwares	REFW	L.18th-20th c.	2	4		1
Totals			50	456	0.32	29

5B: Saxon and Medieval Pottery Catalogue

Trench	Cut	Deposit	Fabric	Form	Rim	No	Wt (g)	Dates
187			THETG			5	40	10th-11th century
38			EMW			1	18	11th-12th century
28		50	BSFW			1	1	late 12th-14th century
28		50	BSFW			1	4	late 12th-14th century
28		50	BMCW			1	3	late 12th-14th century
28		50	BSW			1	21	late 12th-14th century
28		50	MCWG	Jug?	flat-topped everted	1	9	late 11th-13th century?
158		50	GRIM			1	3	late 12th-14th century
198		50	REFW	Plate	everted	1	3	late 18th-20th century
5		51	EMW			2	2	11th-12th century
7		51	THETG			2	2	10th-11th century
17		51	HFW1			1	11	Mid-12th to mid-13th century
27		50	BMCW			1	4	late 12th-14th century
27		50	SWSSM			1	3	12th-14th century
27		51	EMW			1	7	11th-12th century
27		51	MCW			1	1	late 12th-14th century
51		51	EMW			9	16	11th-12th century
51		51	THETG			1	1	10th-11th century
51		51	EMWG	Jar	thickened everted	2	9	11th-12th century
87		53	LPME			2	47	18th-20th century
87		53	PEW	Saucer	plate	1	41	late 18 th-m.19th century
161	25	82	THETL			1	46	10th-11th century
28	44	159	BSW	Bowl	flat-topped everted	2	115	late 12th-14th century
28	45	160	BSW			1	12	late 12th-14th century
218	105	173	EMW			1	2	11th-12th century
27	143	267	EMW			1	13	11th-12th century
28	203	269	STNE			2	7	875-1100
28	204	270	THETL			1	5	10th-11th century
28	204	270	EMW			1	1	11th-12th century
28	205	271	EMW			1	3	11th-12th century
28	205	271	SWSSM			1	5	12th-14th century
203	333	490	REFW			1	1	late 18th-20th century

APPENDIX 6: Catalogue of struck flint

Cut	Deposit	Type	Trench	Intact Flake	Intact Blade	Broken flake	Broken Blade	P.Broken Blade	Spall	Core	Other
	50	Topsoil	5	1		4(1ro)	1p		1		
	50	Topsoil	29	1							Tested nodule
	50	Topsoil	51	1							
	50	Topsoil	90	1	1					1	core fragment
	50	Topsoil	91	1							
	50	Topsoil	95						1		
	50	Topsoil	197			3			1		
	50	Topsoil	201			1					
	50	Topsoil	202			1		1			
	50	Topsoil	213						1		
	51	Subsoil	5		1	,					
	51	Subsoil	71			1					
	51	Subsoil	91			1					
	51	Subsoil	130						1		
	51	Subsoil	133	1					1		
	51	Subsoil	161	1							
	51	Subsoil	191			1					
3	57	Pit	118	1							
4	58	Ditch		2							
10	66	Posthole	130	1p					1 p		
13	69	Ditch	77	4(3p)			1p	1p	1 p		
14	70	Drain	131	1 p							
24	81	Ditch	161						1ro		
119	187	Ditch	24			1				1(on flake)	
206	278	Ditch	178	1							
207	273	Ditch	177	1							
209	272	Ditch	28								
214	281	Ditch	29						1		
220	288	Ditch	4						1		
223	291	Gully	2	1							
229	350	Charcoal patch	188	1		2			1		
230	352	Dich	4			1					
231	353	Pit	195								Transverse arrowhead
237	359	Pit	5	6		4(1u)			3	1	4 serrated flakes; burin
243	381	Ditch	191	1		4	1				borer
306	394	Gully	199						2		
315	457	Gully	92	1							
316	458	Ditch	92	2	1				1		
317	460	Gully	92	1					2		
318	453	Pit	92	2		1b	1				
321	484	Ditch	90	1	1(SL?)						
325	478	Ditch	90		1						
326	483	Gully	90							1	
327	479	Ditch	90	1		2					
330	464	Ditch	95	1				1			
331	486	Ditch	199	2							
331	487	Ditch	199	1		3			1	1	laurel leaf; scraper
331	488	Ditch	199	11	4(1p)	10	2		8	2	4 core fragmenrts
331	554	Ditch	199	9	3	1			1	1 on flake	3 core fragments; notched flake
332	489			6		2	3		2		
338	467	Palaeochannel	201			1 ro					

P- Patinated; B- Burnt; U- utilised; RO- rolled ; SL- Strike-a-light

Appendix 7: Catalogue of Ceramic Building Material

Trench	Cut	Deposit	Type	No	Wt (g)
		50	Topsoil	1	15
		51	Subsoil	1	55
87		53	Modern Dump	1	59
161	24	81	Ditch	1	752
29	142	266	Ditch	1	14
2	337	466	Ditch	2	15

