GEOPHYSICAL SURVEY REPORT

GEOPHYSICS FOR ARCHAEOLOGY & ENGINEERING

Sompting, West Sussex

Client CgMs Heritage (part of RPS)

> Survey Report 11967

Date December 2017

SUMO Services Ltd Vineyard House Upper Hook Road Upton upon Severn Worcestershire WR8 0SA T: 01684 592266

geophysics@sumoservices.com www.sumoservices.com

SUMO Services Ltd Cowburn Farm Market Street Thornton Bradford BD13 3HW T: 01274 835016

Incorporating

GSB PROSPECTION LTD

and

STRATASCAN LTD

GEOPHYSICAL SURVEY REPORT

Project name: **Sompting, West Sussex**

Client: CgMs Heritage (part of RPS)

Survey date: 22-23 November 2017

Field co-ordinator: Stephanie Rhodes BSc FGS

Report written by: Rebecca Davies BSc

Project Manager: Simon Haddrell BEng AMBCS PCIfA SUMO Job reference: **11967**

Report date: **13 December 2017**

Field Team: Simon Lobel MSc

CAD illustrations by: **Rebecca Davies** BSc

Report approved by: Dr John Gater BSc DSc(Hon) MCIfA FSA

TABLE OF CONTENTS

1	SUMMAI	RY OF RESULTS	1
2	INTROD	UCTION	1
3	METHODS, PROCESSING & PRESENTATION		2
4	RESULT	S	3
5	DATA APPRAISAL & CONFIDENCE ASSESSMENT 3		
6	CONCLUSION 4		
7	REFERENCES		4
Арр	oendix A	Technical Information: Magnetometer Survey Method	
Appendix B		Technical Information: Magnetic Theory	

LIST OF FIGURES

Figure 01	1:25 000	Site Location Diagram
Figure 02	1:2000	Location of Survey Areas
Figure 03	1:2000	Magnetometer Survey - Greyscale Plots - Overview
Figure 04	1:2000	Magnetometer Survey – Interpretation - Overview
Figure 05	1:1250	Magnetometer Survey – Greyscale Plots & Interpretation – North
Figure 06	1:1250	Magnetometer Survey – Greyscale Plots & Interpretation - South

DIGITAL CONTENT (Archive Data CD/DVD)

- Minimally Processed Greyscale Images and XY Trace Plots in DWG format -
- Digital Copies of Report Text and Figures (both PDF and native formats) -

1 SUMMARY OF RESULTS

A detailed magnetometer survey was conducted over approximately 4.4 ha of mixed use agricultural land. No archaeological anomalies have been identified, though responses of uncertain origin are visible in the data. Evidence of agricultural activity and former field boundaries have been revealed, while the remaining responses relate to a modern service and ferrous disturbance.

2 INTRODUCTION

2.1 Background synopsis

SUMO Services Ltd were commissioned to undertake a geophysical survey of an area outlined for residential development. This survey forms part of an archaeological investigation being undertaken by **CgMs Heritage (part of RPS)**.

2.2 Site details

NGR / Postcode	TQ 165 047 / BN15 0DQ
Location	The site is located to the west of Sompting, West Sussex. West Street forms the northern boundary of the area, and residential properties off Loose Lane lie to the east.
HER/SMR	West Sussex
District	Adur
Parish	Sompting CP
Topography	Mostly level
Current Land Use	Mixed arable / pasture
Weather	Sunny, some cloud
Geology	Solid: Tarrant Chalk Member – chalk. Superficial: Head – clay, silt, sand and gravel (BGS 2017).
Soils	Unsurveyed – mostly urban and industrial areas (SSEW 1983).
Archaeology	A low archaeological potential for Prehistoric, Anglo-Saxon and medieval has been determined, though there is moderate potential for Roman remains and a high potential for evidence of WWII military use. It is recognised that the site is likely to contain evidence of medieval or post- medieval agricultural activity (CgMs 2017).
Survey Methods	Magnetometer survey (fluxgate gradiometer)
Study Area	4.4 ha

2.3 Aims and Objectives

To locate and characterise any anomalies of possible archaeological interest within the study area.

