GEOPHYSICAL SURVEY REPORT

stranascax

Project name:
Barby Lane, Hillmorton

Client:
Taylor Wimpey PLC

Job ref:
J10621

January 2017

GEOPHYSICAL SURVEY REPORT

Project name: Barby Lane, Hillmorton Client: Taylor Wimpey PLC	Job ref: J10621
Survey date: 19 December 2016	Report date: January 2017
Field team: Sam Wood Stewart Hawthorn ba (Hons) Matthew Wetton msci	Project Manager: Simon Haddrell beng(Hons) ambcs PCIfA
Report written by: Rebecca Davies bsc (Hons)	Report approved by: David Elks msc Aclfa
CAD illustrations by: Rebecca Davies bsc (Hons)	Site Director: Dr John Gater mcifa fsA
Version number and issue date:	Amendments:
V1 11/01/2017	

TABLE OF CONTENTS

1 SUMMARY OF RESULTS. 1
2 INTRODUCTION 1
3 METHODS, PROCESSING \& PRESENTATION 2
4 RESULTS 3
5 DATA APPRAISAL \& CONFIDENCE ASSESSMENT 3
6 CONCLUSION 4
7 REFERENCES 5
Appendix A - Technical Information: Magnetometer Survey Method 6
Appendix B - Technical Information: Magnetic Theory 9

LIST OF FIGURES

Figure 01	$1: 25000$	Location plan of survey area
Figure 02	$1: 1000$	Location of survey grids and referencing
Figure 03	$1: 1000$	Colour plot of gradiometer data showing extreme values
Figure 04	$1: 1000$	Plot of minimally processed gradiometer data
Figure 05	$1: 1000$	Interpretation of gradiometer anomalies

1 SUMMARY OF RESULTS

A detailed gradiometry survey was conducted over approximately 4.2 hectares of pasture. No archaeological anomalies have been detected. Evidence of ridge and furrow cultivation suggests that the site has an agricultural past. Linear anomalies of possible agricultural, natural or modern origin have been detected, though their exact origin cannot be determined with confidence. The remaining features are natural or modern and include a former pond, services and magnetic disturbance from ferrous objects.

2 INTRODUCTION

2.1 Background synopsis

Stratascan were commissioned to undertake a geophysical survey of an area outlined for residential development. This survey forms part of an archaeological investigation being undertaken by Taylor Wimpey PLC.

2.2 Site Details

NGR / Postcode	SP 528733 / CV22 5QL
Location	The site is located to the east of Barby Lane, Hillmorton, Warwickshire.
HER/SMR	Warwickshire
District	Rugby
District Ward	Hillmorton
Topography	Sloping down gently from north to south
Current Land Use	Pasture
Weather Conditions	Overcast
Soils	The overlying soils are known as Denchworth which are typical pelostagnogley soils. These consist of clayey soils with similar fine loamy over clayey soils (Soil Survey of England and Wales, Sheet 3 Midland and Western England).
Geology	The underlying geology comprises mudstone of Charmouth Mudstone. The drift geology comprises sand and gravel of Dunsmore Gravel (British Geological Survey website).
Archaeology	No details were available to Stratascan.
Survey Methods	Detailed magnetic survey (gradiometry)
Study Area	c. 4.2 hectares

| Client: Taylor Wimpey PLC | Date: January 2017 |
| :--- | :--- | :--- |

2.3 Aims and objectives

To locate and characterise any anomalies of possible archaeological interest within the study area.

3 METHODS, PROCESSING \& PRESENTATION

3.1 Standards \& Guidance

This report and all fieldwork have been conducted in accordance with the latest guidance documents issued by Historic England (2008) and the Chartered Institute for Archaeologists (2002 \& 2014).

Stratascan Ltd are a Registered Organisation with the CIfA and are committed to upholding its policies and standards.

3.2 Survey methods

Detailed magnetic survey was used as an efficient and effective method of locating archaeological anomalies.

More information regarding this technique is included in Appendix A.

3.3 Processing

The following schedule shows the basic processing carried out on the data used in this report:

1. De-stripe
2. De-stagger

3.4 Presentation of results and interpretation

The presentation of the data for each site involves a plot of the minimally processed data as a greyscale plot and a colour plot showing extreme magnetic values. Magnetic anomalies have been identified and plotted onto the 'Interpretation of Anomalies' drawing.

When interpreting the results several factors are taken into consideration, including the nature of archaeological features being investigated and the local conditions at the site (geology, pedology, topography etc.). Anomalies are categorised by their potential origin. Where responses can be related to very specific known features documented in other sources, this is done (for example: Abbey Wall, Roman Road). For the generic categories levels of confidence are indicated, for example: probable, or possible archaeology. The former is used for a confident interpretation, based on anomaly definition and/or other corroborative data such as cropmarks. Poor anomaly definition, a lack of clear patterns to the responses and an absence of other supporting data reduces confidence, hence the classification "possible".