APPENDIX 8: Catalogue of Fired Clay

Trench	Cut	Deposit	Type	No	Wt (g)
191	243	381	Ditch	7	26

APPENDIX 9: Catalogue of Metalwork

Trench	Cut	Deposit	Type	Cat No	Material	object	no	Wt (gr)
		50	Topsoil	1	CuA	Coin	1	8
				2	CuA		1	10
				3	CuA		1	2
				4	CuA		1	4
		50	Topsoil	5	Pb		1	78
				6	Pb	Musket Ball	1	8
				7	Pb	Musket Ball	1	12
				8	Fe	Brooch	1	14
87		53	Modern Deposit	9	Fe	Nail	1	22
4	221	289	Ditch	10	Fe	Nail	1	2
161	23	80	Ditch	11	Fe	Nail	1	10
		51	Subsoil	12	Fe	Nail	1	16
		51	Subsoil	13	Fe		1	6
				14	Fe	Bone with corrosion	1	2

APPENDIX 10: Catalogue of Animal Bone

Trench	Cut	Deposit	No frags	Wt (g)	Hors e	Cattl e	Larg e	Deer	Medium	Smal l	Unid.	
		50	1	10			-		-	-	1	Comments
		51	1	0.5			-		-	-	1	
87		53	3	8			-		-	-	3	
118		56	1	20		1	-		-	-	-	tooth (loose)
68	5	61	2	0.5			-		-	-	2	poorly preserved
161	25	82	1	0.5			-		-	1	-	left femur (?rodent)
28	45	160	11	18			-	$11 ?$		-	-	loose tooth fragments (?deer)
218	105	172	1	6			1		-	-	-	-
27	142	266	6	152	6		-		-	-	-	horse distal tibia (right)
28	203	269	1	0.5			-		-	-	1	-
28	204	270	4	48			1		1	-	2	-
28	209	272	5	16			-		-	3	2	tibia and rib fragments
188	229	350	1	1			-		-	-	1	+burnt bone fragments
197	242	365	8	18	$8 ?$		-		-	-	-	tooth fragments (?horse)
30	148	370	1	8			-		-	1	-	distal femur
30	149	373	10	78			10		-	-	-	long bone shaft fragments
2	337	466	2	0.5			-		-	-	2	-
201	338	467	3	2			-		-	-	3	-
90	327	479	4	16			-		-	2	2	right humerus and scapula
199	331	488	28	180		1	27		-	-	-	cow left distal tibia
199	332	489	3	0.5			-		-	-	-	3
88	343	552	7	272			7		-	-	-	ribs

APPENDIX 11: Catalogue of Shell

Trench	Cut	Deposit	Type	Date	No	Wt (g)	Type
27	142	266	Ditch	11th-12th century?	2	10	Oyster
27	143	267	Ditch	11th-12th century	1	14	Oyster
28	203	269	Ditch	Late 10th-11th century	5	<1	Mussels
28	204	270	Ditch	11th-12th century	$8+$ frag	<1	Oyster/mussels
30	149	373	Ditch		1	14	Oyster

APPENDIX 12: Catalogue of Environmental Samples

Sample No.	Cut	Fill	Material Present
1		56	Charcoal Flecks
2	3	57	-
3	12	68	-
4	35	150	-
5	43	158	-
6	46	161	-
7	217	285	Waterlogged depost twigs, etc
8	229	380	Charcoal Flecks
9	231	353	-
10	240	384	-

Trench 3

Trench 4

Trench 4 continued

Trench 5

$+$

Trench 19

Trench 24

Trench 26

Trench 27

143

Trench 29

Trench 29 continued

Land at Place Farm, Ingham,
Suffolk, 2018
Archaeological Evaluation

Figure 5. Detail of trenches

Trench 57

Trench 62

Trench 65

Trench 68

Trench 72
Trench 71

Trench 73

Trench 77
-

PFI 18/167

Land at Place Farm, Ingham,
 Suffolk, 2018

Archaeological Evaluation

Trench 78

Trench 90

Trench 90 continued

Trench 91

Trench 92

Trench 93

Trench 95

Land at Place Farm, Ingham,
Suffolk, 2018
Archaeological Evaluation
Figure 8. Detail of trenches

TVAS

EAST MIDLANDS

Trench 97

Trench 98

Trench 124

Trench 130

\qquad

Trench 131

Trench 140

10 m

Trench 147

Trench 157

Trench 162

Trench 162 continued

Trench 164

Trench 166

Land at Place Farm, Ingham, Suffolk, 2018
Archaeological Evaluation
Figure 10. Detail of trenches

