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I Executive summary 
 
This report of Phase II of Predictive Modelling of Multi-period Geoarchaeological Resources 
at a River Confluence” follows a Phase I report (Brown et al. 2005). Phase I has contained the 
creation of a LiDAR model, geomorphological survey, an archaeological assessment, hand 
coring, ground penetration radar transects and relative chronostratigraphic modelling. The 
second phase involved further fieldwork and analyses. The fieldwork included; electrical 
resistivity survey (ER), ground near infra red (NIR) intensity measurement, mechanical 
coring and sampling for palaeoecological assessments and dating purposes. The collection of 
subsurface data by coring was serendipitously augmented by the exposure of several 
palaeochannels in the La Farge aggregate pit (Warren Farm Quarry) located in the south east 
of the study area. The analyses included in this report include: ER modelling, analysis of the 
NIR intensity ground imaging, core analyses, palaeoecological assessments and dating. The 
palaeoecological assessments included beetles and pollen and the dating included 14C 
(AMS), dendrochronology and optically stimulated luminescence (OSL). 
 
The ER profiles were run  on or close to the GPR and hand coring transect s undertaken in 
Phase I. They  showed the no rmal trade-off between dep th and resol ution bu t in general 
successfully demarcated the channel edges, base and s ome elements of internal stratigraphy. 
As suspected ER was not as efficacious as GPR at revealing any intra-gravel stratigraphy and 
it is s uggested th at in order to get as full a stratigraphic cross- section as possible across a 
palaeochannel in grav els both methods should be  e mployed. The ground radar imaging 
experiments c onducted had the ai m of trying to quantify  and explai n variations in LiDA R 
intensity, which appeared to be systematic (see Phase I). 
  
Mechanical coring with a Geoprobe corer proved to be both efficient and reasonably fast. The 
collection of samples for OSL also appears to have been successful as no ne showed signs of 
post extraction exposure. Th e s tratigraphy of the cores relat ed well to stand ard an alyses 
including loss on i gnition (tom measure organi c and carbonate con tents) and m agnetic 
susceptibility. Strati graphic modeling of both borehole/core da ta a nd exposure/quarry data 
using ROCKWORKS is then outlined and approaches to integrating quarry face and borehole 
data discuss ed.  The  analysis of cores (organi c content, carbonate conten t & m agnetic 
susceptibility) suggests that se veral o f th e channels had been reoccupied b y river flow 
creating hiatuses i n th eir sedim entary sequences. Pollen and spore sa mples w ere processed 
from a representative selection of cores and the Warren Farm Quarry  faces. Concentrations 
were extremely variable (<1->50,000 grains ml-1) with as  expected greater variability in the 
cores than in the exposures. There was not a consi stent relationship with any variables other 
than a weak and probab ly partial correlation with pH. Bulk sam ples recovered dir ectly from 
the quarry  face with a standard vo lume o f 10 litres produced abund ant, well -preserved and  
incredibly diverse beetle assemblages except in the case of a Lateglacial channel. Otherwise 
preservation was more variable but the role of sample size and the importance of having large 
quantities ( 5l – 10l/3 kg), w hich will provide  a repr esentative as semblage, cannot b e 
underestimated. 
 
The dating program showed that the different techniques produced different date frequencies 
as expected, due to a combination of sam pling desi gn and the spatial chronology  of the 
confluence zone. Th e d endrochronological date s are all cl ustered around 4.5-4.8 Kyrs BP, 
whereas the 14C dates ranged from 0.1-7.3 Kyrs BP (excluding the Lateglacial channel) and 
most fel l into the range 1-4.1 Kyrs BP and the OSL dates ranged from 0.9-7.1 Kyrs BP. A 
definite oral clustering is evident caused by the pattern of channel change and sedimentation. 
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The chronostratigraphic model constructed in Phase I is then compared with the results of the 
luminescence (OSL) and radiocarbon dating. Using the stratigraphic, core, dating, LiDAR and 
geophysical data an evolutionary /diachronic geoarchaeological model of t he Trent-Soar 
confluence zone is proposed. Thi s model pl aces heavy  emphasis o n a vulsion, t he r e-
occupation of channels and lev ee and overba nk sedi mentation as th e ke y processes t hat 
pattern the geoa rchaeological record and no t meander migration, late ral er osion and  
aggradation th at ar e normally s een as the patterning processes. This h as i mportant 
implications for si milar high-en ergy floodplains as well  as the lower  sedi mentary fills of 
lowland flo odplains, in that it  constrains and patte rns t he distribu tion of arc haeological 
artefact and s tructure s urvival. The report concludes w ith the main con clusions of the 
techniques used in  Phase II an d prese nts new researc h d irections and p resents a 
methodological state ment for geo archaeological survey s of si milar floo dplain confluence 
zones. 
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Chapter 1: Introduction  
 
1.1  Introduction to the study 
 
This projec t has bee n f ramed to address the core ALS F them e of de veloping capacity to 
manage aggregate extraction landscapes in th e future (English H eritage 2004). In addition it 
addresses several objective two ALSF themes, namely: 
 

1) Characterising t he [archaeological] resource a nd developing e valuation fram eworks, 
predictive tools and mitigation strategies. 