3 METHODS, PROCESSING & PRESENTATION

3.1 Standards & Guidance

This report and all fieldwork have been conducted in accordance with the latest guidance documents issued by Historic England (EH 2008) (then English Heritage), the Chartered Institute for Archaeologists (CIfA 2014) and the European Archaeological Council (EAC 2016).

3.2 Survey methods

Detailed magnetic survey was chosen as an efficient and effective method of locating archaeological anomalies.

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1.0m	0.25m

More information regarding this technique is included in Appendix A.

3.3 Data Processing

The following basic processing steps have been carried out on the data used in this report: De-stripe; de-stagger; interpolate

3.4 **Presentation of results and interpretation**

The presentation of the results for each site involves a grey-scale plot of processed data. Magnetic anomalies are identified, interpreted and plotted onto the 'Interpretation' drawings. The minimally processed data are provided as a greyscale image in the Archive Data Folder with an XY trace plot in CAD format. A free viewer is available: <u>https://viewer.autodesk.com</u>

When interpreting the results, several factors are taken into consideration, including the nature of archaeological features being investigated and the local conditions at the site (geology, pedology, topography etc.). Anomalies are categorised by their potential origin. Where responses can be related to other existing evidence, the anomalies will be given specific categories, such as: *Abbey Wall* or *Roman Road*. Where the interpretation is based largely on the geophysical data, levels of confidence are implied, for example: *Probable*, or *Possible Archaeology*. The former is used for a confident interpretation, based on anomaly definition and/or other corroborative data such as cropmarks. Poor anomaly definition, a lack of clear patterns to the responses and an absence of other supporting data reduces confidence, hence the classification *Possible*.

4 RESULTS

The survey has been divided into two survey areas (Areas 1-2) and specific anomalies have been given numerical labels [1] [2] which appear in the text below, as well as on the Interpretation Figure(s).

4.1 **Probable / Possible Archaeology**

4.1.1 No magnetic responses have been recorded that could be interpreted as being of archaeological interest.

4.2 Uncertain

4.2.1 A small number of weak linear trends [1] are visible in the south of the site and are of uncertain origin. It is possible that they are of archaeological origin, though their lack of context and form makes their interpretation as such tentative at best. It is more likely that they are a result of agricultural activity.

4.3 Former Field Boundary

4.3.1 Two ferrous linear responses [2-3] have been detected in the data and relate to former field boundaries, visible on available historic mapping. Both are visible from 1912 to 1990.

4.4 Agricultural – Ploughing

4.4.1 Evidence of possible ridge and furrow can be seen in the north and south-east of the site, in the form of magnetically weak, slightly curved, parallel linear anomalies.

4.5 Ferrous / Magnetic Disturbance

- 4.5.1 A strong bipolar linear anomaly in the south of the site is typical of the response associated with an underground service, such as a pipe or cable. However, it could equally relate to the former metalled trackway, visible at this point on current mapping.
- 4.5.2 Ferrous responses close to boundaries are due to adjacent fences and gates. Smaller scale ferrous anomalies ("iron spikes") are present throughout the data and their form is best illustrated in the XY trace plots. These responses are characteristic of small pieces of ferrous debris (or brick / tile) in the topsoil and are commonly assigned a modern origin. Only the most prominent of these are highlighted on the interpretation diagram.

5 DATA APPRAISAL & CONFIDENCE ASSESSMENT

5.1 Historic England guidelines (EH 2008) Table 4 states that the average magnetic response on chalk is generally good, though responses over Head deposits can be variable. Given that linear responses of uncertain origin have been detected, along with former field boundaries and evidence of agriculture, it can be determined that the survey has been effective.

6 CONCLUSION

6.1 The survey at Sompting has not revealed any definite archaeological responses. Several linear anomalies of uncertain origin have been identified, along with former field boundaries and evidence of agriculture. The remaining responses are modern and include a possible service and disturbance from nearby ferrous metal objects.

7 REFERENCES

- BGS 2017
 British Geological Survey, Geology of Britain viewer [Accessed 08/12/2017] website:

 (http://www.bgs.ac.uk/opengeoscience/home.html?Accordion1=1#maps)
- CgMs 2017 Archaeological Desk Based Assessment Land West of Sompting, West Sussex (Draft). CgMs Heritage; unpublished report.
- ClfA 2014 Standard and Guidance for Archaeological Geophysical Survey. Amended 2016. ClfA Guidance note. Chartered Institute for Archaeologists, Reading http://www.archaeologists.net/sites/default/files/ClfAS%26GGeophysics_2.pdf
- EAC 2016 *EAC Guidelines for the Use of Geophysics in Archaeology,* European Archaeological Council, Guidelines 2.
- EH 2008 *Geophysical Survey in Archaeological Field Evaluation.* English Heritage, Swindon https://content.historicengland.org.uk/images-books/publications/geophysicalsurvey-in-archaeological-field-evaluation/geophysics-guidelines.pdf/
- SSEW 1983 Soils of England and Wales. Sheet 6, South East England. Soil Survey of England and Wales, Harpenden.

Appendix A - Technical Information: Magnetometer Survey Method

Grid Positioning

For hand held gradiometers the location of the survey grids has been plotted together with the referencing information. Grids were set out using a Trimble R8 Real Time Kinematic (RTK) VRS Now GNSS GPS system.

An RTK GPS (Real-time Kinematic Global Positioning System) can locate a point on the ground to a far greater accuracy than a standard GPS unit. A standard GPS suffers from errors created by satellite orbit errors, clock errors and atmospheric interference, resulting in an accuracy of 5m-10m. An RTK system uses a single base station receiver and a number of mobile units. The base station rebroadcasts the phase of the carrier it measured, and the mobile units compare their own phase measurements with those they received from the base station. This results in an accuracy of around 0.01m.

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1m	0.25m

Instrumentation: Bartington *Grad* 601-2

Bartington instruments operate in a gradiometer configuration which comprises fluxgate sensors mounted vertically, set 1.0m apart. The fluxgate gradiometer suppresses any diurnal or regional effects. The instruments are carried, or cart mounted, with the bottom sensor approximately 0.1-0.3m from the ground surface. At each survey station, the difference in the magnetic field between the two fluxgates is measured in nanoTesla (nT). The sensitivity of the instrument can be adjusted; for most archaeological surveys the most sensitive range (0.1nT) is used. Generally, features up to 1m deep may be detected by this method, though strongly magnetic objects may be visible at greater depths. The Bartington instrument can collect two lines of data per traverse with gradiometer units mounted laterally with a separation of 1.0m. The readings are logged consecutively into the data logger which in turn is daily down-loaded into a portable computer whilst on site. At the end of each site survey, data is transferred to the office for processing and presentation.

Data Processing

Zero Mean	This process sets the background mean of each traverse within each grid to zero.
Traverse	The operation removes striping effects and edge discontinuities over the whole of
	the data set.
Step Correction (De-stagger)	When gradiometer data are collected in 'zig-zag' fashion, stepping errors can sometimes arise. These occur because of a slight difference in the speed of walking on the forward and reverse traverses. The result is a staggered effect in the data, which is particularly noticeable on linear anomalies. This process corrects these errors.

Display

Greyscale/ Colourscale Plot This format divides a given range of readings into a set number of classes. Each class is represented by a specific shade of grey, the intensity increasing with value. All values above the given range are allocated the same shade (maximum intensity); similarly, all values below the given range are represented by the minimum intensity shade. Similar plots can be produced in colour, either using a wide range of colours or by selecting two or three colours to represent positive and negative values. The assigned range (plotting levels) can be adjusted to emphasise different anomalies in the data-set.

Interpretation Categories

In certain circumstances (usually when there is corroborative evidence from desk-based or excavation data) very specific interpretations can be assigned to magnetic anomalies (for example, *Roman Road, Wall,* etc.) and where appropriate, such interpretations will be applied. The list below outlines the generic categories commonly used in the interpretation of the results.

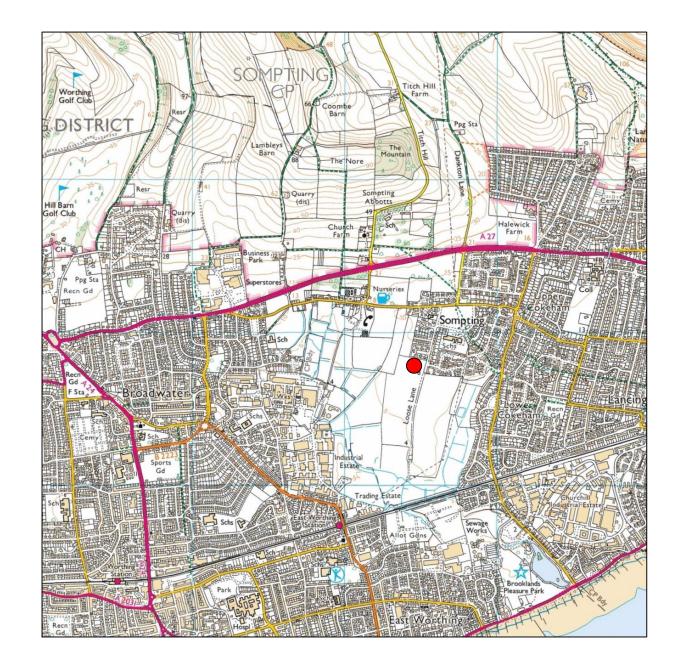
Archaeology / Probable Archaeology	This term is used when the form, nature and pattern of the responses are clearly or very probably archaeological and /or if corroborative evidence is available. These anomalies, whilst considered anthropogenic, could be of any age.
Possible Archaeology	These anomalies exhibit either weak signal strength and / or poor definition, or form incomplete archaeological patterns, thereby reducing the level of confidence in the interpretation. Although the archaeological interpretation is favoured, they may be the result of variable soil depth, plough damage or even aliasing as a result of data collection orientation.
Industrial / Burnt-Fired	Strong magnetic anomalies that, due to their shape and form or the context in which they are found, suggest the presence of kilns, ovens, corn dryers, metal-working areas or hearths. It should be noted that in many instances modern ferrous material can produce similar magnetic anomalies.
Former Field Boundary (probable & possible)	Anomalies that correspond to former boundaries indicated on historic mapping, or which are clearly a continuation of existing land divisions. Possible denotes less confidence where the anomaly may not be shown on historic mapping but nevertheless the anomaly displays all the characteristics of a field boundary.
Ridge & Furrow	Parallel linear anomalies whose broad spacing suggests ridge and furrow cultivation. In some cases, the response may be the result of more recent agricultural activity.
Agriculture (ploughing)	Parallel linear anomalies or trends with a narrower spacing, sometimes aligned with existing boundaries, indicating more recent cultivation regimes.
Land Drain	Weakly magnetic linear anomalies, quite often appearing in series forming parallel and herringbone patterns. Smaller drains may lead and empty into larger diameter pipes, which in turn usually lead to local streams and ponds. These are indicative of clay fired land drains.
Natural	These responses form clear patterns in geographical zones where natural variations are known to produce significant magnetic distortions.
Magnetic Disturbance	Broad zones of strong dipolar anomalies, commonly found in places where modern ferrous or fired materials (e.g. brick rubble) are present. They are presumed to be modern.
Service	Magnetically strong anomalies, usually forming linear features are indicative of ferrous pipes/cables. Sometimes other materials (e.g. pvc) or the fill of the trench can cause weaker magnetic responses which can be identified from their uniform linearity.
Ferrous	This type of response is associated with ferrous material and may result from small items in the topsoil, larger buried objects such as pipes, or above ground features such as fence lines or pylons. Ferrous responses are usually regarded as modern. Individual burnt stones, fired bricks or igneous rocks can produce responses similar to ferrous material.
Uncertain Origin	Anomalies which stand out from the background magnetic variation, yet whose form and lack of patterning gives little clue as to their origin. Often the characteristics and distribution of the responses straddle the categories of <i>Possible Archaeology / Natural</i> or (in the case of linear responses) <i>Possible Archaeology / Agriculture</i> ; occasionally they are simply of an unusual form.