Trench 169

Trench 170

Trench 171

Trench 175

Archaeological Evaluation
Figure 11. Detail of trenches

Trench 176

Trench 177

$$
x--=-207
$$

Trench 178

$$
\begin{aligned}
& \text { }-\square^{\prime} \\
& \text { - } \square_{206}^{18}
\end{aligned}
$$

Trench 179
(12

Trench 188
E= = ${ }^{229}{ }^{2}{ }^{169}$

Trench 190

 $\stackrel{{ }_{6}^{+}}{\xrightarrow{(},} z$

Trench 195

Trench 191

Trench 197

PFI 18/167
Land at Place Farm, Ingham,
Suffolk, 2018
Archaeological Evaluation
Figure 12. Detail of trenches

133

Trench 175

Trench 175

139

Trench 176

141

Trench 175
Trench 27

N S
$\square-\square$

1 m

144

Trench 30
\qquad

Land at Place Farm, Ingham,
Suffolk, 2018
Archaeological Evaluation

Trench 97

335

Trench 97

Trench 2

Trench 201

Trench 98

Trench 88

Land at Place Farm, Ingham, Suffolk, 2018
Archaeological Evaluation
Figure 26. Sections.

Plate 1. Trench 11 looking north. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 3. Trench 89 looking north east.
Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 5. Trench 110 looking south east. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 2. Trench 66 looking east. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.3 m

Plate 4. Trench 108 looking north east. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 6. Trench 122 looking east.
Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

PFI18/167
Place Farm, Ingham, Bury St Edmunds, Suffolk Archaeological Evaluation

Plates 1 to 6

Plate 7. Trench 146 looking east. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 9. Trench 190 looking east.
Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 11. Trench 208 looking north. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 8. Trench 187 looking east. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.3 m

Plate 10. Trench 206 looking north. Scales: $2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.5 m

Plate 12. Trench 220 looking east.
Scales: 2 m and 1 m

Place Farm, Ingham, Bury St Edmunds, Suffolk Archaeological Evaluation

Plates 7 to 12

Plate 13. Trench 72 Ditch 1 looking south west. Scale: 1m

Plate 15. Trench 29 Features 129-130 looking east. Scales: 1 m and 0.5 m

Plate 17. Trench 123 Feature 125
looking north. Scale: 0.5 m

Plate 14. Trench 73 Ditch 7 looking north east. Scales: 1 m and 0.5 m

Plate 16. Trench 29 Features 126-8 looking south west. Scales: 2 m and 1 m

Plate 18. Trench 171 gully 134
looking north. Scales: 0.5 and 0.1 m

PFI18/167
Place Farm, Ingham, Bury St Edmunds, Suffolk Archaeological Evaluation

Plates 13 to 18

Plate 19. Trench 19 Feature 131 looking north east. Scales: 1 m and 0.3 m

Plate 21. Trench 175 Ditch 140 looking south east. Scales: 0.5 m and 0.1 m

Plate 23. Trench 175 Ditch 144 looking north east. Scale: 0.5 m

Plate 20. Trench 174 gully 132
looking west. Scale: 1 m

Plate 22. Trench 27 Features 142-3 looking west. Scales: 1 m and 0.5 m

Plate 24. Trench 28 Ditch 203
looking east. Scale: 1 m

PFI18/167
Place Farm, Ingham, Bury St Edmunds, Suffolk Archaeological Evaluation

Plates 19 to 24

Plate 25. Trench 30 looking east. Scales: 2 m and 0.3 m

Plate 26. Trench 29 looking south west. Scales: 2 m and 1 m

PFI18/167
Place Farm, Ingham, Bury St Edmunds, Suffolk Archaeological Evaluation

Plates 25 and 26

TIME CHART

Calendar Years

Modern _ AD 1901
Victorian AD 1837
Post Medieval AD 1500
Medieval AD 1066
Saxon AD 410
Roman

\qquad AD 43

$$
\text { AD } 0 \text { BC }
$$

Iron Age 750 BC
Bronze Age: Late ___ _ _ _ 1300 BC
Bronze Age: Middle \qquad
\qquad
\qquad 1700 BCBronze Age: Early
\qquad
\qquad
\qquad
\qquad 2100 BC
Neolithic: Late 3300 BC
Neolithic: Early 4300 BC
Mesolithic: Late 6000 BC
Mesolithic: Early 10000 BC
Palaeolithic: Upper 30000 BC
Palaeolithic: Middle 70000 BCPalaeolithic: Lower2,000,000 BC
\downarrow

TVAS (East Midlands), 4 Bentley Court, Wellingborough Northamptonshire, NN8 4BQ

Tel: 01933277377
Email: eastmidlands@tvas.co.uk Web: www.tvas.co.uk/eastmidlands

Offices in:

