
GEOPHYSICAL SURVEY REPORT

Wool, Dorset

Client

Savills (UK) Ltd

Survey Report 12475

Date

April 2018

SUMO Geophysics Ltd Cowburn Farm Market Street Thornton Bradford BD13 3HW T: 01274 835016 SUMO Geophysics Ltd Vineyard House Upper Hook Road Upton upon Severn Worcestershire WR8 0SA T: 01684 592266

geophysics@sumoservices.com www.sumoservices.com

GEOPHYSICAL SURVEY REPORT

Project name: SUMO Job reference:

Wool, Dorset 12475

Client:

Savills (UK) Ltd

Survey date: Report date: 17-19 April 2018 24 April 2018

Field co-ordinator: Field Team:

Stephen Weston BA Andrew Bateman MSc

Ana Ancherlergues BSc

Report written by:

Rebecca Davies BSc

CAD illustrations by:

Rebecca Davies BSc

Project Manager: Report approved by:

Simon Haddrell BEng AMBCS PCIfA Dr John Gater BSc DSc(Hon) MCIfA FSA

Jon Tanner BSc MSc PCIfA

TABLE OF CONTENTS

1	SUMMARY OF RESULTS	1
2	INTRODUCTION	1
3	METHODS, PROCESSING & PRESENTATION	2
4	RESULTS	3-4
5	DATA APPRAISAL & CONFIDENCE ASSESSMENT	4
6	CONCLUSION	4
7	REFERENCES	4
Appendix A Technical Information: Magnetometer Survey Method		

LIST OF FIGURES

Appendix B Technical Information: Magnetic Theory

Figure 01	1:25 000	Site Location Diagram
Figure 02	1:2500	Location of Survey Areas
Figure 03	1:2500	Magnetomseter Survey - Greyscale Plots
Figure 04	1:2500	Magnetometer Survey - Interpretation
Figure 05	1:2500	Magnetometer Survey - Minimally Processed Greyscale Plots

1 SUMMARY OF RESULTS

A detailed magnetometer survey was conducted over approximately 13.2 ha of arable farmland and grassland at Wool, Dorset. No definite archaeological responses have been identified. Anomalies of uncertain origin are visible in the data, and could be of archaeological, agricultural or modern origin. Evidence of ploughing, a former field boundary and fence lines indicate the site has a recent agricultural past.

2 INTRODUCTION

2.1 Background synopsis

SUMO Geophysics Ltd were commissioned to undertake a geophysical survey of an area outlined for development. This survey forms part of an archaeological investigation being undertaken by **Savills (UK) Ltd**.

2.2 Site details

NGR / Postcode SY 832 865 / BH20 6EX

Location The site is located to the west of Wool, Dorset. Residential properties of

Frome Avenue and The Poppies bound the site along its south-eastern boundary with the South-Western Railway bisecting the site. East Burton

Road bounds the site to the north.

HER/SMR Dorset

District Purbeck

Parish Wool CP

Topography Mostly level

Current Land Use Arable / grassland / horse pasture

Geology Solid: West Park Farm Member - sand is recorded across the majority of

the site, with Poole Formation - sand recorded across the north. Superficial: No superficial deposits are recorded across the south of the site. River Terrace Deposits 3 - sand and gravel is recorded across the

north (BGS 2018).

Soils Waterstock Association (573a) - deep permeable mainly fine loamy soils

(SSEW 1983).

Archaeology Dorset Explorer (DCC 2018) identifies a single heritage asset within the

site; a wide linear bank (MDO30394), possibly a field boundary of uncertain date which is visible as cropmarks on aerial photographs, running northwest-southeast from East Burton to Braytown. Approximately 750m to the south of the site lies the Iron Age and Romano-British settlement at Burton Cross (MDO8348; SMR.1002426).

Survey Methods Magnetometer survey (fluxgate gradiometer)

Study Area c. 13.2 ha

2.3 Aims and Objectives

To locate and characterise any anomalies of possible archaeological interest within the study area.