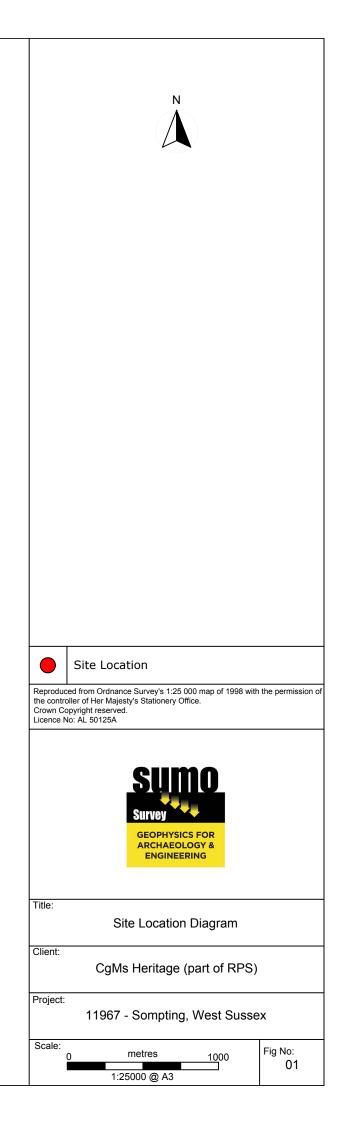
Where appropriate some anomalies will be further classified according to their form (positive or negative) and relative strength and coherence (trend: weak and poorly defined).

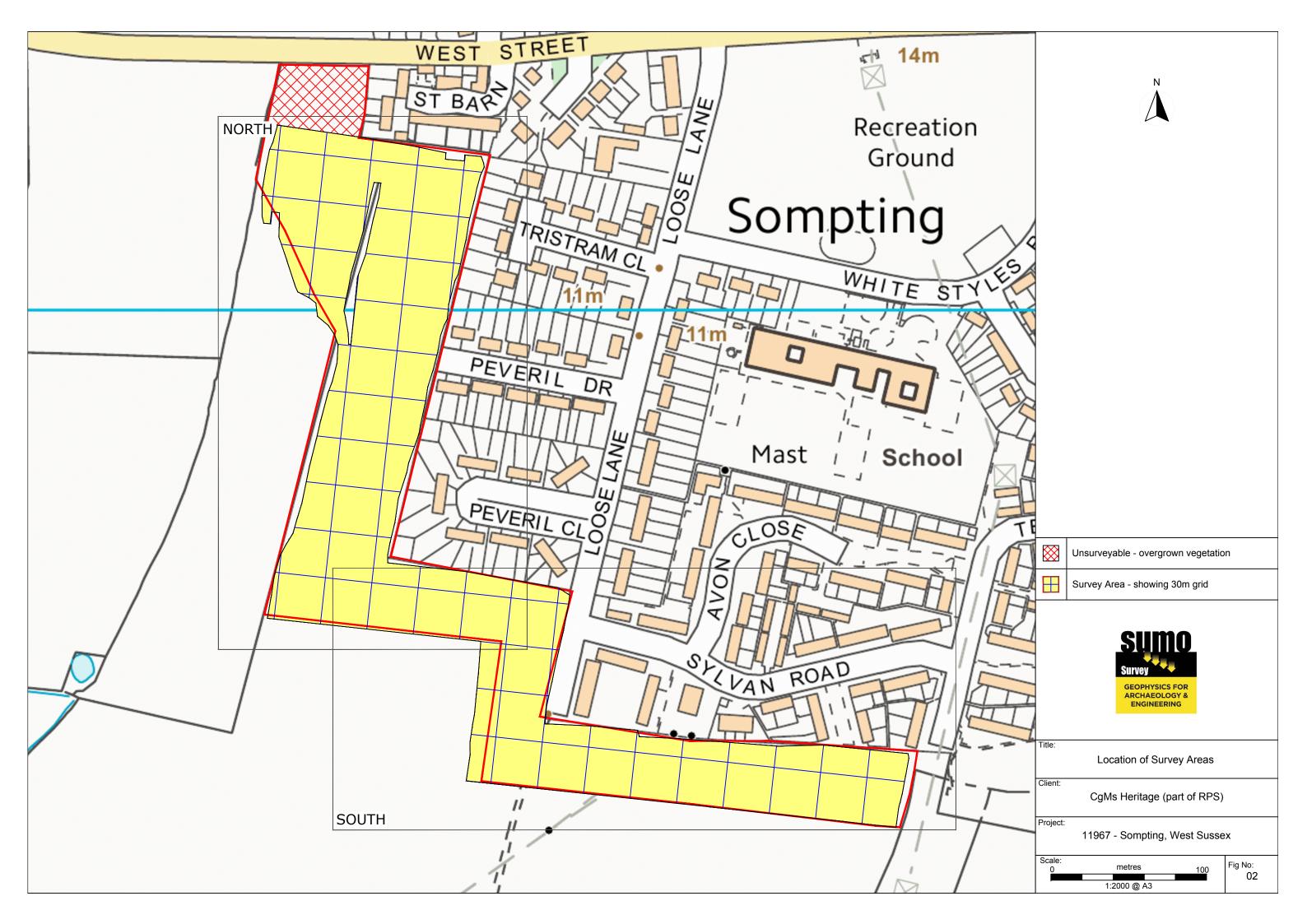
Appendix B - Technical Information: Magnetic Theory

