Appendix 1: Context List

CONTEXT	DESCRIPTION		RELATIONSHIPS	DEPTH/	SPOT DATE
(100)	Topsoil	Dark brown-grey, friable sandy-silt, pottery, CBM, Burnt flint, glass	Overlaid (101)	<0.32m	C19-C20
(101)	Subsoil	Dark-mid grey-brown, friable clay-silt with frequent small-medium stones, plough soil horizon, pottery, flint, slag	Overlain by (100), Overlaid Features	c. 0.14 m	Med-C20
(102)	Natural	Mid-light brown-orange yellow, compact weathered shillet rock and clay with occasional grit	Cut by Features	Below c.0.46m	-
(103)	Fill of Pit	Upper fill; dark orange-brown, friable sandy-silt loam with moderate stones and occasional charcoal flecks/frags., redeposited lens of natural between (103) and lower fills?, pottery	Fill of [111]; Overlaid (113); Overlain by (101)	0.09m	Prehistoric
[104]	Cut of Pit	Sub-oval, irregular sides and base, 1 fill, possibly burnt out roots? $1 \mathrm{~m} \times 0.80 \mathrm{~m}$	Cut (102); Contained (105)	0.07m	-
(105)	Fill of Pit	Mottled dark yellow-brown, friable sandy silt loam and charcoal with moderate natural stone inclusions	Fill of [104]; Overlain by (101)	0.07 m	-
[106]	Cut of Pit	Elongated oval, very gentle-irregular sides, flattish base, 1 fill, possible spread, $2.30 \mathrm{~m} \times 1.50 \mathrm{~m}$	Cut (102); Contained (107)	0.10m	-
(107)	Fill of Pit	Mid-light yellow brown, friable clay-silt loam with moderate stones (at various angles and flat to base) and occasional charcoal flecks	Fill of [106]; Overlain by (101)	0.10m	-
[108]	Cut of Pit	Sub-oval, steep south-west stepped side and gentle other sides with a flat base, 2 fills, probably spread by ploughing, $1.25 \mathrm{~m} \times 1.25 \mathrm{~m}$	Cut (102); Contained (109)(110)	0.15m	-
(109)	Fill of Pit	Lower fill; dark blackish-brown, friable sandy-silt loam with frequent charcoal flecks and occasional heat effected stone, possible lens, grinding stone?	Fill of [108]; Overlain by (110)	0.12m	-
(110)	Fill of Pit	Upper fill; mid yellow-brown, friable sandy-silt loam with moderate stone and occasional charcoal flecks	Fill of [108]; Overlaid (109); Overlain by (101)	0.15m	-
[111]	Cut of Pit	Oval, steep concave slope, flat/gentle sloped base, 3 fills, $1.40 \mathrm{~m} \times 1.28 \mathrm{~m}$	Cut (102); Contained (103)(112)(113)	0.26 m	Prehistoric
(112)	Fill of Pit	Lower fill; light yellow-red, indurate/compact clay and stone, equates to burnt natural	Fill of [111]; Overlain by (113)	0.15m	-
(113)	Fill of Pit	Middle fill; blackish soft charcoal layer, contained probable Iron Age pottery Sample No. 2	Fill of [111]; Overlaid (112); Overlain by (103)	0.04m	Bronze Age (Radiocarbon dated (RC))
[114]	Cut of Pit	Sub-oval, steep-irregualr sides due to natural stone defining its shape, gentle concave-flattish base with loose root disturbed stone to west side of feature; root disturbance?, 1 fill, $1 \mathrm{~m} \times 0.84 \mathrm{~m}$	Cut (102); Contained (115)	0.23m	-
(115)	Fill of Pit	Dark yellow brown, friable clay-silt loam with moderate stone inclusions	Fill of [114]; Overlain by (101)	0.23m	-
[116]	Cut of Pit	Sub rectangular, gentle-steep/irregular sides, irregular concave and stony base, 2 fills, $1.06 \mathrm{~m} \times 0.87 \mathrm{~m}$	Cut (102); Contained (117)(118)	0.13m	Iron Age (RC)
(117)	Fill of Pit	Mid brown, friable slightly clayey-silt with occasional charcoal flecks and medium stones	Fill of [116]; Contained (118); Overlain by (101)	0.13m	-
(118)	Fill of Pit	Black soft silt, lens of charcoal/burnt area, 0.38m long, Sample No. 1	Fill of [116]; Within (117)	0.04m	Iron Age (RC)
[119]	Cut of Pit	Sub-oval to sub-rectangular, steep-gentle/irregular sides and irregular base, 3 fills, $0.80 \mathrm{~m} \times 0.81 \mathrm{~m}$	Cut (102); Contained (120)(121)(122)	0.16 m	-
(120)	Fill of Pit	Upper fill; mid pink-red, friable silt with compact burnt clay inclusions and moderate charcoal flecks	Fill of [119]; Overlaid (221); Overlain by (101)	0.04m	-
(121)	Fill of Pit	Middle fill; mottled mid-light brown, friable silt	Fill of [119]; Overlaid (223); Overlain by (121)	0.10m	-
(122)	Fill of Pit	Lower fill; mid brown, friable silt, at the north-west end of feature, like a stakehole or root spike?	Fill of [119]; Overlain by (122)	0.16m	-
[123]	Cut of Stakehole (SH)	Oval, near vertical sides with a concave break of slope and concave base and occasional rooty tendrils, 1 fill, $0.28 \mathrm{~m} \times 0.25 \mathrm{~m}$	Cut (102); Contained (124)	0.16m	-
(124)	Fill of SH	Mid yellow-brown, friable sandy-silt loam with very occasional charcoal flecks	Fill of [123]; Overlain by (101)	0.16m	-
(125)	Spread	Mid yellow-brown, friable sandy-silt loam, as (124), with occasional charcoal flecks: spread of root disturbed natural/subsoil horizon - possible base of truncated or bioturbed feature; irregular sub-	Overlaid (102); Overlain by (101)	0.02-0.10m	Iron Age

Land at Trethurffe, Ladock, Cornwall

		ovoid in plan with an irregular natural stone/rooty base and no discernalble slope. Possible remnant soil? $0.78 \mathrm{~m} \times 0.48 \mathrm{~m}$, pottery			
[126]	Cut of Pit	Oval, steep concave sides to a concave pointed base, defined by stone, 1 fill, $1.10 \mathrm{~m} \times 1.22 \mathrm{~m}$	Cut (102); Contained (127)	0.30m	-
(127)	Fill of Pit	Mid yellow-brown, friable sandy-silt loam with moderate stone; a very loose silty fill	Fill of [126]; Overlain by (101)	0.30m	-
[128]	Cut of RingDitch	Steep inside edge and gentle to moderate outside edge, concave break to flat base, entrance on the east side; slopes were more even/equal at the termini; less good survival to north-west side, external dimensions $c .14 .50 \mathrm{~m}$ dia., Internal dimensions $c .12 \mathrm{~m}$ dia., RH1 18 c .1 m wide slots: A $-1.30 \mathrm{~m} \times 0.27 \mathrm{~m}$ terminus, moderate-frequent large stones, pottery B $-1.41 \mathrm{~m} \times 0.34 \mathrm{~m}$ frequent large stones, pottery, Sample No. 4 C $-1.30 \mathrm{~m} \times 0.27 \mathrm{~m}$ occasional large stones and charcoal flecks, pottery D $-1.52 m \times 0.24 m$ E $-1.50 \mathrm{~m} \times 0.24 \mathrm{~m}$ slight step in slope, Sample No. 5 $\mathrm{F}-1.20 \mathrm{~m} \times 0.14 \mathrm{~m}$ rough stony natural base $\mathrm{G}-1.25 \mathrm{~m} \times 0.12 \mathrm{~m}$ very shallow, hard stony base, klinker? with burnt clay $H-1.12 m \times 0.14 m$ I $-1.42 \mathrm{~m} \times 0.21 \mathrm{~m}$, pottery J - 0.14m deep, cut by [132]B $\mathrm{K}-1 \mathrm{~m} \times 0.13 \mathrm{~m}$ $L-1.22 m \times 0.16 m$ M -0.13 m deep, cut by [148]C, [148] was cut by [150] $\mathrm{N}-1.05 \mathrm{~m} \times 0.20 \mathrm{~m}$ O $-0.88+m \times 0.22 \mathrm{~m}$ cut by [134]D $P-1.15+m \times 0.30 \mathrm{~m}$ cut by [134]C $Q-1.34 m \times 0.33 m$ cut by [134]B, frequent large stones $R-1.30 m \times 0.14 m$ terminus, moderate large stones, Sample No. 3	Cut (102); Contained (129)	0.12-0.33m	Iron Age
(129)	Fill of RingDitch	Dark-mid grey-brown, friable sandy-silt with occasional charcoal flecks and variable stone; pottery, burnt clay	Fill of [128]; Cut by [132][134][148]	0.12-0.33m	Iron Age
[130]	Cut of Gully	Ephemeral curvi-linear ditch/rooting, steep south edge, gentle north edge and a flat base, survives intermittently/irregularly, base of a hedgeline/ditch of 'round' structure?, 1 fill, $0.52 \mathrm{~m} \times 5.50 \mathrm{~m}$	Cut (102); Contained (131)	0.05m	Medieval
(131)	Fill of Gully	Mid orangey-brown, friable sandy-silt loam, pottery	Fill of [130]; Overlain by (101)	0.05m	Medieval
[132]	Cut of Gully	Linear, aligned WSW-ENE, very gentle sides, flat base/gentle concave profile, base seems rough due to natural shillet/stone, only the base survives, 2 slots $A-B, c .19 \mathrm{~m} \times 0.46 \mathrm{~m}$	Cut (129); Contained (133)	0.06 m	Post-Prehistoric
(133)	Fill of Gully	Mid-dark grey-brown, friable silt-loam with moderate small sub-angular stones	Fill of [132]; Overlain by (101)	0.06m	-
[134]	Cut of Ditch	Linear, aligned ESE-WNW, very gentle sides, flat base/gentle concave profile, probably part of a double ditched boundary with Ditch [148], 4 slots A-D, <1.10m wide	Cut (129); Contained (135)	0.08m	Post-medieval
(135)	Fill of Ditch	Mid greyish-brown, friable silt-loam with moderate sub-angular stone (<40mm dia.) and moderatefrequent larger stones ($<80 \mathrm{~mm}$ dia.)	Fill of [134]; Overlain by (101)	0.08m	-
[136]	Cut of Posthole (PH)	Oval, vertical sides, sloped to concave base, 0.39 m dia., 1 fill	Cut (102); Contained (137)	0.30m	Iron Age
(137)	Fill of PH	Dark orange-brown, friable sandy-silt loam with occasional medium stone and charcoal, stone to its north-west side equates to packing?, pottery, Sample No. 6	Fill of [136]; Overlain by (101)	0.30m	Iron Age
[138]	Cut of Pit	Oval near vertical sides, with a sharp-gentle concave break of slope to a flattish base, 1 fill, 0.68 m across	Cut (102); Contained (139)	0.23m	-
(139)	Fill of Pit	Dark orange brown, friable sandy-silt loam with frequent shillet fragments (similar to (157) and occasional charcoal flecks, Sample No. 7	Fill of [138]; Overlain by (101)	0.23m	Modern (RC, erroneous?)
[140]	Cut of PH	Oval, concave profile, 0.30 m dia., 1 fill	Cut (102); Contained (141)	0.14m	-
(141)	Fill of PH	Mid orange-brown, friable sandy-silt loam with moderate small shillet stones	Fill of [140]; Overlaid by (101)	0.14m	-

Land at Trethurffe, Ladock, Cornwall

[142]	Cut of PH	Oval, vertical sides, flattish-concave base, 0.30 m dia., 1 fill	Cut (102); Contained (143)	0.15 m	-
(143)	Fill of PH	Mid orange-brown, friable sandy-silt loam with moderate small shillet stones	Fill of [142]; Overlaid by (101)	0.15 m	-
[144]	Cut of PH	Oval, vertical sides, flattish base, 0.22 m dia., 1 fill	Cut (102); Contained (145)	0.10 m	-
(145)	Fill of PH	Mid orange-brown, friable sandy-silt loam with occasional gritty stone	Fill of [144]; Overlaid by (101)	0.10m	-
[146]	Cut of PH	Oval, vertical sides, concave break of slope and base, 0.20 m dia., 1 fill	Cut (102); Contained (147)	0.10 m	-
(147)	Fill of PH	Mid orange-brown, friable sandy-silt loam with occasional gritty stone	Fill of [146]; Overlaid by (101)	0.10m	-
[148]	Cut of Ditch	Linear, aligned NW-SE, moderate-gentle sides, although only its base survives; truncated by Ditch [150] (recut?); possibly part of a single boundary with Ditch [148], c.0.83+m wide, 1 fill	Cut (102); Contained (149)	0.11m	Medieval to Post-medieval
(149)	Fill of Ditch	Mid grey-brown, friable silty loam with frequent small sub-angular stones, pottery, Fe nail	Fill of [148]; Cut by [150]	0.11m	Medieval to Post-medieval
[150]	Cut of Ditch	Linear aligned NW-SE, survives intermittently at NW end and is gone at its SE end, equates to a linear on LiDAR imagery, only the base survives, moderate NE slope, very gentle SW slope, flat base, 1.20 m wide, 4 slots A-D, 2 fills; part of medieval/later boundary/route from manor to church/village	$\begin{aligned} & \text { Cut (129)(148)(162); Contained } \\ & (151)(152) \end{aligned}$	0.17m	Post-medieval
(151)	Fill of Ditch	Lower fill; mid-dark grey-brown, friable sandy-silt, clay pipe	Fill of [150]; Overlain by (152)	0.17 m	Post-medieval
(152)	Fill of Ditch	Upper fill; mid orange-brown, friable sandy0-silt and redeposited clayey natural	Fill of [150]; Overlaid (151); Overlain by (152)	0.14 m	-
[153]	Cut of PH	Oval, very steep, conave profile, 0.38 m dia., 2 fills	Cut (102); Contained (154)(155)	0.18 m	-
(154)	Fill of PH	Upper fill; dark orange-brown, friable sandy-silt and mottled with occasional medium stones and charcoal mottling	Fill of [153]; Overlaid (155); Overlain by (156)	0.12m	-
(155)	Fill of PH	Lower fill; disturbed/redeposited natural	Fill of [153]; Overlain by (154)	0.06 m	-
[156]	Cut of PH	Oval, vertical sides, concave and sloped break to a flat base, 0.52 m dia., 1 fill	Cut (102); Contained (157)	0.38 m	-
(157)	Fill of PH	Dark orange-brown, friable sandy-silt loam with frequent shillet fragments and moderate packing stone slabs, c. $20 \times 20 \times 4 \mathrm{~cm}$	Fill of [156]; Overlain by (101)	0.38 m	-
[158]	Cut of Pit	Oval (long oval), very steep concave sides to a flat base, 0.78 m dia., 1 fill	Cut (102); Contained (159)	0.18 m	-
(159)	Fill of Pit	Dark orange-brown, friable sandy-silt loam with occasional charcoal flecks and stone/shillet	Fill of [158]; Overlain by (101)	0.18m	-
[160]	Cut of PH	Oval with an elongated part, near vertical sides, sharp break of slope to a flat base; a gentle elongated/disturbed edge on its E side, $0.40 \mathrm{~m}-0.76 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (161)	0.28 m	-
(161)	Fill of PH	Dark orange-brown, friable sandy-silt loam with occasional charcoal flecks and packing stone? $14 \times 14 \times 3 \mathrm{~cm}$	Fill of [160]; Overlain by (101)	0.28 m	-
[162]	Cut of Treethrow (TT)	Elongated oval, very steep to near vertical sides with a flat base, c.1.50m×0.70m across, 1 fill, in RH1	Cut (102); Contained (163)	0.48m	-
(163)	Fill of TT	Mid brown, friable silt with frequent soft/weathered natural and shillet stone	Fill of [162]; Cut by [150]	0.48m	-
[164]	Cut of PH	Sub-oval, steep sides, flat base, stone socket obscures/cuts feature, $1.02 \mathrm{~m} \times 0.80 \mathrm{~m}$ across, 1 fill, like a pit?, RH2	Cut (102); Contained (165)	0.24 m	Iron Age
(165)	Fill of PH	Mid grey/yellow-brown, friable sandy-silt loam with moderate small-medium shillet and stone fragments and occasional charcoal flecks	Fill of [164]; Overlain by (101)	0.24 m	Iron Age
[166]	Cut of PH	Sub-oval/sub-rectangular, vertical sides, sharp concave break, flat base, $0.34 \mathrm{~m} \times 0.67 \mathrm{~m}$ across, 1 fill, RH2	Cut (102); Contained (167)	0.20 m	Iron Age
(167)	Fill of PH	Light brown-grey to mid yellow-brown, friable sandy-silt loam with moderate small-medium shillet stone fragments and occasional charcoal flecks	Fill of [166]; Overlain by (101)	0.20 m	Iron Age
[168]	Cut of TT	Elongated oval/'kidney shaped', very steep E side, steep W side, rounded irregular base, 1 fill, photographed, not drawn	Cut (102); Contained (169)	-	-
(169)	Fill of TT	Soft weathered natural clay with moderate shillet frags. and a softer band of natural disturbed by the tree	Fill of [168]; Overlain by (101)	-	-
[170]	Cut of RingDitch	Ring ditch to roundhouse $2, c .1 \mathrm{~m}$ wide, deeper to the south, shallower to the north, concave profile and flattish-slight concave base, 2 fills, RH2, 11.75 internal diameter, 13.5 external diameter:	Cut (182); Contained (171)(172)	0.25-0.40m	Iron Age

Land at Trethurffe, Ladock, Cornwall

		12 excavated segments A-L: A $-1 \mathrm{~m} \times 0.30-0.40 \mathrm{~m}$ runs into L.O.E., rather stony B $-0.80 \mathrm{~m} \times 0.38 \mathrm{~m}$, terminus, very stony C $-1.05 \mathrm{~m} \times 0.20 \mathrm{~m}$, terminus, very stony D $-1 m \times 0.37 \mathrm{~m}$, rather stony $\mathrm{E}-1.13 \mathrm{~m} \times 0.31 \mathrm{~m}$, stony $\mathrm{F}-0.91 \mathrm{~m} \times 0.18 \mathrm{~m}$, stony $\mathrm{G}-0.90 \mathrm{~m} \times 0.27 \mathrm{~m}$, stony $\mathrm{H}-0.76 \mathrm{~m} \times 0.20 \mathrm{~m}$, stony $1-0.85 \mathrm{~m} \times 0.30 \mathrm{~m}$, stony $\mathrm{J}-0.70 \mathrm{~m} \times 0.28 \mathrm{~m}$, cuts (182)A/Ditch [181] K $-0.90 \mathrm{~m} \times 0.23 \mathrm{~m}$, cuts (182)B/Ditch [181] L - 0.90-1.09m $\times 0.35 \mathrm{~m}$, runs into L.O.E.			
(171)	Fill of RingDitch	Lower fill; mid brown, clayey-silt with frequent large-medium sub-angular stones and an intermittent lens of daub?/burnt clay overlaying stones in slots A-E, pottery, slag, burnt clay, Sample Nos. 10 and 14	Fill of [170]; Overlain by (172)	0.07-0.32m	Iron Age (RC)
(172)	Fill of RingDitch	Upper fill; mid yellow-brown, soft-friable clayey-silt loam, occasional to moderate shillet frags. and occasional charcoal flecks (very rare in $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{I}, \mathrm{L}$)	Fill of [170]Overlaid (171); Cut by [185]	0.07-c.0.25m	-
[173]	Cut of Ditch	Curvi-linear, steep outside edge, flat base, 7 m long, 1.15 m wide and 2.25 m of associated Spread (191), post cut in its south-end, possibly plough truncated ring-gully? 3 slots A-C, 1 fill	Cut (102); Contained (174); Associated with (191)	0.20m	Bronze Age (RC)
(174)	Fill of Ditch	Mid grey-brown, friable silt with mottled or burnt natural lenses and lenses of clay/baked clay and frequent charcoal flecks with frequent rock defining the features inside edge, Sample No. 9	Fill of [173]; Overlain by (101); abuts (191)	0.20m	Bronze Age (RC)
[175]	Cut of Pit	Irregular, sub-oval, gentle-steep sides, irregular flattish base, possible root disturbed, $1 \mathrm{~m} \times 0.78 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (176)	0.10m	-
(176)	Fill of Pit	Dark grey-brown, friable sandy-silt loam with moderate charcoal flecks and medium stones, burnt clay	Fill of [175]; Overlain by (101)	0.10m	-
[177]	Cut of Pit	Elongated/sub-oval, very steep to vertical sides, concave break of slope, flat base, $1.15 \mathrm{~m} \times 0.80 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (178)	0.23m	Bronze Age (RC)
(178)	Fill of Pit	Dark grey-brown, friable sandy-silt loam with moderate charcoal flecks and medium stones, occasional clay, stony edges root disturbed base and gravel, burnt clay, Sample No. 8	Fill of [177]; Overlain by (101)	0.23m	Bronze Age (RC)
[179]	Cut of PH	Irregular- sub-rectangular, moderate-near vertical sides and a flat base, root disturbance? C. 0.35 m across	Cut (102); Contained (180)	0.09m	-
(180)	Fill of PH	Light yellow-brown, friable sandy-silt	Fill of [179]; Overlain by (101)	0.09m	-
[181]	Cut of Gully	Part of RH2 ring-ditch? Possibly recut? Steep sides, flat base in slots J and K for [170], $0.45+m$ wide, 1 fill	Cut (102); Contained (182)	0.20 m	-
(182)	Fill of Gully	Mid-dark brown, friable silt	Fill of [181]; Cut by [170]	0.20m	-
[183]	Cut of PH	Sub-oval concave profile with near vertical sides and a gentle concave base, $0.50 \mathrm{~m} \times 0.70 \mathrm{~m}$ across, 1 fill, outside but near RH2	Cut (102); Contained (184)	0.12m	-
(184)	Fill of PH	Dark grey-brown, soft clay-silt loam, moderate sub-angular stones and occasional roots	Fill of [183]; Overlain by (101)	0.12m	-
[185]	Cut of Ditch	Linear, aligned E-W, 1.03 m wide, moderate north slope, steep concave south slope and a concave base, became very shallow towards the west edge of RH2 to the point that id didn't survive, but could be seen to continue ephemerally during machining and before cleaning, equating to Ditch [189] within the roundhouse, possible terminus just shy of RH2 defining an access and [189] is a continuation of the linear, 2 slots A-B, 1 fill, medieval or post-medieval	Cuts (171); Contained (186); equated to [189]?	0.28m	-
(186)	Fill of Ditch	Mid grey-brown, friable silty loam with occasional shillet frags. and small stones	Fill of (185); Overlain by (101); Equated to (190)?	0.28m	-
[187]	Cut of Gully	Linear, aligned NE-SW, shallow intermittent survival, plough truncated, gentle sides, flat base, 0.60 m wide, 1 fill	Cut (102); Contained (188)	0.08m	-

Land at Trethurffe, Ladock, Cornwall

(188)	Fill of Gully	Mid reddish-grey, friable sandy-silt loam, moderate small stones and scaly grit	Fill of [187]; Overlain by (101)	0.08m	-
[189]	Cut of Ditch	Linear, aligned E-W within RH2, variable profile; very steep S slope and gentle N slope, flat base to steep concave sides and a less wide flat base, 3 slots A-C, possible terminus at its west end, but then may equate to [185]?, 1.20 m wide, 1 fill, medieval to post-medieval	Cuts (243)(245)(260); Contained (190); equated to [185]?	c. 0.14 m	Medieval to Post-medieval
(190)	Fill of Ditch	Mid grey-brown, friable silty loam with occasional shillet frags. and small stones, residual Iron Age pottery	Fill of [189]; Overlain by (101); Equated to (186)?	c. 0.14 m	-
(191)	Spread	Mid yellow-brown, friable sandy-silt loam with occasional charcoal flecks and stones, possible subsoil in hollow and associated with [173], becomes more shallow to $\mathrm{W}, 5.30 \mathrm{~m} \times 2.30 \mathrm{~m}$ across	Overlaid (102); Overlain by (101); Abuts (174)	0.16m	-
[192]	Cut of PH	Sub-oval, concave sides, flat base, $0.36 \mathrm{~m} \times 0.39 \mathrm{~m}$ dia., 1 fill	Cut (102); Contained (193)	0.12m	-
(193)	Fill of PH	Light brown-grey to mid yellow-brown, Friable sandy-silt loam with moderate small-medium shillet stone fragments and occasional charcoal flecks	Fill of [192]; Overlain by (101)	0.12m	-
[194]	Cut of PH	Oval, near vertical sides, concave break, flat base, 0.33 m dia., 1 fill	Cut (102); Contained (195)	0.13m	-
(195)	Fill of PH	As (193)	Fill of [194]; Overlain by (101)	0.13m	-
[196]	Cut of PH	Oval, near vertical sides, concave break, flat base, 0.25 m dia., 1 fill	Cut (102); Contained (197)	0.10 m	-
(197)	Fill of PH	As (193)	Fill of [196]; Overlain by (101)	0.10m	-
[198]	Cut of PH	Oval, near vertical sides, concave break, flat base, 0.38 m dia., 1 fill	Cut (102); Contained (199)	0.16 m	-
(199)	Fill of PH	As (193)	Fill of [198]; Overlain by (101)	0.16 m	-
[200]	Cut of SH	Oval, very steep concave profile, 0.22 m dia., 1 fill	Cut (102); Contained (201)	0.08 m	-
(201)	Fill of SH	Light yellow-grey, friable sandy silt	Fill of [200]; Overlain by (101)	0.08 m	-
[202]	Cut of Pit	Elongated oval, gentle-moderate concave sides, flat-gentle concave base, $0.72 \mathrm{~m} \times 0.40 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (203)	0.13 m	-
(203)	Fill of Pit	As (193)	Fill of [202]; Overlain by (101)	0.13 m	-
[204]	Cut of PH	Oval, near vertical sides, sharp curved/concave break, flat base, 0.42 m dia., 1 fill	Cut (102); Contained (205)	0.21 m	-
(205)	Fill of PH	As (193)	Fill of [204]; Overlain by (101)	0.21 m	-
[206]	Cut of PH	Oval, near vertical sides, sharp concave break, flat base, 0.52 m dia., 2 fills	Cut (102); Contained (207)(246)	0.32 m	-
(207)	Fill of PH	Upper fill; as (193)	Fill of [206]; Overlaid (246); Overlain by (101)	0.15 m	-
[208]	Cut of PH	Oval, vertical sides, flat base, 0.21 m dia., 1 fill	Cut (102); Contained (209)	0.10m	-
(209)	Fill of PH	As (193), but more grey like the stakeholes	Fill of [208]; Overlain by (101)	0.10m	-
[210]	Cut of SH	Oval, vertical sides, flat base, 0.12 m dia., 1 fill	Cut (102); Contained (211)	0.09 m	-
(211)	Fill of SH	As (201)	Fill of [210]; Overlain by (101)	0.09 m	-
[212]	Cut of PH	Oval, vertical sides, sharp break of slope, flat base, 0.20 m dia., 1 fill	Cut (102); Contained (213)	0.06 m	-
(213)	Fill of PH	As (201)	Fill of [212]; Overlain by (101)	0.06 m	-
[214]	Cut of PH	Oval, vertical sides, flat base, 0.28 m dia., 1 fill	Cut (102); Contained (215)	0.10 m	-
(215)	Fill of PH	As (193)	Fill of [214]; Overlain by (101)	0.10m	-
[216]	Cut of SH	Oval, vertical sides, very sharp break of slope, flat base, 0.10 m dia., 1 fill	Cut (102); Contained (217)	0.13 m	-
(217)	Fill of SH	As (201)	Fill of [216]; Overlain by (101)	0.13 m	-
[218]	Cut of PH	Oval, near vertical to very steep sides, sharp break of slope, flat base, 0.60 m dia., 2 fills, similar to [206]	Cut (102); Contained (219)(247)	0.49m	Iron Age (RC)
(219)	Fill of PH	Upper fill; as (193), pottery, Sample no. 13	Fill of [206]; Overlaid (247); Overlain by (101)	0.25 m	Iron Age (RC)
[220]	Cut of PH	Oval, very steep concave sides, flat base, 0.42 m dia., 1 fill	Cut (102); Contained (221)	0.16m	Iron Age
(221)	Fill of PH	As (193), pottery	Fill of [220]; Overlain by (101)	0.16m	Iron Age
[222]	Cut of PH	Oval, near vertical sides, flat base, 0.37 m dia., 1 fill	Cut (102); Contained (223)	0.10 m	-
(223)	Fill of PH	As (193)	Fill of [222]; Overlain by (101)	0.10 m	-
[224]	Cut of PH	Oval, near vertical sides, concave break of slope, flat base, 0.66 m dia., 2 fills	Cut (102); Contained (225)(248)	0.25 m	-
(225)	Fill of PH	Upper fill; as (193)	Fill of [206]; Overlaid (248); Overlain by (101)	0.13 m	-

LAND AT Trethurffe, Ladock, Cornwall

[226]	Cut of PH	Sub-oval, steep irregular sides, flat irregular base, root disturbed, $0.32 \mathrm{~m} \times 0.27 \mathrm{~m}, 1$ fill	Cut (102); Contained (227)	0.08 m	-
(227)	Fill of PH	As (201), but root disturbed	Fill of [226]; Overlain by (101)	0.08 m	-
[228]	Cut of PH	Oval, near vertical sides, flat base, 0.31 m dia., 1 fill	Cut (102); Contained (229)	0.08 m	-
(229)	Fill of PH	As (193)	Fill of [228]; Overlain by (101)	0.08m	-
[230]	Cut of PH	Oval, very steep to vertical sides, sharp concave break of slope, flat base, 0.55 m dia., 1 fill	Cut (102); Contained (231)	0.27 m	-
(231)	Fill of PH	As (193), Sample No. 12	Fill of [230]; Overlain by (101)	0.27 m	-
[232]	Cut of Pit	Elongated oval, gentle-moderate sides, flat base, base of pit, $1.40 \mathrm{~m} \times 0.60 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (233)	0.08 m	-
(233)	Fill of Pit	Mid-light yellow-brown, friable sandy-silt, similar to (193)	Fill of [232]; Overlain by (101)	0.08 m	-
[234]	Cut of PH	Oval, vertical sides, flat base, 0.32 m dia., 1 fill	Cut (102); Contained (235)	0.12 m	-
(235)	Fill of PH	As (193), Sample No. 11	Fill of [234]; Overlain by (101)	0.12m	-
[236]	Cut of PH	Oval, vertical sides, flat base, slightly irregular/concave from roots?, 0.23 m dia., 1 fill	Cut (102); Contained (237)	0.08 m	-
(237)	Fill of PH	As (193)	Fill of [236]; Overlain by (101)	0.08 m	-
[238]	Cut of Pit	Elongated oval, gentle sides, gentle concave-flattish base, $0.63 \mathrm{~m} \times 0.41 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (239)	0.08 m	-
(239)	Fill of Pit	Mid yellow-brown, friable sandy-silt loam	Fill of [238]; Overlain by (101)	0.08m	-
[240]	Cut of PH	Oval, vertical sides, sharp break, flat base, possibly root disturbed, 0.26 m dia., 1 fill	Cut (102); Contained (241)	0.10 m	-
(241)	Fill of PH	As (193)	Fill of [240]; Overlain by (101)	0.10m	-
[242]	Cut of PH	Oval, vertical sides, sharp break, flat base, 0.26 m dia., 1 fill	Cut (102); Contained (243)	0.17 m	-
(243)	Fill of PH	As (193)	Fill of [242]; Cut by [189]	0.17 m	-
[244]	Cut of Spread	Possible hearth? Rounded amorphous in plan with very gentle to non-existent sides and an irregular flattish base, $1.33 \mathrm{~m} \times 1.15 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (245)	0.02-0.18m	-
(245)	Fill of Spread	Mid blackish-red, compact and burnt charcoal and clay layer	Fill of [244]; Cut by [189]	0.02-0.18m	-
(246)	Fill of PH	Lower fill; Light yellow-brown, friable clay-silt with frequent stony inclusions; disturbed natural or packing?	Fill of [206]; Overlain by (207)	0.17 m	-
(247)	Fill of PH	Lower fill; Light yellow-brown, friable clay-silt with frequent stony inclusions; disturbed natural or packing?	Fill of [218]; Overlain by (219)	0.24 m	-
(248)	Fill of PH	Lower fill; Light yellow-brown, friable clay-silt with frequent stony inclusions; disturbed natural or packing?	Fill of [224]; Overlain by (225)	0.12m	-
[249]	Cut of PH	Oval, vertical sides, sharp break, flat base, a little rough, only base survives, 0.30 m dia., 1 fill	Cut (102); Contained (250)	0.10m	-
(250)	Fill of PH	As (193)	Fill of [249]; Overlain by (101)	0.10 m	-
[251]	Cut of PH	Oval, vertical to near vertical sides, sharp break, flat base, 0.32 m dia., 1 fill	Cut (102); Contained (252)	0.22 m	-
(252)	Fill of PH	As (193)	Fill of [251]; Overlain by (101)	0.22 m	-
[253]	Cut of PH	Sub-oval, vertical sides, concave break of slope, flat base, $0.73 \mathrm{~m} \times 0.60 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (254)	0.29 m	-
(254)	Fill of PH	As (193)	Fill of [253]; Overlain by (101)	0.29 m	-
[255]	Cut of PH	Sub-oval, very steep concave sides, gentle concave base, $0.65 \mathrm{~m} \times 0.49 \mathrm{~m}$ across, 1 fill	Cut (102); Contained (256)	0.22 m	Prehistoric
(256)	Fill of PH	As (193), pottery	Fill of [255]; Overlain by (101)	0.22 m	Prehistoric
[257]	Cut of Pit	Oval, very steep concave sides, flat base, $1.16 \mathrm{~m} \times 1.20 \mathrm{~m}$ across, possibly a very large posthole, 1 fill	Cut (102); Contained (258)	0.58 m	-
(258)	Fill of Pit	Mid orange-brown, friable clay-silt, very stony with large shillet slabs	Fill of [257]; Cut by [189]	0.58 m	-
[259]	Cut of PH	Oval, very steep sides, concave break of slope, flat base, 0.64 m across, 1 fill	Cut (102); Contained (260)	0.21 m	-
(260)	Fill of PH	As (193)	Fill of [259]; Cut by [189]	0.21 m	-