3 METHODS, PROCESSING & PRESENTATION

3.1 Standards & Guidance

This report and all fieldwork have been conducted in accordance with the latest guidance documents issued by Historic England (EH 2008) (then English Heritage), the Chartered Institute for Archaeologists (ClfA 2014) and the European Archaeological Council (EAC 2016).

3.2 Survey methods

Detailed magnetic survey was chosen as an efficient and effective method of locating archaeological anomalies.

TechniqueInstrumentTraverse IntervalSample IntervalMagnetometerBartington Grad 601-21.0m0.25m

More information regarding this technique is included in Appendix A and B.

3.3 Data Processing

The following basic processing steps have been carried out on the data used in this report: De-stripe; de-stagger; interpolate

3.4 Presentation of results and interpretation

The presentation of the results includes a 'minimally processed data' and a 'processed data' greyscale plot. Magnetic anomalies are identified, interpreted and plotted onto the 'Interpretation' drawings.

When interpreting the results, several factors are taken into consideration, including the nature of archaeological features being investigated and the local conditions at the site (geology, pedology, topography etc.). Anomalies are categorised by their potential origin. Where responses can be related to other existing evidence, the anomalies will be given specific categories, such as: *Abbey Wall* or *Roman Road*. Where the interpretation is based largely on the geophysical data, levels of confidence are implied, for example: *Probable*, or *Possible Archaeology*. The former is used for a confident interpretation, based on anomaly definition and/or other corroborative data such as cropmarks. Poor anomaly definition, a lack of clear patterns to the responses and an absence of other supporting data reduces confidence, hence the classification *Possible*.

4 RESULTS

The survey has been divided into four survey areas (Areas G1, G2, G3 and H) and specific anomalies have been given numerical labels [1] [2] which appear in the text below, as well as on the Interpretation Figure(s).

4.1 Probable / Possible Archaeology

4.1.1 No magnetic responses have been recorded that could be interpreted as being of archaeological interest.

4.2 Uncertain

- 4.2.1 A small number of discrete magnetic responses [1] are visible in the north of Area H. These are of uncertain origin, though an archaeological provenance is thought unlikely. They are more likely to be of modern or agricultural origin.
- 4.2.2 Three positive linear responses [2] have been detected in Areas H and G1 and are also of uncertain origin. These could be related to former boundaries not present on available mapping or be of other agricultural origin. An archaeological origin for the features cannot be entirely ruled out.

4.3 Former Field Boundary

- 4.3.1 A linear anomaly [3] running approximately north-south through Area G1 is related to a former field boundary, visible on historic OS mapping from 1889 to 1963, after which it remains as a footpath.
- 4.3.2 A weakly magnetic linear trend and an alignment of weak magnetic spikes [4] have been detected in Areas H and G3. These are likely to be indicative of former fence-lines, with the feature in Area G3 associated with an electric fence.

4.4 Agricultural – Ploughing

4.4.1 Closely spaced, parallel magnetic responses are visible across areas H, G1 and G2 and are a result of modern agricultural activity, such as ploughing.

4.5 Natural / Geological / Pedological / Topographic

4.5.1 Two linear bands of enhanced response are present in Areas G1 and G2 and are likely to be of natural origin. The feature running across Area G1 corresponds with the undated feature recorded on Dorset Explorer (DCC 2018). Though possibly related to a former boundary, the shape and form of the response suggests it is more likely to be natural.

4.6 Ferrous / Magnetic Disturbance

- 4.6.1 Strong bipolar linear anomalies have been detected in Areas H, G2 and G3 and they are a result of modern underground services, such as pipes.
- 4.6.2 Areas of magnetic disturbance are visible in Areas H, G1 and G2 and likely have modern origins, i.e. ferrous debris within the topsoil.

4.6.3 Ferrous responses close to boundaries are due to adjacent fences and gates. Smaller scale ferrous anomalies ("iron spikes") are present throughout the data and are characteristic of small pieces of ferrous debris (or brick / tile) in the topsoil; they are commonly assigned a modern origin. Only the most prominent of these are highlighted on the interpretation diagram.