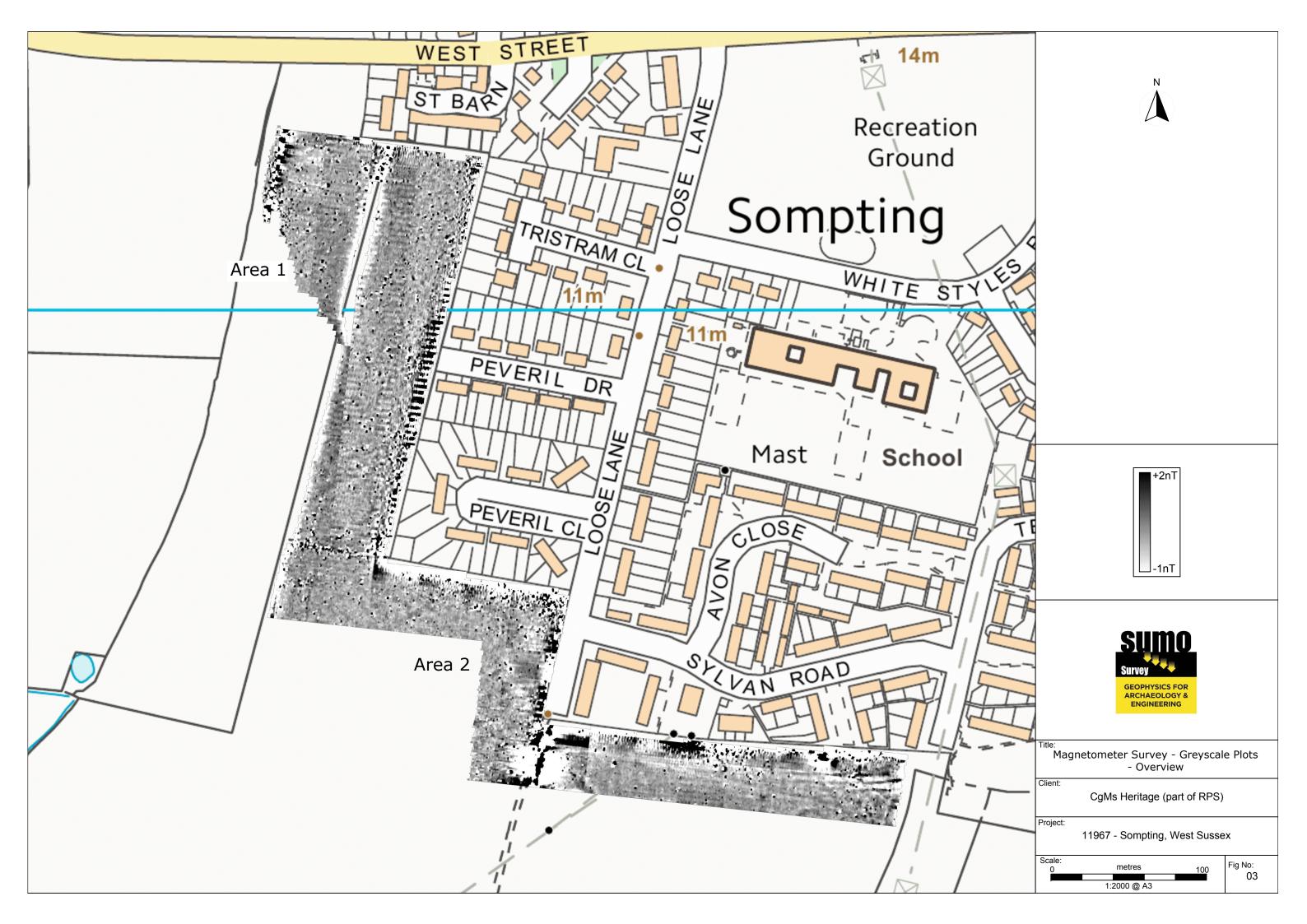
Detailed magnetic survey can be used to effectively define areas of past human activity by mapping spatial variation and contrast in the magnetic properties of soil, subsoil and bedrock. Although the changes in the magnetic field resulting from differing features in the soil are usually weak, changes as small as 0.1 nanoTeslas (nT) in an overall field strength of 48,000 (nT), can be accurately detected.