APPENDIX 2: FInds CONCORDANCE

		POTTERY			OTHER			DATE
Context	Notes	n ¢ ¢	30 4 30 30	Notes	菏	50 4.0 30	Notes	
(100)	Topsoil	1	5	Medieval Lostwithiel body shed	1	43	CBM/Brick	$15^{\text {th }}-16^{\text {th }}$ Century
		1	11	Post-medieval stoneware	1	19	Burnt flint fragment; possible blade core with cortex	$17^{\text {th }}-18^{\text {th }}$ Century
		3	16	White Refined Earthenware (WRE) with Blue Transfer Print (BTP)	1	17	Green bottle glass, rough mottled surface	$19^{\text {th }}$ Century
					1	13	Lostwithiel type ridge tile edge	$15^{\text {th }}-16^{\text {th }}$ Century
(101)	Subsoil (above RH2)	2	14	Medieval, micaceous, Cornish coarseware, $\times 1$ abraded scrap	1	116	Slag; Fe, bubbley and edged so drip near edge/tap	Med
		5	41	Iron Age, gabbro fabric, slight burnish, $\times 1$ rim, $\times 1$ shoulder of jar, $\times 1$ scrap, $\times 1$ body sherd with diagonal incised line pattern	1	19	Flint fragment, rough blade core with cortex	Middle Iron Age
		2	15	Late Medieval, Lostwithiel body sherd				$15^{\text {th }}-16^{\text {th }}$ Century
(103)	Pit fill	1	27	Late Iron Age gabbro Body sherd with raised cordon possible type H or J (thriepland) / type 13 (Quinell)				Late Iron Age
(109)	Pit fill				1	756	Stone; for grinding ores? Dimples on each facet	-
(125)	Spread	3	3	Iron Age, gabbro, neck sherd of fine vessel near F[123]F[126]				Iron Age
(129)A	Ring-ditch	2	23	Iron Age, gabbro, $\times 1$ rim with handle/lug springing of a jar, band of vertical incised line imitating rouletting below rim and over the top of the handle/lug springing, 'outline style'. And one fine body sherd not the same vessel RH1				Iron Age
(129)B	Ring-ditch	8	108	Iron Age, gabbro, slight burnish, $\times 1$ base, lower body and neck sherds of same jar, quite large frags., RH1				Iron Age
(129)C	Ring-ditch	3	7	Iron Age, gabbro, slight burnish, reduced, neck sherds from same jar				Iron Age
(129)G	Ring-ditch				1	18	Slag/klinker on burnt clay, kiln furniture/furnace lining?	-
(129)।	Ring-ditch	1	7	Iron Age, gabbro, shoulder, RH1				Iron Age
(131)	Ditch fill	1	6	Medieval, slightly micaceous, Cornish coarseware				Med
(137)	Posthole fill	5	12	Iron Age, gabbroic, RH1				Iron Age
(149)A	Ditch fill	1	5	Medieval, Lostwithiel coarseware, basal angle	1	7	Corroded Fe nail/object	$15^{\text {th }}-16^{\text {th }}$ Century
(151) C	Ditch fill				2	2	Clay pipe stem, 4 mm bore hole	Early $17^{\text {th }}$ Century
(171)A	Ring-ditch				$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} 210 \\ 1 \\ \hline \end{gathered}$	Slag, Fe adhering to burnt clay Burnt Clay	-
(171)C	Ring-ditch	5	8	Middle Iron Age, SW Decorated jar with incised horizontal line with diagonal lines below, reduced and burnished.	2	1817	Thick slate stone/slate slabs, possibly notched	Iron Age
(171)D	Ring-ditch				26	159	Burnt Clay	-
(176)	Pit fill				5	13	Burnt Clay	-
(178)	Pit fill				2	14	Burnt Clay	-
(190)	Ditch fill	2	5	Iron Age, body sherds, slight burnish, RH2, residual				Post-Iron Age

Land at Trethurffe, Ladock, Cornwall

(219)	Posthole fill	6	26	Middle Iron Age, black, SW Decorated $\times 4$ with incised elliptical shapes infilled with rouletted decoration., RH2				Iron Age
(221)	Posthole fill	2	85	Middle Iron Age, SW Decorated, adjoining large pieces of the same vessel, mock rouletted horizontal bands with elliptical shapes infilled with crosshatched., RH2				Iron Age
(256)	Posthole fill	1	6	Gabbro pottery, possibly Bronze Age, RH2				Prehistoric
TOTALS		55	430		48	3224		

Appendix 3: Bulk Sample Concordance

Sample Number	(Context) Sondage	Description	Sample Size	$\begin{gathered} \hline \% \\ \text { Processed } \end{gathered}$	Comments
1	(118)	Charcoal rich fill from Pit [116]	c. 10 litres	100	Occasional fine roots and charcoal (30ml)
2	(113)	Fill of Burnt Pit [111]	c. 12 litres	100	Fine roots and charcoal (50ml)
3	(129) R	Terminus of Ring-ditch [128] for Roundhouse 1	c. 20 litres	100	Frequent small roots, rare charcoal (50ml)
4	(129) B	Sample from area adjacent to finds rich slot through Ring-ditch [128] of Roundhouse 1	c. 20 litres	100	Fine roots and charcoal (15 ml) $3 x$ scraps of Middle Iron Age pottery (2 g)
5	(129) E	Sample from area adjacent to charcoal rich slot through Ring-ditch [128] of Roundhouse 1	c. 20 litres	100	Fine roots and charcoal (30ml)
6	(137)	Fill of Posthole [136] in Roundhouse 1	c. 5 litres	100	Fine roots and charcoal (5ml)
7	(139)	Fill of Posthole/Pit [138] in Roundhouse 1	c. 10 litres	100	Fine roots and charcoal, burnt seeds (10ml)
8	(178)	Fill of Pit [177] in NW corner of site	c. 20 litres	100	Recent twigs/roots, fine charcoal (15ml)
9	(174)	Charcoal rich fill of Curvilinear [173], possible remains of a structure?	c. 20 litres	100	Occassional fine roots (5 ml), common charcoal fragments (145g)
10	(171) A	Sample from area adjacent to finds rich slot through Ring-ditch [170] of Roundhouse 2	c. 20 litres	100	Fine roots and charcoal (25 ml), $1 x$ daub frag (1g)
11	(235)	Fill of small Posthole [234] in Roundhouse 2	c. 2 litres	100	Fine roots and charcoal (1ml)
12	(231)	Fill of Posthole [230] in Roundhouse 2	c. 6 litres	100	Fine roots (2.5 ml)
13	(219)	Fill of Posthole [218] in Roundhouse 2 - Iron Age pot recovered from fill	c. 20 litres	100	Fine roots and charcoal (6ml)
14	(171) H	Sample from Ring-ditch [170] of Roundhouse 2	c. 20 litres	100	Fine roots (7ml)

FIGURE 1: SIMPLIFIED, PHASED SITE PLAN.

Figure 2: Site plan; section numbers in orange refer to Figure 13; green to Figure 12; and blue to Figure 11.

FIGURE 3: ROUNDHOUSE 1 PLAN; SHOWING LOCATION OF SECTION DRAWINGS.

Figure 4: Roundhouse 1 section drawings; Ring-ditch [128] (section numbers equate to those on Figure 4).

FIGURE 5: Roundhouse 1 section drawings (section numbers equate to those on Figure 4 .

FIGURE 7: Roundhouse 2 section drawings; ring-ditch [170] (section numbers equate to those on Figure 7).

FIGURE 8: Roundhouse 2 SECTION DRAWINGS (SECTION NUMBERS EQuATE TO THOSE ON FIGURE 7).
(420)

FIGURE 9: RoundHouse 2 section drawings (SECTION numbers Equate to those on Figure 7).

Figure 10: Section drawings; pits and associated features (section numbers equate to the blue section numbers on Figure 3).

FIGURE 11: SECTION DRAWINGS, INCLUDING; PITS DITCHES AND GULLIES (SECTION NUMBERS EQUATE TO THE GREEN SECTION NUMBERS ON FIGURE 3).

FIGURE 12: SECTION DRAWINGS AND PLANS, INCLUDING; CURVI-LINEARS AND SAMPLE SECTIONS (sECTION NUMBERS EQUATE TO THE ORANGE SECTION NUMBERS ON FIGURE 3).