5 DATA APPRAISAL & CONFIDENCE ASSESSMENT

5.1 Historic England guidelines (EH 2008) Table 4 states that the average magnetic response on sand geologies and superficial river terrace deposits can be variable. The results from this survey indicate the presence of ploughing, a field boundary and responses of uncertain origin; as a consequence, the technique is likely to have detected any archaeological features, if present.

6 CONCLUSION

6.1 The survey at Wool has not revealed any definite archaeological responses, though a small number of anomalies of uncertain origin have been detected. These may have archaeological, agricultural or modern origins. A former field boundary, fence lines and evidence of ploughing indicate that the site has a largely agricultural past. The remaining responses are modern, and they include underground services and magnetic disturbance from nearby ferrous metal objects.

7 REFERENCES

BGS 2018	British Geological Survey, Geology of Britain viewer [Accessed 23/04/2018] website: (http://www.bgs.ac.uk/opengeoscience/home.html?Accordion1=1#maps)
CIfA 2014	Standard and Guidance for Archaeological Geophysical Survey. Amended 2016. CIfA Guidance note. Chartered Institute for Archaeologists, Reading http://www.archaeologists.net/sites/default/files/CIfAS%26GGeophysics_2.pdf
DCC 2018	Dorset County Council, Dorset Explorer. [Accessed 23/04/2018] website: explorer.geowessex.com
EAC 2016	EAC Guidelines for the Use of Geophysics in Archaeology, European Archaeological Council, Guidelines 2.
EH 2008	Geophysical Survey in Archaeological Field Evaluation. English Heritage, Swindon https://content.historicengland.org.uk/images-books/publications/geophysical-survey-in-archaeological-field-evaluation/geophysics-guidelines.pdf/
SSEW 1983	Soils of England and Wales. Sheet 5, South West England. Soil Survey of England and Wales, Harpenden.

Appendix A - Technical Information: Magnetometer Survey Method

Grid Positioning

For hand held gradiometers the location of the survey grids has been plotted together with the referencing information. Grids were set out using a Trimble R8 Real Time Kinematic (RTK) VRS Now GNSS GPS system.

An RTK GPS (Real-time Kinematic Global Positioning System) can locate a point on the ground to a far greater accuracy than a standard GPS unit. A standard GPS suffers from errors created by satellite orbit errors, clock errors and atmospheric interference, resulting in an accuracy of 5m-10m. An RTK system uses a single base station receiver and a number of mobile units. The base station rebroadcasts the phase of the carrier it measured, and the mobile units compare their own phase measurements with those they received from the base station. This results in an accuracy of around 0.01m.

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1m	0.25m

Instrumentation: Bartington *Grad* 601-2

Bartington instruments operate in a gradiometer configuration which comprises fluxgate sensors mounted vertically, set 1.0m apart. The fluxgate gradiometer suppresses any diurnal or regional effects. The instruments are carried, or cart mounted, with the bottom sensor approximately 0.1-0.3m from the ground surface. At each survey station, the difference in the magnetic field between the two fluxgates is measured in nanoTesla (nT). The sensitivity of the instrument can be adjusted; for most archaeological surveys the most sensitive range (0.1nT) is used. Generally, features up to 1m deep may be detected by this method, though strongly magnetic objects may be visible at greater depths. The Bartington instrument can collect two lines of data per traverse with gradiometer units mounted laterally with a separation of 1.0m. The readings are logged consecutively into the data logger which in turn is daily down-loaded into a portable computer whilst on site. At the end of each site survey, data is transferred to the office for processing and presentation.

Data Processing

Zero Mean Traverse This process sets the background mean of each traverse within each grid to zero. The operation removes striping effects and edge discontinuities over the whole of the data set.