4 RESULTS

The detailed magnetic gradiometer survey conducted at Hillmorton has not identified any anomalies that have been characterised as being of a probable or possible archaeological origin. The following list of numbered anomalies refers to numerical labels on the interpretation plots.

4.1 Probable/Possible Archaeology

No probable or possible archaeology has been identified within the survey area.

4.2 Medieval/Post-Medieval Agriculture

Widely spaced, slightly curved, parallel linear anomalies [1] across the site are related to ridge and furrow cultivation.

4.3 Other Anomalies

An area of strong magnetic debris [2] in the south-east of the site is related to a former pond, visible on available mapping OS from 1884 to 1963. From 1967 to 1982 the pond is only visible as earthworks.

Weak positive and negative linear anomalies [3] in the centre of the area are of uncertain origin. It may be possible that these are agricultural, natural or modern in origin.

Strong bipolar linear anomalies [4] across the site are related to underground services, such as pipes or cables.

A small number of areas of magnetic variation in the central field are likely to be of natural origin, i.e. geological or pedological.

Areas of magnetic disturbance around the site are a result of substantial nearby ferrous metal objects such as fences and services. The effect of this disturbance has the potential to mask weaker archaeological anomalies, but the disturbance has not affected a significant proportion of the area on this site. Smaller ferrous responses, or 'magnetic spikes' are likely to be modern rubbish.

5 DATA APPRAISAL \& CONFIDENCE ASSESSMENT

Mudstone geologies can provide variable results for magnetic survey, though surveys across Charmouth Mudstone generally provide good results. In this instance, there is a relatively high contrast between anomalies such as ridge and furrow, and the background magnetic response. It is therefore likely that the survey has been effective, and that the data collected provide a good indication of buried features.

6 CONCLUSION

The survey at Barby Lane, Hillmorton has not identified any anomalies of archaeological origin. Evidence of ridge and furrow indicates that the site has a largely agricultural past. A number of linear anomalies of uncertain origin have been detected, these may be agricultural, natural or modern. The remaining features include areas of natural magnetic variation, underground services, a former pond and disturbance from nearby ferrous objects.

7 REFERENCES

British Geological Survey, n.d., website:
(http://www.bgs.ac.uk/opengeoscience/home.html?Accordion1=1\#maps) Geology of Britain viewer. [Accessed 11/01/2017]

Chartered Institute For Archaeologists. Standard and Guidance for Archaeological Geophysical Survey. (http://www.archaeologists.net/sites/default/files/CIfAS\&GGeophysics 1.pdf)

English Heritage, 2008. Geophysical Survey in Archaeological Field Evaluation.
IfA 2002. The Use of Geophysical Techniques in Archaeological Evaluations, IFA Paper No 6, C. Gaffney, J. Gater and S. Ovenden. Institute for Archaeology, Reading

Soil Survey of England and Wales, 1983. Soils of England and Wales, Sheet 3 Midland and Western England

Appendix A - Technical Information: Magnetometer Survey Method

Grid Positioning

For hand held gradiometers the location of the survey grids has been plotted together with the referencing information. Grids were set out using a Trimble R8 Real Time Kinematic (RTK) VRS Now GNSS GPS system.

An RTK GPS (Real-time Kinematic Global Positioning System) can locate a point on the ground to a far greater accuracy than a standard GPS unit. A standard GPS suffers from errors created by satellite orbit errors, clock errors and atmospheric interference, resulting in an accuracy of $5 \mathrm{~m}-10 \mathrm{~m}$. An RTK system uses a single base station receiver and a number of mobile units. The base station re-broadcasts the phase of the carrier it measured, and the mobile units compare their own phase measurements with those they received from the base station. This results in an accuracy of around 0.01 m .

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1 m	0.25 m

Instrumentation: Bartington Grad601-2

Bartington instruments operate in a gradiometer configuration which comprises fluxgate sensors mounted vertically, set 1.0 m apart. The fluxgate gradiometer suppresses any diurnal or regional effects. The instruments are carried, or cart mounted, with the bottom sensor approximately 0.1-0.3m from the ground surface. At each survey station, the difference in the magnetic field between the two fluxgates is measured in nanoTesla (nT). The sensitivity of the instrument can be adjusted; for most archaeological surveys the most sensitive range (0.1 nT) is used. Generally, features up to 1 m deep may be detected by this method, though strongly magnetic objects may be visible at greater depths. The Bartington instrument can collect two lines of data per traverse with gradiometer units mounted laterally with a separation of 1.0 m .

The readings are logged consecutively into the data logger which in turn is daily down- loaded into a portable computer whilst on site. At the end of each site survey, data is transferred to the office for processing and presentation.