Appendix 5: Additional Sources

FIGURE 13: LADOCK TITHE MAP, 1843; THE APPROXIMATE LOCATION OF THE SITE IS OUTLINED IN RED.

Figure 14: Ordnance Survey 2nd edition, 25 inch Series, Surveyed 1906, Published 1907 (CRO); THE APPROXIMATE LOCATION OF THE SITE IS OUTLINED IN RED.

FIGURE 15: TOPOGRAPHICAL IMAGE BASED ON LIDAR DATA. THIS IS A QGIS-GENERATED IMAGE (TERRAIN ANALYSIS>SLOPE) of Tellus LidAR survey data [contains freely available Lidar data supplied by Natural Environment Research Council (Centre for Ecology \& Hydrology; British Antarctic Survey; British geological Survey), ©nerc; possible EARTHWORKS OR CROPMARKS ON THE SITE HAVE BEEN OUTLINED IN RED.

Figure 16: Shade plot of Gradiometer survey data; minimal processing (Bampton 2017).

Figure 17: Interpretation of Gradiometer survey data (Bampton 2017).

Appendix 6: Specialist Pottery Report

By Dr. Imogen Wood

1.0 SUMMARY

This assessment report for the ceramic assemblage from Ladock is relatively small, consisting of 54 sherds weighing 430 g . Most of the pottery comes from sealed contexts. Assessment of this material provides provisional dating evidence for many of the excavated features on the site, and supports the stratigraphical interpretation of the site.

2.0 Methods

54 sherds from 15 contexts were examined macroscopically with a hand lens at $x 2$ magnification to identify initial fabric groups; these groups were then examined under a binocular microscope at a magnification of x10 to $\times 40$ (See Appendix 1). This enabled large areas of the surface and edges of sherds to be examined, and in many cases useful diagnostic mineral and rock components to be identified. Photomicrographs were taken and used for visual comparison with the database. Abrasion has been subjectively assessed using Sorensen's method (Sorensen 1996).

3.0 Quantification

The assemblage is composed of mainly Iron Age pottery.
A context-by-context breakdown of fabrics, wares, abrasion and dating can be found in Table 2 (below).

Table 1: Quantification by period.

Period	No of sherds	Weight (grams)
BA	1	6
IA	22	180
MIA	18	159
LIA	1	28
Medieval	7	39
Post-medieval	5	18
TOTAL	$\mathbf{5 4}$	$\mathbf{4 3 0}$
Burnt clay	26	191

4.0 Condition of the Assemblage

The majority of the Iron Age assemblage (41 sherds) has little abrasion (level 1) suggesting these were excavated in their primary contexts of deposition. The burnt clay is more abraded due to the poor quality of the clay, but was probably deposited in the same area. The single Bronze Age sherd is very abraded (level 3) and may have travelled far from it primary deposition area. The medieval pottery is also abraded and represents the typical attributes of material deposited in the topsoil.

5.0 FABRIC

The fabric of the Iron Age assemblage is a typical Gabbroic Admixture fabric, which is found throughout Cornwall in this period, see p151 in Nowakowski and Quinnell (2011). The possible Bronze Age sherd is also Gabbroic. The medieval pottery sherds are typical of the Lostwithiel ware Micaceous fabric.

6.0 Results

Despite the small size of the Iron Age pottery assemblage it offers a high proportion of a rare and accomplished style of South Western Decorated Ware (SWD) vessels. The fine globular jars and other vessels suggest a Middle Iron Age date which Quinnell has established starts around the $3^{\text {rd }}$ century BC. The 180 mm rim diameter from a sherd in the topsoil falls within the typical range for smaller vessels at Trevlegue Head and Cornwall as a whole (Nowakowski and Quinnell 2011, 183).

A rim sherd of a decorated jar with a handle/lug springing has a rim diameter of 140 mm , the incised band with vertical lines between them could be classed as being part of the 'outline style' thought to have a start date of the $4^{\text {th }}$ c BC. Quinnell has said that the presence of a handle/lug is rare in Iron Age assemblages in Cornwall and may represent a feature specific to the earlier 'outline style' phase (Nowakowski and Quinnell 2011, 171).

Other examples can be found at Halligye Fogou SWD outline style body sherd with lug and incised decoration over the top of the lug (Quinnell and Elsdon 2009-10 P97, Fig 15). Also lug sherd found in a ditch at Gear and Caervallack Round on the Lizard (Edwards and Kirkham 2008, P14, Fig 28).
There is a single Late Iron Age cordoned ware sherd possibly from a type H or J jar which may date from the $1^{\text {st }}$ BC and has been know to overlap with SWD assemblages (Quinnell and Elsdon 2009, 86).

The burnt clay objects are typical of a prehistoric settlement, one piece may have impressions suggesting its use as Daub on a round house. There is also a piece from (129) G which has by-products from metal production and could be evidence of a furnace lining.

The Bronze Age sherd is too abraded and small to draw any other conclusions other than there being some activity in the area which is typical for any area of Cornwall.

The medieval pottery assemblage dominated by Lostwithiel Ware, typical of the region.

7.0 SIGNIFICANCE OF THE ASSEMBLAGE

The Iron Age assemblage from Ladock is of regional importance in providing a rare example of South Western Decorated lug sherd and a high standard of decoration on fine jars.

8.0 Recommendations

Illustration of sherd with lug and selected sherds with SWD accomplished style decoration.
Table 2: Pottery Concordance

Context	No.	Wgt. (g)	Abrasio n	Fabric group	Notes	Date	Illustration
topsoil	1	13	2	Lostwithiel ware	Ridge tile edge	$15^{\text {th }}-16^{\text {th }}$	
topsoil	1	13	3	?	Body sherd post-med internal glaze mostly gone	$17^{\text {th }}-18^{\text {th }}$?	
(100)	3	16	2	White refined earthernwar e	White pottery, two sherds with painted blue decoration	$19^{\text {th }}$	
(100)	1	5	2	Lostwithiel ware	Base sherd	$15^{\text {th }}-16^{\text {th }}$	
(101)	5	42	2	Gabbro admix	1 rim and neck of BD6.4 jar form, burnished exterior. Two body sherds, neck 180 mm diameter. Shoulder of jar, burnished ext internal charring. Pair of Diagonal incised lines 'standard' style decoration.	$\begin{aligned} & \mathrm{MIA} 3^{\text {rd }}-1^{\text {st }} \\ & \mathrm{AD} \end{aligned}$	Y Rim
(101)	1	2	3	Lostwithiel	Body	$15^{\text {th }}-16^{\text {th }}$	
(103)	1	28	2	Gabbro add	Body sherd with raised cordon possible type H or J (thriepland) / type 13 HQ	LIA late $2^{\text {nd }} \mathrm{BC}$ early $3^{\text {rd }}$ AD	
(125)	3	3	1	Gabbro ad	Neck sherd, fine vessel	IA	
(129) A	2	24	1	Gabbro ad	Rim sherd with handle/lug springing of jar. Band of vertical incised line imitating rouletting below rim and over the top of the handle/lug springing, 'outline style'. And one fine	IA	

					body sherd not the same vessel. 140 mm diameter.		
(129) B	5	107	1	Gabbro	Base, lower body and neck sherds of jar from same vessel, reduced	IA	
(129) I	1	5	1	Gabbro Ad	Body sherd reduced	IA	
(129) C	3	8	1	Gabbro ad	Neck sherds from Jar same vessel, reduced	IA	
(129) G	1	18	2	Local clay	Burnt clay with products of metal production adhering to one surface, possible furnace lining.	? IA	
(137)	5	13	1	Gabbro Ad	Basal sherd co-joining, reduced fine vessel	IA	
(149)	1	6	3	Lostwithiel	Basal angle	$15^{\text {th }}-16^{\text {th }}$	
(151) C	2	2	3	Kaolin	Clay pipe stem fragment, soft clay and 4 mm bore suggesting earlier pipe.	Early $17^{\text {th }}$	
(171) [170] sondage C	5	8	1	Gabbro	Body sherd of SWD jar. Incised horizontal line with diagonal lines below. Reduced, burnished	MIA	
(171) D	20	160	3	Local	Burnt clay fragments, possible daub.	?	
(176)	4	13	3	Local	Burnt clay fragments	?	
(178)	1	14	2	Local	Burnt clay	?	
(190)	2	5	1	unknown	Body sherds, burnished reduced	IA	
(219)	6	26	1	Gabbro Ad	Shoulder sherds co-joining, burnished SWD. Incised elliptical shapes infilled with rouletted decoration. Accomplished style.	MIA 300BC -	Y
(221)	2	86	1	Gabbro AD	Base-upper body profile of small globular jar. SWD accomplished style decoration, mock rouletted horizontal bands with elliptical shapes infilled with crosshatched. External sooting	MIA From 300 BC	Y
(256)	1	6	3	Gabbro	Body sherd oxidised exterior	BA	

Appendix 7: Charcoal Analysis

By Dana Challinor

1.0 INTRODUCTION AND METHODOLOGY

Fourteen samples were taken during the excavation for the recovery of charcoal and charred plant remains. The samples came from pits, ditches and postholes associated with the mid-late Iron Age roundhouses, with the possible exception of a curvilinear ditch [173] which may represent a similar structure or may be later (medieval) in date. In practice, a number of the samples produced only sparse quantities of wood charcoal, or traces of unidentifiable flecks. Ten assemblages were examined microscopically, of which seven were fully analysed.

Standard identification procedures were followed, using wood identification keys (Hather 2000; Schweingruber 1990) and modern reference material. The charcoal was fractured and examined at low magnification (up to X45), with representative fragments examined in longitudinal sections at high magnification (up to X400). Observations on maturity were made where possible. Classification and nomenclature follow Stace 1997.

2.0 ReSULTS

The quantity of preserved charcoal was generally low, in part due to small soil volumes (≤ 20 litres), with only three samples producing abundant assemblages. The condition of the charcoal was fair; often soft or friable with some strong infusion of sediment. Vivianite staining was observed in two of the ring ditch samples, (contexts 129R \& 171A), suggesting that water may have seasonally accumulated in the ring ditch. Nine discrete taxa, all consistent with native species, were distinguished:
Quercus sp., oak
Betula sp., birch
Alnus glutinosa, alder
Corylus avellana, hazel
cf. Populus/Salix, poplar or willow
Maloideae, incl. Malus, apple; Sorbus, service tree/whitebeam/rowan, Crataegus, hawthorn.
Cytisus/Ulex, broom/gorse
Ilex aquifolium, holly
cf. Hedera helix, ivy

No additional taxa were recorded in the samples which were scanned only: two postholes, [136] and [138] from roundhouse 1 contained traces of Quercus and Maloideae. Much of the analysed material derived from roundwood of small diameter, with occasional preserved pith and bark. The Cytisus/Ulex charcoal from pit 116 was all from small stems of 3-7 years' growth and the Quercus roundwood in pit 111 was also immature and <8 years. In contrast, the Maloideae from the same pit was of a larger diameter and >15 years' growth. Insect tunnels (of an asymmetric shape) were also recorded in some Maloideae fragments from pit 111 and in Alnus from ring ditch 128 (sample 129B). The rich assemblage of Quercus charcoal from curvilinear ditch 173 differed from the others in two regards. Firstly, the preservation of large fragments (up to 58 mm in length) and, secondly, only faint ring curvature was noted, indicating that the charcoal derived from trunk or large branchwood. Much of this appeared to be fast grown sapwood, with average ring widths of $>2 \mathrm{~mm}$ and no piece exhibiting more than 25 rings. Rare tyloses were observed in 3 fragments, suggesting some pieces came from the heartwood-sapwood transition. A possible angular cut surface was observed on one fragment.