 
2) Development [of] remote sensing and predictive techniques and mitigation strategies. 

 
3) Training an d pr ofessional d evelopment and to raise awareness of issues  and to 

improve the quality of historic environment work undertaken in response to aggregate 
extraction. 

 
4) Development of a dvanced visualisation and immersive t hree-dimensional m odels of 

landscape d evelopment, l argely part  of ph ase 2 of the project, has the pote ntial to  
address the theme of in terpretation and outreach to the community of the know ledge 
gained from work related to aggregate extraction. 

 
 
 
1.2 Summary of objectives 
 
The full detail  of objectives are g iven in the original Project  Des ign (PNUM3357, phase II 
PD). The principal aim of this project is to predictively model the landscape of a major river 
confluence over a time-scale of millennia and at a spatial scale appropriate for archaeological 
management. The overall purpose is: 
 

1) To establish a rigorous research model for the future development of predetermination 
designs for site evaluation. 

2) To ass ess the effect iveness of v arious airborne and grou nd based r emote s ensing 
methods in alluvial environments. 

3) To deriv e re lationships between  pre -extraction site surve y dat a and li kely 
chronostratigraphic and environmental data as part of archaeological assessment. 

 
This research will assist regulatory bodies (i.e. County Councils) in demanding and specifying 
rapid evaluations of geoarchaeological potential as part of the implementation of PPG16. The 
novelty of the approach lies in the integration of high-resolution topographical, archaeological 
and geo logical (three-dimensional sub-surfac e) data within a Geographical Inform ation 
System (GIS). The t echnical innovation will be  the c ombination of Inteferometric Synthetic 
Aperture Radar (IFSAR), Airborne Laser Altimetry (LiDAR), CW Differential GPS (DGPS), 
Ground Penetrating Rad ar (GPR) and other g round based remote sensing techn iques. This 
research will contribut e to the framework for management of the archaeological resource in  
the Trent Valley developed through Trent Valley  GeoArchaeology (Bishop et al. 2002) and 
provide a  t ransferable model for t he ge oarchaeological investigation a nd management of 
valley floor archaeology. 
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1.3 The study area 
 
The study area is a block of the Trent/Soar confluence landscape approximately 2 by 4 km 
(Fig. 1.1; East Midlands, U.K). The area abuts the main area of Trent Valley GeoArchaeology 
(TVG) interest and is close to but not overlapping sites of continuing research by University 
of Leicester Archaeological Services (ULAS). The area is not zoned for aggregate extraction 
although the area to the west is.  
 

 
 
Fig 1.1:  The study area over the 1:50,000 Ordnance Survey map (by permission of OS). 
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1.4 Project background 
 
Recent archaeological work on the Thames and other British floodplains suggests that river 
confluences have been the foci of settlement and human activity since the earliest post-glacial 
periods. At confluences the high density of palaeochannels provides an opportunity to 
determine records of past environmental change. Migration of rivers channels also provides 
an environment with high potential for the burial and preservation in situ of cultural and 
environmental materials. Unfortunately this potential is generally only realised during the 
destruction of the land surface by development and subsequent 'rescue' archaeological 
investigation.  It is the nature of the archaeological record of floodplains that there is a direct 
link between the geomorphology, including the nature and distribution of channels, levees, 
gravel bars, terrace remnants, etc. and the distribution and nature of archaeological materials, 
from flint scatters to structures. Therefore there is a predictive capability in the subsurface 
geomorphology, stratigraphy and buried land surfaces. 

 

1.5 Previous work 
 
The Middle Trent is one of the ar chaeologically richest stretches of al luvial landscape in the 
UK. Finds include medieval bridges (the Hemington Bridges excavations, funded by English 
Heritage), a Nor man milldam, fishweirs and dugout canoes (Salisbury et al ., 1984; Cooper, 
2003). The study area (a block of floodplain 8 km2) is centr ed on the Lockington Marshes at 
the conf luence of the Trent  and  S oar. This  area is ri ch in cultural ar chaeology ly ing 
immediately east of the nation ally significant prehistoric ritual landscape of the D erbyshire 
Trent Valley (Riley, 1987). Recent finds from a Bronze Age barrow cemetery (Hughes, 2000) 
strongly suggests that this prehistoric ritual landscape extends into the area. In the Romano-
British period the area lies in the h interland of a villa co mplex at L ockington and a small 
town, possibly  a cen tre of rit ual/religion at Red Hill, Ratcliffe  on Soar (Elsdon, 1982).  The 
area, although not thr eatened with  i mminent destruction, is earmarked f or l onger-term 
development. Pilot stud ies ind icate the h igh bur ied ar chaeological po tential of th e locality  
(Ripper, 1997), which combined with a high density of sites suitable for palaeoenvironmental 
studies (Howard, 1997) provide an ideal zone for detailed modelling. Work by Trent Valley 
GeoArchaeology (Knight and Howard, 2004) has done much to provide a regional framework 
for the  cul tural, lands cape and env ironmental ar chaeology of the Tre nt Valley . The present 
proposal provides an opportunity to build constructively on t hat framework through detai led 
consideration of a signif icant confluence zone, targeted fieldwork and innovative use of GIS 
and allied technologies. 