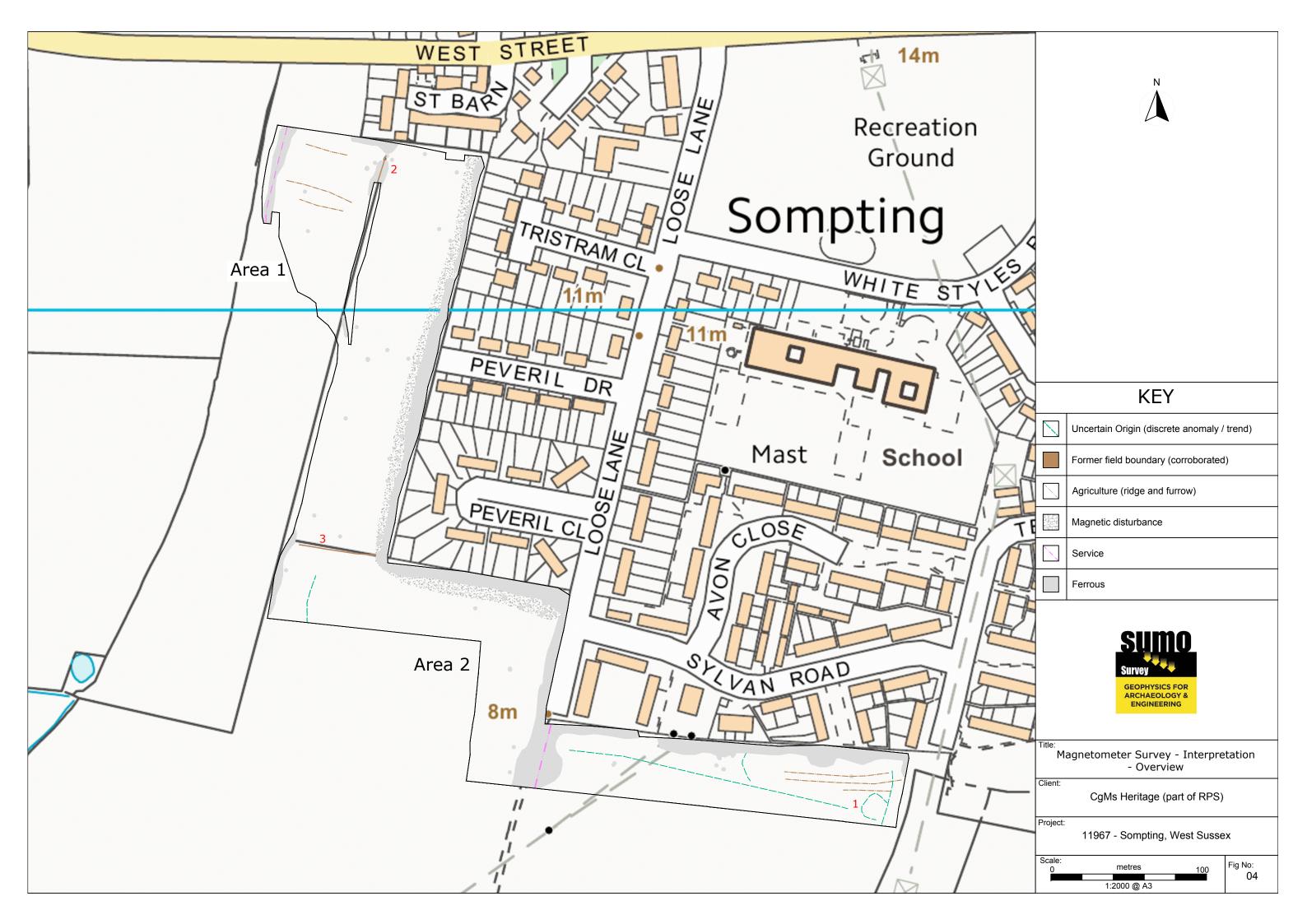
Weakly magnetic iron minerals are always present within the soil and areas of enhancement relate to increases in *magnetic susceptibility* and permanently magnetised *thermoremanent* material.