TAbLE 1: Results of the charcoal analysis (showing fragment count).

	Feature type	pit	pit	ring ditch RH1			curvilinear ditch	ring ditch RH2
	Feature no.	116	111	128	128	128	173	170
	Context no.	118	113	129R	129B	129E	174	171A
	Sample no.	1	2	3	4	5	9	10
Quercus sp.	oak		18r	9 r	$2 r$	3 (r)	30sh	
Betula sp.	birch							4 (r)
Alnus glutinosa Gaertn.	alder			1	3 r			$2 r$
Corylus avellana L.	hazel			$2 r$		$2 r$		
Alnus/Corylus	alder/hazel			2	4 (r)	4		4 (r)
Populus/Salix	poplar/willow				(1)			
Maloideae	hawthorn group		28 (r)	16r				
Cytisus/Ulex	broom/gorse	30r			3 r	4 r		1 r
Ilex aquifolium L.	holly				1			
Hedera helix L.	ivy		(2)					
Indeterminate			2b		6	4		3

r=roundwood; h-heartwood; s=sapwood' b=bark

3.0 DISCUSSION

The general paucity of material in the postholes and ring ditch samples indicates that structural burning of the roundhouses is unlikely and the charcoal accumulated gradually during the lifetime and abandonment phases of the buildings. The charcoal assemblages from the two pits [111], [116] and curvilinear ditch [173], however, were significantly richer and probably represent deliberate dumps of waste material. Despite containing more material, these assemblages were taxonomically less diverse than those from the ditches, reflecting specific selection, as well as representing single-burning events. The charcoal from curvilinear ditch 173 was of a different character (see above) to the roundhouse samples and may indicate that it is not contemporary with Iron Age settlement. However, it should be noted that the use of fast-grown oak as fuel would not be inappropriate for the Iron Age period, and the charcoal may merely represent a different type of burning event to the domestic activities. It could also represent burnt structural remains (albeit sapwood is prone to insect attack and heartwood was usually preferred).

The character (branches or small stems) and range of wood types used for fuel is consistent with those used for domestic cooking and heating at other sites of Iron Age date in the region. Firewood would have been gathered locally, from areas of woodland, hedgerows, heathland and riparian sources. The insect tunnels indicate that some of the wood was either deliberately seasoned or gathered as deadwood. Dry and seasoned wood provides higher heating power, and produces less smoke than green wood. If hearths were used inside the roundhouses it is likely that stores of seasoned firewood would have been kept at the site to ensure an adequate supply of suitable fuel. The use of heathland resources is indicated by the broom/gorse charcoal, which was present in 72% of the samples. Gorse provides a high calorific heat and was traditionally used as fuel for domestic purposes, notably in bread ovens in medieval and later periods (Gale \& Cutler 2000). It is frequently found in fuel residues from the Iron Age onwards in Cornwall (e.g. Tregurra Valley, Truro, Challinor \& Druce in press; Camelford, Challinor forthcoming).

4.0 References

Challinor, D. forthcoming, The Wood Charcoal in S. Taylor, Sir James Smith's Community School, Camelford, Cornwall, Cornish Archaeology.

Challinor, D. \& Druce, D. in press (expected 2018). The Wood Charcoal, in S. Taylor (ed.) Down the Bright Stream: the Prehistory of Woodcock Corner and the Tregurra Valley. Leiden, Sidestone Press.

Hather, J G, 2000. The Identification of Northern European Woods; A Guide for Archaeologists and Conservators, London, Archetype Publications.

Schweingruber, F H, 1990. Microscopic wood anatomy, $3^{\text {rd }}$ Edition, Swiss Federal Institute for Forest, Snow and Landscape Research.

Stace, C, 1997. New Flora Of The British Isles, Second Edition, Cambridge, Cambridge University Press.

Straker, V., Brown, A., Fyfe, R., Jones J. \& Wilkinson, K. 2007. Later Bronze Age and Iron Age Environmental background, in C.J. Webster (ed.), The Archaeology of South West England, South West Archaeological Research Framework, Resource Assessment and Research Agenda Somerset County Council, Taunton, 103116.

Appendix 8: Radiocarbon Dating Certificates
Scottish Universities Environmental Research Centre (SUERC)

Scottish Universities Environmental Research Centre
Rankine Avenue, Scottish Enterprise Technology Park, East Klibride, Glasgow G75 DQF, Scotland, UK
Director: Protessoc FM Stuart Tel' +44 (0) 1355223332 Fax +44 (0) 1355229896 www.glasgow.ac.ukisuerc

RADIOCARBON DATING CERTIFICATE

15 August 2018
N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any queries relating to this certificate, the laboratory can be contacted at suerc-cl4lab@glasgow.ac.uk.

Conventional age and calibration age ranges calculated by : \& Dunker

Checked and signed off by :

> P. Napoult

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*
The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

* Bronk Ramsey (2009) Radiocarbon 51(1) pp. 337-60

T Reimer et al. (2013) Ratioccrabon 55(4) pp. 1869-87

Scottish Universities Environmental Research Centre
Rariline Avenue，Scottish Enterprise Technology Park，East Kilbride，Glasgow G75 DQF，Scotland，UK Director．Professor FM Stuart Tel $+44(0) 1355223332$ Fax +44 （ 0 ） 1355229896 www．glasgow．ac．ul／suerc

RADIOCARBON DATING CERTIFICATE
 15 August 2018

Laboratory Code

Submitter

Site Reference
Context Reference
Sample Reference
Material

SUERC－81204（GU48518）

Brynmor Morris South West Archaeology Ltd The Old Dairy Hacche Lane Business Park Pathfields Business Park South Molton，Devon，EX 36 3LH

WHX117 1007
2
Plant macrofossil ：Quercus S－W
-26.5%

Radiocarbon Age BP

N．B．The above＂${ }^{\text {C }} \mathrm{C}$ age is quoted in conventional years BP （before 1950 AD ）and requires calibration to the calendar timescale．The error，expressed at the one sigma level of confidence，includes components from the counting statistics on the sample，modern reference standard and blank and the random machine error．

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature．The laboratory GU coding should also be given in parentheses after the SUERC code．

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al．（2016）Radiocarbon 58（1）pp．9－23．

For any queries relating to this certificate，the laboratory can be contacted at suerc－cl4lab＠elassow．ac．uk．

Conventional age and calibration age ranges calculated by ：€ Dun bor

Checked and signed off by ： \qquad

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.

The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this funther.

* Brork Ramsey (2009) Radiocarbon 51(1) pp.337-60
\uparrow Reimer et al. (2013) Radiocarbon 55(4) pp.1869-87

Scottish Universities Environmental Research Centre
Raniline Avenue, Scottish Enterprise Technology Park, East Klibride, Glasgow G75 DOF, Scotland, UK Director: Professor FM Stuart Tet +44 (0)1355 223332 Fax 444 (0) 1355229696 www.glasgow.ac.ull/suerc

RADIOCARBON DATING CERTIFICATE
 15 August 2018

Laboratory Code

Submitter

SUERC-81205 (GU48519)

Brynmor Morris South West Archaeology Ltd The Old Dairy
Hacche Lane Business Park
Pathfields Business Park
South Molton, Devon, EX 36 3LH
Site Reference
Context Reference
WHX117
1025
Sample Reference
3
Material
Plant macrofossil : Quercus R-W
$\delta^{33} \mathrm{C}$ relative to VPDB
-25.5%

Radiocarbon Age BP
2930 ± 24
N.B. The above ${ }^{\text {2 }} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58(1) pp.9-23.
For any quenes relating to this certificate, the laboratory can be contacted at suerc-cl4labaglaszow.ac.uk.

Conventional age and calibration age ranges calculated by : E Durbar

Checked and signed off by :

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*
The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

* Brork Ramsey (2009) Radiocarbon S1(1) pp.337-60
\uparrow Reimer et al. (2013) Radiocarion 5S(4) pp. 1869-37

Scottish Universities Environmental Research Centre
Fankine Avenuie, Scottish Enterprise Technology Part, East Kiloride, Glasgow G75 OQF, Scotiand, UK Director. Protessor F M Stuart Tel +44 (0) 1355223332 Fax: +44 (0) 1355229896 www.glasgow.ac.ut/suerc

RADIOCARBON DATING CERTIFICATE

15 August 2018

Laboratory Code
Submitter

SUERC-81206 (GU48520)

Submitter	Brynmor Morris South West Archaeology Ltd The Old Dairy Hacche Lane Business Park Pathfields Business Park South Molton, Devon, EX36 3LH
Site Reference	WHX117
Sample Reference	4
Material	Plant macrofossil : Corylus R-W
$\boldsymbol{\delta}^{25}$ C relative to VPDB	-24.4%

Radiocarbon Age BP $\quad 2962 \pm 24$
N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The enror, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modem reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dumbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any quenies relating to this certificate, the laboratory can be contacted at suerc-cl4labßaglasgow.ac.uk.

Conventional age and calibration age ranges calculated by :

Dunbar

Checked and signed off by: Nampont

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*

The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

Scottish Universities Environmental Research Centre
Rankine Avenue, Scottish Enterprise Technology Park, East Kalbride, Glasgow G75 DQF, Scotland, UK Director. Professor FM Stuart Tet +44 (0) 1355223332 Fax +44 (0) 1355229696 www.glasgow.ac.uk/suerc

RADIOCARBON DATING CERTIFICATE
15 August 2018

Laboratory Code

Site Reference
Context Reference
ample Reference
$\delta^{33} \mathrm{C}$ relative to VPDB

Brynmor Morns
The Old Dairy
Hacche Lane Business Park
Pathfields Business Park South Molton, Devon, EX36 3LH

LTM17
174

Plant macrofossil : Quercus
-27.2%

Radiocarbon Age BP 3217 ± 21

N.B. The above ${ }^{12} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58 (1) pp.9-23.