Step Correction (De-stagger)

When gradiometer data are collected in 'zig-zag' fashion, stepping errors can sometimes arise. These occur because of a slight difference in the speed of walking on the forward and reverse traverses. The result is a staggered effect in the data, which is particularly noticeable on linear anomalies. This process corrects these errors.

Display

Greyscale/ Colourscale Plot This format divides a given range of readings into a set number of classes. Each class is represented by a specific shade of grey, the intensity increasing with value. All values above the given range are allocated the same shade (maximum intensity); similarly, all values below the given range are represented by the minimum intensity shade. Similar plots can be produced in colour, either using a wide range of colours or by selecting two or three colours to represent positive and negative values. The assigned range (plotting levels) can be adjusted to emphasise different anomalies in the data-set.

Interpretation Categories

In certain circumstances (usually when there is corroborative evidence from desk-based or excavation data) very specific interpretations can be assigned to magnetic anomalies (for example, Roman Road, Wall, etc.) and where appropriate, such interpretations will be applied. The list below outlines the generic categories commonly used in the interpretation of the results.

Archaeology / Probable Archaeology

This term is used when the form, nature and pattern of the responses are clearly or very probably archaeological and /or if corroborative evidence is available. These anomalies, whilst considered anthropogenic, could be of any age.

Possible Archaeology

These anomalies exhibit either weak signal strength and / or poor definition, or form incomplete archaeological patterns, thereby reducing the level of confidence in the interpretation. Although the archaeological interpretation is favoured, they may be the result of variable soil depth, plough damage or even aliasing as a result of data collection orientation.

Industrial / Burnt-Fired Strong magnetic anomalies that, due to their shape and form or the context in which they are found, suggest the presence of kilns, ovens, corn dryers, metalworking areas or hearths. It should be noted that in many instances modern ferrous material can produce similar magnetic anomalies.

Former Field & possible)

Anomalies that correspond to former boundaries indicated on historic mapping, or Boundary (probable which are clearly a continuation of existing land divisions. Possible denotes less confidence where the anomaly may not be shown on historic mapping but nevertheless the anomaly displays all the characteristics of a field boundary.

Ridge & Furrow Parallel linear anomalies whose broad spacing suggests ridge and furrow cultivation. In some cases, the response may be the result of more recent

agricultural activity.

Agriculture (ploughing) Parallel linear anomalies or trends with a narrower spacing, sometimes aligned with existing boundaries, indicating more recent cultivation regimes.

Land Drain Weakly magnetic linear anomalies, quite often appearing in series forming parallel and herringbone patterns. Smaller drains may lead and empty into larger diameter pipes, which in turn usually lead to local streams and ponds. These are indicative

of clay fired land drains.

Natural These responses form clear patterns in geographical zones where natural

variations are known to produce significant magnetic distortions.

Maanetic Disturbance Broad zones of strong dipolar anomalies, commonly found in places where modern ferrous or fired materials (e.g. brick rubble) are present. They are presumed to be

modern.

Service Magnetically strong anomalies, usually forming linear features are indicative of

ferrous pipes/cables. Sometimes other materials (e.g. pvc) or the fill of the trench can cause weaker magnetic responses which can be identified from their uniform

linearity.

Ferrous This type of response is associated with ferrous material and may result from small

> items in the topsoil, larger buried objects such as pipes, or above ground features such as fence lines or pylons. Ferrous responses are usually regarded as modern. Individual burnt stones, fired bricks or igneous rocks can produce responses

similar to ferrous material.

Uncertain Origin Anomalies which stand out from the background magnetic variation, yet whose

form and lack of patterning gives little clue as to their origin. Often the characteristics and distribution of the responses straddle the categories of *Possible* Archaeology / Natural or (in the case of linear responses) Possible Archaeology /

Agriculture; occasionally they are simply of an unusual form.