Data Processing

Zero Mean
Traverse
Step Correction
(Destagger)

This process sets the background mean of each traverse within each grid to zero. The operation removes striping effects and edge discontinuities over the whole of the data set. When gradiometer data are collected in 'zig-zag' fashion, stepping errors can sometimes arise. These occur because of a slight difference in the speed of walking on the forward and reverse traverses. The result is a staggered effect in the data, which is particularly noticeable on linear anomalies. This process corrects these errors.

Display

Greyscale/
Colourscale Plot

This format divides a given range of readings into a set number of classes. Each class is represented by a specific shade of grey, the intensity increasing with value. All values above the given range are allocated the same shade (maximum intensity); similarly all values below the given range are represented by the minimum intensity shade. Similar plots can be produced in colour, either using a wide range of colours or by selecting two or three colours to represent positive and negative values. The assigned range (plotting levels) can be adjusted to emphasise different anomalies in the data-set.

Interpretation Categories

In certain circumstances (usually when there is corroborative evidence from desk based or excavation data) very specific interpretations can be assigned to magnetic anomalies (for example, Roman Road, Wall, etc.) and where appropriate, such interpretations will be applied. The list below outlines the generic categories commonly used in the interpretation of the results.

Archaeology/Probable This term is used when the form, nature and pattern of the response are clearly or very Archaeology probably archaeological and /or if corroborative evidence is available. These anomalies, whilst considered anthropogenic, could be of any age.

Possible Archaeology These anomalies exhibit either weak signal strength and / or poor definition, or form incomplete archaeological patterns, thereby reducing the level of confidence in the interpretation. Although the archaeological interpretation is favoured, they may be the result of variable soil depth, plough damage or even aliasing as a result of data collection orientation.

Industrial / Burnt-Fired	Strong magnetic anomalies that, due to their shape and form or the context in which they are found, suggest the presence of kilns, ovens, corn dryers, metal- hearths. It should be noted that in many instances modern ferrous material can produce similar magnetic anomalies.
Former Field Boundary Anomalies that correspond to former boundaries indicated on historic mapping, or which	
(probable \& possible)	
are clearly a continuation of existing land divisions. Possible denotes less confidence	
where the anomaly may not be shown on historic mapping but nevertheless the anomaly	
displays all the characteristics of a field boundary.	

Where appropriate some anomalies will be further classified according to their form (positive or negative) and relative strength and coherence (trend: weak and poorly defined).

| Client: Taylor Wimpey PLC | Date: January 2017 |
| :--- | :--- | :--- |

Appendix B - Technical Information: Magnetic Theory

Detailed magnetic survey can be used to effectively define areas of past human activity by mapping spatial variation and contrast in the magnetic properties of soil, subsoil and bedrock. Although the changes in the magnetic field resulting from differing features in the soil are usually weak, changes as small as 0.2 nanoTeslas (nT) in an overall field strength of $48,000 \mathrm{nT}$, can be accurately detected.

Weakly magnetic iron minerals are always present within the soil and areas of enhancement relate to increases in magnetic susceptibility and permanently magnetised thermoremanent material.

Magnetic susceptibility relates to the induced magnetism of a material when in the presence of a magnetic field. This magnetism can be considered as effectively permanent as it exists within the Earth's magnetic field. Magnetic susceptibility can become enhanced due to burning and complex biological or fermentation processes.

Thermoremanence is a permanent magnetism acquired by iron minerals that, after heating to a specific temperature known as the Curie Point, are effectively demagnetised followed by re-magnetisation by the Earth's magnetic field on cooling. Thermoremanent archaeological features can include hearths and kilns and material such as brick and tile may be magnetised through the same process.

Silting and deliberate infilling of ditches and pits with magnetically enhanced soil creates a relative contrast against the much lower levels of magnetism within the subsoil into which the feature is cut. Systematic mapping of magnetic anomalies will produce linear and discrete areas of enhancement allowing assessment and characterisation of subsurface features. Material such as subsoil and non-magnetic bedrock used to create former earthworks and walls may be mapped as areas of lower enhancement compared to surrounding soils.

Magnetic survey is carried out using a fluxgate gradiometer which is a passive instrument consisting of two sensors mounted vertically 1 m apart. The instrument is carried about 30 cm above the ground surface and the top sensor measures the Earth's magnetic field whilst the lower sensor measures the same field but is also more affected by any localised buried field. The difference between the two sensors will relate to the strength of a magnetic field created by a buried feature, if no field is present the difference will be close to zero as the magnetic field measured by both sensors will be the same.

Factors affecting the magnetic survey may include soil type, local geology, previous human activity, disturbance from modern services etc.

Your Survey Partner

For a complete and complementary range of survey services.

Survey services you can rely on

Archaeological

- As Built Records

Boundary Disputes

- CCTV
- Geophysical
- Laser Scanning
- Measured Building
- Pipeline Routes
- Railway
- Retrofit
- Setting Out
- Statutory Plan Collation
- Topographic

Utility Mapping

- UXO Detection
- Void Detection