For any queries relating to this certificate, the laboratory can be contacted at suerc-cl4lab@glasgow.ac.uk.

Conventional age and calibration age ranges calculated by :

Checked and signed off by :
P. Vapour

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*

The above date ranges have been calibrated using the IntCal13 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

- Brork Ransey (2009) Rediocarbon 51/(1) pp. 337-60

TReimer et al. (2013) Radiocarbon 55(4) pp. 1869-87

Scottish Universities Environmental Research Centre
Ranikine Avenue, Scottish Enterprise Technology Park, East Kiloride, Glasgow G75 DQF, Scotland, UK Director: Professor F M Stuart Tet 444 (D) 1355223332 Fax: +44 (D) 1355229696 www.glasgow.ac.uk/suerc

RADIOCARBON DATING CERTIFICATE
 15 August 2018

Laboratory Code

Submitter

SUERC-81208 (GU48522)
Brymmor Morris
South West Archaeology Ltd
The Old Dairy
Hacche Lane Business Park
Pathfields Business Park
South Molton, Devon, EX36 3LH
Site Reference
Context Reference
Sample Reference
Material
$\bar{\delta}^{13} \mathrm{C}$ relative to VPDB

LTM17
139
7
Plant macrofossil : Grain/Seeds
-22.9%

Radiocarbon Age BP

 133 ± 24N.B. The above ${ }^{\text {s }} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine enor.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dumbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any quenes relating to this certificate, the laboratory can be contacted at suerc-cl4lab@glasgow.ac.uk.

Conventional age and calibration age ranges calculated by : E Dunbas

Checked and signed off by: P. Naypunts

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*
The above date ranges have been calibrated using the IntC Call 3 atmospheric calibration curve:
Please contact the laboratory if you wish to discuss this further.

Scottish Universities Environmental Research Centre Fankine Avenue, Scotilsh Enterpise Technology Park. East Kibride, Glasgow G75 DOF, Scotland, UK 	
	RADIOCARBON DATING CERTIFICATE 15 August 2018
Laboratory Code	SUERC-81212 (GU48523)
Submitter	Brymmor Morris South West Archaeology Ltd The Old Dairy Hacche Lane Business Park Pathfields Business Park South Molton, Devon, EX36 3LH
Site Reference	LTM17
Contest Reference	118
Sample Reference	1
Material	Plant macrofossil : Ulex/Cytisus
$\delta^{13} \mathrm{C}$ relative to VPDB	-24.8\%
Radiocarbon Age BP	2105 ± 24

RADIOCARBON DATING CERTIFICATE

15 August 2018

Radiocarbon Age BP
2105 ± 24
N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The enror, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modem reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dumbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any quenes relating to this certificate, the laboratory can be contacted at suerc-cl4lab@glasgow.ac.uk.

Conventional age and calibration age ranges calculated by :

Checked and signed off by : No Naypont

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*

The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

* Brork Ramsey (2009) Radiocarbon 51(1) pp. 337-60

T Reimer et al. (2013) Radiocarbon 55(4) pp.1569-37

15 August 2018

Laboratory Code

Radiocarbon Age BP
N.B. The above ${ }^{15} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any queries relating to this certificate, the laboratory can be contacted at suerc-clulabaglasgow.ac.uk.

Conventional age and calibration age ranges calculated by :
© Durbar

Checked and signed off by :
P. Nayount
 ragotered in Scetiond, with registration number SCOOS336

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*

The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

- Brork Ramsey (2009) Radiocarbon S1(1) pp. 337-60

T Reimer et al. (2013) Ratiocarbon 55(4) pp. 1569-87

RADIOCARBON DATING CERTIFICATE

15 August 2018

Radiocarbon Age BP
 2030 ± 21

N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine enor.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58(1) pp .9-23.

For any queries relating to this certificate, the laboratory can be contacted at suerc-cl4labaglaszow.ac.uk.

Conventional age and calibration age ranges calculated by :

Checked and signed off by
P. Naponts

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*
The above date ranges have been calibrated using the IntCall 3 atmospheric calibration curve?
Please contact the laboratory if you wish to discuss this fuuther.

Scottish Universities Environmental Research Centre
Rankine Avenue, Scottish Enterprise Technology Park, East Klloride, Glasgow G75 00F, Scotland, UK Director. Professor FM Stuart Tet +44 (0) 1355223332 Fax +44 (0) 1355229898 www.glasgow.ac.uvivuerc

RADIOCARBON DATING CERTIFICATE

27 August 2018

Laboratory Code	SUERC-81321 (GU48524R)
Submitter	Brymor Morris South West Archaeology Ltd The Old Dairy
	Hacche Lane Business Park Pathfields Business Park South Molten, Devon, EX36 3LH Site Reference
Context Reference Sample Reference	113
Material	2
$\bar{\delta}^{3}$ C relative to VPDB	-23.6%

Radiocarbon Age BP $\quad 3075 \pm 24$

N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The error, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine error.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dunbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any queries relating to this certificate, the laboratory can be contacted at suerc-cl4labaglasgow.ac.uk.

Conventional age and calibration age ranges calculated by :

Checked and signed off by : \qquad

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*
The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

Scottish Universities Environmental Research Centre
Raniline Avenue, Scottsh Enterpitse Technology Park, East Kilonide, Glasgow G75 DQF, Scotiand, UK
Director: Professor F M Stuart Tel +44 (0) 1355223332 Fax: +44 (0) 1355229896 www.glasgow.ac.utvisuerc

RADIOCARBON DATING CERTIFICATE
 27 August 2018

Laboratory Code	SUERC-81322 (GU48526R)
Submitter	Brymmor Morris South West Archaeology Ltd The Old Dairy
	Hacche Lane Business Park Pathfields Business Park South Molton, Devon, EX36 3LH
	LTM17
Site Reference	171
Context Reference	10
Sample Reference	Plant macrofossil : Grain/Seeds
Material	-22.5%
$\boldsymbol{\delta}^{\text {so }}$ C relative to VPDB	

Radiocarbon Age BP
2062 ± 22
N.B. The above ${ }^{14} \mathrm{C}$ age is quoted in conventional years BP (before 1950 AD) and requires calibration to the calendar timescale. The enor, expressed at the one sigma level of confidence, includes components from the counting statistics on the sample, modern reference standard and blank and the random machine enror.

Samples with a SUERC coding are measured at the Scottish Universities Environmental Research Centre AMS Facility and should be quoted as such in any reports within the scientific literature. The laboratory GU coding should also be given in parentheses after the SUERC code.

Detailed descriptions of the methods employed by the SUERC Radiocarbon Laboratory can be found in Dumbar et al. (2016) Radiocarbon 58(1) pp.9-23.

For any quenies relating to this certificate, the laboratory can be contacted at suerc-cl4labaglasgow.ac.uk.

Conventional age and calibration age ranges calculated by : © Dunbor

Checked and signed off by :
PINaypunto

The radiocarbon age given overleaf is calibrated to the calendar timescale using the Oxford Radiocarbon Accelerator Unit calibration program OxCal 4.*

The above date ranges have been calibrated using the IntCall3 atmospheric calibration curve!
Please contact the laboratory if you wish to discuss this further.

- Bronk Ramsey (2009) Radiocarbon 51 (1) pp. 337-60
\dagger Reimer et al (2013) Radiocarbon 55(4) pp.1869-87

Appendix 9: Supporting Photographs

Site shots

SITE SHOT FROM THE SOUTH-EAST CORNER; VIEWED FROM THE EAST-SOUTH-EAST (NO SCALE).

SITE SHOT FROM THE SOUTH-EAST CORNER; VIEWED FROM THE SOUTH-EAST (NO SCALE).

ROUNDHOUSE 1, PRE-EXCAVATION; VIEWED FROM THE SOUTH (1M \& 2M SCALE).

Roundhouse 1, PRE-EXCAVATION; VIEWED FROM THE WEST (1M \& 2M SCALE).

RING-DITCH [128]A, TERMINUS; VIEWED FROM THE NORTH-EAST (1M SCALE).

RING-DITCH [128]B; VIEWED FROM THE SOUTH-WEST (1M SCALE).

RING-DITCH [128]C; VIEWED FROM THE SOUTH-WEST (1M SCALE).

RING-DITCH [128]D; VIEWED FROM THE WEST (1M SCALE).

RING-DITCH [128]E; VIEWED FROM THE EAST (1M SCALE).

RING-DITCH [128]F; VIEWED FROM THE WEST (1M SCALE).

RING-DITCH [128]G; VIEWED FROM THE SOUTH-EAST (1M SCALE).

RING-DITCH [128]H; VIEWED FROM THE SOUTH (1M SCALE).

RING-DITCH [128]I; VIEWED FROM THE NORTH (1M SCALE).

Ring-ditch [128]J And Gully [132]B; VIEWED FROM THE WEST (1M SCALE).

RING-DITCH [128]K; VIEWED FROM THE SOUTH-WEST (1M SCALE).

RING-DITCH [128]L; VIEWED FROM THE SOUTH-WEST (1M SCALE).

Ring-ditch [128]M and Ditch [150]; VIEWED FROM the north (1M SCALE).

Ring-ditch [128]M AND Ditch [150]; VIEWED FROM THE WEST (1M SCALE).

RING-DITCH [128]N; VIEWED FROM THE NORTH-WEST (1M SCALE).

RING-DITCH [128]O AND DITCH [134]C; VIEWED FROM THE NORTH-WEST (1M SCALE).

RING-DITCH [128]P AND DITCH [134]B; VIEWED FROM THE EAST (1M SCALE).

RING-DITCH [128]P AND DITCH [134]B; VIEWED FROM THE NORTH-NORTH-WEST (1M SCALE).

RING-DITCH [128]Q AND DITCH [134]A; VIEWED FROM THE SOUTH-EAST (1M SCALE).

RING-DITCH [128]R; VIEWED FROM THE SOUTH (1M SCALE).

Pit [138] AND Postholes [140] and [142], in Roundhouse 1; VIEWED FROM THE SOUTH (0.40M SCALE).

Postholes [144] AND [146], IN Roundhouse 1; VIEWED FROM THE SOUTH (0.40M SCALE).

Ditches [148] AND [150] AND TREETHROW, in Roundhouse 1; VIEWED FROM THE SOUTH-EAST (1M SCALE).

DITCHES [148] AND [150]B; VIEWED FROM THE SOUTH-EAST (1M SCALE).

Posthole [136] IN Roundhouse 1; VIEWED FROM THE SOUTH-WEST (0.40M SCALE).

Posthole [153] in Roundhouse 1; Viewed from the west (0.40m scale).

Posthole [156] in Roundhouse 1; VIEWED FROM THE SOUTH (0.40M SCALE).

PIt [158] In ROUNDHOUSE 1; VIEWED FROM THE SOUTH (0.40M SCALE).