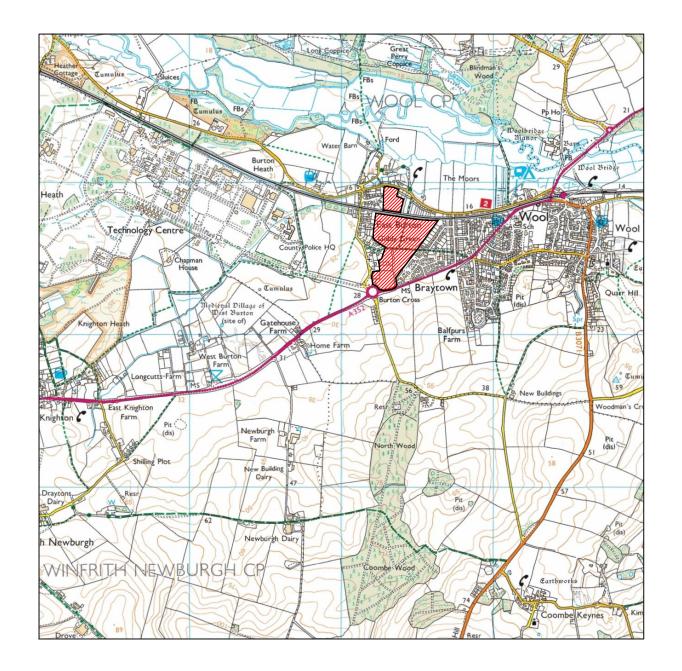
Where appropriate some anomalies will be further classified according to their form (positive or negative) and relative strength and coherence (trend: weak and poorly defined).

Appendix B - Technical Information: Magnetic Theory

Detailed magnetic survey can be used to effectively define areas of past human activity by mapping spatial variation and contrast in the magnetic properties of soil, subsoil and bedrock. Although the changes in the magnetic field resulting from differing features in the soil are usually weak, changes as small as 0.1 nanoTeslas (nT) in an overall field strength of 48,000 (nT), can be accurately detected.

Weakly magnetic iron minerals are always present within the soil and areas of enhancement relate to increases in *magnetic susceptibility* and permanently magnetised *thermoremanent* material.

Magnetic susceptibility relates to the induced magnetism of a material when in the presence of a magnetic field. This magnetism can be considered as effectively permanent as it exists within the Earth's magnetic field. Magnetic susceptibility can become enhanced due to burning and complex biological or fermentation processes.


Thermoremanence is a permanent magnetism acquired by iron minerals that, after heating to a specific temperature known as the Curie Point, are effectively demagnetised followed by re-magnetisation by the Earth's magnetic field on cooling. Thermoremanent archaeological features can include hearths and kilns; material such as brick and tile may be magnetised through the same process.

Silting and deliberate infilling of ditches and pits with magnetically enhanced soil creates a relative contrast against the much lower levels of magnetism within the subsoil into which the feature is cut. Systematic mapping of magnetic anomalies will produce linear and discrete areas of enhancement allowing assessment and characterisation of subsurface features. Material such as subsoil and non-magnetic bedrock used to create former earthworks and walls may be mapped as areas of lower enhancement compared to surrounding soils.

Magnetic survey is carried out using a fluxgate gradiometer which is a passive instrument consisting of two sensors mounted vertically 1m apart. The instrument is carried about 30cm above the ground surface and the top sensor measures the Earth's magnetic field whilst the lower sensor measures the same field but is also more affected by any localised buried feature. The difference between the two sensors will relate to the strength of a magnetic field created by this feature, if no field is present the difference will be close to zero as the magnetic field measured by both sensors will be the same.

Factors affecting the magnetic survey may include soil type, local geology, previous human activity and disturbance from modern services.

Site Location

Reproduced from Ordnance Survey's 1:25 000 map of 1998 with the permission of the controller of Her Majesty's Stationery Office.