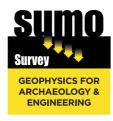

Magnetic susceptibility relates to the induced magnetism of a material when in the presence of a magnetic field. This magnetism can be considered as effectively permanent as it exists within the Earth's magnetic field. Magnetic susceptibility can become enhanced due to burning and complex biological or fermentation processes.


Thermoremanence is a permanent magnetism acquired by iron minerals that, after heating to a specific temperature known as the Curie Point, are effectively demagnetised followed by re-magnetisation by the Earth's magnetic field on cooling. Thermoremanent archaeological features can include hearths and kilns; material such as brick and tile may be magnetised through the same process.


Silting and deliberate infilling of ditches and pits with magnetically enhanced soil creates a relative contrast against the much lower levels of magnetism within the subsoil into which the feature is cut. Systematic mapping of magnetic anomalies will produce linear and discrete areas of enhancement allowing assessment and characterisation of subsurface features. Material such as subsoil and non-magnetic bedrock used to create former earthworks and walls may be mapped as areas of lower enhancement compared to surrounding soils.


Magnetic survey is carried out using a fluxgate gradiometer which is a passive instrument consisting of two sensors mounted vertically 1m apart. The instrument is carried about 30cm above the ground surface and the top sensor measures the Earth's magnetic field whilst the lower sensor measures the same field but is also more affected by any localised buried feature. The difference between the two sensors will relate to the strength of a magnetic field created by this feature, if no field is present the difference will be close to zero as the magnetic field measured by both sensors will be the same.


Factors affecting the magnetic survey may include soil type, local geology, previous human activity and disturbance from modern services.



- Laser Scanning

Archaeological
Geophysical
Measured Building
Topographic

- Utility Mapping

SUMO Services Ltd, incorporated under the laws of England and Wales, Company Registration No.4275993. Registered Office Unit 8 Hayward Business Centre, New Lane, Havant, Hampshire, PO9 2NL