Posthole [160] in Roundhouse 1; VIEWED FROM THE SOUTH (0.40M SCALE).

ROUNDHOUSE 1, POST-EXCAVATION; VIEWED FROM THE WEST (2M \& 2M SCALE).

Western features within Roundhouse 1; VIEWED from the south-east (2 M \& 2M SCALE).

ROUNDHOUSE 1, INTERNAL FEATURES, POST-EXCAVATION; VIEWED FROM THE WEST (1M \& 2M SCALE).

ROUNDHOUSE 1, POST-EXCAVATION; VIEWED FROM THE SOUTH-WEST (NO SCALE).

SITE SHOT, ROUNDHOUSE 1, POST-EXCAVATION; VIEWED FROM THE EAST (NO SCALE).

Roundhouse 1, AERIAL VIEW, ORIENTATED NORTH TO THE TOP (NO SCALE).

Roundhouse 2

[^0]

ROUNDHOUSE 2, PRE-EXCAVATION; VIEWED FROM THE SOUTH-WEST (2M \& 2M SCALE).

Ring-Ditch [170]A; VIEWED FROM THE SOUTH (0.40M \& 1M SCALE).

RING-DITCH [170]A; VIEWED FROM THE NORTH (0.40M \& 1M SCALE).

RING-DITCH [170]B; VIEWED FROM THE NORTH (0.40M \& 1M SCALE).

RING-DITCH [170]C; VIEWED FROM THE SOUTH-EAST (1M SCALE).

RING-DITCH [170]D; VIEWED FROM THE WEST (0.40M \& 1M SCALE).

RING-DITCH [170]D; VIEWED FROM THE EAST (0.40M \& 1M SCALE).

RING-DITCH [170]E; VIEWED FROM THE WEST (1M SCALE).

RING-DITCH [170]E; VIEWED FROM THE EAST (1M SCALE).

RING-DITCH [170]F; VIEWED FROM THE SOUTH-EAST (1M SCALE).

RING-DITCH [170]G; VIEWED FROM THE NORTH-EAST (1M SCALE).

RING-DITCH [170]H; VIEWED FROM THE SOUTH-WEST (1M SCALE).

RING-DITCH [170]I; VIEWED FROM THE SOUTH-WEST (1M SCALE).

RING-DITCH [170]I; VIEWED FROM THE NORTH-EAST (1M SCALE).

DITCH [170]J AND DITCH [181]A; VIEWED FROM THE NORTH (1M SCALE).

Ring-Ditch [170]K and Ditch [181]B; VIEWED FROM THE SOUTH (1M SCALE).

RING-DITCH [170]L; VIEWED FROM THE NORTH (2M SCALE).

WORKING SHOT, ROUNDHOUSE 2; VIEWED FROM THE SOUTH-WEST (NO SCALE).

Roundhouse 2, Posthole [230]; VIEWED FROM THE SOUTH (0.40M SCALE).

ROUNDHOUSE 2, MID-EXCAVATION; VIEWED FROM THE SOUTH-WEST (2M \& 2M SCALE).

ROUNDHOUSE 2 INTERNAL FEATURES, MID-EXCAVATION; VIEWED FROM THE SOUTH-WEST (2M \& 2M SCALE).

Roundhouse 2, DITCH [189]C, POSTHOLES [164], [166], [194], [240], [242]; VIEWED FROM THE WEST-SOUTH-WEST (1M SCALE).

Roundhouse 2, Ditch [189]B, Spread [244], Postholes/stakeholes [208]-[216]; VIEWED FROM THE WEST-SOUTH-WEST (2M SCALE).

Roundhouse 2, Postholes/Stakeholes [194]-[204]; VIEWED FROM THE WEST-SOUTH-WEST (1M SCALE).

Roundhouse 2, Posthole [206]; VIEWED FROM THE WEST-SOUTH-WEST (0.40M SCALE).

Roundhouse 2, Posthole [218]; VIEWED FROM THE WEST-SOUTH-WEST (0.40M SCALE).

Roundhouse 2, POSTHOLES [220] AND [222]; VIEWED FROM THE WEST-SOUTH-WEST (1M SCALE).

Roundhouse 2, Posthole [224]; VIEWED FROM THE WEST-SOUTH-WEST (0.40M SCALE).

Roundhouse 2, Postholes/STAKEHOLES [224]-[236]; VIEWED FROM THE WEST-SOUTH-WEST (1M SCALE).

Roundhouse 2, Pit [238]; VIEWED FROM THE NORTH (0.40M SCALE).

Roundhouse 2, Pit [232] AND DITCH [189]A; VIEWED FROM THE WEST-SOUTH-WEST (0.40M SCALE).

Roundhouse 2, DITCH [189]B; VIEWED FROM THE EAST-NORTH-EAST (1M SCALE).

Roundhouse 2, Postholes [249] AND [251]; VIEWED FROM THE EAST-NORTH-EAST (0.40M SCALE).

Roundhouse 2, large Posthole [253]; VIEWED from the north-east (0.40M SCALE).

Roundhouse 2, Posthole [255]; VIEWED fROM THE NORTH-EAST (0.40M SCALE).

Roundhouse 2, Pit [257]; VIEWED FROM THE NORTH-EAST (1M SCALE)

Roundhouse 2, INTERNAL FEATURES VIEWED FROM THE ENTRANCE; VIEWED FROM THE EAST-NORTH-EAST (1M SCALE).

ROUNDHOUSE 2, WORKING SHOT/POST-EXCAVATION; VIEWED FROM THE EAST-NORTH-EAST (1M SCALE).

ROUNDHOUSE 2, POST-EXCAVATION; VIEWED FROM THE SOUTH-EAST (NO SCALE).

ROUNDHOUSE 2, INTERNAL FEATURES, POST-EXCAVATION; VIEWED FROM THE EAST-NORTH-EAST (NO SCALE).

ROUNDHOUSE 2, AERIAL VIEW, ORIENTATED NORTH TO THE TOP (1M \& 2M SCALE).

Pits, Postholes and Spreads outside of the Roundhouses

PIT [104]; VIEWED FROM THE SOUTH (1M SCALE).

PIT [104]; VIEWED FROM THE SOUTH (1M SCALE).

PIt [106]; VIEWED FROM THE SOUTH-EAST (1M SCALE).

PIT [108]; VIEWED FROM THE SOUTH-EAST 91M SCALE).

Burnt Pit [111], PRE-EXCAVATION; VIEWED FROM THE SOUTH-EAST (1M SCALE).

BURNT PIt [111]; VIEWED FROM THE SOUTH-EAST (1M SCALE).

Burnt Pit [111] AND Pits [106] AND [108]; VIEWED FROM THE SOUTH-EAST (0.40m, 1M \& 2M SCALE).

PIT [114]; VIEWED FROM THE SOUTH-WEST (0.40M SCALE).

PIT [116]; VIEWED FROM THE SOUTH-SOUTH-EAST (0.40M SCALE).

PIt [119]; VIEWED FROM THE WEST (0.40M SCALE).

PITS [116] AND [119]; VIEWED FROM THE SOUTH ($0.40 \mathrm{M} \& 1 \mathrm{M}$ SCALE).

PITS [116] AND [119]; VIEWED FROM THE SOUTH-WEST (0.40M \& 1M SCALE).

Stakehole [123] and Spread (125); Viewed from the south (0.40 M SCale).

PIT [126]; VIEWED FROM THE NORTH-WEST (1M SCALE).

POSTHOLE [183]; VIEWED FROM THE NORTH-EAST (0.40 M SCALE).

PITS [175] AND [177]; VIEWED FROM THE SOUTH-EAST (1M SCALE).

PIT [177]; VIEWED FROM SOUTH-EAST (1M SCALE).

POSTHOLE [179]; VIEWED FROM THE NORTH-WEST (0.40M SCALE).

DITCHES

DITCH/GULLY [132] A; VIEWED FROM THE SOUTH-WEST (0.40M SCALE).

DITCH [134]A VIEWED FROM THE NORTH-WEST (1M SCALE).

DITCH [150]D; VIEWED FROM THE NORTH-WEST (0.40m SCALE).

DItch [150]D and Roundhouse 1; VIEWED FROM THE NORTH-WEST (1M \& 2M SCALE).

DITCH [150]E; VIEWED FROM THE NORTH-WEST (1M SCALE).

DITCH [150]F; VIEWED FROM THE NORTH-WEST (1M SCALE).

DITCH [185]A; VIEWED FROM THE EAST (1M SCALE).

DITCH [185]B; VIEWED FROM THE EAST-NORTH-EAST (1M SCALE).

DITCH [187]; VIEWED FROM THE EAST-NORTH-EAST (0.40M SCALE).

Roundhouse 2, Ditch [189]A; VIEWED FROM THE WEST (1M SCALE).

CURVI-LINEAR DITCHES AND GULLIES

RING-DITCH/GULLY [130]; VIEWED FROM THE WEST (0.40M \& 2M SCALE).

CURVI-LINEAR DITCH [173]A AND C; VIEWED FROM THE WEST (1M SCALE).

CURVI-LINEAR DITCH [173]B AND SPREAD \{191); VIEWED FROM THE SOUTH (2M SCALE).

TREETHROW [168]; VIEWED FROM THE NORTH-NORTH-EAST (2M SCALE).

SAMPLE SECTION ON THE EAST EDGE OF EXCAVATION; VIEWED FROM THE WEST (1M SCALE).

SAMPLE SECTION ON THE WEST EDGE OF EXCAVATION; VIEWED FROM THE EAST (1M SCALE).

HEDGEBANK ALONG THE NORTHERN BOUNDARY OF THE SITE, EXCAVATED FOR SITE ACCESS; VIEWED FROM THE WEST (2M SCALE).

South Western Decorated Ware, globular form, from fill (221), Posthole [220] (1×1 cm grid squares).

Site shot, Aerial view, image orientated east to the top; Dig 1 equates to Roundhouse 1, Dig 2 equates to Roundhouse 2 (NO SCALE).

Roundhouses 1 and 2; Google Earth V6.2 (25.5.2017) LADOCK, UK, $50^{\circ} 19^{\prime} 13^{\prime \prime} \mathrm{N} 4^{\circ} 57^{\prime} 20^{\prime \prime} \mathrm{W}$ WWW.EARTH.GOOGLE.COM [8.11.2017].

The site at Trethurffe, Ladock showing Roundhouses 1 and 2; Google Earth V6.2 (25.5.2017) Ladock, UK, $50^{\circ} 19^{\prime} 13^{\prime \prime} \mathrm{N} 4^{\circ} 57^{\prime} 20^{\prime \prime} \mathrm{W}$ WWW.EARTH.GOOGLE.COM [8.11.2017].

[^0]: ROUNDHOUSE 2, PRE-EXCAVATION; VIEWED FROM THE SOUTH-EAST (2M \& 2M SCALE).