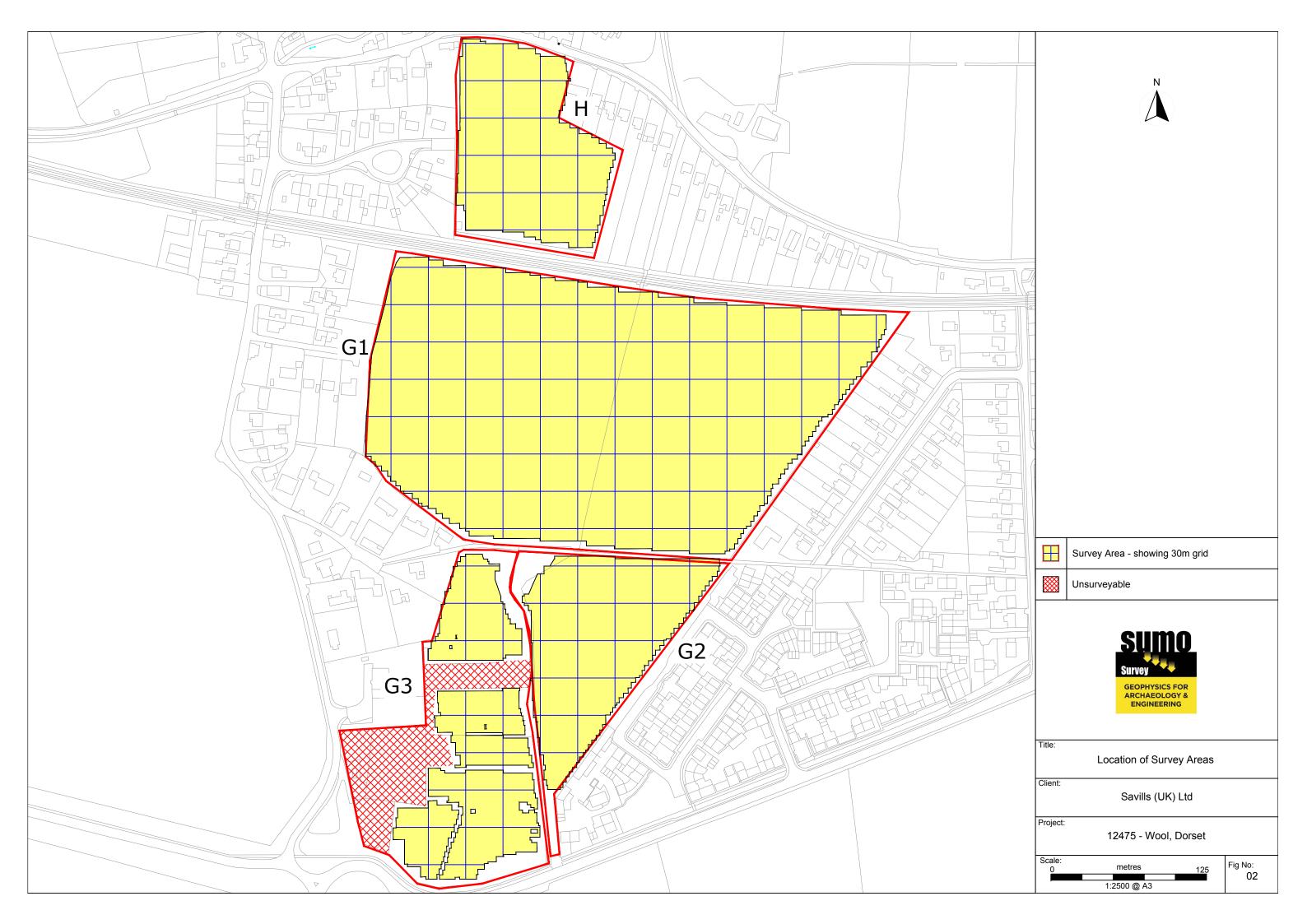
Crown Copyright reserved.

Licence No: 100018665

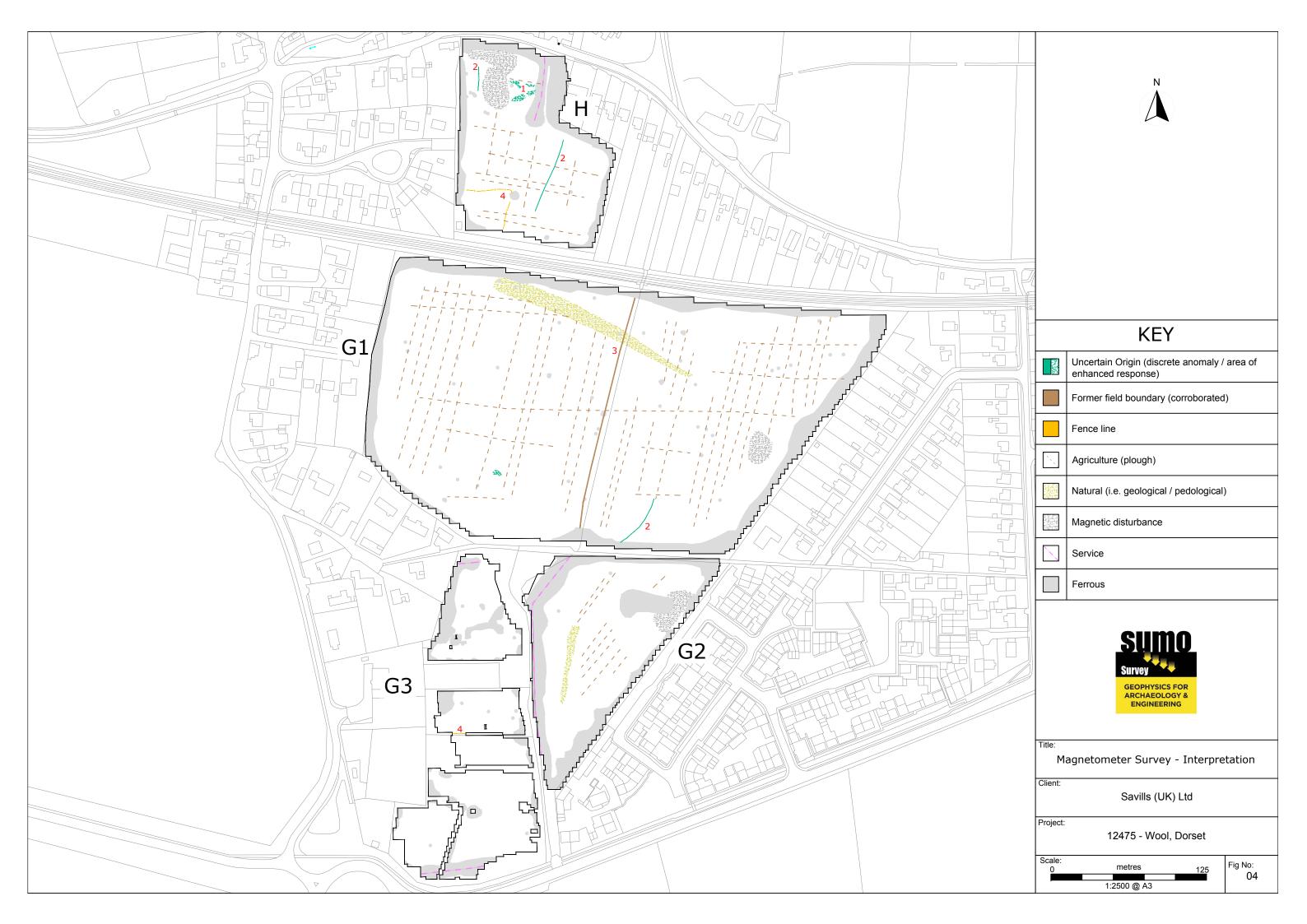
Title:

Site Location Diagram

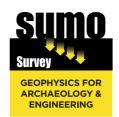
Client:


Savills (UK) Ltd

Project:


12475 - Wool, Dorset

01


Scale:	0	metres		100	000	Fig No: 01
		1:25000	0 @ A3			

- Laser Scanning
- ArchaeologicalGeophysicalMeasured BuildingTopographic

 - Utility Mapping